MIC5374/84 Triple 200mA µCap LDO and 1mA RTC LDO in 2.5mm x 2.5mm Thin MLF® General Description Features The MIC5374/84 is a four output device with three 200mA LDOs and a Real Time Clock (RTC) 1mA LDO which is ideal for application processor support in mobile platforms. The MIC5374 provides independent control active high enables for each of the 200mA LDOs with an additional always-on RTC LDO. The MIC5384 provides active low enables. Both the MIC5374 and MIC5384 are available in the tiny 2.5mm x 2.5mm Thin MLF® package. The MIC5374/84 is designed for high input ripple rejection (high PSRR) and provides low output noise making it ideal for powering sensitive RF circuitry such as GPS, WiFi and Bluetooth applications. The MIC5374/84 also incorporates a power-on-reset (POR) supervisor with adjustable delay time set by an external capacitor, and an independent input pin to monitor any voltage level. Once high the POR output can be asserted low again by enabling the manual reset (MR) pin. When the MR pin is restored low the POR output will re-time the delay set by the external delay capacitor. The MIC5374/84 operates with very small ceramic output capacitors to reduce board space and component cost. It is available in various fixed output voltages. The MIC5374/84 has a junction temperature range from -40°C to 125°C. Datasheets and support documentation can be found on Micrel’s web site at: www.micrel.com. • • • • • • • • • • • 1.7V to 5.5V input supply voltage range Output current - 200mA LDO1/2/3, 1mA LDO4 LDO4 – Ultra low 8µA IBIAS for RTC support High output accuracy (±2%) Independent enable pins POR with user-defined voltage monitoring - POR voltage input - Adjustable delay time - Manual reset pin Low dropout voltage – 170mV at 150mA High PSRR - 55dB at 1kHz on each LDO Stable with tiny ceramic output capacitors 2.5mm x 2.5mm Thin MLF® 16-pin package Thermal shutdown and current limit protection Applications • • • • Mobile phones GPS receivers Application co-processors PDAs and handheld devices Typical Application MIC5384 MIC5374 BIAS OUT1 0.1µF OUT2 1µF INLDO3 OUT3 INLDO4 OUT4 1µF EN1 EN2 EN3 MR 100k 10k INLDO3 OUT3 INLDO4 OUT4 1µF 1µF 1µF VBIAS 1µF 1µF EN1 POR POR_IN OUT2 1µF 1µF 1µF INLDO1/ 2 1µF 1µF 1µF OUT1 0.1µF 1µF INLDO1/ 2 BIAS 10k EN2 VMONITOR EN3 10k MR DLY GND 150pF 100k 10k POR POR_IN 10k VBIAS VMONITOR 10k DLY GND 150pF Typical MIC5374-xxxxYMT Circuit Typical MIC5384-xxxxYMT Circuit (Active High Enable) (Active Low Enable) MLF and MicroLeadFrame are registered trademarks of Amkor Technology, Inc. Micrel Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel +1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com July 2010 M9999-070110 Micrel, Inc. MIC5374/84 Ordering Information Part Number Mark Code Output Voltage(1) Junction Temp. Range Package MIC5374-SJG1YMT SJG1 3.3V/2.5V/1.8V/1.0V –40° to +125°C 16-Pin 2.5mm x 2.5mm Thin MLF® Pb-free –40° to +125°C ® Pb-free MIC5384-MG44YMT Z1U 2.8V/1.8V/1.2/1.2V Lead (2) Finish 16-Pin 2.5mm x 2.5mm Thin MLF Note: 1. Other voltage options available. Contact Micrel for details. 2. Lead finish is NiPdAu. Mold compound material is halogen free. Pin Configuration MIC5374 ® 16-Pin 2.5mm x 2.5mm Thin MLF (MT) (Top View) July 2010 MIC5384 ® 16-Pin 2.5mm x 2.5mm Thin MLF (MT) (Top View) 2 M9999-070110 Micrel, Inc. MIC5374/84 Pin Description Pin Number Pin Name 1 OUT1 Pin Function 2 INLDO1/2 3 OUT2 Regulator Output – LDO2. 4 BIAS Internal Bias Supply Voltage. Must be de-coupled to ground with a 0.1µF capacitor. 5 POR_IN 6 POR Power-on Reset Output. Open drain. 7 DLY POR Delay Capacitor. Connect capacitor to ground to set POR delay time. 8 MR Manual Reset Input. Manually resets output of POR and delay generator. Do not leave floating. Regulator Output - LDO1. Supply Input (LDO1/2). Input to POR. Connect directly to output voltage or input voltage that is to be monitored for a 0.9V reference, or connect a resistor divider network to this pin to program the POR monitoring voltage. 9 OUT4 10 INLDO4 Supply Input (LDO4). Ultra-low IQ RTC LDO. 1.7V to 5.5V input voltage range. 11 INLDO3 Supply Input (LDO3). 12 OUT3 Regulator Output – LDO3. 13 GND Ground. 14 EN3 or /EN3 15 EN2 or /EN2 /EN (MIC5384): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating. 16 EN1 or /EN1 /EN (MIC5384): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating. HS Pad EPAD July 2010 Regulator Output - LDO4. LDO3 Enable Input. EN (MIC5374): Active High Input. Logic High = On; Logic Low = Off; /EN (MIC5384): Active Low Input. Logic High = Off; Logic Low = On; Do not leave floating. LDO2 Enable Input. EN (MIC5374): Active High Input. Logic High = On; Logic Low = Off; LDO1 Enable Input. EN (MIC5374): Active High Input. Logic High = On; Logic Low = Off; Exposed Heat Sink Pad. Connect to GND. 3 M9999-070110 Micrel, Inc. MIC5374/84 Absolute Maximum Ratings(1) Operating Ratings(4) Supply Voltage (VINLDO1/2, INLDO3, INLDO4) ............. -0.3V to +6V Bias Supply Voltage (VBIAS).............................. -0.3V to +6V Enable Input Voltage (VEN1, EN2, EN3).................. -0.3V to +6V POR Output Voltage (POR) ............................. -0.3V to +6V POR Input Voltage (POR_IN) .......................... -0.3V to +6V MR Voltage (MR) ............................................. -0.3V to +6V DLY Voltage (DLY)........................................... -0.3V to +6V Power Dissipation .................................. Internally Limited(2) Lead Temperature (soldering, 10 sec)....................... 260°C Storage Temperature (Ts) .........................–60°C to +150°C ESD Rating(3) ................................................. ESD Sensitive Supply Voltage(5) (VINLDO1/2, INLDO3, INLDO4) ........ +1.7V to VBIAS Bias Supply Voltage (VBIAS).......................... +2.5V to +5.5V Enable Input Voltage (VEN1, EN2, EN3)..................... 0V to VBIAS POR Output Voltage (POR) .............................. 0V to +5.5V POR Input Voltage (POR_IN) ............................. 0V to VBIAS MR Voltage (MR) ................................................ 0V to VBIAS DLY Voltage (DLY).............................................. 0V to VBIAS Junction Temperature (TJ) ........................ –40°C to +125°C Junction Thermal Resistance 2.5 x 2.5 Thin MLF®-16L (θJA)..........................100°C/W Electrical Characteristics(6) (MIC5374) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = VEN1 = VEN2 = VEN3 = 5.5V (ON); (MIC5384) VIN = VOUT + 1V (VOUT is highest of the three regulator outputs); VBIAS = 5.5V; V/EN1 = V/EN2 = V/EN3 = GND (ON); IOUT1 = IOUT2 = IOUT3 = IOUT4 = 100µA; COUT1 = COUT2 = COUT3 = COUT4 =1µF; TA = 25°C, Bold values indicate –40°C ≤ TJ ≤ +125°C, unless noted. Parameter Conditions Min Output Voltage Accuracy (LDO1/2/3) Variation from nominal VOUT1, 2, 3 -2.0 Variation from nominal VOUT1, 2, 3 -3.0 +3.0 % Output Voltage Accuracy (LDO4 - RTC Support) Variation from nominal VOUT4 -4.0 +4.0 % Variation from nominal VOUT4 -5.0 +5.0 % Line Regulation VIN = VOUT +1V to 5.5V; IOUT = 100µA 0.02 0.3 %/V IOUT = 100µA to 150mA; LDO1/2/3 0.3 1 % IOUT = 100µA to 1mA; LDO4 0.05 1 % IOUT = 50mA; VOUT ≥ 2.8V 60 115 mV IOUT = 150mA; VOUT ≥ 2.8V 170 330 mV IOUT = 50mA; VOUT < 2.8V 85 145 mV IOUT = 150mA; VOUT < 2.8V 275 450 mV EN1 or EN2 or EN3 = ON; Not including IBIAS 10 20 µA Load Regulation Dropout Voltage Input Ground Current Typ Max Units +2.0 % LDO4; EN1 = EN2 = EN3 = OFF; Not including IBIAS 3 8 µA EN1 or EN2 or EN3 = ON; with LDO4 ON 42 70 µA EN1 = EN2 = EN3 = ON; with LDO4 ON 106 170 µA Shutdown Input Ground Current EN1 = EN2 = EN3 = OFF 0.04 2 µA Shutdown Bias Current EN1 = EN2 = EN3 = OFF; with LDO4 ON 8 13 µA Input Bias Current Ripple Rejection Current Limit Output Voltage Noise July 2010 f = 1kHz; COUT = 1.0µF; 55 VOUT = 0V; LDO1/2/3 VOUT = 0V; LDO4 COUT =1µF,10Hz to 100kHz; IOUT = 150mA 4 dB 200 350 700 mA 2 12 50 mA 200 µVRMS M9999-070110 Micrel, Inc. MIC5374/84 Electrical Characteristics (Continued) Parameter Enable Input Voltage Enable Input Current Conditions Min Typ (MIC5374) LDO OFF; (MIC5384) LDO ON; (MIC5374) LDO ON; (MIC5384) LDO OFF; VIH > 1.2V 0.01 Turn-on Time COUT = 1µF 80 VPOR POR Output Low Voltage DLY Pin Current Source VDLY = 0V POR Output Leakage Current, VPOR OFF VTH POR Under Voltage Threshold VHYS POR Voltage Threshold Hysteresis IPOR_IN POR Input Pin Leakage Current V V 0.01 IPOR Units 0.2 1.2 VIL < 0.2V DLY Pin Voltage Threshold Max µA µA 200 µs 0.2 V 0.75 1.25 2 µA 1.13 1.25 1.38 1 0.873 0.9 V µA 0.927 V 34 mV 1 µA Thermal Shutdown 155 °C Thermal Shutdown Hysteresis 10 °C Notes: 1. Exceeding the absolute maximum rating may damage the device. 2. The maximum allowable power dissipation of any TA (ambient temperature) is PD(max) = (TJ(max) – TA) / θJA. Exceeding the maximum allowable power dissipation will result in excessive die temperature and the regulator will go into thermal shutdown. 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5kΩ in series with 100pF. 4. The device is not guaranteed to function outside its operating rating. 5. For VIN range of 1.7V to 2.5V, output current is limited to 30mA. 6. Specification for packaged product only. July 2010 5 M9999-070110 Micrel, Inc. MIC5374/84 Typical Characteristics LDO1 Output Voltage vs. Input Voltage 3.40 3.40 3.10 IOUT = 100µA 3.00 2.90 2.80 VBIAS = VIN1/2 2.70 VOUT_NOM = 3.3V 2.60 3.30 3.20 3.10 IOUT = 50mA 3.00 2.90 2.80 VBIAS = VIN1/2 2.70 VOUT_NOM = 3.3V 2.60 COUT = 1.0µF 2.50 3 3.5 4 4.5 5 5.5 3 4.5 5 IOUT = 100µA 2.40 2.35 VBIAS = VIN VOUT_NOM = 2.5V 4 4.5 5 2.45 IOUT = 50mA 2.40 2.35 VBIAS = VIN 2.30 VOUT_NOM = 2.5V OUTPUT VOLTAGE (V) IOUT = 100µA 1.55 VBIAS = 5.5V VOUT_NOM = 1.8V 1.40 1.35 3 3.5 4 4.5 5 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 1.70 1.65 IOUT = 50mA 1.50 1.45 VBIAS = 5.5V VOUT_NOM = 1.8V COUT = 1.0µF 1.7 2.2 2.7 3.2 3.7 4.2 4.7 5.2 1.00 0.98 0.96 VBIAS = 5.5V 0.94 VOUT_NOM = 1.0V 0.92 COUT = 1.0µF 3.2 3.7 4.2 4.7 INPUT VOLTAGE (V) 5.2 5.7 4 4.5 5 5.5 1.65 1.60 1.55 IOUT = 150mA 1.50 1.45 1.40 VBIAS = 5.5V VOUT_NOM = 1.8V COUT = 1.0µF 2.2 2.7 3.2 3.7 4.2 4.7 5.2 5.7 INPUT VOLTAGE (V) LDO1 Output Voltage vs. Output Current 3.40 3.38 1.06 IOUT = 1m A 1.04 1.02 1.00 0.98 0.96 VBIAS = 5.5V 0.94 VOUT_NOM = 1.0V 0.92 COUT = 1.0µF 0.90 0.90 2.7 3.5 LDO3 Output Voltage vs. Input Voltage 1.7 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 1.02 2.2 3 1.80 1.75 1.70 5.7 1.08 IOUT = 100µA 1.7 VOUT_NOM = 2.5V COUT = 1.0µF 1.35 1.30 LDO4 Output Voltage vs. Input Voltage 1.10 1.08 1.04 VBIAS = VIN 2.30 INPUT VOLTAGE (V) LDO4 Output Voltage vs. Input Voltage 1.06 2.35 1.90 1.85 1.60 1.55 INPUT VOLTAGE (V) 1.10 IOUT = 150mA 2.40 INPUT VOLTAGE (V) 1.80 1.75 5.7 5.5 2.45 2.5 1.30 1.30 5 2.50 5.5 LDO3 Output Voltage vs. Input Voltage 1.40 1.35 COUT = 1.0µF 4.5 2.20 1.90 1.85 1.75 1.70 4 LDO2 Output Voltage vs. Input Voltage INPUT VOLTAGE (V) 1.85 1.80 1.50 1.45 3.5 2.25 COUT = 1.0µF 2.5 5.5 LDO3 Output Voltage vs. Input Voltage 1.65 1.60 3 2.55 INPUT VOLTAGE (V) 1.90 VOUT_NOM = 3.3V COUT = 1.0µF 2.60 OUTPUT VOLTAGE (V) 3.5 VBIAS = VIN1/2 2.70 INPUT VOLTAGE (V) 2.20 3 2.80 2.5 2.50 2.25 COUT = 1.0µF 2.5 2.90 5.5 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 2.50 2.20 OUTPUT VOLTAGE (V) 4 2.55 2.25 OUTPUT VOLTAGE (V) 3.5 LDO2 Output Voltage vs. Input Voltage 2.60 2.55 2.30 IOUT = 150mA 3.00 INPUT VOLTAGE (V) LDO2 Output Voltage vs. Input Voltage 2.45 3.10 2.50 2.5 INPUT VOLTAGE (V) 2.60 3.20 2.60 COUT = 1.0µF 2.50 2.5 July 2010 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.20 LDO1 Output Voltage vs. Input Voltage 3.40 3.30 3.30 OUTPUT VOLTAGE (V) LDO1 Output Voltage vs. Input Voltage 1.7 2.2 2.7 3.2 3.7 4.2 4.7 INPUT VOLTAGE (V) 6 5.2 5.7 3.36 VIN = 3.6V 3.34 3.32 3.30 3.28 3.26 VBIAS = VIN1/2 3.24 VOUT_NOM = 3.3V 3.22 COUT = 1.0µF 3.20 0 20 40 60 80 100 120 140 160 180 200 OUTPUT CURRENT (mA) M9999-070110 Micrel, Inc. MIC5374/84 Typical Characteristics (Continued) 3.38 3.36 3.36 OUTPUT VOLTAGE (V) VIN = 4.2V 3.32 3.30 3.28 3.26 VBIAS = VIN1/2 3.24 VOUT_NOM = 3.3V 3.22 COUT = 1.0µF 2.58 VIN = 5.5V 3.34 3.32 3.30 3.28 3.26 VBIAS = VIN1/2 3.24 VOUT_NOM = 3.3V 3.22 COUT = 1.0µF 0 20 40 60 80 100 120 140 160 180 200 2.56 2.56 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 2.58 VIN = 3.6V 2.52 2.50 2.48 VBIAS = VIN1/2 2.44 VOUT_NOM = 2.5V 2.42 COUT = 1.0µF 2.40 50 100 150 VIN = 5.5V 2.54 2.52 2.50 2.48 2.46 VBIAS = VIN1/2 2.44 VOUT_NOM = 2.5V 2.42 COUT = 1.0µF 200 1.86 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 1.86 VIN = 3.6V 1.82 1.80 1.78 1.74 VOUT_NOM = 1.8V 1.72 COUT = 1.0µF 1.70 50 100 150 0.98 0.92 VBIAS = 3.0V VOUT_NOM = 1.0V COUT = 1.0µF 0.90 1.76 VBIAS = VIN3 1.74 VOUT_NOM = 1.8V 1.72 COUT = 1.0µF 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 July 2010 1.80 1.78 1.76 VBIAS = VIN3 1.74 VOUT_NOM = 1.8V 1.72 COUT = 1.0µF 50 1.04 100 150 200 LDO4 Output Voltage vs. Output Current 1.06 1.04 VIN = 1.7V 1.02 1.00 0.98 0.96 VBIAS = 3.0V 0.94 VOUT_NOM = 1.0V 0.92 COUT = 1.0µF 0.90 50 100 150 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 200 OUTPUT CURRENT (mA) LDO4 Output Voltage vs. Output Current 3.40 LDO1 Output Voltage vs. Temperature 3.38 VIN = 5.5V 1.02 1.00 0.98 0.96 VBIAS = 5.5V 0.94 VOUT_NOM = 1.0V 0.92 COUT = 1.0µF 3.36 IOUT = 100µA IOUT = 50mA 3.34 3.32 3.30 3.28 3.26 3.24 3.22 IOUT = 150 A VOUT_NOM = 3.3V COUT = 1.0µF 3.20 0.90 OUTPUT CURRENT (mA) 1.82 OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 1.00 0.94 VIN = 2.5V 1.84 1.10 1.78 1.06 200 LDO3 Output Voltage vs. Output Current 0 1.08 VIN = 3.0V 150 OUTPUT CURRENT (mA) 1.80 1.10 100 1.86 200 VIN = 5.5V 0 LDO4 Output Voltage vs. Output Current 1.02 0.96 150 1.82 200 1.08 1.04 50 1.08 1.84 OUTPUT CURRENT (mA) 1.06 100 1.70 0 1.10 50 LDO3 Output Voltage vs. Output Current 1.90 1.88 VBIAS = VIN3 COUT = 1.0µF OUTPUT CURRENT (mA) 1.88 1.76 VOUT_NOM = 2.5V 2.42 1.70 0 LDO3 Output Voltage vs. Output Current 1.84 VBIAS = VIN1/2 2.44 1.88 OUTPUT CURRENT (mA) 1.90 2.46 1.90 2.40 0 2.48 OUTPUT CURRENT (mA) LDO2 Output Voltage vs. Output Current 2.60 2.58 2.46 2.50 0 OUTPUT VOLTAGE (V) LDO2 Output Voltage vs. Output Current 2.54 2.52 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) 2.60 VIN = 3.0V 2.54 20 40 60 80 100 120 140 160 180 200 OUTPUT VOLTAGE (V) 0 2.56 2.40 3.20 3.20 LDO2 Output Voltage vs. Output Current 2.60 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 3.38 3.34 LDO1 Output Voltage vs. Output Current 3.40 OUTPUT VOLTAGE (V) LDO1 Output Voltage vs. Output Current 3.40 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 OUTPUT CURRENT (mA) 7 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) M9999-070110 Micrel, Inc. MIC5374/84 Typical Characteristics (Continued) 1.88 2.56 IOUT = 100µA OUTPUT VOLTAGE (V) IOUT = 50mA 2.54 2.52 2.50 2.48 2.46 2.44 VOUT_NOM = 2.5V IOUT = 150mA COUT = 1.0µF 2.42 1.08 IOUT = 100µA IOUT = 50mA 1.86 1.84 1.82 1.80 1.78 1.76 1.74 VOUT_NOM = 1.8V IOUT = 150mA COUT = 1.0µF 1.72 2.40 20 40 60 80 100 120 0 20 40 60 80 100 120 VOUT_NOM = 3.3V COUT = 1µF 3 3.5 4 4.5 5 600 550 500 450 400 350 300 250 200 150 100 50 0 5.5 VBIAS = VIN1/2 VOUT_NOM = 2.5V COUT = 1µF 2.5 3 3.5 4 4.5 5 500 20 40 VBIAS = 5.5V VOUT_NOM = 1.0V COUT = 1µF 60 80 3.7 4.2 4.7 350 300 250 200 VBIAS = VIN = 4.3V 100 VOUT_NOM = 3.3V 5.2 5.7 240 0 20 40 60 80 VOUT_NOM = 3.3V COUT = 1µF 60 40 DROPOUT VOLTAGE (mV) VBIAS = 4.3V VBIAS = 4.3V 160 VOUT_NOM = 2.5V COUT = 1µF IOUT = 50mA 80 40 20 0 0 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) 5 5.5 30 COUT = 1µF 25 20 15 10 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) LDO2 Dropout Voltage vs. Temperature 200 120 4.5 VBIAS = VIN = 4.3V -40 100 120 320 IOUT = 150mA 160 4 VOUT_NOM = 1.0V TEMPERATURE (°C) IOUT = 150mA IOUT = 50mA 3.5 0 -40 -20 LDO1 Dropout Voltage vs. Temperature 120 3 5 COUT = 1µF INPUT VOLTAGE (V) 140 COUT = 1µF LDO4 Current Limit vs. Temperature 35 DROPOUT VOLTAGE (mV) 3.2 VOUT_NOM = 1.8V 40 0 2.7 VBIAS = VIN3 2.5 LDO1/2/3 Current Limit vs. Temperature 150 100 120 INPUT VOLTAGE (V) 400 50 0 2.2 300 250 200 150 100 50 0 5.5 CURRENT LIMIT (mA) CURRENT LIMIT (mA) CURRENT LIMIT (mA) 15 10 600 550 500 450 400 350 INPUT VOLTAGE (V) 20 5 DROPOUT VOLTAGE (mV) 0 LDO3 Current Limit vs. Input Voltage 25 July 2010 VOUT_NOM = 1.0V COUT = 1.0µF -40 -20 450 80 IOUT = 5mA 0.94 LDO2 Current Limit vs. Input Voltage LDO4 Current Limit vs. Input Voltage 100 0.96 LDO1 Current Limit vs. Input Voltage INPUT VOLTAGE (V) 180 0.98 TEMPERATURE (°C) 2.5 200 1.00 TEMPERATURE (°C) VBIAS = VIN1/2 1.7 1.02 TEMPERATURE (°C) 300 250 200 150 100 50 0 30 1.04 0.90 -40 -20 CURRENT LIMIT (mA) 600 550 500 450 400 350 0 IOUT = 100µA 1.06 0.92 1.70 -40 -20 LDO4 Output Voltage vs. Temperature 1.10 CURRENT LIMIT (mA) OUTPUT VOLTAGE (V) 2.58 CURRENT LIMIT (mA) LDO3 Output Voltage vs. Temperature 1.90 OUTPUT VOLTAGE (V) LDO2 Output Voltage vs. Temperature 2.60 280 LDO3 Dropout Voltage vs. Temperature IOUT = 150mA 240 VBIAS = 4.3V 200 160 VOUT_NOM = 1.8V IOUT = 50mA COUT = 1µF 120 80 40 0 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) 8 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) M9999-070110 Micrel, Inc. MIC5374/84 Typical Characteristics (Continued) 20 18 35 GROUND CURRENT (µA) 30 25 20 15 10 VIN = VBIAS = 3.6V EN1 or EN2 or EN3 = ON 5 14 12 VBIAS = VIN = 3.6V 8 6 4 VBIAS = 2.5V, VIN = 1.7V 2 25 50 75 100 125 1 2 LDO4 Total Ground Current vs. Input Voltage INPUT GROUND CURRENT (µA) 14 12 10 8 VBIAS = VIN4 EN1 = EN2 = EN3 = OFF Including IBIAS No Load 2 0 5 6 7 8 9 20 2 2.5 3 3.5 4 2.5 16 14 12 10 8 6 VBIAS = 5.5V 4 VIN = VOUT + 1V EN1 or EN2 or EN3= ON 2 4.5 5 5.5 25 50 75 100 125 LDO4 Input Ground Current vs. Input Voltage 10 18 GROUND CURRENT (µA) 16 14 12 10 8 6 VBIAS = 5.5V EN1 or EN2 or EN3 = ON No Load 4 4.5 5 8 7 5 4 3 2 4 4 3 3 2 2 VBIAS = 5.5V EN1 = EN2 = EN3 = OFF No Load 1 1 3 3.5 4 4.5 5 45 40 35 30 25 20 15 VBIAS = 5.5V 10 VIN = VOUT + 1V EN1 or EN2 or EN3= ON 5 0 0 -40 -20 0 20 40 60 80 TEMPERATURE (°C) July 2010 5 4 3 2 1 1 2 100 120 3 4 5 6 7 8 9 10 LDO1/2/3 Input Ground Current vs. Temperature VBIAS = 5.5V EN1 or EN2 or EN3 = ON No Load 18 16 14 12 10 8 6 4 2 -40 5.5 -20 0 20 40 60 80 100 120 TEMPERATURE (°C) LDO1/2/3 Bias Ground Current vs. Output Current 50 BIAS GROUND CURRENT (µA) 5 5.5 6 INPUT VOLTAGE (V) LDO4 Input Ground Current vs. Temperature 5 0 2.5 INPUT VOLTAGE (V) 5 VIN = VOUT + 1V EN1 = EN2 = EN3 = OFF 7 20 6 5.5 VBIAS = 5.5V 8 0 0 3.5 4.5 OUTPUT CURRENT (mA) 1 0 4 9 150 VBIAS = 5.5V EN1 = EN2 = EN3 = OFF No Load 9 3 3.5 0 0 LDO1/2/3 Input Ground Current vs. Input Voltage 2.5 3 LDO4 Input Ground Current vs. Output Current 10 18 OUTPUT CURRENT (mA) 2 VBIAS = VIN1/2 = VIN3 EN1 or EN2 or EN3 = ON Including IBIAS No Load 10 INPUT VOLTAGE (V) INPUT VOLTAGE (V) 4 15 10 0 1.5 GROUND CURRENT (µA) 4 INPUT GROUND CURRENT (µA) GROUND CURRENT (µA) 16 4 3 LDO1/2/3 Input Ground Current vs. Output Current 20 18 6 20 OUTPUT CURRENT (mA) OUTPUT CURRENT (mA) 20 25 0 0 150 INPUT GROUND CURRENT (µA) 0 30 5 Including IBIAS 0 0 INPUT GROUND CURRENT (µA) 35 16 10 LDO1/2/3 Total Ground Current vs. Input Voltage 40 VBIAS = VIN = 5.5V LDO4 Bias Ground Current vs. Output Current 20 BIAS GROUND CURRENT (µA) TOTAL GROUND CURRENT(µA) 40 LDO4 Total Ground Current vs. Output Current GROUND CURRENT (µA) LDO1/2/3 Total Ground Current vs. Output Current 18 16 14 12 10 8 6 VBIAS = 5.5V 4 VIN = VOUT + 1V EN1 = EN2 = EN3 = OFF 2 0 0 20 40 60 80 100 120 140 160 180 200 OUTPUT CURRENT (mA) 9 0 1 2 3 4 5 6 7 8 9 10 OUTPUT CURRENT (mA) M9999-070110 Micrel, Inc. MIC5374/84 Typical Characteristics (Continued) 45 40 35 30 25 20 15 VBIAS = 5.5V 10 VIN = VOUT + 1V EN1 or EN2 or EN3= ON 5 20 BIAS GROUND CURRENT (µA) BIAS GROUND CURRENT (µA) 50 LDO4 Bias Ground Current vs. Temperature Noise (10Hz- 100kHz) = 200µVrms 1 14 12 10 8 6 VBIAS = 5.5V 4 2 0 20 40 60 80 100 120 -40 -20 0 TEMPERATURE (°C) 20 40 0.1 VIN = 3.8V VOUT = 2.8V COUT = 1µF 0.01 VIN = VOUT + 1V EN1 = EN2 = EN3 = OFF CBIAS = 0.1µF Load = 150mA 0 -20 10 16 0 -40 LDO1 Output Noise Spectral Density 18 NOISE uV/√Hz LDO1/2/3 Bias Ground Current vs. Temperature 60 80 100 120 0.001 10 TEMPERATURE (°C) 100 LDO2 Output Noise Spectral Density LDO2 Output Noise Spectral Density 10,000 100,000 LDO3 Output Noise Spectral Density 10 10 1,000 FREQUENCY (Hz) 10 Noise (10Hz - 100kHz) = 144µVrms Noise (10Hz - 100kHz) = 160µVrms Noise (10Hz - 100kHz) = 125µVrms VIN = 4.0V VOUT = 1.8V VOUT = 1.8V CBIAS = 0.1µF Load = 100µA CBIAS = 0.1µF Load = 150mA LDO3 Output Noise Spectral Density 100,000 VIN = 3.9V -90 -90 -80 -80 -70 -70 VOUT = 1.2V -60 ` -50 -40 VIN = 4.3V -20 -10 0.001 100 1000 10000 FREQUENCY(Hz) 100000 -90 -80 -80 -70 -70 PSRR (dB) -90 -30 -30 -20 VOUT = 2.5V -20 -10 COUT = 1µF -10 July 2010 100 1000 10000 FREQUENCY(Hz) 100000 1000000 10000 100000 1000000 LDO3 PSRR (IOUT = 100µA) -80 -70 ` -60 -50 -40 -30 VIN = 3.6V VOUT = 2.5V COUT = 1µF VIN = 3.6V -20 VOUT = 1.8V -10 COUT = 1µF 0 0 10 1000 FREQUENCY(Hz) -90 -50 -40 100 -100 -60 -40 0 10 1000000 LDO2 PSRR (IOUT = 150mA) -100 VIN = 3.6V COUT = 1µF 0 10 -100 ` VIN = 4.3V VOUT = 3.3V -10 COUT = 1µF LDO2 PSRR (IOUT = 100µA) -50 -40 0 100,000 ` -50 -20 VOUT = 3.3V 100,000 -60 -30 -30 COUT =1µF -60 100 1,000 10,000 FREQUENCY (Hz) LDO1 PSRR (IOUT = 150mA) -100 PSRR (dB) 0.1 1,000 10,000 FREQUENCY (Hz) 10 LDO1 PSRR (IOUT = 100µA) CBIAS = 0.1µF Load = 150mA PSRR (dB) 10,000 -100 1 100 1,000 FREQUENCY (Hz) Noise (10Hz - 100kHz) = 105µVrms 10 100 PSRR (dB) 10 VOUT = 1.2V COUT = 1µF 0.001 10 100,000 VIN = 4.3V CBIAS = 0.1µF Load = 100µA 0.01 100 1,000 10,000 FREQUENCY (Hz) 0.1 0.01 COUT = 1µF 10 NOISE uV/√Hz 0.1 COUT = 1µF 0.01 0.01 VIN = 4.0V PSRR(dB) 0.1 1 NOISE uV/√Hz NOISE uV/√Hz NOISE uV/√Hz 1 1 10 100 1000 10000 FREQUENCY(Hz) 10 100000 1000000 10 100 1000 10000 100000 1000000 FREQUENCY (Hz) M9999-070110 Micrel, Inc. MIC5374/84 Typical Characteristics (Continued) LDO3 PSRR (IOUT = 150mA) -100 -90 PSRR (dB) -80 -70 -60 ` -50 -40 -30 VIN = 3.3V -20 VOUT = 1.8V -10 COUT = 1µF 0 10 100 1000 10000 100000 1000000 FREQUENCY(Hz) July 2010 11 M9999-070110 Micrel, Inc. MIC5374/84 Functional Characteristics July 2010 12 M9999-070110 Micrel, Inc. MIC5374/84 Functional Characteristics (Continued) July 2010 13 M9999-070110 Micrel, Inc. MIC5374/84 Functional Characteristics (Continued) July 2010 14 M9999-070110 Micrel, Inc. MIC5374/84 Functional Diagram BIAS INLDO1/2 EN1 LDO1 OUT1 LDO2 OUT2 EN2 INLDO3 EN3 LDO3 OUT3 OUT4 LDO4 INLDO4 MIC5374 Reference POR POR POR_IN MR DLY GND MIC5374 Block Diagram BIAS INLDO1/2 EN1 MIC5384 LDO1 OUT1 LDO2 OUT2 EN2 INLDO3 EN3 INLDO4 LDO3 OUT3 OUT4 LDO4 Reference POR POR POR_IN MR DLY GND MIC5384 Block Diagram July 2010 15 M9999-070110 Micrel, Inc. MIC5374/84 Pin Descriptions the voltage at DLY reaches 1.25V. A delay can be added by placing a capacitor from the DLY pin to ground. INLDO The LDO input pins INLDO1/2, INLDO3 and INLDO4 provide the input power to the linear regulators LDO1, LDO2, LDO3 and LDO4. The input operating voltage range is from 1.7V to 5.5V. For input voltages from 1.7V to 2.5V the output current must be limited to 30mA each. Due to line inductance a 1µF capacitor placed close to the INLDO pins and the GND pin is recommended. Please refer to layout recommendations. POR_IN The POR_IN (power-on-reset input) pin compares any voltage to an internal 0.9V reference. This function can be used to monitor any of the LDO outputs or any external voltage rail. When the monitored voltage is greater than 0.9V, the POR_IN flag will internally trigger a 1.25µA source current to charge the external capacitor at the DLY pin. A resistor divider network may be used to divide down the monitored voltage to be compared with the 0.9V at the POR_IN. This resistor network can change the trigger point to any voltage level. A small decoupling capacitor is recommended between POR_IN and ground to reject high frequency noise that might interfere with the POR circuit. Do not leave the POR_IN pin floating. BIAS The BIAS pin provides power to the internal reference and control sections of the MIC5374/84. A 0.1µF ceramic capacitor must be connected from BIAS to GND for clean operation. EN (MIC5374) The enable pins EN1, EN2 and EN3 provide logic level control for the outputs OUT1, OUT2 and OUT3, respectively. A logic high signal on an enable pin activates the respective LDO. A logic low signal on an enable pin deactivates the respective LDO. Do not leave the EN pins floating, as it would leave the regulator in an unknown state. DLY The delay pin is used to set the POR delay time. Adding a capacitor to this pin adjusts the delay of the POR signal. When the POR_IN flag is triggered, a constant 1.25µA current begins to charge the external capacitor tied to the DLY pin. When the capacitor reaches 1.25V the POR flag will be pulled high by the external pull up resistor. The equation to calculate the charge time is shown: /EN (MIC5384) The enable pins /EN1, /EN2 and /EN3 provide logic level control for the outputs OUT1, OUT2 and OUT3, respectively. A logic high signal on an enable pin deactivates the respective LDO. A logic low signal on an enable pin activates the respective LDO. Do not leave the EN pins floating, as it would leave the regulator in an unknown state. ⎛ 1.25V x C DLY ⎞ t Delay (s) = ⎜ ⎟ −6 ⎝ 1.25 x10 ⎠ The delay time (t) is in seconds, the delay voltage is 1.25V internally, and the external delay capacitance (CDLY) is in microfarads. For a 1µF delay capacitor, the delay time will be 1 second. A capacitor at the DLY pin is recommended when the POR function is used in order to prevent unexpected triggering of the POR signal in noisy systems. OUT OUT1, OUT2, OUT3 and OUT4 are the output pins of each LDO. A minimum of 1µF capacitor be placed as close as possible to each of the OUT pins. A minimum voltage rating of 6.3V is recommended for each capacitor. MR The MR (manual reset) pin resets the output of POR and DLY generator regardless if the monitored voltage is in regulation or not. Applying a voltage greater than 1.2V on the MR pin will cause the POR voltage to be pulled low. When a voltage below 0.2V is applied to the MR pin, the internal 1.25µA will begin to charge the DLY pin until it reaches 1.25V. When the DLY pin reaches 1.25V, the POR voltage will be pulled high by the external pull up resistor. Do not leave the MR pin floating. GND The GND pin is the ground path for the control circuitry and the power ground for all LDOs. The current loop for the ground should be kept as short as possible. Refer to the layout recommendations for more details. POR The POR (power-on-reset) pin is an open drain output. A resistor (10kΩ to 100kΩ) can be used for a pull up to either the input or the output voltage of the regulator. POR is pulled high by the external pull up resistor when July 2010 16 M9999-070110 Micrel, Inc. MIC5374/84 Application Information will remain stable and in regulation with no load. MIC5374/84 is a four output device with three 200mA LDOs and a 1mA RTC LDO. The MIC5374/84 incorporates a POR function with the capability to monitor any voltage using POR_IN. The monitored voltage can be set to any voltage threshold level to trigger the POR flag. A delay on the POR flag may also be set with an external capacitor at the DLY pin. All the LDOs have current limit and thermal shutdown protection to prevent damage from fault conditions. MIC5374 has active high enables while the MIC5384 has active low enables. Thermal Considerations The MIC5374/84 is designed to provide three outputs up to 200mA each of continuous current in a very small package. Maximum ambient operating temperature can be calculated based on the output current and the voltage drop across the part. For example if the input voltages are 3.6V and the output voltages are 3.3V, 2.5V, and 1.8V each with an output current = 150mA. The actual power dissipation of the regulator circuit can be determined using the equation: PD = (VINLDO1/2 – VOUT1) I OUT1 + RTC LDO LDO4 is an always-on RTC LDO used for application processor support and can provide 1mA of output current. Power must be provided to the INLDO4 and BIAS pins to keep LDO4 enabled. (VINLDO1/2 – VOUT2) I OUT2 + (VINLDO3 – VOUT3) I OUT3 + (VINLDO4 – VOUT4) I OUT4 + VIN x IGND As the MIC5374/84 is a CMOS device, the ground current is typically <100µA over the load range, the power dissipation contributed by the ground current is < 1% and may be ignored for this calculation. Since LDO4 only supplies 1mA of current, it can also be ignored for this calculation. PD ≈ (3.6V – 3.3V)150mA+(3.6V-2.5V)150mA+ (3.6V-1.8V)150mA Input Capacitor The MIC5374/84 is a high performance, high bandwidth device. An input capacitor of 1µF from the input pin to ground is required to provide stability. Low ESR ceramic capacitors provide optimal performance in small board area. Additional high frequency capacitors, such as small valued NPO dielectric type capacitors, help filter out high frequency noise and are good practice in any RF based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore not recommended. PD ≈ 0.48W To determine the maximum ambient operating temperature of the package, use the junction to ambient thermal resistance of the device and the following basic equation: Output Capacitor The MIC5374/84 requires an output capacitor of 1µF or greater to maintain stability. The design is optimized for use with low ESR ceramic chip capacitors. High ESR capacitors may cause high frequency oscillation. The output capacitor can be increased, but performance has been optimized for a 1µF ceramic output capacitor and does not improve significantly with larger capacitance. X7R and X5R dielectric ceramic capacitors are recommended because of their temperature performance. X7R capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60% respectively over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range. ⎛ TJ(MAX) − TA PD(MAX) = ⎜⎜ θ JA ⎝ TJ(MAX) = 125°C θJA = 100°C/W Substituting PD for PD(max) and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The maximum power dissipation must not be exceeded for proper operation. For example, when operating the MIC5374-SJG1YMT at an input voltage of 3.6V and 150mA load on LDO1, LDO2 and LDO3 with a minimum layout footprint, the maximum ambient operating temperature TA can be determined as follows: 0.48W = (125°C – TA) / (100°C/W) TA = 77°C Therefore the maximum ambient operating temperature of 77°C is allowed in a 2.5mm x 2.5mm Thin MLF® package for the voltage options specified and at the maximum load of 150mA on each output. For a full No Load Stability Unlike many other voltage regulators, the MIC5374/84 July 2010 ⎞ ⎟ ⎟ ⎠ 17 M9999-070110 Micrel, Inc. MIC5374/84 discussion of heat sinking and thermal effects on voltage regulators, refer to the “Regulator Thermals” section of Micrel’s Designing with Low-Dropout Voltage Regulators handbook. This information can be found on Micrel's July 2010 website at: http://www.micrel.com/_PDF/other/LDOBk_ds.pdf 18 M9999-070110 Micrel, Inc. MIC5374/84 Typical Circuit (MIC5374-xxxxYMT) U1 MIC5374-xxxxYMT BIAS OUT1 INLDO1/ 2 OUT2 INLDO3 OUT3 INLDO4 OUT4 C1 0.1µF C7 1µF C6 1µF C2 1µF C5 1µF C3 1µF C4 1µF EN1 POR EN2 POR_IN EN3 R4 100k C8 1µF VMONITOR C9 DLY MR R10 VBIAS 10k GND R5 R6 C10 150pF Bill of Materials Item Part Number C1 C1005X5R1A104K C2, C3, C4, C5, C6, C7, C8 C1005X5R1A105K C9 Optional C10 C1005C0G1H151J R4 CRCW0402100KFKED Manufacturer TDK (1) Description Qty. Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402 1 TDK Capacitor, 1µF Ceramic, 10V, X5R, Size 0402 7 TDK Capacitor, 150pF Cermaic, 50V, C0G, Size 0402 1 100kΩ, 1%, 0402 1 1 (2) Vishay R5, R6 Optional Vishay Optional 2 R10 CRCW040210KFKED Vishay 10kΩ, 1%, 0402 1 U1 MIC5374-xxxxYMT High Performance Active High Enable Triple 200mA LDO with 1mA RTC LDO 1 Micrel, Inc.(3) Notes: 1. TDK: www.tdk.com 2. Vishay: www.vishay.com 3. Micrel, Inc.: www.micrel.com July 2010 19 M9999-070110 Micrel, Inc. MIC5374/84 Typical Circuit (MIC5384-xxxxYMT) U1 MIC5384-xxxxYMT C1 0.1µF BIAS OUT1 INLDO1/ 2 OUT2 INLDO3 OUT3 INLDO4 OUT4 C7 1µF C6 1µF C2 1µF C5 1µF C3 1µF C4 1µF EN1 POR EN2 POR_IN EN3 R4 100k C8 1µF VMONITOR C9 DLY GND MR R10 VBIAS 10k R5 R6 C10 150pF Bill of Materials Item Part Number C1 C1005X5R1A104K C2, C3, C4, C5, C6, C7, C8 C1005X5R1A105K C9 Optional C10 C1005C0G1H151J Manufacturer TDK (1) 1 TDK Capacitor, 1µF Ceramic, 10V, X5R, Size 0402 7 TDK Capacitor, 150pF Cermaic, 50V, C0G, Size 0402 1 100kΩ, 1%, 0402 1 Optional 2 10kΩ, 1%, 0402 1 High Performance Active Low Enable Triple 200mA LDO with 1mA RTC LDO 1 1 (2) CRCW0402100KFKED R5, R6 Optional Vishay R10 CRCW040210KFKED Vishay MIC5384-xxxxYMT Qty. Capacitor, 0.1µF Ceramic, 10V, X5R, Size 0402 R4 U1 Description Vishay Micrel, Inc. (3) Notes: 1. TDK: www.tdk.com 2. Vishay: www.vishay.com 3. Micrel, Inc.: www.micrel.com July 2010 20 M9999-070110 Micrel, Inc. MIC5374/84 PCB Layout Recommendations Recommended Top Layout Recommended Bottom Layout July 2010 21 M9999-070110 Micrel, Inc. MIC5374/84 Package Information 16-Pin 2.5mm x 2.5mm Thin MLF® (MT) MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into2010 the body or (b) support or sustain life, and whose failure to perform can to the user. A July 22be reasonably expected to result in a significant injuryM9999-070110 Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2010 Micrel, Incorporated.