Advance Information MPC8260AEC/D Rev. 0.7 5/2002 MPC826xA (HiP4) Family Hardware Specifications This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications for HiP4-enhanced derivatives of the PowerQUICC II™ MPC8260 communications processor (collectively referred to as the MPC826xA). The following topics are addressed: Topic Page Section 1.1, “Features” 3 Section 1.2, “Electrical and Thermal Characteristics” 7 Section 1.2.1, “DC Electrical Characteristics” 7 Section 1.2.2, “Thermal Characteristics” 12 Section 1.2.3, “Power Considerations” 12 Section 1.2.4, “AC Electrical Characteristics” 13 Section 1.3, “Clock Configuration Modes” 19 Section 1.3.1, “Local Bus Mode” 19 Section 1.3.2, “PCI Mode” 22 Section 1.4, “Pinout” 29 Section 1.5, “Package Description” 42 Section 1.6, “Ordering Information” 44 PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE Table 1 shows the functionality that defines each derivative of the HiP4-enhanced PowerQUICC II family. Table 1. HiP4 PowerQUICC II Family Derivatives Derivatives Functionality MPC8260A MPC8264A MPC8265A MPC8266A HiP4 Process Enhancements X X PCI Bridge X X X X Transmission Convergence (TC) Layer X X Inverse Multiplexing for ATM (IMA) X X Until a revision of the current MPC8260 PowerQUICC II User’s Manual (Rev 0) is available, several addendum documents supply information about the functionality of HiP4-enhanced PowerQUICC II devices. Table 2 lists each device and its related documentation. Table 2. HiP4 PowerQUICC II Documentation Derivatives Document MPC8260A MPC8264A MPC8265A MPC8266A MPC8260 PowerQUICC II User’s Manual, Rev 0 (order number: MPC8260UM/D) X X X X MPC8260A (HiP4) Supplement to the MPC8260 PowerQUICC II User’s Manual (Preliminary) (order number: MPC8260AUM/D) X X X X X X PCI Bridge Functional Specification (Preliminary) (order number: MPC8265AUMAD/D) 2 TC Layer Functional Specification (Preliminary) (order number: MPC8264AUMAD/D) X X IMA Functional Specification (Preliminary) (order number: MPC8266AUMAD/D) X X MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Features Figure 1 shows the block diagram for the HiP4 superset device, the MPC8266A. 16 Kbytes I-Cache I-MMU System Interface Unit (SIU) G2 Core 16 Kbytes D-Cache Bus Interface Unit Communication Processor Module (CPM) PCI Bus2,3 32 bits, up to 66 MHz 60x-to-PCI Bridge2,3 60x-to-Local Bridge D-MMU 60x Bus or Local Bus 32 bits, up to 83 MHz Memory Controller Timers Serial DMAs 32 Kbytes Dual-Port RAM Interrupt Controller Clock Counter Parallel I/O 32-bit RISC Microcontroller and Program ROM Baud Rate Generators MCC1 MCC2 4 Virtual IDMAs 1,3 IMA Microcode FCC1 FCC2 FCC3 TC Layer Hardware1,3 SCC1 SCC2 SCC3 SCC4 System Functions SMC1 SMC2 SPI I2C Time Slot Assigner Serial Interface 8 TDM Ports 3 MII Ports 2 UTOPIA Ports Non-Multiplexed I/O Notes: 1. MPC8264A 2. MPC8265A 3. MPC8266A Figure 1. MPC8266A Block Diagram 1.1 Features The major features of the MPC826xA family are as follows: • • Dual-issue integer core — A core version of the EC603e microprocessor — System core microprocessor supporting frequencies of 150–300 MHz — Separate 16-Kbyte data and instruction caches: – Four-way set associative – Physically addressed – LRU replacement algorithm — PowerPC architecture-compliant memory management unit (MMU) — Common on-chip processor (COP) test interface — High-performance (6.6–7.65 SPEC95 benchmark at 300 MHz; 420 Dhrystones MIPS at 300 MHz) — Supports bus snooping for data cache coherency — Floating-point unit (FPU) Separate power supply for internal logic and for I/O MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 3 Features • • • • Separate PLLs for G2 core and for the CPM — G2 core and CPM can run at different frequencies for power/performance optimization — Internal core/bus clock multiplier that provides 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios — Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios 64-bit data and 32-bit address 60x bus — Bus supports multiple master designs — Supports single- and four-beat burst transfers — 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller — Supports data parity or ECC and address parity 32-bit data and 18-bit address local bus — Single-master bus, supports external slaves — Eight-beat burst transfers — 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller 60x-to-PCI bridge (MPC8265A and MPC8266A only) — Programmable host bridge and agent — 32-bit data bus, 66 MHz, 3.3 V — Synchronous and asynchronous 60x and PCI clock modes — All internal address space available to external PCI host — DMA for memory block transfers — PCI-to-60x address remapping • System interface unit (SIU) — Clock synthesizer — Reset controller — Real-time clock (RTC) register — Periodic interrupt timer — Hardware bus monitor and software watchdog timer — IEEE 1149.1 JTAG test access port • Twelve-bank memory controller — Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other userdefinable peripherals — Byte write enables and selectable parity generation — 32-bit address decodes with programmable bank size — Three user programmable machines, general-purpose chip-select machine, and page-mode pipeline SDRAM machine — Byte selects for 64 bus width (60x) and byte selects for 32 bus width (local) — Dedicated interface logic for SDRAM • • 4 CPU core can be disabled and the device can be used in slave mode to an external core Communications processor module (CPM) — Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support for communications protocols MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Features — Interfaces to G2 core through on-chip 32-Kbyte dual-port RAM and DMA controller — Serial DMA channels for receive and transmit on all serial channels — Parallel I/O registers with open-drain and interrupt capability — Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers — Three fast communications controllers supporting the following protocols: – 10/100-Mbit Ethernet/IEEE 802.3 CDMA/CS interface through media independent interface (MII) – ATM—Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5, AAL1, AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 16 K external connections – Transparent – HDLC—Up to T3 rates (clear channel) — Two multichannel controllers (MCCs) – Each MCC handles 128 serial, full-duplex, 64-Kbps data channels.Each MCC can be split into four subgroups of 32 channels each. – Almost any combination of subgroups can be multiplexed to single or multiple TDM interfaces up to four TDM interfaces per MCC — Four serial communications controllers (SCCs) identical to those on the MPC860, supporting the digital portions of the following protocols: – Ethernet/IEEE 802.3 CDMA/CS – HDLC/SDLC and HDLC bus – Universal asynchronous receiver transmitter (UART) – Synchronous UART – Binary synchronous (BISYNC) communications – Transparent — Two serial management controllers (SMCs), identical to those of the MPC860 – Provide management for BRI devices as general circuit interface (GCI) controllers in timedivision-multiplexed (TDM) channels – Transparent – UART (low-speed operation) — One serial peripheral interface identical to the MPC860 SPI — One inter-integrated circuit (I2C) controller (identical to the MPC860 I2C controller) – Microwire compatible – Multiple-master, single-master, and slave modes — Up to eight TDM interfaces – Supports two groups of four TDM channels for a total of eight TDMs – 2,048 bytes of SI RAM – Bit or byte resolution – Independent transmit and receive routing, frame synchronization MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 5 Features – Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN primary rate, Motorola interchip digital link (IDL), general circuit interface (GCI), and user-defined TDM serial interfaces — Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs, SCCs, SMCs, and serial channels — Four independent 16-bit timers that can be interconnected as two 32-bit timers Additional features of the MPC826xA family are as follows: • CPM — 32-Kbyte dual-port RAM — Additional MCC host commands — Eight transfer transmission convergence (TC) layers between the TDMs and FCC2 to support inverse multiplexing for ATM capabilities (IMA) (MPC8264A and MPC8266A only) • CPM multiplexing — FCC2 can also be connected to the TC layer. • TC layer (MPC8264A and MPC8266A only) — Each of the 8 TDM channels is routed in hardware to a TC layer block – Protocol-specific overhead bits may be discarded or routed to other controllers by the SI – Performing ATM TC layer functions (according to ITU-T I.432) – Transmit (Tx) updates – Cell HEC generation – Payload scrambling using self synchronizing scrambler (programmable by the user) – Coset generation (programmable by the user) – Cell rate by inserting idle/unassigned cells – Receive (Rx) updates – Cell delineation using bit by bit HEC checking and programmable ALPHA and DELTA parameters for the delineation state machine – Payload descrambling using self synchronizing scrambler (programmable by the user) – Coset removing (programmable by the user) – Filtering idle/unassigned cells (programmable by the user) – Performing HEC error detection and single bit error correction (programmable by user) – Generating loss of cell delineation status/interrupt (LOC/LCD) — Operates with FCC2 (UTOPIA 8) — Provides serial loop back mode — Cell echo mode is provided — Supports both FCC transmit modes – External rate mode—Idle cells are generated by the FCC (microcode) to control data rate. – Internal rate mode (sub-rate)—FCC transfers only the data cells using the required data rate. The TC layer generates idle/unassigned cells to maintain the line bit rate. 6 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Electrical and Thermal Characteristics — Supports TC-layer and PMD-WIRE interface (according to the ATM-Forum af-phy-0063.000) — Cell counters for performance monitoring – 16-bit counters count – HEC error cells – HEC single bit error and corrected cells – Idle/unassigned cells filtered – Idle/unassigned cells transmitted – Transmitted ATM cells – Received ATM cells – Maskable interrupt is sent to the host when a counter expires — Overrun (Rx cell FIFO) and underrun (Tx cell FIFO) condition produces maskable interrupt — May be operated at E1 and DS-1 rates. In addition, xDSL applications at bit rates up to 10 Mbps are supported • PCI bridge (MPC8265A and MPC8266A only) — PCI Specification Revision 2.2 compliant and supports frequencies up to 66 MHz — On-chip arbitration — Support for PCI to 60x memory and 60x memory to PCI streaming — PCI Host Bridge or Peripheral capabilities — Includes 4 DMA channels for the following transfers: – PCI-to-60x to 60x-to-PCI – 60x-to-PCI to PCI-to-60x – PCI-to-60x to PCI-to-60x – 60x-to-PCI to 60x-to-PCI — Includes all of the configuration registers (which are automatically loaded from the EPROM and used to configure the MPC8265A) required by the PCI standard as well as message and doorbell registers — Supports the I2O standard — Hot-Swap friendly (supports the Hot Swap Specification as defined by PICMG 2.1 R1.0 August 3, 1998) — Support for 66 MHz, 3.3 V specification — 60x-PCI bus core logic which uses a buffer pool to allocate buffers for each port — Makes use of the local bus signals, so there is no need for additional pins 1.2 Electrical and Thermal Characteristics This section provides AC and DC electrical specifications and thermal characteristics for the MPC826xA. 1.2.1 DC Electrical Characteristics This section describes the DC electrical characteristics for the MPC826xA. Table 3 shows the maximum electrical ratings. MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 7 Electrical and Thermal Characteristics Table 3. Absolute Maximum Ratings1 Rating Core supply voltage2 PLL supply voltage2 I/O supply voltage3 Input voltage4 Junction temperature Storage temperature range Symbol Value Unit VDD -0.3 – 2.5 V VCCSYN -0.3 – 2.5 V VDDH -0.3 – 4.0 V VIN GND(-0.3) – 3.6 V Tj 120 ˚C TSTG (-55) – (+150) ˚C 1 Absolute maximum ratings are stress ratings only; functional operation (see Table 4) at the maximums is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage. 2 Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V at any time, including during power-on reset. 3 Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should not exceed VDD/VCCSYN by more than 2.5 V during normal operation. 4 Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset. Table 4 lists recommended operational voltage conditions. Table 4. Recommended Operating Conditions1 Rating Symbol Value Unit Core supply voltage VDD 1.7 – 2.12/ 1.9 –2.13 V PLL supply voltage VCCSYN 1.7 – 2.12/1.9–2.13 V I/O supply voltage VDDH 3.135 – 3.465 V VIN GND (-0.3) – 3.465 V Junction temperature (maximum) Tj 1054 ˚C Ambient temperature TA 0–704 ˚C Input voltage 1 Caution: These are the recommended and tested operating conditions. Proper device operating outside of these conditions is not guaranteed. 2 For devices operating at less than 233 MHz CPU, 166 MHz CPM, and 66 MHz bus frequencies. 3 For devices operating at greater than or equal to 233 MHz CPU, 166 MHz CPM, and 66 MHz bus frequencies. 4 Note that for extended temperature parts the range is (-40) – 105 . T Tj A NOTE VDDH and VDD must track each other and both must vary in the same direction—in the positive direction (+5% and +0.1 Vdc) or in the negative direction (-5% and -0.1 Vdc). This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (either GND or VCC). 8 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Electrical and Thermal Characteristics Table 5 shows DC electrical characteristics. Table 5. DC Electrical Characteristics Characteristic Symbol Min Max Unit Input high voltage, all inputs except CLKIN VIH 2.0 3.465 V Input low voltage VIL GND 0.8 V VIHC 2.4 3.465 V VILC GND 0.4 V IIN — 10 µA IOZ — 10 µA Signal low input current, VIL = 0.8 V IL — 1 µA Signal high input current, VIH = 2.0 V IH — 1 µA VOH 2.4 — V VOL — 0.5 V CLKIN input high voltage CLKIN input low voltage Input leakage current, VIN = VDDH1 Hi-Z (off state) leakage current, VIN = VDDH1 Output high voltage, IOH = –2 mA except XFC, UTOPIA mode, and open drain pins In UTOPIA mode: IOH = -8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31] In UTOPIA mode: IOL = 8.0mA PA[0-31] PB[4-31] PC[0-31] PD[4-31] MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 9 Electrical and Thermal Characteristics Table 5. DC Electrical Characteristics (Continued) Characteristic IOL = 7.0mA BR BG ABB/IRQ2 TS A[0-31] TT[0-4] TBST TSIZE[0–3] AACK ARTRY DBG DBB/IRQ3 D[0-63] DP(0)/RSRV/EXT_BR2 DP(1)/IRQ1/EXT_BG2 DP(2)/TLBISYNC/IRQ2/EXT_DBG2 DP(3)/IRQ3/EXT_BR3/CKSTP_OUT DP(4)/IRQ4/EXT_BG3/CORE_SREST DP(5)/TBEN/IRQ5/EXT_DBG3 DP(6)/CSE(0)/IRQ6 DP(7)/CSE(1)/IRQ7 PSDVAL TA TEA GBL/IRQ1 CI/BADDR29/IRQ2 WT/BADDR30/IRQ3 L2_HIT/IRQ4 CPU_BG/BADDR31/IRQ5 CPU_DBG CPU_BR IRQ0/NMI_OUT IRQ7/INT_OUT/APE PORESET HRESET SRESET RSTCONF QREQ 10 Symbol Min Max Unit VOL — 0.4 V MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Electrical and Thermal Characteristics Table 5. DC Electrical Characteristics (Continued) Characteristic IOL = 5.3mA CS[0-9] CS(10)/BCTL1 CS(11)/AP(0) BADDR[27–28] ALE BCTL0 PWE(0:7)/PSDDQM(0:7)/PBS(0:7) PSDA10/PGPL0 PSDWE/PGPL1 POE/PSDRAS/PGPL2 PSDCAS/PGPL3 PGTA/PUPMWAIT/PGPL4/PPBS PSDAMUX/PGPL5 LWE[0–3]LSDDQM[0:3]/LBS[0–3]/PCI_CFG[0–32 LSDA10/LGPL0/PCI_MODCKH02 LSDWE/LGPL1/PCI_MODCKH12 LOE/LSDRAS/LGPL2/PCI_MODCKH22 LSDCAS/LGPL3/PCI_MODCKH32 LGTA/LUPMWAIT/LGPL4/LPBS LSDAMUX/LGPL5/PCI_MODCK2 LWR MODCK1/AP(1)/TC(0)/BNKSEL(0) MODCK2/AP(2)/TC(1)/BNKSEL(1) MODCK3/AP(3)/TC(2)/BNKSEL(2) IOL = 3.2mA L_A14/PAR2 L_A15/FRAME2/SMI L_A16/TRDY2 L_A17/IRDY2/CKSTP_OUT L_A18/STOP2 L_A19/DEVSEL2 L_A20/IDSEL2 L_A21/PERR2 L_A22/SERR2 L_A23/REQ02 L_A24/REQ12/HSEJSW2 L_A25/GNT02 L_A26/GNT12/HSLED2 L_A27/GNT22/HSENUM2 L_A28/RST2/CORE_SRESET L_A29/INTA2 L_A30/REQ22 L_A31 LCL_D(0-31)/AD(0-31)2 LCL_DP(0-3)/C/BE(0-3)2 PA[0–31] PB[4–31] PC[0–31] PD[4–31] TDO Symbol Min Max Unit VOL — 0.4 V 1 The leakage current is measured for nominal VDDH and VDD or both VDDH and VDD must vary in the same direction; that is, VDDH and VDD either both vary in the positive direction (+5% and +0.1 Vdc) or both vary in the negative direction (-5% and -0.1 Vdc). 2 MPC8265A and MPC8266A only. MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 11 Electrical and Thermal Characteristics 1.2.2 Thermal Characteristics Table 6 describes thermal characteristics. Table 6. Thermal Characteristics Characteristics Symbol Value Unit Air Flow θJA 13.071 °C/W NC2 θJA 9.551 °C/W 1 m/s θJA 10.483 °C/W NC θJA 7.783 °C/W 1 m/s Thermal resistance for TBGA 1 Assumes a single layer board with no thermal vias Natural convection 3 Assumes a four layer board 2 1.2.3 Power Considerations The average chip-junction temperature, TJ, in °C can be obtained from the following: TJ = TA + (PD x θJA) (1) where TA = ambient temperature °C θJA = package thermal resistance, junction to ambient, °C/W PD = PINT + PI/O PINT = IDD x VDD Watts (chip internal power) PI/O = power dissipation on input and output pins (determined by user) For most applications PI/O < 0.3 x PINT. If PI/O is neglected, an approximate relationship between PD and TJ is the following: PD = K/(TJ + 273° C) (2) Solving equations (1) and (2) for K gives: K = PD x (TA + 273° C) + θJA x PD2 (3) where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by solving equations (1) and (2) iteratively for any value of TA. 1.2.3.1 Layout Practices Each VCC pin should be provided with a low-impedance path to the board’s power supply. Each ground pin should likewise be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on chip. The VCC power supply should be bypassed to ground using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip VCC and ground should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and GND planes. 12 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Electrical and Thermal Characteristics All output pins on the MPC826xA have fast rise and fall times. Printed circuit (PC) trace interconnection length should be minimized in order to minimize overdamped conditions and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. Table 7 provides preliminary, estimated power dissipation for various configurations. Note that suitable thermal management is required for conditions above PD = 3W (when the ambient temperature is 70˚ C or greater) to ensure the junction temperature does not exceed the maximum specified value. Also note that the I/O power should be included when determining whether to use a heat sink. Table 7. Estimated Power Dissipation for Various Configurations1 PINT(W)2 Bus (MHz) 1 2 CPM Core CPU Multiplier Multiplier CPM (MHz) CPU (MHz) Vddl 1.8 Volts Vddl 2.0 Volts Nominal Maximum Nominal Maximum 66.66 2 3 133 200 1.2 2 1.8 2.3 66.66 2.5 3 166 200 1.3 2.1 1.9 2.3 66.66 3 4 200 266 — — 2.3 2.9 66.66 3 4.5 200 300 — — 2.4 3.1 83.33 2 3 166 250 — — 2.2 2.8 83.33 2 3 166 250 — — 2.2 2.8 83.33 2.5 3.5 208 291 — — 2.4 3.1 Test temperature = room temperature (25˚ C) PINT = IDD x VDD Watts 1.2.4 AC Electrical Characteristics The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and inputs for the 66 MHz MPC826xA device. Note that AC timings are based on a 50-pf load. Typical output buffer impedances are shown in Table 8. Table 8. Output Buffer Impedances1 Output Buffers 60x bus 40 Local bus 40 Memory controller 40 Parallel I/O 46 PCI 25 1 MOTOROLA Typical Impedance (Ω) These are typical values at 65˚ C. The impedance may vary by ±25% with process and temperature. MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 13 Electrical and Thermal Characteristics Table 9 lists CPM output characteristics. Table 9. AC Characteristics for CPM Outputs1 Max Delay (ns) Spec_num Max/Min 66 MHz 83 MHz 66 MHz 83 MHz sp36a/sp37a FCC outputs—internal clock (NMSI) 6 5.5 1 1 sp36b/sp37b FCC outputs—external clock (NMSI) 14 12 2 1 25 16 5 4 sp38a/sp39a SCC/SMC/SPI/I2C outputs—internal clock (NMSI) 19 16 1 0.5 sp38b/sp39b Ex_SCC/SMC/SPI/I2C outputs—external clock (NMSI) 19 16 2 1 14 11 1 0.5 sp40/sp41 sp42/sp43 1 Min Delay (ns) Characteristic TDM outputs/SI PIO/TIMER/DMA outputs Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. Table 10 lists CPM input characteristics. Table 10. AC Characteristics for CPM Inputs1 Setup (ns) Spec_num Hold (ns) Characteristic 66 MHz 83 MHz 66 MHz 83 MHz sp16a/sp17a FCC inputs—internal clock (NMSI) 10 8 0 0 sp16b/sp17b FCC inputs—external clock (NMSI) 3 2.5 3 2 TDM inputs/SI 15 12 12 10 sp18a/sp19a SCC/SMC/SPI/I2C inputs—internal clock (NMSI) 20 16 0 0 sp18b/sp19b SCC/SMC/SPI/I2C inputs—external clock (NMSI) 5 4 5 4 PIO/TIMER/DMA inputs 10 8 3 3 sp20/sp21 sp22/sp23 1 Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin. Note that although the specifications generally reference the rising edge of the clock, the following AC timing diagrams also apply when the falling edge is the active edge. Figure 2 shows the FCC external clock. Serial ClKin sp17b sp16b FCC input signals sp36b/sp37b FCC output signals Figure 2. FCC External Clock Diagram 14 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Electrical and Thermal Characteristics Figure 3 shows the FCC internal clock. BRG_OUT sp17a sp16a FCC input signals sp36a/sp37a FCC output signals Figure 3. FCC Internal Clock Diagram Figure 4 shows the SCC/SMC/SPI/I2C external clock. Serial CLKin sp19b sp18b SCC/SMC/SPI/I2C input signals sp38b/sp39b SCC/SMC/SPI/I2C output signals Figure 4. SCC/SMC/SPI/I2C External Clock Diagram Figure 5 shows the SCC/SMC/SPI/I2C internal clock. BRG_OUT sp18a sp19a SCC/SMC/SPI/I2C input signals sp38a/sp39a SCC/SMC/SPI/I2C output signals Figure 5. SCC/SMC/SPI/I2C Internal Clock Diagram MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 15 Electrical and Thermal Characteristics Figure 6 shows PIO, timer, and DMA signals. CLKin sp23 sp22 PIO/TIMER/DMA input signals sp42/sp43 TIMER/DMA output signals sp42/sp43 PIO output signals Figure 6. PIO, Timer, and DMA Signal Diagram Table 12 lists SIU input characteristics. Table 11. AC Characteristics for SIU Inputs1 Setup (ns) Spec_num Hold (ns) Characteristic 66 MHz 83 MHz 66 MHz 83 MHz 1 sp11/sp10 AACK/ARTRY/TA/TS/TEA/DBG/BG/BR 6 5 1 1 sp12/sp10 Data bus in normal mode 5 4 1 1 sp13/sp10 Data bus in ECC and PARITY modes 8 6 1 1 sp14/sp10 DP pins 7 6 1 1 sp15/sp10 All other pins 5 4 1 1 Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are measured at the pin. Table 12 lists SIU output characteristics. Table 12. AC Characteristics for SIU Outputs1 Spec_num Max/Min Max Delay (ns) 16 66 MHz 83 MHz 66 MHz 83 MHz sp31/sp30 PSDVAL/TEA/TA 7 6 0.5 0.5 sp32/sp30 ADD/ADD_atr./BADDR/CI/GBL/WT 8 6.5 0.5 0.5 6.5 6.5 0.5 0.5 sp33b/sp30 DP 8 7 0.5 0.5 sp34/sp30 memc signals/ALE 6 5 0.5 0.5 sp35/sp30 all other signals 6 5.5 0.5 0.5 sp33a/sp30 Data bus 1 Min Delay (ns) Characteristic Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are measured at the pin. MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Electrical and Thermal Characteristics NOTE Activating data pipelining (setting BRx[DR] in the memory controller) improves the AC timing. When data pipelining is activated, sp12 can be used for data bus setup even when ECC or PARITY are used. Also, sp33a can be used as the AC specification for DP signals. Figure 7 shows TDM input and output signals. Serial CLKin sp20 sp21 TDM input signals sp40/sp41 TDM output signals Figure 7. TDM Signal Diagram Figure 8 shows the interaction of several bus signals. CLKin sp11 sp10 AACK/ARTRY/TA/TS/TEA/ DBG/BG/BR input signals sp12 sp10 sp15 sp10 DATA bus normal mode input signal All other input signals sp31 sp30 sp32 sp30 sp33a sp30 sp35 sp30 PSDVAL/TEA/TA output signals ADD/ADD_atr/BADDR/CI/ GBL/WT output signals DATA bus output signals All other output signals Figure 8. Bus Signals MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 17 Electrical and Thermal Characteristics Figure 9 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity). CLKin sp10 sp13 DATA bus, ECC, and PARITY mode input signals sp10 sp14 DP mode input signal sp33b/sp30 DP mode output signal Figure 9. Parity Mode Diagram Figure 10 shows signal behavior in MEMC mode. CLKin V_CLK sp34/sp30 Memory controller signals Figure 10. MEMC Mode Diagram NOTE Generally, all MPC826xA bus and system output signals are driven from the rising edge of the input clock (CLKin). Memory controller signals, however, trigger on four points within a CLKin cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and T4 depends on the PLL clock ratio selected, as shown in Table 13. Table 13. Tick Spacing for Memory Controller Signals Tick Spacing (T1 Occurs at the Rising Edge of CLKin) PLL Clock Ratio T2 18 T3 T4 1:2, 1:3, 1:4, 1:5, 1:6 1/4 CLKin 1/2 CLKin 3/4 CLKin 1:2.5 3/10 CLKin 1/2 CLKin 8/10 CLKin 1:3.5 4/14 CLKin 1/2 CLKin 11/14 CLKin MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Clock Configuration Modes Figure 11 is a graphical representation of Table 13. CLKin for 1:2, 1:3, 1:4, 1:5, 1:6 T1 T2 T3 T4 CLKin for 1:2.5 T1 T2 T3 T4 for 1:3.5 CLKin T1 T2 T3 T4 Figure 11. Internal Tick Spacing for Memory Controller Signals NOTE The UPM machine outputs change on the internal tick determined by the memory controller programming; the AC specifications are relative to the internal tick. Note that SDRAM and GPCM machine outputs change on CLKin’s rising edge. 1.3 Clock Configuration Modes To configure the main PLL multiplication factor and the core, CPM, and 60x bus frequencies, the MODCK[1–3] pins are sampled while HRESET is asserted. Table 14 shows the eight basic configuration modes. Another 49 modes are available by using the configuration pin (RSTCONF) and driving four pins on the data bus. 1.3.1 Local Bus Mode Table 14 describes default clock modes for the MPC826xA. Table 14. Clock Default Modes MODCK[1–3] Input Clock Frequency CPM Multiplication Factor CPM Frequency Core Multiplication Factor Core Frequency 000 33 MHz 3 100 MHz 4 133 MHz 001 33 MHz 3 100 MHz 5 166 MHz 010 33 MHz 4 133 MHz 4 133 MHz 011 33 MHz 4 133 MHz 5 166 MHz 100 66 MHz 2 133 MHz 2.5 166 MHz 101 66 MHz 2 133 MHz 3 200 MHz 110 66 MHz 2.5 166 MHz 2.5 166 MHz 111 66 MHz 2.5 166 MHz 3 200 MHz Table 15 describes all possible clock configurations when using the hard reset configuration sequence. Note that clock configuration changes only after POR is asserted. Note also that basic modes are shown in boldface type. MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 19 Clock Configuration Modes Table 15. Clock Configuration Modes1 MODCK_H–MODCK[1–3] 20 Core Multiplication Input Clock CPM Multiplication CPM Core Factor2 Factor2 Frequency2,3 Frequency2 Frequency2 0001_000 33 MHz 2 66 MHz 4 133 MHz 0001_001 33 MHz 2 66 MHz 5 166 MHz 0001_010 33 MHz 2 66 MHz 6 200 MHz 0001_011 33 MHz 2 66 MHz 7 233 MHz 0001_100 33 MHz 2 66 MHz 8 266 MHz 0001_101 33 MHz 3 100 MHz 4 133 MHz 0001_110 33 MHz 3 100 MHz 5 166 MHz 0001_111 33 MHz 3 100 MHz 6 200 MHz 0010_000 33 MHz 3 100 MHz 7 233 MHz 0010_001 33 MHz 3 100 MHz 8 266 MHz 0010_010 33 MHz 4 133 MHz 4 133 MHz 0010_011 33 MHz 4 133 MHz 5 166 MHz 0010_100 33 MHz 4 133 MHz 6 200 MHz 0010_101 33 MHz 4 133 MHz 7 233 MHz 0010_110 33 MHz 4 133 MHz 8 266 MHz 0010_111 33 MHz 5 166 MHz 4 133 MHz 0011_000 33 MHz 5 166 MHz 5 166 MHz 0011_001 33 MHz 5 166 MHz 6 200 MHz 0011_010 33 MHz 5 166 MHz 7 233 MHz 0011_011 33 MHz 5 166 MHz 8 266 MHz 0011_100 33 MHz 6 200 MHz 4 133 MHz 0011_101 33 MHz 6 200 MHz 5 166 MHz 0011_110 33 MHz 6 200 MHz 6 200 MHz 0011_111 33 MHz 6 200 MHz 7 233 MHz 0100_000 33 MHz 6 200 MHz 8 266 MHz MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Clock Configuration Modes Table 15. Clock Configuration Modes1 (Continued) MODCK_H–MODCK[1–3] Core Multiplication Input Clock CPM Multiplication CPM Core Factor2 Factor2 Frequency2,3 Frequency2 Frequency2 0100_001 Reserved 0100_010 0100_011 0100_100 0100_101 0100_110 0100_111 Reserved 0101_000 0101_001 0101_010 0101_011 0101_100 0101_101 66 MHz 2 133 MHz 2 133 MHz 0101_110 66 MHz 2 133 MHz 2.5 166 MHz 0101_111 66 MHz 2 133 MHz 3 200 MHz 0110_000 66 MHz 2 133 MHz 3.5 233 MHz 0110_001 66 MHz 2 133 MHz 4 266 MHz 0110_010 66 MHz 2 133 MHz 4.5 300 MHz 0110_011 66 MHz 2.5 166 MHz 2 133 MHz 0110_100 66 MHz 2.5 166 MHz 2.5 166 MHz 0110_101 66 MHz 2.5 166 MHz 3 200 MHz 0110_110 66 MHz 2.5 166 MHz 3.5 233 MHz 0110_111 66 MHz 2.5 166 MHz 4 266 MHz 0111_000 66 MHz 2.5 166 MHz 4.5 300 MHz 0111_001 66 MHz 3 200 MHz 2 133 MHz 0111_010 66 MHz 3 200 MHz 2.5 166 MHz 0111_011 66 MHz 3 200 MHz 3 200 MHz 0111_100 66 MHz 3 200 MHz 3.5 233 MHz 0111_101 66 MHz 3 200 MHz 4 266 MHz 0111_110 66 MHz 3 200 MHz 4.5 300 MHz MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 21 Clock Configuration Modes Table 15. Clock Configuration Modes1 (Continued) MODCK_H–MODCK[1–3] Core Multiplication Input Clock CPM Multiplication CPM Core Factor2 Factor2 Frequency2,3 Frequency2 Frequency2 0111_111 66 MHz 3.5 233 MHz 2 133 MHz 1000_000 66 MHz 3.5 233 MHz 2.5 166 MHz 1000_001 66 MHz 3.5 233 MHz 3 200 MHz 1000_010 66 MHz 3.5 233 MHz 3.5 233 MHz 1000_011 66 MHz 3.5 233 MHz 4 266 MHz 1000_100 66 MHz 3.5 233 MHz 4.5 300 MHz 1100_0004 66 MHz 2 133 MHz Bypass 66 MHz 1100_0014 66 MHz 2.5 166 MHz Bypass 66 MHz 1100_0104 66 MHz 3 200 MHz Bypass 66 MHz 1 Because of speed dependencies, not all of the possible configurations in Table 15 are applicable. The user should choose the input clock frequency and the multiplication factors such that the frequency of the CPU is equal to or greater than150 MHz and the CPM ranges between 66–233 MHz. 3 Input clock frequency is given only for the purpose of reference. User should set MODCK_H–MODCK_L so that the resulting configuration does not exceed the frequency rating of the user’s part. 2 Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the following are possible (note that the three input clock frequencies are only three of many possible input clock frequencies): 1. 66 MHz input clock and MODCK_H–MODCK_L[0111–101] (with a core multiplication factor of 4 and a CPM multiplication factor of 3). The resulting configuration equals the part’s maximum possible frequencies of 266 MHz CPU, 200 MHz CPM, and 66 MHz bus. 2. 50 MHz input clock and MODCK_H–MODCK_L[0111–101] to achieve a configuration of 200 MHz CPU, 150 MHz CPM, and 50 MHz bus. 3. 40 MHz input clock and MODCK_H–MODCK_L[0010–011] to achieve a configuration of 200 MHz CPU, 160 MHz CPM, and 40 MHz bus. Note that with each example, any one of several values for MODCK_H–MODCK_L could possibly be used as long as the resulting configuration does not exceed the part’s rating. 4 At this mode the CPU PLL is bypassed (the CPU frequency equals the bus frequency). 1.3.2 PCI Mode This section pertains to the MPC8265A and the MPC8266A only. In PCI mode only, MODCK_HI[0:3] and PCI_MODCK come from the following external pins: • PCI_MODCK = LGPL5 • MODCK_HI[0:3] = {LGPL0,LGPL1,LGPL2,LGPL3} NOTE The minimum Tval = 2 when PCI_MODCK = 1 and minimum Tval = 1 when PCI_MODCK = 0; therefore, board designers should use clock configurations that fit this condition to achieve PCI-compliant AC timing. 22 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Clock Configuration Modes Table 16. Clock Default Configurations in PCI Host Mode (MODCK_HI = 0000) Input Clock CPM Core CPM Core PCI Division PCI Multiplication MODCK[1–3]1 Frequency Multiplication Frequency Frequency Factor2 Frequency2 (Bus) Factor Factor 1 2 000 66 MHz 2 133 MHz 2.5 166 MHz 2/4 66/33 MHz 001 66 MHz 2 133 MHz 3 200 MHz 2/4 66/33 MHz 010 66 MHz 2.5 166 MHz 3 200 MHz 3/6 55/28 MHz 011 66 MHz 2.5 166 MHz 3.5 233 MHz 3/6 55/28 MHz 100 66 MHz 2.5 166 MHz 4 266 MHz 3/6 55/28 MHz 101 66 MHz 3 200 MHz 3 200 MHz 3/6 66/33 MHz 110 66 MHz 3 200 MHz 3.5 233 MHz 3/6 66/33 MHz 111 66 MHz 3 200 MHz 4 266 MHz 3/6 66/33 MHz Assumes MODCK_HI = 0000. The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1’), the PCI frequency is divided by 2 (33 instead of 66 MHz, etc.) Table 17 describes all possible clock configurations when using the MPC8265A or the MPC8266A’s internal PCI bridge in host mode. Table 17. Clock Configuration Modes in PCI Host Mode MODCK_H – MODCK[1–3] Input Clock Frequency1 (Bus) 0001_000 33 MHz 3 100 MHz 5 166 MHz 3/6 33/16 MHz 0001_001 33 MHz 3 100 MHz 6 200 MHz 3/6 33/16 MHz 0001_010 33 MHz 3 100 MHz 7 233 MHz 3/6 33/16 MHz 0001_011 33 MHz 3 100 MHz 8 266 MHz 3/6 33/16 MHz 0010_000 33 MHz 4 133 MHz 5 166 MHz 4/8 33/16 MHz 0010_001 33 MHz 4 133 MHz 6 200 MHz 4/8 33/16 MHz 0010_010 33 MHz 4 133 MHz 7 233 MHz 4/8 33/16 MHz 0010_011 33 MHz 4 133 MHz 8 266 MHz 4/8 33/16 MHz 0011_0003 33 MHz 5 166 MHz 5 166 MHz 5 33 MHz 0011_0013 33 MHz 5 166 MHz 6 200 MHz 5 33 MHz 0011_0103 33 MHz 5 166 MHz 7 233 MHz 5 33 MHz 0011_0113 33 MHz 5 166 MHz 8 266 MHz 5 33 MHz 0100_0003 33 MHz 6 200 MHz 5 166 MHz 6 33 MHz 0100_0013 33 MHz 6 200 MHz 6 200 MHz 6 33 MHz 0100_0103 33 MHz 6 200 MHz 7 233 MHz 6 33 MHz MOTOROLA CPM Core PCI CPM Core PCI Division Multiplication Multiplication Frequency2 Frequency Frequency Factor2 Factor Factor MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 23 Clock Configuration Modes Table 17. Clock Configuration Modes in PCI Host Mode (Continued) CPM Core CPM Core PCI Division PCI Multiplication Multiplication Frequency Frequency Factor2 Frequency2 Factor Factor MODCK_H – MODCK[1–3] Input Clock Frequency1 (Bus) 0100_0113 33 MHz 6 200 MHz 8 266 MHz 6 33 MHz 0101_000 66 MHz 2 133 MHz 2.5 166 MHz 2/4 66/33 MHz 0101_001 66 MHz 2 133 MHz 3 200 MHz 2/4 66/33 MHz 0101_010 66 MHz 2 133 MHz 3.5 233 MHz 2/4 66/33 MHz 0101_011 66 MHz 2 133 MHz 4 266 MHz 2/4 66/33 MHz 0101_100 66 MHz 2 133 MHz 4.5 300 MHz 2/4 66/33 MHz 0110_000 66 MHz 2.5 166 MHz 2.5 166 MHz 3/6 55/28 MHz 0110_001 66 MHz 2.5 166 MHz 3 200 MHz 3/6 55/28 MHz 0110_010 66 MHz 2.5 166 MHz 3.5 233 MHz 3/6 55/28 MHz 0110_011 66 MHz 2.5 166 MHz 4 266 MHz 3/6 55/28 MHz 0110_100 66 MHz 2.5 166 MHz 4.5 300 MHz 3/6 55/28 MHz 0111_000 66 MHz 3 200 MHz 2.5 166 MHz 3/6 66/33 MHz 0111_001 66 MHz 3 200 MHz 3 200 MHz 3/6 66/33 MHz 0111_010 66 MHz 3 200 MHz 3.5 233 MHz 3/6 66/33 MHz 0111_011 66 MHz 3 200 MHz 4 266 MHz 3/6 66/33 MHz 0111_100 66 MHz 3 200 MHz 4.5 300 MHz 3/6 66/33 MHz 1000_000 66 MHz 3 200 MHz 2.5 166 MHz 4/8 50/25 MHz 1000_001 66 MHz 3 200 MHz 3 200 MHz 4/8 50/25 MHz 1000_010 66 MHz 3 200 MHz 3.5 233 MHz 4/8 50/25 MHz 1000_011 66 MHz 3 200 MHz 4 266 MHz 4/8 50/25 MHz 1000_100 66 MHz 3 200 MHz 4.5 300 MHz 4/8 50/25 MHz 1001_000 66 MHz 3.5 233 MHz 2.5 166 MHz 4/8 58/29 MHz 1001_001 66 MHz 3.5 233 MHz 3 200 MHz 4/8 58/29 MHz 1001_010 66 MHz 3.5 233 MHz 3.5 233 MHz 4/8 58/29 MHz 1001_011 66 MHz 3.5 233 MHz 4 266 MHz 4/8 58/29 MHz 1001_100 66 MHz 3.5 233 MHz 4.5 300 MHz 4/8 58/29 MHz 1010_000 100 MHz 2 200 MHz 2 200 MHz 3/6 66/33 MHz 1010_001 100 MHz 2 200 MHz 2.5 250 MHz 3/6 66/33 MHz 24 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Clock Configuration Modes Table 17. Clock Configuration Modes in PCI Host Mode (Continued) CPM Core CPM Core PCI Division PCI Multiplication Multiplication Frequency Frequency Factor2 Frequency2 Factor Factor MODCK_H – MODCK[1–3] Input Clock Frequency1 (Bus) 1010_010 100 MHz 2 200 MHz 3 300 MHz 3/6 66/33 MHz 1010_011 100 MHz 2 200 MHz 3.5 350 MHz 3/6 66/33 MHz 1010_100 100 MHz 2 200 MHz 4 400 MHz 3/6 66/33 MHz 1011_000 100 MHz 2.5 250 MHz 2 200 MHz 4/8 62/31 MHz 1011_001 100 MHz 2.5 250 MHz 2.5 250 MHz 4/8 62/31MHz 1011_010 100 MHz 2.5 250 MHz 3 300 MHz 4/8 62/31 MHz 1011_011 100 MHz 2.5 250 MHz 3.5 350 MHz 4/8 62/31 MHz 1011_100 100 MHz 2.5 250 MHz 4 400 MHz 4/8 62/31 MHz 1100_0004 66MHz 2 133MHz Bypass 66MHz 2/4 66/33 MHz 1100_0014 66MHz 2.5 166MHz Bypass 66MHz 3/6 55/28 MHz 1100_0104 66MHz 3 200MHz Bypass 66MHz 3/6 66/33 MHz 1 Input clock frequency is given only for the purpose of reference. User should set MODCK_H–MODCK_L so that the resulting configuration does not exceed the frequency rating of the user’s part. Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the following are possible (note that the three input clock frequencies are only three of many possible input clock frequencies): 1. 66 MHz input clock, MODCK_H–MODCK_L[0111–011] (with a core multiplication factor of 4 and a CPM multiplication factor of 3), and PCI_MODCK = 0 (see note 2 below). The resulting configuration equals the part’s maximum possible frequencies of 266 MHz CPU, 200 MHz CPM, 66 MHz 60x bus, and a PCI frequency of 66 MHz. 2. 50 MHz input clock, MODCK_H–MODCK_L[0111–011], and PCI_MODCK = 0 (see note 2below) to achieve a configuration of 200 MHz CPU, 150 MHz CPM, 50 MHz 60x bus, and a PCI frequency of 50 MHz. 3. 40 MHz input clock, MODCK_H–MODCK_L[0010–000], and PCI_MODCK = 0 (see note 2 below) to achieve a configuration of 200 MHz CPU, 160 MHz CPM, 40 MHz 60x bus, and a PCI frequency of 40 MHz. Note that with each of the examples, any one of several values for MODCK_H–MODCK_L could possibly be used as long as the resulting configuration does not exceed the part’s rating. 2 The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1’), the PCI frequency is divided by 2 (33 instead of 66 MHz, etc.). 3 In this mode, PCI_MODCK must be “0”. 4 In this mode the Core PLL is bypassed (core frequency equals to bus frequency; for debug purpose only). Table 18. Clock Default Configurations in PCI Agent Mode (MODCK_HI = 0000)1 Input Clock CPM Core CPM Core Bus Division 60x Bus Multiplication MODCK[1–3]2 Frequency Multiplication 4 Frequency Frequency Factor Frequency5 (PCI)3 Factor3 Factor 000 66/33 MHz 2/4 133 MHz 2.5 166 MHz 2 66 MHz 001 66/33 MHz 2/4 133 MHz 3 200 MHz 2 66 MHz 010 66/33 MHz 3/6 200 MHz 3 200 MHz 3 66 MHz 011 66/33 MHz 3/6 200 MHz 4 266 MHz 3 66 MHz MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 25 Clock Configuration Modes Table 18. Clock Default Configurations in PCI Agent Mode (MODCK_HI = 0000)1 (Continued) Input Clock CPM Core CPM Core Bus Division 60x Bus Multiplication MODCK[1–3]2 Frequency Multiplication Frequency Frequency4 Factor Frequency5 3 3 (PCI) Factor Factor 100 66/33 MHz 3/6 200 MHz 3 240 MHz 2.5 80 MHz 101 66/33 MHz 3/6 200 MHz 3.5 280 MHz 2.5 80 MHz 110 66/33 MHz 4/8 266 MHz 3.5 300 MHz 3 88 MHz 111 66/33 MHz 4/8 266 MHz 3 300 MHz 2.5 100 MHz 1 The user should verify that all buses and functions run frequencies that are within the supported ranges. Assumes MODCK_HI = 0000. 3 The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1’), the PCI frequency is divided by 2 (33 instead of 66 MHz, etc.) and the CPM multiplication factor is multiplied by 2. 4 Core frequency = (60x bus frequency)(core multiplication factor) 5 Bus frequency = CPM frequency / bus division factor 2 Table 19 describes all possible clock configurations when using the MPC8265A or the MPC8266A’s internal PCI bridge in agent mode. Table 19. Clock Configuration Modes in PCI Agent Mode 1 Input Clock CPM Core Factor Factor CPM Core Bus Division 60x Bus MODCK_H – Frequency Multiplication Multiplication MODCK[1–3] Frequency Frequency4 Factor Frequency5 2,3 2 (PCI) 26 0001_001 66/33 MHz 2/4 133 MHz 5 166 MHz 4 33 MHz 0001_010 66/33 MHz 2/4 133 MHz 6 200 MHz 4 33 MHz 0001_011 66/33 MHz 2/4 133 MHz 7 233 MHz 4 33 MHz 0001_100 66/33 MHz 2/4 133 MHz 8 266 MHz 4 33 MHz 0010_001 50/25 MHz 3/6 150 MHz 3 180 MHz 2.5 60 MHz 0010_010 50/25 MHz 3/6 150 MHz 3.5 210 MHz 2.5 60 MHz 0010_011 50/25 MHz 3/6 150 MHz 4 240 MHz 2.5 60 MHz 0010_100 50/25 MHz 3/6 150 MHz 4.5 270 MHz 2.5 60 MHz 0011_000 66/33 MHz 2/4 133 MHz 2.5 110MHz 3 44 MHz 0011_001 66/33 MHz 2/4 133 MHz 3 132 MHz 3 44 MHz 0011_010 66/33 MHz 2/4 133 MHz 3.5 154 MHz 3 44 MHz 0011_011 66/33 MHz 2/4 133 MHz 4 176MHz 3 44 MHz 0011_100 66/33 MHz 2/4 133 MHz 4.5 198 MHz 3 44 MHz 0100_000 66/33 MHz 3/6 200 MHz 2.5 166 MHz 3 66 MHz 0100_001 66/33 MHz 3/6 200 MHz 3 200 MHz 3 66 MHz 0100_010 66/33 MHz 3/6 200 MHz 3.5 233 MHz 3 66 MHz 0100_011 66/33 MHz 3/6 200 MHz 4 266 MHz 3 66 MHz MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Clock Configuration Modes Table 19. Clock Configuration Modes in PCI Agent Mode (Continued)1 Input Clock CPM Core Factor Factor CPM Core Bus Division 60x Bus MODCK_H – Frequency Multiplication Multiplication MODCK[1–3] Frequency Frequency4 Factor Frequency5 2,3 2 (PCI) 0100_100 66/33 MHz 3/6 200 MHz 4.5 300 MHz 3 66 MHz 0101_0006 33 MHz 5 166 MHz 2.5 166 MHz 2.5 66 MHz 0101_0016 33 MHz 5 166 MHz 3 200 MHz 2.5 66 MHz 0101_0106 33 MHz 5 166 MHz 3.5 233 MHz 2.5 66 MHz 0101_0116 33 MHz 5 166 MHz 4 266 MHz 2.5 66 MHz 0101_1006 33 MHz 5 166 MHz 4.5 300 MHz 2.5 66 MHz 0110_000 50/25 MHz 4/8 200 MHz 2.5 166 MHz 3 66 MHz 0110_001 50/25 MHz 4/8 200 MHz 3 200 MHz 3 66 MHz 0110_010 50/25 MHz 4/8 200 MHz 3.5 233 MHz 3 66 MHz 0110_011 50/25 MHz 4/8 200 MHz 4 266 MHz 3 66 MHz 0110_100 50/25 MHz 4/8 200 MHz 4.5 300 MHz 3 66 MHz 0111_000 66/33 MHz 3/6 200 MHz 2 200 MHz 2 100 MHz 0111_001 66/33 MHz 3/6 200 MHz 2.5 250 MHz 2 100 MHz 0111_010 66/33 MHz 3/6 200 MHz 3 300 MHz 2 100 MHz 0111_011 66/33 MHz 3/6 200 MHz 3.5 350 MHz 2 100 MHz 1000_000 66/33 MHz 3/6 200 MHz 2 160 MHz 2.5 80 MHz 1000_001 66/33 MHz 3/6 200 MHz 2.5 200 MHz 2.5 80 MHz 1000_010 66/33 MHz 3/6 200 MHz 3 240 MHz 2.5 80 MHz 1000_011 66/33 MHz 3/6 200 MHz 3.5 280 MHz 2.5 80 MHz 1000_100 66/33 MHz 3/6 200 MHz 4 320 MHz 2.5 80 MHz 1000_101 66/33 MHz 3/6 200 MHz 4.5 360 MHz 2.5 80 MHz 1001_000 66/33 MHz 4/8 266 MHz 2.5 166 MHz 4 66 MHz 1001_001 66/33 MHz 4/8 266 MHz 3 200 MHz 4 66 MHz 1001_010 66/33 MHz 4/8 266 MHz 3.5 233 MHz 4 66 MHz 1001_011 66/33 MHz 4/8 266 MHz 4 266 MHz 4 66 MHz 1001_100 66/33 MHz 4/8 266 MHz 4.5 300 MHz 4 66 MHz 1010_000 66/33 MHz 4/8 266 MHz 2.5 222 MHz 3 88 MHz 1010_001 66/33 MHz 4/8 266 MHz 3 266 MHz 3 88 MHz MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 27 Clock Configuration Modes Table 19. Clock Configuration Modes in PCI Agent Mode (Continued)1 Input Clock CPM Core Factor Factor CPM Core Bus Division 60x Bus MODCK_H – Frequency Multiplication Multiplication MODCK[1–3] Frequency Frequency4 Factor Frequency5 2,3 2 (PCI) 1010_010 66/33 MHz 4/8 266 MHz 3.5 300 MHz 3 88 MHz 1010_011 66/33 MHz 4/8 266 MHz 4 350 MHz 3 88 MHz 1010_100 66/33 MHz 4/8 266 MHz 4.5 400 MHz 3 88 MHz 1011_000 66/33 MHz 4/8 266 MHz 2 212MHz 2.5 106 MHz 1011_001 66/33 MHz 4/8 266 MHz 2.5 265 MHz 2.5 106 MHz 1011_010 66/33 MHz 4/8 266 MHz 3 318 MHz 2.5 106 MHz 1011_011 66/33 MHz 4/8 266 MHz 3.5 371 MHz 2.5 106 MHz 1011_100 66/33 MHz 4/8 266 MHz 4 424 MHz 2.5 106 MHz 1100_0007 66/33MHz 2/4 133MHz Bypass 66MHz 2 66 MHz 1100_0017 66/33MHz 3/6 200MHz Bypass 80MHz 2.5 80 MHz 1100_0107 66/33MHz 3/6 200MHz Bypass 66MHz 3 66 MHz 1 The user should verify that all buses and functions run frequencies that are within the supported ranges. The frequency depends on the value of PCI_MODCK. If PCI_MODCK is high (logic ‘1’), the PCI frequency is divided by 2 (33 instead of 66 MHz, etc.) and the CPM multiplication factor is multiplied by 2. 3 Input clock frequency is given only for the purpose of reference. User should set MODCK_H–MODCK_L so that the resulting configuration does not exceed the frequency rating of the user’s part. 2 Example. If a part is rated at 266 MHz CPU, 200 MHz CPM, and 66 MHz bus, any of the following are possible (note that the three input clock frequencies are only three of many possible input clock frequencies): 1. 50 MHz input clock, MODCK_H–MODCK_L[0110–011] (with a core multiplication factor of 4, a CPM multiplication factor of 4, and a bus division factor of 3), and PCI_MODCK = 0 (see note 2 above). The PCI frequency is 50 MHz and the resulting configuration equals the part’s maximum possible frequencies of 266 MHz CPU, 200 MHz CPM, and 66 MHz 60x bus. 2. 66 MHz input clock, MODCK_H–MODCK_L[0100–001], and PCI_MODCK = 1 (see note 2 above) to achieve a PCI frequency of 33 MHz and a configuration of 200MHz CPU, 200 MHz CPM, and 66 MHz 60x bus. 3. 40 MHz input clock, MODCK_H–MODCK_L[1001–011], and PCI_MODCK = 0 (see note 2 above) to achieve a PCI frequency of 40 MHz and a configuration of 160 MHz CPU, 160 MHz CPM, and 40 MHz 60x bus. 4 5 6 7 28 Note that with each of the examples, any one of several values for MODCK_H–MODCK_L could possibly be used as long as the resulting configuration does not exceed the part’s rating. Core frequency = (60x bus frequency)(core multiplication factor) Bus frequency = CPM frequency / bus division factor In this mode, PCI_MODCK must be “1”. In this mode the Core PLL is bypassed (core frequency equals bus frequency; for debug purpose only). MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Pinout 1.4 Pinout This section provides the pin assignments and pinout list for the MPC826xA. 1.4.1 Pin Assignments Figure 12 shows the pinout of the MPC826xA’s 480 TBGA package as viewed from the top surface. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 Not to Scale Figure 12. Pinout of the 480 TBGA Package as Viewed from the Top Surface Figure 13 shows the side profile of the TBGA package to indicate the direction of the top surface view. MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 29 Pinout View Copper Heat Spreader (Oxidized for Insulation) Die Attach Polymide Tape Etched Cavity Pressure Sensitive Adhesive Die Soldermask Glob-Top Filled Area Glob-Top Dam 1.27 mm Pitch Copper Traces Figure 13. Side View of the TBGA Package Table 20 shows the pinout list of the MPC826xA. Table 21 defines conventions and acronyms used in Table 20. Table 20. Pinout List Pin Name Ball BR W5 BG F4 ABB/IRQ2 E2 TS E3 A0 G1 A1 H5 A2 H2 A3 H1 A4 J5 A5 J4 A6 J3 A7 J2 A8 J1 A9 K4 A10 K3 A11 K2 A12 K1 A13 L5 A14 L4 A15 L3 A16 L2 A17 L1 A18 M5 A19 N5 30 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Pinout Table 20. Pinout List (Continued) Pin Name Ball A20 N4 A21 N3 A22 N2 A23 N1 A24 P4 A25 P3 A26 P2 A27 P1 A28 R1 A29 R3 A30 R5 A31 R4 TT0 F1 TT1 G4 TT2 G3 TT3 G2 TT4 F2 TBST D3 TSIZ0 C1 TSIZ1 E4 TSIZ2 D2 TSIZ3 F5 AACK F3 ARTRY E1 DBG V1 DBB/IRQ3 V2 D0 B20 D1 A18 D2 A16 D3 A13 D4 E12 D5 D9 D6 A6 D7 B5 D8 A20 MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 31 Pinout Table 20. Pinout List (Continued) Pin Name Ball D9 E17 D10 B15 D11 B13 D12 A11 D13 E9 D14 B7 D15 B4 D16 D19 D17 D17 D18 D15 D19 C13 D20 B11 D21 A8 D22 A5 D23 C5 D24 C19 D25 C17 D26 C15 D27 D13 D28 C11 D29 B8 D30 A4 D31 E6 D32 E18 D33 B17 D34 A15 D35 A12 D36 D11 D37 C8 D38 E7 D39 A3 D40 D18 D41 A17 D42 A14 D43 B12 32 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Pinout Table 20. Pinout List (Continued) Pin Name Ball D44 A10 D45 D8 D46 B6 D47 C4 D48 C18 D49 E16 D50 B14 D51 C12 D52 B10 D53 A7 D54 C6 D55 D5 D56 B18 D57 B16 D58 E14 D59 D12 D60 C10 D61 E8 D62 D6 D63 C2 DP0/RSRV/EXT_BR2 B22 IRQ1/DP1/EXT_BG2 A22 IRQ2/DP2/TLBISYNC/EXT_DBG2 E21 IRQ3/DP3/CKSTP_OUT/EXT_BR3 D21 IRQ4/DP4/CORE_SRESET/EXT_BG3 C21 IRQ5/DP5/TBEN/EXT_DBG3 B21 IRQ6/DP6/CSE0 A21 IRQ7/DP7/CSE1 E20 PSDVAL V3 TA C22 TEA V5 GBL/IRQ1 W1 CI/BADDR29/IRQ2 U2 WT/BADDR30/IRQ3 U3 L2_HIT/IRQ4 Y4 MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 33 Pinout Table 20. Pinout List (Continued) Pin Name Ball CPU_BG/BADDR31/IRQ5 U4 CPU_DBG R2 CPU_BR Y3 CS0 F25 CS1 C29 CS2 E27 CS3 E28 CS4 F26 CS5 F27 CS6 F28 CS7 G25 CS8 D29 CS9 E29 CS10/BCTL1 F29 CS11/AP0 G28 BADDR27 T5 BADDR28 U1 ALE T2 BCTL0 A27 PWE0/PSDDQM0/PBS0 C25 PWE1/PSDDQM1/PBS1 E24 PWE2/PSDDQM2/PBS2 D24 PWE3/PSDDQM3/PBS3 C24 PWE4/PSDDQM4/PBS4 B26 PWE5/PSDDQM5/PBS5 A26 PWE6/PSDDQM6/PBS6 B25 PWE7/PSDDQM7/PBS7 A25 PSDA10/PGPL0 E23 PSDWE/PGPL1 B24 POE/PSDRAS/PGPL2 A24 PSDCAS/PGPL3 B23 PGTA/PUPMWAIT/PGPL4/PPBS A23 PSDAMUX/PGPL5 D22 LWE0/LSDDQM0/LBS0/PCI_CFG01 H28 LWE1/LSDDQM1/LBS1/PCI_CFG11 H27 34 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Pinout Table 20. Pinout List (Continued) Pin Name Ball LWE2/LSDDQM2/LBS2/PCI_CFG21 H26 LWE3/LSDDQM3/LBS3/PCI_CFG31 G29 LSDA10/LGPL0/PCI_MODCKH01 D27 LSDWE/LGPL1/PCI_MODCKH11 C28 LOE/LSDRAS/LGPL2/PCI_MODCKH21 E26 LSDCAS/LGPL3/PCI_MODCKH31 D25 LGTA/LUPMWAIT/LGPL4/LPBS C26 LGPL5/LSDAMUX/PCI_MODCK1 B27 LWR D28 L_A14/PAR1 N27 L_A15/FRAME1/SMI T29 L_A16/TRDY1 R27 L_A17/IRDY1/CKSTP_OUT R26 L_A18/STOP1 R29 L_A19/DEVSEL1 R28 L_A20/IDSEL1 W29 L_A21/PERR1 P28 L_A22/SERR1 N26 L_A23/REQ01 AA27 L_A24/REQ11/HSEJSW1 P29 L_A25/GNT01 AA26 L_A26/GNT11/HSLED1 N25 L_A27/GNT21/HSENUM1 AA25 L_A28/RST1/CORE_SRESET AB29 L_A29/INTA1 AB28 L_A30/REQ21 P25 L_A31/DLLOUT1 AB27 LCL_D0/AD01 H29 LCL_D1/AD11 J29 LCL_D2/AD21 J28 LCL_D3/AD31 J27 LCL_D4/AD41 J26 LCL_D5/AD51 J25 LCL_D6/AD61 K25 LCL_D7/AD71 L29 MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 35 Pinout Table 20. Pinout List (Continued) Pin Name Ball LCL_D8/AD81 L27 LCL_D9/AD91 L26 LCL_D10/AD101 L25 LCL_D11/AD111 M29 LCL_D12/AD121 M28 LCL_D13/AD131 M27 LCL_D14/AD141 M26 LCL_D15/AD151 N29 LCL_D16/AD161 T25 LCL_D17/AD171 U27 LCL_D18/AD181 U26 LCL_D19/AD191 U25 LCL_D20/AD201 V29 LCL_D21/AD211 V28 LCL_D22/AD221 V27 LCL_D23/AD231 V26 LCL_D24/AD241 W27 LCL_D25/AD251 W26 LCL_D26/AD261 W25 LCL_D27/AD271 Y29 LCL_D28/AD281 Y28 LCL_D29/AD291 Y25 LCL_D30/AD301 AA29 LCL_D31/AD311 AA28 LCL_DP0/C01/BE01 L28 LCL_DP1/C11/BE11 N28 LCL_DP2/C21/BE21 T28 LCL_DP3/C31/BE31 W28 IRQ0/NMI_OUT T1 IRQ7/INT_OUT/APE D1 TRST AH3 TCK AG5 TMS AJ3 TDI AE6 TDO AF5 36 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Pinout Table 20. Pinout List (Continued) Pin Name Ball TRIS AB4 PORESET AG6 HRESET AH5 SRESET AF6 QREQ AA3 RSTCONF AJ4 MODCK1/AP1/TC0/BNKSEL0 W2 MODCK2/AP2/TC1/BNKSEL1 W3 MODCK3/AP3/TC2/BNKSEL2 W4 XFC AB2 CLKIN1 AH4 PA0/RESTART1/DREQ3/FCC2_UTM_TXADDR2 AC29 PA1/REJECT1/FCC2_UTM_TXADDR1/DONE3 AC25 PA2/CLK20/FCC2_UTM_TXADDR0/DACK3 AE28 PA3/CLK19/FCC2_UTM_RXADDR0/DACK4/L1RXD1A2 AG29 PA4/REJECT2/FCC2_UTM_RXADDR1/DONE4 AG28 PA5/RESTART2/DREQ4/FCC2_UTM_RXADDR2 AG26 PA6/L1RSYNCA1 AE24 PA7/SMSYN2/L1TSYNCA1/L1GNTA1 AH25 PA8/SMRXD2/L1RXD0A1/L1RXDA1 AF23 PA9/SMTXD2/L1TXD0A1 AH23 PA10/FCC1_UT8_RXD0/FCC1_UT16_RXD8/MSNUM5 AE22 PA11/FCC1_UT8_RXD1/FCC1_UT16_RXD9/MSNUM4 AH22 PA12/FCC1_UT8_RXD2/FCC1_UT16_RXD10/MSNUM3 AJ21 PA13/FCC1_UT8_RXD3/FCC1_UT16_RXD11/MSNUM2 AH20 PA14/FCC1_UT8_RXD4/FCC1_UT16_RXD12/FCC1_RXD3 AG19 PA15/FCC1_UT8_RXD5/FCC1_UT16_RXD13/FCC1_RXD2 AF18 PA16/FCC1_UT8_RXD6/FCC1_UT16_RXD14/FCC1_RXD1 AF17 PA17/FCC1_UT8_RXD7/FCC1_UT16_RXD15/FCC1_RXD0/FCC1_RXD AE16 PA18/FCC1_UT8_TXD7/FCC1_UT16_TXD15/FCC1_TXD0/FCC1_TXD AJ16 PA19/FCC1_UT8_TXD6/FCC1_UT16_TXD14/FCC1_TXD1 AG15 PA20/FCC1_UT8_TXD5/FCC1_UT16_TXD13/FCC1_TXD2 AJ13 PA21/FCC1_UT8_TXD4/FCC1_UT16_TXD12/FCC1_TXD3 AE13 PA22/FCC1_UT8_TXD3/FCC1_UT16_TXD11 AF12 PA23/FCC1_UT8_TXD2/FCC1_UT16_TXD10 AG11 MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 37 Pinout Table 20. Pinout List (Continued) Pin Name Ball PA24/FCC1_UT8_TXD1/FCC1_UT16_TXD9/MSNUM1 AH9 PA25/FCC1_UT8_TXD0/FCC1_UT16_TXD8/MSNUM0 AJ8 PA26/FCC1_UTM_RXCLAV/FCC1_UTS_RXCLAV/FCC1_MII_RX_ER AH7 PA27/FCC1_UT_RXSOC/FCC1_MII_RX_DV AF7 PA28/FCC1_UTM_RXENB/FCC1_UTS_RXENB/FCC1_MII_TX_EN AD5 PA29/FCC1_UT_TXSOC/FCC1_MII_TX_ER AF1 PA30/FCC1_UTM_TXCLAV/FCC1_UTS_TXCLAV/FCC1_MII_CRS/FCC1_RTS AD3 PA31/FCC1_UTM_TXENB/FCC1_UTS_TXENB/FCC1_MII_COL AB5 PB4/FCC3_TXD3/FCC2_UT8_RXD0/L1RSYNCA2/FCC3_RTS AD28 PB5/FCC3_TXD2/FCC2_UT8_RXD1/L1TSYNCA2/L1GNTA2 AD26 PB6/FCC3_TXD1/FCC2_UT8_RXD2/L1RXDA2/L1RXD0A2 AD25 PB7/FCC3_TXD0/FCC3_TXD/FCC2_UT8_RXD3/L1TXDA2/L1TXD0A2 AE26 PB8/FCC2_UT8_TXD3/FCC3_RXD0/FCC3_RXD/TXD3/L1RSYNCD1 AH27 PB9/FCC2_UT8_TXD2/FCC3_RXD1/L1TXD2A2/L1TSYNCD1/L1GNTD1 AG24 PB10/FCC2_UT8_TXD1/FCC3_RXD2/L1RXDD1 AH24 PB11/FCC3_RXD3/FCC2_UT8_TXD0/L1TXDD1 AJ24 PB12/FCC3_MII_CRS/L1CLKOB1/L1RSYNCC1/TXD2 AG22 PB13/FCC3_MII_COL/L1RQB1/L1TSYNCC1/L1GNTC1/L1TXD1A2 AH21 PB14/FCC3_MII_TX_EN/RXD3/L1RXDC1 AG20 PB15/FCC3_MII_TX_ER/RXD2/L1TXDC1 AF19 PB16/FCC3_MII_RX_ER/L1CLKOA1/CLK18 AJ18 PB17/FCC3_MII_RX_DV/L1RQA1/CLK17 AJ17 PB18/FCC2_UT8_RXD4/FCC2_RXD3/L1CLKOD2/L1RXD2A2 AE14 PB19/FCC2_UT8_RXD5/FCC2_RXD2/L1RQD2/L1RXD3A2 AF13 PB20/FCC2_UT8_RXD6/FCC2_RXD1/L1RSYNCD2/L1TXD1A1 AG12 PB21/FCC2_UT8_RXD7/FCC2_RXD0/FCC2_RXD/L1TSYNCD2/L1GNTD2/ L1TXD2A1 AH11 PB22/FCC2_UT8_TXD7/FCC2_TXD0/FCC2_TXD/L1RXD1A1/L1RXDD2 AH16 PB23/FCC2_UT8_TXD6/FCC2_TXD1/L1RXD2A1/L1TXDD2 AE15 PB24/FCC2_UT8_TXD5/FCC2_TXD2/L1RXD3A1/L1RSYNCC2 AJ9 PB25/FCC2_UT8_TXD4/FCC2_TXD3/L1TSYNCC2/L1GNTC2/L1TXD3A1 AE9 PB26/FCC2_MII_CRS/FCC2_UT8_TXD1/L1RXDC2 AJ7 PB27/FCC2_MII_COL/FCC2_UT8_TXD0/L1TXDC2 AH6 PB28/FCC2_MII_RX_ER/FCC2_RTS/L1TSYNCB2/L1GNTB2/TXD1 AE3 PB29/FCC2_UTM_RXCLAV/FCC2_UTS_RXCLAV/L1RSYNCB2/ FCC2_MII_TX_EN AE2 38 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Pinout Table 20. Pinout List (Continued) Pin Name Ball PB30/FCC2_MII_RX_DV/FCC2_UT_TXSOC/L1RXDB2 AC5 PB31/FCC2_MII_TX_ER/FCC2_UT_RXSOC/L1TXDB2 AC4 PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2 AB26 PC1/DREQ2/BRGO6/L1RQA2 AD29 PC2/FCC3_CD/FCC2_UT8_TXD3/DONE2 AE29 PC3/FCC3_CTS/FCC2_UT8_TXD2/DACK2/CTS4 AE27 PC4/FCC2_UTM_RXENB/FCC2_UTS_RXENB/SI2_L1ST4/FCC2_CD AF27 PC5/FCC2_UTM_TXCLAV/FCC2_UTS_TXCLAV/SI2_L1ST3/FCC2_CTS AF24 PC6/FCC1_CD/L1CLKOC1/FCC1_UTM_RXADDR2/FCC1_UTS_RXADDR2/ FCC1_UTM_RXCLAV1 AJ26 PC7/FCC1_CTS/L1RQC1/FCC1_UTM_TXADDR2/FCC1_UTS_TXADDR2/ FCC1_UTM_TXCLAV1 AJ25 PC8/CD4/RENA4/FCC1_UT16_TXD0/SI2_L1ST2/CTS3 AF22 PC9/CTS4/CLSN4/FCC1_UT16_TXD1/SI2_L1ST1/L1TSYNCA2/L1GNTA2 AE21 PC10/CD3/RENA3/FCC1_UT16_TXD2/SI1_L1ST4/FCC2_UT8_RXD3 AF20 PC11/CTS3/CLSN3/L1CLKOD1/L1TXD3A2/FCC2_UT8_RXD2 AE19 PC12/CD2/RENA2/SI1_L1ST3/FCC1_UTM_RXADDR1/FCC1_UTS_RXADDR1 AE18 PC13/CTS2/CLSN2/L1RQD1/FCC1_UTM_TXADDR1/FCC1_UTS_TXADDR1 AH18 PC14/CD1/RENA1/FCC1_UTM_RXADDR0/FCC1_UTS_RXADDR0 AH17 PC15/CTS1/CLSN1/SMTXD2/FCC1_UTM_TXADDR0/FCC1_UTS_TXADDR0 AG16 PC16/CLK16/TIN4 AF15 PC17/CLK15/TIN3/BRGO8 AJ15 PC18/CLK14/TGATE2 AH14 PC19/CLK13/BRGO7 AG13 PC20/CLK12/TGATE1 AH12 PC21/CLK11/BRGO6 AJ11 PC22/CLK10/DONE1 AG10 PC23/CLK9/BRGO5/DACK1 AE10 PC24/FCC2_UT8_TXD3/CLK8/TOUT4 AF9 PC25/FCC2_UT8_TXD2/CLK7/BRGO4 AE8 PC26/CLK6/TOUT3/TMCLK AJ6 PC27/FCC3_TXD/FCC3_TXD0/CLK5/BRGO3 AG2 PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2 AF3 PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1 AF2 PC30/FCC2_UT8_TXD3/CLK2/TOUT1 AE1 PC31/CLK1/BRGO1 AD1 MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 39 Pinout Table 20. Pinout List (Continued) Pin Name Ball PD4/BRGO8/L1TSYNCD1/L1GNTD1/FCC3_RTS/SMRXD2 AC28 PD5/FCC1_UT16_TXD3/DONE1 AD27 PD6/FCC1_UT16_TXD4/DACK1 AF29 PD7/SMSYN1/FCC1_UTM_TXADDR3/FCC1_UTS_TXADDR3/FCC1_TXCLAV2 AF28 PD8/SMRXD1/FCC2_UT_TXPRTY/BRGO5 AG25 PD9/SMTXD1/FCC2_UT_RXPRTY/BRGO3 AH26 PD10/L1CLKOB2/FCC2_UT8_RXD1/L1RSYNCB1/BRGO4 AJ27 PD11/L1RQB2/FCC2_UT8_RXD0/L1TSYNCB1/L1GNTB1 AJ23 PD12/SI1_L1ST2/L1RXDB1 AG23 PD13/SI1_L1ST1/L1TXDB1 AJ22 PD14/FCC1_UT16_RXD0/L1CLKOC2/I2CSCL AE20 PD15/FCC1_UT16_RXD1/L1RQC2/I2CSDA AJ20 PD16/FCC1_UT_TXPRTY/L1TSYNCC1/L1GNTC1/SPIMISO AG18 PD17/FCC1_UT_RXPRTY/BRGO2/SPIMOSI AG17 PD18/FCC1_UTM_RXADDR4/FCC1_UTS_RXADDR4/FCC1_UTM_RXCLAV3/S AF16 PICLK PD19/FCC1_UTM_TXADDR4/FCC1_UTS_TXADDR4/FCC1_UTM_TXCLAV3/S AH15 PISEL/BRGO1 PD20/RTS4/TENA4/FCC1_UT16_RXD2/L1RSYNCA2 AJ14 PD21/TXD4/FCC1_UT16_RXD3/L1RXD0A2/L1RXDA2 AH13 PD22/RXD4/FCC1_UT16_TXD5/L1TXD0A2/L1TXDA2 AJ12 PD23/RTS3/TENA3/FCC1_UT16_RXD4/L1RSYNCD1 AE12 PD24/TXD3/FCC1_UT16_RXD5/L1RXDD1 AF10 PD25/RXD3/FCC1_UT16_TXD6/L1TXDD1 AG9 PD26/RTS2/TENA2/FCC1_UT16_RXD6/L1RSYNCC1 AH8 PD27/TXD2/FCC1_UT16_RXD7/L1RXDC1 AG7 PD28/RXD2/FCC1_UT16_TXD7/L1TXDC1 AE4 PD29/RTS1/TENA1/FCC1_UTM_RXADDR3/FCC1_UTS_RXADDR3/ FCC1_UTM_RXCLAV2 AG1 PD30/FCC2_UTM_TXENB/FCC2_UTS_TXENB/TXD1 AD4 PD31/RXD1 AD2 VCCSYN AB3 VCCSYN1 B9 GNDSYN AB1 CLKIN21,2 AE11 SPARE43 U5 PCI_MODE1,4 AF25 40 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Pinout Table 20. Pinout List (Continued) Pin Name Ball SPARE63 V4 THERMAL05 AA1 THERMAL15 AG4 I/O power AG21, AG14, AG8, AJ1, AJ2, AH1, AH2, AG3, AF4, AE5, AC27, Y27, T27, P27, K26, G27, AE25, AF26, AG27, AH28, AH29, AJ28, AJ29, C7, C14, C16, C20, C23, E10, A28, A29, B28, B29, C27, D26, E25, H3, M4, T3, AA4, A1, A2, B1, B2, C3, D4, E5 Core Power U28, U29, K28, K29, A9, A19, B19, M1, M2, Y1, Y2, AC1, AC2, AH19, AJ19, AH10, AJ10, AJ5 Ground AA5, AF21, AF14, AF8, AE7, AF11, AE17, AE23, AC26, AB25, Y26, V25, T26, R25, P26, M25, K27, H25, G26, D7, D10, D14, D16, D20, D23, C9, E11, E13, E15, E19, E22, B3, G5, H4, K5, M3, P5, T4, Y5, AA2, AC3 1 MPC8265A and MPC8266A only. On PCI devices (MPC8265A and MPC8266A) this pin should be used as CLKIN2. On non-PCI devices (MPC8260A and MPC8264A) this is a spare pin that must be pulled down or left floating. 3 Must be pulled down or left floating. 4 On PCI devices (MPC8265A and MPC8266A) this pin should be asserted if the PCI function is desired or pulled up or left floating if PCI is not desired. On non-PCI devices (MPC8260A and MPC8264A) this is a spare pin that must be pulled up or left floating. 5 For information on how to use this pin, refer to MPC8260 PowerQUICC II Thermal Resistor Guide available at www.motorola.com/semiconductors. 2 Symbols used in Table 20 are described in Table 21. Table 21. Symbol Legend Symbol Meaning OVERBAR Signals with overbars, such as TA, are active low. UTM Indicates that a signal is part of the UTOPIA master interface. UTS Indicates that a signal is part of the UTOPIA slave interface. UT8 Indicates that a signal is part of the 8-bit UTOPIA interface. UT16 Indicates that a signal is part of the 16-bit UTOPIA interface. MII Indicates that a signal is part of the media independent interface. MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 41 Package Description 1.5 Package Description The following sections provide the package parameters and mechanical dimensions for the MPC826xA. 1.5.1 Package Parameters Package parameters are provided in Table 22. The package type is a 37.5 x 37.5 mm, 480-lead TBGA. Table 22. Package Parameters Parameter Value Package Outline 37.5 x 37.5 mm Interconnects 480 (29 x 29 ball array) Pitch 1.27 mm Nominal unmounted package height 1.55 mm 42 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Package Description 1.5.2 Mechanical Dimensions Figure 14 provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA package. Notes: 1. Dimensions and Tolerancing per ASME Y14.5M-1994. 2. Dimensions in millimeters. 3. Dimension b is measured at the maximum solder ball diameter, parallel to primary data A. 4. Primary data A and the seating plane are defined by the spherical crowns of the solder balls. Millimeters Dim Min Max A 1.45 1.65 A1 0.60 0.70 A2 0.85 0.95 A3 0.25 — b 0.65 0.85 D 37.50 BSC D1 35.56 REF e 1.27 BSC E 37.50 BSC E1 35.56 REF Figure 14. Mechanical Dimensions and Bottom Surface Nomenclature MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 43 Ordering Information 1.6 Ordering Information Figure 15 provides an example of the Motorola part numbering nomenclature for the MPC826xA. In addition to the processor frequency, the part numbering scheme also consists of a part modifier that indicates any enhancement(s) in the part from the original production design. Each part number also contains a revision code that refers to the die mask revision number and is specified in the part numbering scheme for identification purposes only. For more information, contact your local Motorola sales office. MPC 826X A C ZU XXX X Product Code Die Revision Level Device Number Process Technology (None = 0.29 micron A = 0.25 micron) Processor Frequency (CPU/CPM/Bus) Temperature Range (Blank = 0 to 105 ˚C C = -40 to 105 ˚C Package (ZU = 480 TBGA) Figure 15. Motorola Part Number Key 1.7 Document Revision History Table 23 lists significant changes in each revision of this document. Table 23. Document Revision History Document Revision 0 44 Substantive Changes Initial version 0.1 Table 10, sp20/sp21: 66 MHz setup and hold times are 15 and 20 respectively. Delete ‘(10).’ 0.2 • • • • 0.3 • Note 3 for Table 3 • Section 1.2.1, “DC Electrical Characteristics”: Removal of “Warning” recommending use of bootstrap diodes. They are not needed. • sp12 in Table 11, sp32 in Table 12 • Note 2 for Table 16 and Table 17 • Addition of note at beginning of Section 1.3.2, “PCI Mode” • Note 1 for Table 18 and Table 19 • Additions to pinout, Table 20 for balls: B27, C28, D25, D27, E26, G29, H26–28, N25, P29, AF25, AA25, AB27 Revision of Table 7, “Power Dissipation” Modifications to Figure 8, Table 4,Table 12, Table 13, and Table 18 Modification to pinout diagram, Figure 12 Additional revisions to text and figures throughout MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Document Revision History Table 23. Document Revision History (Continued) Document Revision Substantive Changes 0.4 • Note 2 for Table 4 (changes in italics): “...greater than or equal to 266 MHz, 200 MHz CPM...” • Table 19: core and bus frequency values for the following ranges of MODCK_HMODCK: 0011_000 to 0011_100 and 1011_000 to 1011_1000 • Table 20: notes added to pins at AE11, AF25, U5, and V4. 0.5 • Table 20: modified notes to pins AE11 and AF25. • Table 20: added note to pins AA1 and AG4 (Therm0 and Therm1). 0.6 • Table 20: modified notes to pins AE11 and AF25. 0.7 • • • • • • • MOTOROLA Section 1.1, “Features”: minimum supported core frequency of 150 MHz Section 1.1, “Features”: updated performance values (under “Dual-issue integer core”) Table 4: Notes 2 and 3 Addition of note on page 8:VDDH and VDD tracking Table 15: Note 3 Table 17: Note 1 Table 19: Note 3 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 45 Document Revision History 46 MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE MOTOROLA Document Revision History MOTOROLA MPC826xA (HiP4) Family Hardware Specifications PRELIMINARY—SUBJECT TO CHANGE WITHOUT NOTICE 47 HOW TO REACH US: USA/EUROPE/LOCATIONS NOT LISTED: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217 1-303-675-2140 or 1-800-441-2447 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3-20-1, Minami-Azabu Minato-ku, Tokyo 106-8573 Japan 81-3-3440-3569 ASIA/PACIFIC: Information in this document is provided solely to enable system and software Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334 TECHNICAL INFORMATION CENTER: 1-800-521-6274 implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any HOME PAGE: liability arising out of the application or use of any product or circuit, and specifically http://www.motorola.com/semiconductors disclaims any and all liability, including without limitation consequential or incidental DOCUMENT COMMENTS: FAX (512) 933-2625, Attn: RISC Applications Engineering damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and the Stylized M Logo are registered in the U.S. Patent and Trademark Office. digital dna is a trademark of Motorola, Inc. All other product or service names are the property of their respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. © Motorola, Inc. 2001 MPC8260AEC/D