OKI ML54051

DATA SHEET
¡
ML54051
NAND Flash Memory Controller
PRELIMINARY
SECOND EDITION
ISSUE DATE : JAN. 1999
E2Y0002-29-11
NOTICE
1.
The information contained herein can change without notice owing to product and/or
technical improvements. Before using the product, please make sure that the information
being referred to is up-to-date.
2.
The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product. When
planning to use the product, please ensure that the external conditions are reflected in the
actual circuit, assembly, and program designs.
3.
When designing your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not limited to, operating
voltage, power dissipation, and operating temperature.
4.
Oki assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair, alteration
or accident, improper handling, or unusual physical or electrical stress including, but not
limited to, exposure to parameters beyond the specified maximum ratings or operation
outside the specified operating range.
5.
Neither indemnity against nor license of a third party’s industrial and intellectual property
right, etc. is granted by us in connection with the use of the product and/or the information
and drawings contained herein. No responsibility is assumed by us for any infringement
of a third party’s right which may result from the use thereof.
6.
The products listed in this document are intended for use in general electronics equipment
for commercial applications (e.g., office automation, communication equipment,
measurement equipment, consumer electronics, etc.). These products are not authorized
for use in any system or application that requires special or enhanced quality and reliability
characteristics nor in any system or application where the failure of such system or
application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, traffic and automotive equipment, safety
devices, aerospace equipment, nuclear power control, medical equipment, and life-support
systems.
7.
Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of determining
the legality of export of these products and will take appropriate and necessary steps at their
own expense for these.
8.
No part of the contents cotained herein may be reprinted or reproduced without our prior
permission.
9.
MS-DOS is a registered trademark of Microsoft Corporation.
Copyright 1999 Oki Electric Industry Co., Ltd.
Printed in Japan
Table of Contents
1. FEATURES ........................................................................................................... 2
2. BLOCK DIAGRAM ............................................................................................... 2
3. PIN SPECIFICATIONS ........................................................................................ 3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
Host Interface (PCMCIA) .................................................................................... 3
NAND Flash Memory Interface .......................................................................... 4
External SRAM Interface .................................................................................... 5
Extended Bus Interface ...................................................................................... 5
Other Interfaces .................................................................................................. 5
Power Supply ....................................................................................................... 6
Pin Totals ............................................................................................................. 6
Pin Configuration ................................................................................................ 7
4. FUNCTIONS ........................................................................................................ 8
5. SECTOR FORMATTER AND SEQUENCER ....................................................... 9
5.1 Data Formats ....................................................................................................... 9
5.1.1 Data Format Within Sector ........................................................................ 9
5.1.2 Data Format Within Port .......................................................................... 10
5.1.3 Substitute Management Information Format ........................................... 11
5.2 Write Sector Commands .................................................................................. 12
5.2.1 Dual Port Control ..................................................................................... 12
5.2.2 Block Control ........................................................................................... 12
5.3 Substitute Processing (Defect Management) ................................................. 13
5.3.1 Substitute Management Information Format Processing ........................ 13
5.3.1.1 Sector Management .............................................................................. 13
5.3.1.2 Substitute Management Information Management ............................... 14
5.4 Generation of Substitute Management Information ...................................... 14
5.5 Substitute Processing....................................................................................... 15
5.6 Substitute Destination Detection Processing ................................................ 16
6. ATA REGISTERS ............................................................................................... 17
6.1
6.2
6.3
6.4
6.5
6.6
Memory Mapped Configuration ....................................................................... 17
I/O Mapped 16 Contiguous Registers Configuration .................................... 18
Primary I/O Mapped Configuration ................................................................. 18
Secondary I/O Mapped Configuration ............................................................ 19
True IDE Mapped Configuration ...................................................................... 19
ATA Registers .................................................................................................... 20
6.6.1 Data Register (Write/Read) ...................................................................... 20
6.6.2 Error Register (Read Only) ....................................................................... 20
6.6.3 Feature Register (Write Only) ................................................................... 20
6.6.4 Sector Count Register (Write/Read) ........................................................ 20
6.6.5 Sector Number Register (Write/Read) ..................................................... 21
6.6.6 Cylinder Low Register (Write/Read) ......................................................... 21
6.6.7 Cylinder High Register (Write/Read) ........................................................ 21
6.6.8 Drive Head Register (Write/Read) ............................................................ 21
6.6.9 Status Register & Alternate Status Register (Read Only) ........................ 22
6.6.10 Device Control Register (Write Only) ....................................................... 22
6.6.11 Command Register (Write Only) .............................................................. 22
7. PCMCIA INTERFACE ........................................................................................ 23
7.1
7.2
7.3
7.4
7.5
7.6
7.7
ATA Commands (Standard) .............................................................................. 23
Commands for CompactFlash ......................................................................... 24
Vendor-Unique Commands .............................................................................. 24
Card Information Structure .............................................................................. 24
Identify Information ........................................................................................... 24
Number of Installed Memory Chips and CHS Structure................................ 25
Modes ................................................................................................................. 27
7.7.1 Memory Mapped ..................................................................................... 27
7.7.2 I/O Mapped 16 Contiguous Registers ..................................................... 27
7.7.3 Primary I/O Mapped ................................................................................ 27
7.7.4 Secondary I/O Mapped ........................................................................... 27
7.7.5 True IDE ................................................................................................... 27
8. CHIP MODES .................................................................................................... 28
8.1 Types .................................................................................................................. 28
8.2 Settings .............................................................................................................. 28
8.3 Pin Assignment.................................................................................................. 28
9. ELECTRICAL CHARACTERISTICS .................................................................. 29
9.1 Absolute Maximum Ratings ............................................................................. 29
9.2 Recommended Operating Conditions ............................................................. 29
9.3 DC Characteristics ............................................................................................ 29
10. BUS SPECIFICATIONS ..................................................................................... 30
10.1 I/O Mode ........................................................................................................... 30
10.2 Bus Timing Specifications ............................................................................... 30
10.3 Power ON/OFF, Reset, Busy Timing .............................................................. 30
11. PACKAGE DIMENSIONS .................................................................................. 31
12. APPLICATION EXAMPLES ............................................................................... 32
E2F0018-29-13
Pr
¡ Semiconductor
ML54051
¡ Semiconductor
el
im
This version: Jan.
1999
ML54051 ina
ry
Previous version: Oct. 1998
NAND Flash Memory Controller
The ML54051 is a controller that integrates into a single chip a host interface that conforms to
PCMCIA, an interface to a buffer used for data transfer, the necessary functions to control NAND
memory, and a microcontroller.
Internal 256 byte RAM is provided for storage of the card information structure (CIS). Also,
128KB of SRAM may be connected as a buffer for data transfer.
A maximum of 16 chips of 64 Mbit or larger NAND flash memory can be controlled when the chip
is used as stand-alone. If a decoder circuit is externally added, a maximum of 64 chips can be
controlled.
CompactFlashTM is a trademark of SanDisk Corporation.
1/33
¡ Semiconductor
ML54051
1. FEATURES
• Single chip controller with internal microcontroller (min. 4 cycles/instruction execution)
• Operating voltage: 3.3 V, Interface voltage: 3.3 V/5 V
• Internal 256B RAM for card information structure (CIS) storage
• Conforms to PC card standard - PC card ATA specification
• Auto-sleep mode support
• True IDE Mode support
• ECC system by BCH code (3-bit random error correction is possible for user data and ECC data)
• Substitute control function (defect management function)
• Debug mode support
• External buffer (128KB SRAM) control is possible
• High-speed operation via dual port bus control
• Low power consumption due to single chip controller
• Control of multiple NAND flash memories (64MB to 512MB) is possible
Chip stand-alone
: 16 pcs max.
Chip and external decoder circuit : 64 pcs max.
• 144-pin LQFP package
(LQFP144-P-2020-0.50-K)
2. BLOCK DIAGRAM
External
CPU Bus
PCMCIA
I/F
ROM
RAM
Host I/F
PCMCIA
ATA
Media I/F
NAND
Flash
Bus
MPU
CIS
ECC
RAM Arbiter
External
SRAM
2/33
¡ Semiconductor
ML54051
3. PIN SPECIFICATIONS
Refer to Section 12, “Application Examples” for specific connection examples.
3.1 Host Interface (PCMCIA)
Signal Name Type
Pin Count
Description
ha [10:0]
I
11
Address bus (A10 is MSB, A0 is LSB)
hd [15:0]
B
16
Data bus (D15 is MSB, D0 is LSB)
hcen [2:1]
I
2
Card enable signal (hcen1 controls even addresses and hcen2 controls odd
addresses. The combination of ha0, hcen1 and hcen2 allows even/odd
addresses to be accessed by hd[7:0].)
hiordn
I
1
I/O read signal (control signal to read data from ATA registers)
hiowrn
I
1
I/O write signal (control signal to write data to ATA registers)
hoen
I
1
Output enable signal
hwen
I
1
Write enable signal
hregn
I
1
Register select & I/O Enable signal
hirqn
O
1
Interrupt request signal (when the card is configured as an I/O card)
hstschgn
O
1
Card status change signal (signal to change the status of the configuration
status register)
hinpackn
O
1
Input port acknowledge signal (acknowledge signal during I/O read)
hiois16n
O
1
16-bit address enable signal (when the card is configured as an I/O card,
hwaitn
O
1
Wait signal
hspkr
B
1
Audio digital waveform signal
this signal indicates that 16-bit addresses are enabled)
hrst
hcseln
I
1
Reset signal
I/(O)
1
Cable select signal (used only in True IDE Mode, GND: Master, X: Slave)
Total 42 pins
*
In an external CPU connection mode, hcseln functions as a control signal (xint) for the
extended bus.
I: Input, O: Output, B: Bidirectional
3/33
¡ Semiconductor
ML54051
3.2 NAND Flash Memory Interface
Signal Name Type
Pin Count
Description
maio [7:0]
B
8
Port A I/O bus
macle
O
1
Port A command latch enable signal (signal to control latching of an
operation command into a device)
maale
O
1
Port A address latch enable signal (signal to control latching of an address
or input data into a device)
maren
O
1
Port A read enable signal
mawen
O
1
Port A write enable signal (signal to latch data into a device)
marbn
I
1
Port A ready/busy signal (signal to check internal status of device)
mbio [7:0]
B
8
Port B I/O bus
mbcle
O
1
Port B command latch enable signal (signal to control latching of an
mbale
O
1
mbren
O
1
Port B read enable signal
mbwen
O
1
Port B write enable signal (signal to latch data into a device)
mbrbn
I
1
Port B ready/busy signal (signal to check internal status of device)
mctl
I
1
Chip enable signal mode select (mcen[7:0] control)
mcen [7:0]
O
8
operation command into a device)
Port B address latch enable signal (signal to control latching of an address
or input data into a device)
Chip enable signals
mct1 = 0 : Chip enable signal
mct1 = 1 : Chip select and chip enable signals
mwpn
O
1
Write protect signal (signal to forcibly prohibit write and erase operations)
Total 36 pins
*
*
mcen[7:0] performs 2 types of operations depending upon the mctl signal.
If mctl = 0, mcen[7:0] functions as the chip enable signals.
If mctl = 1, mcen[5:1] functions as the chip select signals and mcen[0] functions as the chip
enable signal.
In the latter case, mcen[5:1] and mcen[0] must be connected to an external decoder and
mcen[7:6] are not used.
In an external CPU connection mode, mctl and mcen[7:6] function as control signals (xpsen,
xrst, xclk, respectively) for the extended bus.
4/33
¡ Semiconductor
ML54051
3.3 External SRAM Interface
Signal Name Type
Pin Count
Description
ra [16:0]
O
17
Address bus for external SRAM
rd [7:0]
B
8
Data bus for external SRAM
rren
O
1
Read enable signal for external SRAM
rwen
O
1
Write enable signal for external SRAM
rcen
O
1
Chip enable signal for external SRAM
Total 28 pins
3.4 Extended Bus Interface
The extended bus interface is a signal line for the ML54051’s internal microcontroller. The
extended bus interface is used for purposes such as debugging.
Signal Name Type
xah [15:8]
Pin Count
B
8
Description
Address bus for extended bus
xad [7:0]
B
8
Address/data bus for extended bus
xrd
B
1
Read signal for extended bus
xwr
B
1
Write signal for extended bus
xale
B
1
Address latch enable signal for extended bus
xpsen
I
(1)
Program store enable signal for extended bus
xint
O
(1)
Interrupt signal for extended bus
xrst
O
(1)
Reset signal for extended bus
xclk
O
(1)
Clock signal for extended bus
Total 19 pins
*
In an external ROM connection mode, xah, xad, xrd, xwr, and xale are used to connect to
external ROM.
3.5 Other Interfaces
Signal Name Type
Pin Count
Description
txd/pcfg [0]
B
1
rxd/pcfg [1]
I
1
Serial data I/O and chip mode setting
porn
I
1
Power-on-reset signal (connect to power monitor circuit)
xin
I
1
Clock I/O (connect a crystal oscillator between xin and xout)
xout
O
1
Total 5 pins
*
The chip mode is determined depending upon the status of pcfg[1:0] when the porn signal
rises.
pcfg[1:0] = 11 : Normal mode
pcfg[1:0] = 01 : External CPU connection mode
pcfg[1:0] = 10 : External ROM connection mode
pcfg[1:0] = 00 : Test mode (normally not used)
5/33
¡ Semiconductor
ML54051
3.6 Power Supply
Signal Name Type
Pin Count
VDD-CORE
DC
2
VSS-CORE
DC
2
VDD
DC
4
VSS
DC
6
Description
Power supply for core
Power supply for I/O pad
Total 14 pins
3.7 Pin Totals
Host Interface
42
NAND Flash Memory Interface
36
External SRAM Interface
28
Extended Bus Interface
19
Other Interfaces
5
Power Supply
14
Total
144
6/33
¡ Semiconductor
ML54051
porn
mwpn
mctl
rxd
txd
ra12
ra13
ra11
ra14
ra10
ra15
ra9
ra16
ra8
rwen
rd4
rd3
rd5
VDD-CORE
VDD
VSS
rd2
rd6
rd1
rd7
rd0
rren
rcen
ra7
ra0
ra6
ra1
ra5
ra2
ra4
ra3
3.8 Pin Configuration
hd3
hd11
hd4
hd12
hd5
hd13
hd6
VSS
hd14
hd7
hd15
hce1n
hce2n
ha10
hoen
hiordn
ha9
hiowrn
VSS-CORE
ha8
hwen
ha7
hirqn
ha6
hcseln
VDD
ha5
ha4
hrst
ha3
hwaitn
ha2
hinpackn
ha1
hregn
ha0
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
ML54051
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
mbio2
mbio5
mbio3
mbio4
VDD
xrdn
xale
VSS
xad7
xad6
xad5
xad4
xad3
xad2
xad1
xad0
xa15
xa14
VDD-CORE
xa13
xa12
xa11
xa10
xa9
xa8
xwrn
hd10
hiois16n
VSS
hd9
hd2
hd8
hd1
hstschgn
hd0
hspkr
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
macle
maale
maren
mawen
marbn
VSS
xout
xin
maio0
maio7
maio1
maio6
maio2
maio5
VDD
maio3
maio4
mcen0
VSS-CORE
mcen1
mcen2
mcen3
mcen4
mcen5
mcen6
mcen7
VSS
mbcle
mbale
mbren
mbwen
mbrbn
mbio0
mbio7
mbio1
mbio6
144-Pin Plastic LQFP
7/33
¡ Semiconductor
ML54051
4. FUNCTIONS
(1)
Sector Formatter and Sequencer
The sector formatter and sequencer control the logical format of the NAND flash memory
and efficiently perform defect management (substitute processing).
(2)
PCMCIA Interface
The PCMCIA interface conforms to PCMCIA-ATA specification. Since True IDE Mode is
also supported, the general usefulness of this interface is increased.
(3)
Chip Modes
An external ROM connection mode for the ML54051’s internal microcontroller and an
external CPU connection mode are supported. With these modes, evaluation can be
performed efficiently.
(4)
Auto-Sleep Mode
If there is no access from the host over a specific period of time, operation automatically
transfers to the sleep mode.
(5)
Dual Port Bus Control Mode
When erasing data or writing the same data, two port buses (Port A, Port B) can be utilized
simultaneously for high-speed operation.
8/33
¡ Semiconductor
ML54051
5. SECTOR FORMATTER AND SEQUENCER
5.1 Data Formats
5.1.1
Data Format Within Sector
User data, ECC data and Header data are stored at the top of the sector first.
ECC data contains the ECC information for user data and ECC data. Since the same flag data is
stored in all pages (sectors) within the same block, the validity of flag data of the specified page
can be verified by comparing it to the flag data of another page. For this reason, ECC information
is not provided for the header data.
512 bytes
User Data
8 bits
Flag
5 bits
Column No.
10 bytes
ECC Data
17 bits
Address
6 bytes
Header Data
23 bits
Count
12 bits
Substitute Destination Address
Flag … page (sector) status
FFh: Good (normal data storage)
F0h: Bad (uncorrectable error, before substitution)
0Fh: Change (substitution completed)
Other than above: Null (abnormal)
Address … block address (supports up to 4096 blocks: 512 Mbits)
Column No. : supports up to column number 31 (00h to 1Fh)
Substitute destination address: block address within spare area
Supports up to 4096 blocks (512 Mbits)
Value to be stored in substitute destination address, substitute source address
• Normal data = block address
• Substitute destination sector = substitute source address
• Substitute source sector = substitute destination address
Count… number of writes (supports up to 8,388,607 writes)
A substitute process is performed to a block that reaches the number of writes
previously set.
9/33
¡ Semiconductor
5.1.2
ML54051
Data Format Within Port
Each chip is partitioned into a user area to store user data, a spare area to transfer data in defective
sectors, and a substitute management information area to keep sector transfer information. The
port views this configuration as a single chip.
Substitute processing is performed in block units, not in sector units. If the process is performed
in sector units, a single block will have data from various addresses at random, which delays the
substitute processing.
A substitute management information is made per port; while a copy of substitute management
information is reserved as a back-up.
Port A
Chip 1
User Area
Chip 3
User Area
Chip n – 1
• • •
User Area
Spare Area
Spare Area
Spare Area
Substitute Management
Information Area
Port B
Chip 2
User Area
Chip 4
User Area
Chip n
• • •
User Area
Spare Area
Spare Area
Spare Area
Substitute Management
Information Area
10/33
¡ Semiconductor
5.1.3
ML54051
Substitute Management Information Format
The location of management information itself specifies a substitute destination. And an original
sector locations is identified by a column number and a block address to be stored in a
management information. Please note that a substitute management information cannot be
transfered to other chips.
512 bytes
3 bytes
Page 1
3 bytes
3 bytes
666666[h] 666666[h] Management
D-List
D-List
Info. n-2
(orig.) (duplicate) Port A Chip 1
Management Management
Info. 1
Info. n
Port A Chip 1 Port A Chip 3
• • •
• • •
Management
Info. 1
Port A Chip 3
Page m-1
3 bytes
3 bytes
10 bytes
6 bytes
D-List
Unique Info.
ECC
Header
D-List Unique Info.
Unused
•
Identify Info.
•
•
•
•
•
•
•
ECC
•
•
•
Header
•
•
•
ECC
Header
ECC
Header
• • •
Management Info.
•
•
•
•
•
•
2 bytes
Unused
Identify Info.
Identify Information [512 bytes]
Page m
CIS Information [256 bytes]
Unused
Unused [248 bytes]
D-List Unique Info.
Identify Info.
• Management Information (3 bytes)
Stores substitute origin information
7 bits
5 bits
12 bits
Blank
Column No.
Address of an original block to be substituted
Column No. : 0 to 31
The following values have unique meanings.
55 55 55 [h]
Reconstructed D-List Block Registered Position
66 66 66 [h]
Spare Block for D-List Use
0F 0F 0F [h]
Error Occurred D-List Block/Unusable Spare Block
FF FF FF [h]
Usable/Unused Spare Block
• D-List Identify Information (3 bytes)
Indicates that the sector is valid (fixed values: 4Fh, 4Bh, 49h)
• Unique Information (3 bytes)
During the low level format, stores total number of chips, chip number, and individual
memory type information
1 byte
1 byte
1 byte
Total No. of Chips
Chip No.
Individual Memory Type Info.
Total No. of chips: The number of chips connected to the ML54051 (1 to 64)
Chip No. : The chip number that contains the substitute management information (0 or 1)
Individual memory type info. : Number of blocks per chip (4 bits) and number of pages per
block (4 bits)
Memory Capacity
64 Mbit
128 Mbit
Number of Blocks Per Chip
1[h] (1024 Block)
256 Mbit
2[h] (2048 Block)
512 Mbit
4[h] (4096 Block)
Number of Pages Per Block
0[h] (16 Page)
1[h] (32 Page)
11/33
¡ Semiconductor
ML54051
5.2 Write Sector Commands
Two methods are reserved for a faster access.
5.2.1
Dual Port Control
By controlling Port A and Port B independently, 2 chips can be accessed simultaneously when
erasing data or writing the same data, which doubles the access time.
Port A
Chip 1
Chip 3
Chip 5
•
•
•
Chip 2
Chip 4
Chip 6
•
•
•
Port B
5.2.2
Block Control
When the host requests a write that includes Block 1 of Port B, if it is unnecessary to save the stored
data, a block read will not be performed for the shaded section of the diagram below, which saves
read time.
This is enabled by making use of NAND flash memory characteristics to erase data in a unit of
a block.
Port A
Block 1
Port B
Block 1
Port A
Block 2
12/33
¡ Semiconductor
ML54051
5.3 Substitute Processing (Defect Management)
Substitute processing (defect management) is made through the following four processes in
block units.
1.
Substitute management information format processing
: Information management of defective sector addresses,
substitute destination addresses, etc.
2.
Substitute management information generation processing
: Generates substitute management information for entire
card during low level format
3.
Substitute processing
4.
Substitute destination detection : Detects substitute destination of defective sector that was
substituted
5.3.1
: Replaces a defective sector with a normal sector
Substitute Management Information Format Processing
See section 5.1, “Data Formats”, for the data formats of defective sector information and transfer
destination information to be stored.
5.3.1.1
Sector Management
A header section is read before reading or writing data. A flag of a header section indicates if a
sector is normal.
(1)
User area
Read
Flag
Write
FFh
The specified sector is accessed.
0Fh
The substitute destination obtained by substitute The substitute destination obtained by substitute
destination detection processing is accessed.
F0h
Other values
Note:
The specified sector is accessed.
destination detection processing is accessed.
An uncorrectable error (UNC) is returned and
The substitute destination obtained by substitute
processing is aborted.
processing is accessed.
The substitute destination is detected from the
The substitute destination is detected from the
substitute management information and the
substitute management information and the
substitute destination is accessed.
substitute destination is accessed.
If the substitute destination cannot be detected,
If the substitute destination cannot be detected,
a substitute processing error (DWF) is returned
the substitute destination obtained by substitute
and processing is aborted.
processing is accessed.
Because the user area is controlled in block units, the flag values of all sectors are the
same within a block.
13/33
¡ Semiconductor
(2)
ML54051
Spare area
Read
Flag
The specified sector is accessed.
FFh
0Fh
Write
The specified sector is accessed.
—
F0h
—
An uncorrectable error (UNC) is returned and
The block is labeled as a BAD block. Substitute
processing is aborted.
processing is performed again to change the
An uncorrectable error (UNC) is returned and
The substitute destination is detected from the
processing is aborted.
substitute management information and the
substitute destination.
Other values
substitute destination is accessed.
If the substitute destination cannot be detected,
the substitute destination obtained by substitute
processing is accessed.
Note:
(3)
The same flag control is performed in spare areas and user areas.
D-List area
Read
Flag
FFh
Other values
5.3.1.2
Write
The specified sector is accessed.
The specified sector is accessed.
Substitute management information (duplicate)
Substitute management information (duplicate)
is used as the new substitute management
is used as the new substitute management
information (original). Substitute management
information (original). Substitute management
information (duplicate) is written to another
information (duplicate) is written to another
block and used as new substitute management
block and used as new substitute management
information (duplicate).
information (duplicate).
When the Flag of the substitute management
When the Flag of the substitute management
information (duplicate) is not equal to FFh,
information (duplicate) is not equal to FFh,
substitute management information is
substitute management information is
reconstructed.
reconstructed.
Substitute Management Information Management
In accordance with section 5.1.3, “Substitute Management Information Format”, substitute
management information is arranged beginning at the rear of the spare area.
If two pieces of substitute management information cannot be read correctly, the substitute
source is read from the address of the header section in each sector of a substituted block within
the spare area, a substitute management information is reconstructed.
5.4 Generation of Substitute Management Information
Substitute management information is generated in all chips. An issue of Low Level Format
command as one of the vendor-unique commands initiates a scanning on memories, and
defective block locations in spare area and in user area are identified and substitute correspondance
is registered as a default setting of a substitute management information.
14/33
¡ Semiconductor
ML54051
5.5 Substitute Processing
When a defective sector is found in a user area, the user area block containing the defective sector
will be substituted with another normal block of the spare area.
Substitute processing
Unused block detection
within same port
Unused block?
No
Yes
Register in substitute management
information (original)
Register in substitute management
information (duplicate)
Generate and write defective
block data
Write to substitute destination
of user data
Set error indicating no substitute
destination
End
Defective block data: Index to show a block contains a defective sector(s).
This index is stored in the header section of a block.
15/33
¡ Semiconductor
ML54051
5.6 Substitute Destination Detection Processing
If the sector accessed in the user area is defective and has already been substituted, the substitute
destination is detected.
Substitute destination search
Flag?
Value other than 0Fh (excluding FFh)
F0h
0Fh
No
This chip?
Yes
UNC error, abort
processing
Acquire from header section
Acquisition OK?
No
Yes
Acquire from substitute
management information
of same port
Yes
Acquisition OK?
No
Acquire from header
section of substituted
block of spare area
Yes
Acquisition OK?
No
End
Error end
16/33
¡ Semiconductor
ML54051
6. ATA REGISTERS
When a mode such as memory mode or I/O mode is configured, the host must use different
addresses for access.
6.1 Memory Mapped Configuration
-CE1 -CE2 -REG A10 A9-A4 A3-A0
Read (-OE = L)
(000x) 16-bit Data
0
0
1
0
*
0
1
1
0
*
0
1
1
0
*
1
0
1
0
*
0
1
1
0
*
2h
0
1
1
0
*
3h
1
0
1
0
*
0
1
1
0
*
4h
Cylinder Low
0
1
1
0
*
5h
1
0
1
0
*
0
1
1
0
*
0
1
1
0
*
1
0
1
0
*
0
0
1
0
*
(100x) Duplicate Data
0
1
1
0
*
0
1
1
0
*
1
0
1
0
*
0
1
1
0
*
1
0
1
0
*
0
1
1
0
*
Eh
0
1
1
0
*
Fh
1
0
1
0
*
0
0
1
1
*
0
1
1
1
*
(xxx0) Even Data
0
1
1
1
*
(xxx1) Odd Data
1
0
1
1
*
Write (-WE = L)
D15 : D0 16-bit Data
D15 : D0
D7 : D0 8-bit Data
D7 : D0
0h
8-bit Data
1h
Error
D7 : D0 Features
D7 : D0
(000x) Error
D15 : D8 Features
D15 : D8
Sector Count
D7 : D0 Sector Count
D7 : D0
Sector Number
D7 : D0 Sector Number
D7 : D0
(001x) Sector Number
D15 : D8 Sector Number
D15 : D8
D7 : D0 Cylinder Low
D7 : D0
Cylinder High
D7 : D0 Cylinder High
D7 : D0
(010x) Cylinder High
D15 : D8 Cylinder High
D15 : D8
D7 : D0 Drive/Head
D7 : D0
6h
Drive/Head
7h
Status
D7 : D0 Command
D7 : D0
(011x) Status
D15 : D8 Command
D15 : D8
D15 : D0 Duplicate Data
D15 : D0
D7 : D0 Duplicate Even
D7 : D0
8h
Duplicate Even
9h
Duplicate Odd
D7 : D0 Duplicate Odd
D7 : D0
(100x) Duplicate Odd
D15 : D8 Duplicate Odd
D15 : D8
Dh
Duplicate Error
D7 : D0 Duplicate Features
D7 : D0
(110x) Duplicate Error
D15 : D8 Duplicate Features
D15 : D8
Alternate Status
D7 : D0 Device Control
D7 : D0
Drive Address
D7 : D0 Not Used
(111x) Drive Address
D15 : D8 Not Used
*
*
16-bit Data
Odd Data
D15 : D0 16-bit Data
D15 : D0
D7 : D0 Even Data
D7 : D0
D7 : D0 Odd Data
D7 : D0
D15 : D8 Odd Data
D15 : D8
* Don't care
17/33
¡ Semiconductor
ML54051
6.2 I/O Mapped 16 Contiguous Registers Configuration
-CE1 -CE2 -REG A9-A4 A3-A0
Read (-IORD = L)
Write (-IOWR = L)
0
0
0
*
0h
16-bit Data
D15 : D0 16-bit Data
D15 : D0
0
1
0
*
0h
8-bit Data
D7 : D0 8-bit Data
D7 : D0
0
1
0
*
1h
Error
D7 : D0 Features
D7 : D0
1
0
0
*
(000x) Error
D15 : D8 Features
D15 : D8
0
1
0
*
2h
Sector Count
D7 : D0 Sector Count
D7 : D0
0
1
0
*
3h
Sector Number
D7 : D0 Sector Number
D7 : D0
1
0
0
*
(001x) Sector Number
D15 : D8 Sector Number
D15 : D8
0
1
0
*
4h
Cylinder Low
D7 : D0 Cylinder Low
D7 : D0
0
1
0
*
5h
Cylinder High
D7 : D0 Cylinder High
D7 : D0
1
0
0
*
(010x) Cylinder High
D15 : D8 Cylinder High
D15 : D8
0
1
0
*
D7 : D0 Drive/Head
D7 : D0
0
1
0
*
1
0
0
*
0
0
0
*
8h
0
1
0
*
8h
0
1
0
*
9h
Duplicate Odd
D7 : D0 Duplicate Odd
D7 : D0
1
0
0
*
(100x) Duplicate Odd
D15 : D8 Duplicate Odd
D15 : D8
0
1
0
*
1
0
0
*
0
1
0
*
0
1
0
*
1
0
0
*
6h
Drive/Head
7h
Status
D7 : D0 Command
D7 : D0
(011x) Status
D15 : D8 Command
D15 : D8
Duplicate Data
D15 : D0 Duplicate Data
D15 : D0
Duplicate Even
D7 : D0 Duplicate Even
D7 : D0
Dh
Duplicate Error
D7 : D0 Duplicate Features
D7 : D0
(110x) Duplicate Error
D15 : D8 Duplicate Features
D15 : D8
D7 : D0 Device Control
D7 : D0
Eh
Alternate Status
Fh
Drive Address
D7 : D0 Not Used
(111x) Drive Address
D15 : D8 Not Used
* Don't care
6.3 Primary I/O Mapped Configuration
-CE1 -CE2 -REG
A9-A0
Read (-IORD = L)
Write (-IOWR = L)
0
0
0
1F0h
16-bit Data
D15 : D0 16-bit Data
D15 : D0
0
1
0
1F0h
8-bit Data
D7 : D0 8-bit Data
D7 : D0
0
1
0
1F1h
Error
D7 : D0 Features
D7 : D0
1
0
0
1F0h/1F1h
Error
D15 : D8 Features
D15 : D8
0
1
0
1F2h
Sector Count
D7 : D0 Sector Count
D7 : D0
0
1
0
1F3h
Sector Number
D7 : D0 Sector Number
D7 : D0
1
0
0
1F2h/1F3h
Sector Number
D15 : D8 Sector Number
D15 : D8
0
1
0
1F4h
Cylinder Low
D7 : D0 Cylinder Low
D7 : D0
0
1
0
1F5h
Cylinder High
D7 : D0 Cylinder High
D7 : D0
1
0
0
1F4h/1F5h
Cylinder High
D15 : D8 Cylinder High
D15 : D8
0
1
0
1F6h
Drive/Head
D7 : D0 Drive/Head
D7 : D0
0
1
0
1F7h
Status
D7 : D0 Command
D7 : D0
1
0
0
1F6h/1F7h
Status
D15 : D8 Command
D15 : D8
0
1
0
3F6h
Alternate Status
D7 : D0 Device Control
D7 : D0
0
1
0
3F7h
Drive Address
D7 : D0 Not Used
1
0
0
3F6h/3F7h
Drive Address
D15 : D8 Not Used
18/33
¡ Semiconductor
ML54051
6.4 Secondary I/O Mapped Configuration
-CE1 -CE2 -REG
A9-A0
Read (-IORD = L)
Write (-IOWR = L)
0
0
0
170h
16-bit Data
D15 : D0 16-bit Data
D15 : D0
0
1
0
170h
8-bit Data
D7 : D0 8-bit Data
D7 : D0
0
1
0
171h
Error
D7 : D0 Features
D7 : D0
1
0
0
170h/171h
Error
D15 : D8 Features
D15 : D8
0
1
0
172h
Sector Count
D7 : D0 Sector Count
D7 : D0
0
1
0
173h
Sector Number
D7 : D0 Sector Number
D7 : D0
1
0
0
172h/173h
Sector Number
D15 : D8 Sector Number
D15 : D8
0
1
0
174h
Cylinder Low
D7 : D0 Cylinder Low
D7 : D0
0
1
0
175h
Cylinder High
D7 : D0 Cylinder High
D7 : D0
1
0
0
174h/175h
Cylinder High
D15 : D8 Cylinder High
D15 : D8
0
1
0
176h
Drive/Head
D7 : D0 Drive/Head
D7 : D0
0
1
0
177h
Status
D7 : D0 Command
D7 : D0
1
0
0
176h/177h
Status
D15 : D8 Command
D15 : D8
0
1
0
376h
Alternate Status
D7 : D0 Device Control
D7 : D0
0
1
0
377h
Drive Address
D7 : D0 Not Used
1
0
0
376h/377h
Drive Address
D15 : D8 Not Used
6.5 True IDE Mapped Configuration
• Command Block Register
-CE1 -CE2 -REG A9-A3 A2-A0
Read (-IORD = L)
Write (-IOWR = L)
0
1
0
*
0h
16-bit Data
D15 : D0 16-bit Data
D15 : D0
0
1
0
*
1h
Error
D7 : D0 Features
D7 : D0
0
1
0
*
2h
Sector Count
D7 : D0 Sector Count
D7 : D0
0
1
0
*
3h
Sector Number
D7 : D0 Sector Number
D7 : D0
0
1
0
*
4h
Cylinder Low
D7 : D0 Cylinder Low
D7 : D0
0
1
0
*
5h
Cylinder High
D7 : D0 Cylinder High
D7 : D0
0
1
0
*
6h
Drive/Head
D7 : D0 Drive/Head
D7 : D0
0
1
0
*
7h
Status
D7 : D0 Command
D7 : D0
0
0
0
*
(xxx)
Not Used
Not Used
* Don't care
• Control Block Register
-CE1 -CE2 -REG A9-A3 A2-A0
Read (-IORD = L)
Write (-IOWR = L)
(xxx)
High Impedance
Not Used
*
(0xx)
High Impedance
Not Used
*
(10x)
High Impedance
Not Used
0
*
6h
Alternate Status
D17 : D0 Device Control
0
*
7h
Drive Address
D7 : D0 Not Used
1
1
0
*
1
0
0
1
0
0
1
0
1
0
D7 : D0
* Don't care
19/33
¡ Semiconductor
ML54051
6.6 ATA Registers
ATA registers realize functions of the PC Card ATA Specifications.
6.6.1
Data Register (Write/Read)
This 16-bit or 8-bit register is used in the transfer of data blocks between the internal data buffer
and the host. Data can be transferred via consecutive 16-bit or 8-bit accesses to the data register.
6.6.2
Error Register (Read Only)
Additional information regarding the cause of a processing error in the previously executed
command is indicated. If the error bit of the status register has been set, the host must examine
this register.
D7
D6
D5
D4
D3
D2
D1
D0
BBK
UNC
0
IDNF
0
ABRT
0
AMNF
BBK
UNC
IDNF
ABRT
:
:
:
:
This bit is set when a Bad Block is detected.
This bit is set when an Uncorrectable Error is encountered.
The requested sector ID is in error or cannot be found.
This bit is set if the command has been aborted or when an invalid command has been
issued.
AMNF : This bit is set in case of a general error.
6.6.3
Feature Register (Write Only)
This register is used to write information related to commands.
D7
D6
D5
D4
D3
D2
D1
D0
Feature Bytes
6.6.4
Sector Count Register (Write/Read)
This register is used to specify the number of sectors or address of logical blocks to be processed
by a command. By reading this register after a command has been completed, the host can check
the number of sectors not processed by the command.
D7
D6
D5
D4
D3
D2
D1
D0
Sector Count
20/33
¡ Semiconductor
6.6.5
ML54051
Sector Number Register (Write/Read)
This register is used to specify the sector number or logical block address where processing by
the command will begin. By reading this register after a command has been completed, the host
can check the sector number or logical block address processed by the command.
D7
D6
D5
D4
D3
D2
D1
D0
Sector Number/LBA7-LBA0
6.6.6
Cylinder Low Register (Write/Read)
This register is used to specify the lower cylinder number or the logical block address where
processing by the command will begin. By reading this register after a command has been
completed, the host can check the last lower cylinder number or logical block address that was
processed by the command.
D7
D6
D5
D4
D3
D2
D1
D0
Cylinder Low/LBA15-LBA8
6.6.7
Cylinder High Register (Write/Read)
This register is used to specify the upper cylinder number or the logical block address where
processing by the command will begin. By reading this register after a command has been
completed, the host can check the last upper cylinder number or logical block address that was
processed by the command.
D7
D6
D5
D4
D3
D2
D1
D0
Cylinder High/LBA23-LBA16
6.6.8
Drive Head Register (Write/Read)
This register is used to specify the head number or the logical block address where processing
by the command will begin. By reading this register after a command has been completed, the
host can check the last upper head number or logical block address that was processed by the
command.
D7
D6
D5
D4
D3
D2
D1
D0
1
LBA
1
DRV#
HS3/LBA27
HS2/LBA26
HS1/LBA25
HSO/LBA24
LBA:
1: LBA (logical block address) mode
0: CHS address mode
DRV#: card number
0: drive 0 is selected
1: drive 1 is selected
If the value of the Drive# bit of the socket copy register matches the value of this bit, this
controller will execute the command.
21/33
¡ Semiconductor
6.6.9
ML54051
Status Register & Alternate Status Register (Read Only)
This register indicates the internal status of the controller. When the host reads this register, the
controller clears pending interrupt requests. However, even if the alternate status register is
read, interrupts requests will not be cleared.
D7
D6
D5
D4
D3
D2
D1
D0
BUSY
RDY
DWF
DSC
DRQ
CORR
IDX
ERR
BUSY:
RDY:
DWF:
DSC:
DRQ:
CORR:
IDX:
ERR:
This bit is set in the following cases:
• from the time when the host writes a command to the command register
until processing of the command is completed
• when hardware and software resets have been executed from the host
This bit indicates Drive Ready.
This bit is set when an error related to substitute processing occurs during
access to the internal flash memory. If this bit is set, commands that follow
may not execute properly.
This bit is always set to 1.
During execution of a command that involves data transfer, this bit is set once
the transfer preparations are made.
This bit indicates that a correctable error has occurred during access to flash
memory.
This bit is always set to 0.
This bit is set when an error occurs during command execution. Detailed
information is set in the error register.
6.6.10 Device Control Register (Write Only)
This register is used to control interrupt requests from the card and to specify software reset.
D7
D6
D5
D4
X
SRST:
-IEN:
6.6.11
D3
D2
D1
D0
1
SRST
-IEN
0
D1
D0
While this bit is 1, the controller is in the reset state.
1: Interrupt signal mask, 0: Interrupt signal non-mask
Command Register (Write Only)
This register is used to set the command code.
D7
D6
D5
D4
D3
D2
Command Code
22/33
¡ Semiconductor
ML54051
7. PCMCIA INTERFACE
7.1 ATA Commands (Standard)
Supported ATA commands are listed below.
Command
Code
FR
SC
SN
CY
98h, E5h
—
—
—
—
Execute Drive Diagnostic
90h
—
—
—
—
Format Track
50h
—
Check Power Mode
ECh
—
Idle
97h, E3h
—
Idle Immediate
95h, E1h
—
91h
—
Identify Drive
Initialize Drive Parameters
Read Buffer
Read Long Sector
—
—
—
E4h
—
—
22h, 23h
—
—
DH
C/R/W
C
C
W
—
—
R
—
—
C
—
—
C
—
—
C
—
—
R
R
C4h
—
R
Read Sector (s)
20h, 21h
—
R
Read Verify Sector (s)
40h, 41h
—
Recalibrate
1xh
—
—
Seek
7xh
—
—
Read Multiple
—
C
—
C
—
—
—
C
—
—
—
C
—
—
—
—
C
—
—
—
—
W
32h, 33h
—
—
C5h
—
W
30h, 31h
—
W
—
Set Sleep Mode
99h, E6h
—
Standby
96h, E2h
—
Standby Immediate
94h, E0h
E8h
Write Sector (s)
C
—
C6h
Write Multiple
C
—
EFh
Set Multiple Mode
Write Long Sector
—
—
Set Features
Write Buffer
C
—
FR: Features register
SC: Sector count register
CY: Cylinder register
DH: Drive/head register
C/R/W: C - Control, R - Read, W - Write
: modified, valid
— : invalid
W
SN: Sector number register
23/33
¡ Semiconductor
ML54051
7.2 Commands for CompactFlash
Supported CompactFlash commands are listed below.
Code
FR
SC
SN
CY
Request Sense
Command
03h
—
—
—
—
Erase Sector (s)
C0h
—
C
Translate Sector
87h
—
R
Wear Level
F5h
—
Write Multiple w/o Erase
CDh
—
W
Write Sector (s) w/o Erase
38h
—
W
—
—
DH
—
C/R/W
C
C
7.3 Vendor-Unique Commands
Vendor-unique commands can be executed by writing “FFh” data to the command register when
a value from the below chart has been written to the feature register.
Command
Code
FR
Description
C/R/W
Low Level Format
FFh
Undefined Initialization of substitute information, all sectors
C
Change Information
FFh
Undefined Change CIS/Identify information
W
Change Physical Cylinder
FFh
Undefined Set maximum value of physical cylinder
C
Read All
FFh
Undefined Read 528 bytes of the specified page
R
Un Lock
FFh
Undefined Vendor-unique commands that follow are valid
C
Change Physical Cylinder: Sets the maximum value of the user area that is accessible from the
host. For details, refer to section 7.6, “Number of Installed Memory Chips and CHS Structure.”
7.4 Card Information Structure
The desired card information structure (CIS) can be stored by the change information command.
7.5 Identify Information
The desired identify information can be stored by the change information command.
24/33
¡ Semiconductor
ML54051
7.6 Number of Installed Memory Chips and CHS Structure
NAND flash memory is erased in block units. Since block erasing is also performed during a 1page (sector) write, efficiency is increased during write operations by serially addressing sectors
within the same block.
The CHS structure and number of installed memory chips when using 64, 128, 256 and 512 Mbit
memory are listed below (where C is the default value). The C value of the CHS address can be
set by the change physical cylinder command (a vendor-unique command).
• 64 Mbit Memory
Capacity
No. of Chips
8
CHS
LBA Max. (Hex)
C
H
S
1
1000
1
16
16000 (3E80)
16
2
1000
1
32
32000 (7D00)
32
4
1000
2
32
64000 (FA00)
48
6
1000
3
32
96000 (17700)
64
8
1000
4
32
128000 (1F400)
80
10
1000
5
32
160000 (27100)
96
12
1000
6
32
192000 (2EE00)
112
14
1000
7
32
224000 (36B00)
128
16
1000
8
32
256000 (3E800)
144
18
1000
9
32
288000 (46500)
160
20
1000
10
32
320000 (4E200)
• 128 Mbit Memory
Capacity
No. of Chips
16
32
CHS
LBA Max. (Hex)
C
H
S
1
1000
1
32
32000 (7D00)
2
1000
1
64
64000 (FA00)
64
4
1000
2
64
128000 (1F400)
96
6
1000
3
64
192000 (2EE00)
128
8
1000
4
64
256000 (3E800)
160
10
1000
5
64
320000 (4E200)
192
12
1000
6
64
384000 (5DC00)
224
14
1000
7
64
448000 (6D600)
256
16
1000
8
64
512000 (7D000)
288
18
1000
9
64
576000 (8CA00)
320
20
1000
10
64
640000 (9C400)
25/33
¡ Semiconductor
ML54051
• 256 Mbit Memory
Capacity
No. of Chips
32
CHS
LBA Max. (Hex)
C
H
S
1
1000
2
32
64000 (FA00)
64
2
1000
2
64
128000 (1F400)
128
4
1000
4
64
256000 (3E800)
192
6
1000
6
64
384000 (5DC00)
256
8
1000
8
64
512000 (7D000)
320
10
1000
10
64
640000 (9C400)
384
12
1000
12
64
768000 (BB800)
448
14
1000
14
64
896000 (DAC00)
512
16
1000
16
64
1024000 (FA000)
576
18
—
—
—
1152000 (119400)
640
20
—
—
—
1280000 (138800)
• 512 Mbit Memory
Capacity
No. of Chips
64
CHS
LBA Max. (Hex)
C
H
S
1
1000
4
32
128000 (1F400)
128
2
1000
4
64
256000 (3E800)
256
4
1000
8
64
512000 (7D000)
384
6
1000
12
64
768000 (BB800)
512
8
1000
16
64
1024000 (FA000)
640
10
—
—
—
1280000 (138800)
768
12
—
—
—
1536000 (177000)
896
14
—
—
—
1792000 (1B5800)
1024
16
—
—
—
2048000 (1F4000)
1152
18
—
—
—
2304000 (232800)
1280
20
—
—
—
2560000 (271000)
26/33
¡ Semiconductor
ML54051
7.7 Modes
7.7.1
Memory Mapped
In the memory mapped mode, ATA registers appear in the 0 to 2K window of common memory
space.
7.7.2
I/O Mapped 16 Contiguous Registers
In the I/O mapped 16 contiguous registers mode, contiguous ATA registers appear in I/O space.
7.7.3
Primary I/O Mapped
In the primary I/O mapped mode, ATA registers appear in 1F0h to 1F7h and 3F6h to 3F7h of the
standard I/O address space.
7.7.4
Secondary I/O Mapped
In the secondary I/O mapped mode, ATA registers appear in 170h to 177h and 376h to 377h of
the standard I/O address space.
7.7.5
True IDE
This mode is compatible with True IDE Mode.
27/33
¡ Semiconductor
ML54051
8. CHIP MODES
8.1 Types
There are four types of chip modes. Note that default pin assignments change depending upon
the chip mode.
• Normal Mode
This mode is normally used.
• External ROM Connection Mode
This mode is used for connection to external ROM.
• External CPU Connection Mode
This mode is used for debugging. When this mode is activated, the internal microcontroller
does not operate.
• Test Mode
This mode is used for testing. The test mode is not normally used.
8.2 Settings
Chip modes are determined by the status of pcfg[1:0] when the power-on-reset signal (porn
signal) rises.
pcfg [1 : 0] = 11
Normal Mode
pcfg [1 : 0] = 01
External CPU Connection Mode
pcfg [1 : 0] = 10
External ROM Connection Mode
pcfg [1 : 0] = 00
Test Mode
8.3 Pin Assignment
Interface
Signal Name
Normal
Extended Bus
xah [15 : 8]
(Low-Level)
Extended Bus
xad [7 : 0]
Extended Bus
xrd
Extended Bus
Extended Bus
Host
NAND Flash
NAND Flash
NAND Flash
External ROM Connection
External CPU Connection
O
xah [15 : 8]
I/O
xah [15 : 8]
I/O
(Low-Level)
O
xad [7 : 0]
I/O
xad [7 : 0]
I/O
(Low-Level)
O
xrd
O
xrd
I
xwr
(Low-Level)
O
xwr
O
xwr
I
xale
(Low-Level)
O
xale
O
xale
I
hcseln
hcseln
I
hcseln
I
xint
O
xpsenn
mctl
I
mctl
I
xpsenn
I
xrst
mcen [7]
O
mcen [7]
O
xrst
O
xclk
mcen [6]
O
mcen [6]
O
xclk
O
28/33
¡ Semiconductor
ML54051
9. ELECTRICAL CHARACTERISTICS
9.1 Absolute Maximum Ratings
Parameter
Power Supply Voltage
Input Voltage
Output Voltage
Input Current
Normal Buffer
5 V Tolerant Buffer
Normal Buffer
5 V Tolerant Buffer
Normal Buffer
5 V Tolerant Buffer
Storage Temperature
Symbol
Condition
Rating
VDD
–0.3 to +4.6
–0.3 to VDD + 0.3
VI
–0.3 to +6.0
Tj = 25°C
VO
Unit
V
–0.3 to VDD + 0.3
The standard is
–0.3 to +6.0
VSS = 0 V
–10 to +10
II
mA
–6 to +6
Tstg
–65 to +150
°C
9.2 Recommended Operating Conditions
Symbol
Range
Unit
Power Supply Voltage
Parameter
VDD
3.0 to 3.6
V
Operating Temperature
Tj
–40 to +85
°C
9.3 DC Characteristics
Parameter
(VDD = 3.0 to 3.6 V, VSS = 0 V, Tj = –40 to +85°C)
Symbol
Condition
TTL normal input
Rating
Min.
Typ.
Max.
2.0
—
VDD + 0.3
High Level Input Voltage
VIH
5 V tolerant input
2.0
—
5.5
Low Level Input Voltage
VIL
—
–0.3
—
+0.8
Vt+
—
—
1.5
2.0
Schmitt Trigger Threshold Voltage
Vt–
—
0.7
1.0
—
DVt
Vt+ – Vt–
0.4
0.5
—
High Level Output Voltage
VOH
Low Level Output Voltage
VOL
High Level Input Current
IIH
Low Level Input Current
IIL
IOZH
Output Leakage Current
Standby Power Supply Current
IOZL
IDDS
IOH = –100 mA
VDD – 0.2
—
—
IOL = 2, 4, 8 mA
2.4
—
—
IOH = –100 mA
—
—
0.2
IOL = 2, 4, 8 mA
—
—
0.4
VIH = VDD
—
0.01
1
VIL = VSS
–1
+0.01
—
(50 kW pull-up)
–170
–66
–15
VOL = VDD
—
0.01
1
VOL = VSS
–1
–0.01
—
(50 kW pull-up)
–170
–66
–15
Output open
–10
—
+10
Unit
V
mA
Note 1 : Listed values are for a normal buffer and a 5 V tolerant buffer unless otherwise
specified.
Note 2 : Typical values are indicated for a typical condition at VDD = 3.3 V and Tj = 25°C.
29/33
¡ Semiconductor
ML54051
10. BUS SPECIFICATIONS
10.1 I/O Mode
The I/O mode conforms to PCMCIA-ATA and IDE specifications.
10.2 Bus Timing Specifications
Bus timing conforms to PCMCIA-ATA, IDE and NAND flash memory specifications.
10.3 Power ON/OFF, Reset, Busy Timing
Parameter
Symbol
VI (CE)
-CE Signal Level
Specified Value
Condition
Min.
Max.
0 V £ VCC < 2.0 V
0
VI Max.
2.0 V £ VCC < VIH
VCC – 0.1
VI Max.
VIH £ VCC
VIH
VI Max.
Unit
V
tsu (RESET)
—
TBD
ms
Ready Release Delay Time
td (BSY)
—
TBD
ms
-CE Recovery Time
trec (VCC)
—
TBD
ms
tpr
10%Æ(VCC + 5%) 90% *1
TBD
ms
Reset Setup Time
VCC Rise Time
tpf
(VCC – 5%) 90%Æ10% *1
TBD
ms
tw (RESET)
—
TBD
ms
th (Hi-Z RESET)
—
TBD
ms
ts (Hi-Z RESET)
—
TBD
ms
VCC Fall Time
Reset Width
*1:
tpr and tpf are defined as the time of the “straight-line change from 10% to 90% of V CC”,
and vice-versa. Even if the rise and fall waveforms are non-linear, the maximum slope of
the waveform must meet these specifications.
tpr
tsu(RESET)
tsu(CE)
VIH
2V
,
VCC
-CE1, -CE2
RESET
th(Hi-Z RESET)
td(BSY)
tw(RESET)
Hi-Z
+RDY/-BSY
tpf
VCC
trec(VCC)
-CE1, -CE2
RESET
ts(Hi-Z RESET)
VIH
2V
Hi-Z
30/33
¡ Semiconductor
ML54051
11. PACKAGE DIMENSIONS
(Unit : mm)
LQFP144-P-2020-0.50-K
Mirror finish
Package material
Lead frame material
Pin treatment
Solder plate thickness
Package weight (g)
Epoxy resin
42 alloy
Solder plating
5 mm or more
1.37 TYP.
Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which
are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki’s responsible sales person for the
product name, package name, pin number, package code and desired mounting conditions
(reflow method, temperature and times).
31/33
¡ Semiconductor
ML54051
12. APPLICATION EXAMPLES
Stand-Alone Chip
Connecter
5 to 3
Cnv
VCC
ML54051
A0-10 Address ha0-10
D0-15
Data
-CE1
-CE2
-OE
-WE
RDY/-BSY/-IREQ
WP/-IOIS16
-IORD
-IOWR
RST
-WAIT
-INPACK
-REG
SPKR
-STSCHG
A25
-CD1
-CD2
SRAM
ra0-16 Address A0-16
hd0-15
rd0-7
hcen1
hcen2
hoen
hwen
hirqn
hiois16n
hiordn
hiowrn
hrst
hwaitn
hinpackn
hregn
hspkr
hstschgn
hcseln
rren
rwen
rcen
-OE
-WE
-CE
maio0-7
Address/Data
Data
D0-7
maren
mawen
marbn
macle
maale
GND
mbio0-7
Vlt
Dct
porn
20 MHz
mctl
txd
rxd
I/O1-8
-RE
-WE
R/-B
CLE 3
ALE
-WP
-CE
I/O1-8
-RE
-WE
R/-B
CLE 2
ALE
-WP
-CE
I/O1-8
-RE
-WE
R/-B
CLE 4
ALE
-WP
-CE
• • • • •
I/O1-8
-RE
-WE
R/-B
CLE
ALE 15
-WP
-CE
• • • • •
I/O1-8
-RE
-WE
R/-B
CLE 16
ALE
-WP
-CE
Address/Data
mbren
mbwen
mbrbn
mbcle
mbale
xin
xout
I/O1-8
-RE
-WE
R/-B
CLE 1
ALE
-WP
-CE
mwpn
mcen0
mcen1
mcen2
mcen3
mcen4
mcen5
mcen6
mcen7
32/33
¡ Semiconductor
ML54051
Chip and External Decoder Circuit
Connecter
5 to 3
Cnv
VCC
ML54051
A0-10 Address ha0-10
D0-15
Data
-CE1
-CE2
-OE
-WE
RDY/-BSY/-IREQ
WP/-IOIS16
-IORD
-IOWR
RST
-WAIT
-INPACK
-REG
SPKR
-STSCHG
A25
-CD1
-CD2
SRAM
ra0-16 Address A0-16
Data
D0-7
hd0-15
rd0-7
hcen1
hcen2
hoen
hwen
hirqn
hiois16n
hiordn
hiowrn
hrst
hwaitn
hinpackn
hregn
hspkr
hstschgn
hcseln
rren
rwen
rcen
-OE
-WE
-CE
maio0-7
Address/Data
maren
mawen
marbn
macle
maale
GND
mbio0-7
Vlt
Dct
porn
txd
rxd
I/O1-8
-RE
-WE
R/-B
CLE 2
ALE
-WP
-CE
I/O1-8
-RE
-WE
R/-B
CLE 4
ALE
-WP
-CE
• • • • •
I/O1-8
-RE
-WE
R/-B
CLE
ALE 63
-WP
-CE
• • • • •
I/O1-8
-RE
-WE
R/-B
CLE 64
ALE
-WP
-CE
Address/Data
20 MHz
mctl
I/O1-8
-RE
-WE
R/-B
CLE 3
ALE
-WP
-CE
mbren
mbwen
mbrbn
mbcle
mbale
xin
xout
I/O1-8
-RE
-WE
R/-B
CLE 1
ALE
-WP
-CE
mwpn
mcen0
mcen1
mcen2
mcen3
mcen4
mcen5
mcen6
mcen7
Decorder
en out0
in0 out1
in1 out2
in2
in3
in4
out30
out31
33/33