FREESCALE C5ENPB0-DS

Data Sheet
C-5e NETWORK PROCESSOR
SILICON REVISION B0
C5ENPB0-DS
Rev 08 PRODUCTION
Data Sheet
C-5e Network Processor
Silicon Revision B0
C5ENPB0-DS
Rev 08
© 2005 Freescale Semiconductor, Inc. All rights reserved.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
C-3e, C-5, C-5e, C-Port, and C-Ware are also trademarks of Freescale Semiconductor. All
other product or service names are the property of their respective owners.
No part of this documentation may be reproduced in any form or by any means or used to
make any derivative work (such as translation, transformation, or adaptation) without
written permission from Freescale.
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits based
on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by that
customer’s technical experts. Freescale Semiconductor does not convey any license under
its patent rights nor the rights of others. Freescale Semiconductor products are not
designed, intended, or authorized for use as components in systems intended for surgical
implant into the body, or other applications intended to support or sustain life, or for any
other application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyers purchase or
use Freescale Semiconductor products for any such unintended or unauthorized
application, Buyers shall indemnify and hold Freescale Semiconductor and its officers,
employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,
damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent regarding the
design or manufacture of the part.
C5ENPB0-DS
Rev 08
CONTENTS
About This Guide
Guide Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Architecture Sheet Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Using PDF Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Guide Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Related Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 1
Functional Description
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Massive Processing Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Functional Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Channel Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Executive Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
System Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fabric Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Buffer Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Table Lookup Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Queue Management Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 2
21
21
21
22
24
25
25
26
26
27
28
Signal Descriptions
Signal Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pinout Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Descriptions Grouped by Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LVTTL and LVPECL Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CP Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DS1/T1 Framer Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10/100 Ethernet (RMII) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Gigabit Ethernet (GMII) Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
FREESCALE SEMICONDUCTOR
13
14
14
16
17
18
29
30
32
32
33
34
36
36
37
C5ENPB0-DS REV 08
6
CONTENTS
Gigabit Ethernet and Fibre Channel TBI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SONET OC-3 Transceiver Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SONET OC-12 Transceiver Interface Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Executive Processor System Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PCI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serial Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PROM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General System Interface Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Fabric Processor Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BMU SDRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLU SRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QMU SRAM (Internal Mode) Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QMU (External Mode) Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Test Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
No Connection Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Signals Grouped by Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Boundary Scan Cell Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
IDcode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Boundary Scan Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHAPTER 3
Electrical Specifications
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power and Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Management Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal Package Conduction Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Heat Sink Selection Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
C5ENPB0-DS REV 08
39
41
41
43
43
44
45
48
49
54
56
57
58
59
60
61
61
71
71
71
71
73
73
74
75
76
77
78
79
80
80
81
FREESCALE SEMICONDUCTOR
CONTENTS
7
AC Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Clock Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
CP Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DS1/DS3 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10/100 Ethernet Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Gigabit GMII Ethernet, TBI and MII Interface Timing Specifications . . . . . . . . . . . . . . . . . . 87
OC-3 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
OC-12 Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Executive Processor Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
PCI Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
MDIO Serial Interface Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Low Speed Serial Interface Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
PROM Interface Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Fabric Processor Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
BMU Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
TLU Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
QMU SRAM (Internal Mode) Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
QMU (External Mode) Timing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
CHAPTER 4
Mechanical Specifications
Package Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Keep Out Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Marking Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
107
109
109
111
111
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
8
CONTENTS
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Rev 08
LIST OF FIGURES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
FREESCALE SEMICONDUCTOR
C-5e Network Processor Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Pin Locations (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Pin Locations (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
GMII/TBI Transmit and Receive Pin Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
PROM Interface Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
PROM Interface Timing Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Observe-Only Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Cell Design That Can Be Used for Both Input and Output Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Bringup Clock Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Package Cross Section View with Several Heat Sink Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Package with Heat Sink Mounted to the Printed Circuit Board. . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Test Loading Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
System Clock Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
DS1/DS3 Ethernet Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
10/100 Ethernet Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Gigabit Ethernet and TBI Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
OC-3 Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
OC-12 Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
PCI Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
MDIO Serial Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Low Speed Serial Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
PROM Interface Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Fabric Processor Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
BMU Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
TLU Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
QMU SRAM (Internal Mode) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
QMU External Mode Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
C-5e Network Processor BGA Package (Side View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
C-5e Network Processor BGA Package (Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
C-5e Network Processor BGA Package (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C5ENPB0-DS REV 08
10
LIST OF FIGURES
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Rev 08
LIST OF TABLES
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
FREESCALE SEMICONDUCTOR
Data Sheet Classifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Navigating Within a PDF Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
C-Port Silicon Documentation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
C-5e Network Processor Data Sheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
TLU SRAM Configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Clock and Reference Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
CP Physical Interface Signals and Pins (Grouped by Clusters) . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
DS1/T1 Framer Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10/100 Ethernet Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Transmit and Receive Pin Combinations for Gigabit Ethernet and Fibre Channel . . . . . . . . . . . 37
Gigabit Ethernet (GMII/MII) Signals One Cluster Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Gigabit Ethernet and Fibre Channel TBI Signals Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
OC-3 Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
OC-12 Signals Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
PCI Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Serial Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
PROM Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
General System Interface Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Fabric Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Utopia1*, 2, 3 ATM Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . 50
Utopia1*, 2, 3 PHY Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . . 51
PRIZMA Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . . . . . . . . . . . 51
Power X(CSIX-L0) Mode, C-5e Network Processor to Fabric Interface Pin Mapping . . . . . . . . 52
CSIX-L1 Mode, C-5e Network to Fabric Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 53
BMU SDRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
TLU SRAM Interface Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
QMU SRAM (Internal Mode) Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
QMU (External Mode) Interface Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Power Supply Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Miscellaneous Test Signals For JTAG, Scan, and Internal Test Routines . . . . . . . . . . . . . . . . 60
C5ENPB0-DS REV 08
12
LIST OF TABLES
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
C5ENPB0-DS REV 08
No Connection Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Signals Listed by Pin Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
JTAG Internal Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
JTAG Identification Code and Its Subcomponents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Instruction Register Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
C-5e Network Processor Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
C-5e Network Processor Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . .76
C-5e Network Processor DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
C-5e Network Processor Capacitance Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
C-5e Network Processor Power and Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
System Clock Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
DS1/DS3 Ethernet Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
10/100 Ethernet Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Gigabit GMII/MII Ethernet Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
Gigabit TBI Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
OC-3 Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
OC-12 Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
PCI Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
MDIO Serial Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
Low Speed Serial Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
PROM Interface Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96
Fabric Processor Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
BMU Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Signal Groups in BMU Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
TLU Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Signal Groups in TLU Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
QMU SRAM (Internal Mode) Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Signal Groups in QMU SRAM (Internal Mode) Timing Diagrams . . . . . . . . . . . . . . . . . . . . . . . 103
QMU External Mode Timing Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Signal Groups in QMU External Mode Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Package Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Keep Out Zone’s Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
C-5e Network Processor Marking Codes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Rev 08
ABOUT THIS GUIDE
Guide Overview
The C-5e Network Processor Data Sheet describes hardware layout specifications
including pinouts, memory configuration guidelines, timing diagrams, power and power
sequencing guidelines, thermal design guidelines, and mechanical specifications.
Freescale reserves the right to change the detail specifications as may be required to
permit improvements in the design of its products.
This guide assumes a good understanding of the C-5eTM Network Processor (NP)
architecture. See the C-5e/C-3e Network Processor Architecture Guide (part number
C5EC3EARCH-RM) for more detail about the hardware.
This guide also assumes good working knowledge of the C-Ware Software Toolset.
This guide covers the following topics:
•
•
•
•
FREESCALE SEMICONDUCTOR
Functional Description
Signal Descriptions
Electrical Specifications
Mechanical Specifications
C5ENPB0-DS REV 08
14
ABOUT THIS GUIDE
Architecture Sheet
Classifications
Using PDF Documents
Table 1 describes the Data Sheet classifications of Advance, Preliminary, and Production.
Table 1 Data Sheet Classifications
CLASSIFICATION
DESCRIPTION
Advance
Information
Used to advise customers of the proposed addition to the product line. This
document will typically contain some useful information including
interfacing with the user's system and some specifications. The goal of this
document is to allow customers to begin designs but with expectation of
changes. Specification details may be changed later without notice.
Preliminary
Information
Describes pre-production or first production devices and is usually indicative
of production stage performance. Minor changes should be expected as
characteristic spreads become better controlled. Specification details may be
changed slightly without notice, but the customer can design their product
based on this data sheet.
Production Data
Defines the long-term specified production limits based on fully
characterized data. It includes a disclaimer to allow improvements in
specifications and modifications that do not affect form, fit or function in
original applications; if absolute maximum ratings are changed, they should
improve rather than downgrade.
Electronic documents are provided as PDF files. Open and view them using the Adobe®
Acrobat® Reader application, version 3.0 or later. If necessary, download the Acrobat
Reader from the Adobe Systems, Inc. web site:
http://www.adobe.com/prodindex/acrobat/readstep.html
PDF files offer several ways for moving among the document’s pages, as follows:
C5ENPB0-DS REV 08
•
To move quickly from section to section within the document, use the Acrobat
bookmarks that appear on the left side of the Acrobat Reader window. The bookmarks
provide an expandable outline view of the document’s contents. To display the
document’s Acrobat bookmarks, press the “Display both bookmarks and page” button
on the Acrobat Reader tool bar.
•
To move to the referenced page of an entry in the document’s Contents or Index, click
on the entry itself, each of which is hyperlinked.
•
To follow a cross-reference to a heading, figure, or table, click the blue text.
FREESCALE SEMICONDUCTOR
Using PDF Documents
•
15
To move to the beginning or end of the document, to move page by page within the
document, or to navigate among the pages you displayed by clicking on hyperlinks,
use the Acrobat Reader navigation buttons shown in this figure:
Beginning
of document
End of document
Previous or next hyperlink
Previous page
Next page
Table 2 summarizes how to navigate within an electronic document.
Table 2 Navigating Within a PDF Document
TO NAVIGATE THIS WAY
CLICK THIS
Move from section to section within the
document.
A bookmark on the left side of the Acrobat Reader
window
Move to an entry in the Table of Contents.
The entry itself
Move to an entry in the Index.
The page number
Move to an entry in the List of Figures or List
of Tables.
The Figure or Table number
Follow a cross-reference (highlighted in blue The cross-reference text
text).
Move page by page.
The appropriate Acrobat Reader navigation
buttons
Move to the beginning or end of the
document.
The appropriate Acrobat Reader navigation
buttons
Move backward or forward among a series of The appropriate Acrobat Reader navigation
hyperlinks you have selected.
buttons
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
16
ABOUT THIS GUIDE
Guide Conventions
The following visual elements are used throughout this guide, where applicable:
This icon and text designates information of special note.
Warning: This icon and text indicate a potentially dangerous procedure. Instructions
contained in the warnings must be followed.
Warning: This icon and text indicate a procedure where the reader must take
precautions regarding laser light.
This icon and text indicate the possibility of electrostatic discharge (ESD) in a procedure
that requires the reader to take the proper ESD precautions.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Related Product Documentation
Related Product
Documentation
17
Table 3 lists the user and reference documentation for Freescale ‘s C-Port silicon
documentation set.
Q
Table 3 C-Port Silicon Documentation Set
DOCUMENT NAME
PURPOSE
DOCUMENT ID
C-5e/C-3e Network Processor Architecture Guide
Describes the full architecture of the C-5e and C-3e network
processors.
C5EC3EARCH-RM
C-5e Network Processor Data Sheet
Describes hardware design specifications for the C-5e network C5ENPB0-DS
processor.
C-3e Network Processor Data Sheet
Describes hardware design specifications for the C-3e network C3ENPB0-DS
processor.
C-5 Network Processor to C-5e Network Processor Describes key architectural features of the C-5e, and highlights C5C5EDELTA-RM
Comparison Delta Document
main differences between C-5 and C-5e.
M-5 Channel Adapter Architecture Guide
Describes the full architecture of the M-5 channel adapter.
M-5 Channel Adapter Data Sheet
Describes hardware design specifications for the M-5 channel M5CAA0-DS
adapter.
FREESCALE SEMICONDUCTOR
M5CAARCH-RM
C5ENPB0-DS REV 08
18
ABOUT THIS GUIDE
Revision History
Table 4 provides details about changes made for each revision of this guide.
Table 4 C-5e Network Processor Data Sheet Revision History
REVISION CHANGES
08
(2/2005)
In Chapter 2 Table 30 on page 60 was revised to make note of required termination
circuits.
In Chapter 3 Table 37 on page 76, Table 40 on page 79, and Table 41 on page 84 were
revised to document support for an operating frequency of 300Mhz.
07
(6/2004)
This document was revised to replace internal references to 'Motorola' with 'Freescale
Semiconductor'. Copyright Freescale Semiconductor, Inc. 2004.
06
• Chapter 2, added the signal type to both the PCLK and PGNTX signals in the PCI
05
• Chapter 1, 2, and 3, added a note about the External Mode.
• Chapter 3, OC-12 timing specifications section, Tc12o modified to allow a greater
Signals section.
variety of phy components. The maximum value is consistent with previously
specified 10.0ns value.
• Corrected revision history.
04
03
02
01
C5ENPB0-DS REV 08
•
•
•
•
•
•
•
•
Chapter 2, corrected OC-3, CPn_3 signal I/O type from OPU to IPU.
Chapter 2, corrected JTAG identification code part number binary value.
Chapter 2, clarified the function of the QACLKI signal for Internal Mode.
Not released.
Reflects the specification change of the VDD Supply Voltage from 1.2V to 1.25V.
Chapter 3, modified power sequencing information, added IDDT and IDDF values.
Chapter 4, modified keep out zone information.
Includes updates from C-5e silicon A1 to B0 from C5ENPA1-DS Data Sheet.
Specifically, fifteen (15) maximum timing specifications were changed:
• For BMU: Tmco went from 3.4 to 3.5, Tmao went from 3.4 to 3.7, and Tmdo Tmdz,
Tmdv went from 4.0 to 4.4.
• For TLU: Ttco went from 3.4 to 4.0, Ttao went from 3.4 to 3.9, and Ttdo, Ttdz Ttdv
went from 3.7 to 4.5.
• For QMU SRAM (Internal Mode): Tqco went from 3.4 to 3.9, Tqao went from 3.4 to
3.7, and Tqdo, Tqdz, Tqdv went from 3.4 to 4.0. Also, Tqc minimum value changed
from 5.7 to 6.25 with QMU on-board memory and to 6.67 with QMU memory
daughter board.
FREESCALE SEMICONDUCTOR
Revision History
FREESCALE SEMICONDUCTOR
19
C5ENPB0-DS REV 08
20
ABOUT THIS GUIDE
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Chapter 1
Rev 08
FUNCTIONAL DESCRIPTION
Features
Key features of the C-5eTM Network Processor (NP) are its massive processing capabilities
and its high level of functional integration on one chip.
Massive Processing
Power
High Functional
Integration
•
•
•
Operating frequencies: up to 300MHz
•
•
•
•
•
Up to 15 million packets per second transmitted at wire speed
•
•
840 pin Ball Grid Array (BGA) package
5Gbps of bandwidth (for non-blocking throughput)
More than 4,500MIPS of computing power (for adding services throughout the
protocol stack)
17 programmable RISC Cores (for cell/packet forwarding)
32 programmable Serial Data Processors (for processing bit streams)
Up to 133 million table lookups per second
Three internal buses for 68Gbs of aggregate bandwidth
16 Channel Processors including:
– Embedded OC-3c, OC-12, OC-12c SONET framers
– Programmable MAC interface
– RISC Cores
– Programmable pin PHY interfaces
FREESCALE SEMICONDUCTOR
•
Embedded coprocessors for table lookup (classification), buffer management (payload
control), and queue management (CoS/QoS implementation)
•
Dedicated Fabric Processor and port
C5ENPB0-DS REV 08
22
CHAPTER 1: FUNCTIONAL DESCRIPTION
•
•
Block Diagram
Embedded RISC Executive Processor
Integrated 32bit 33/66MHz PCI bus interface
The C-5eTM NP, has an architecture specifically designed for networking applications. The
following sections describe each component of the C-5e NP.
The main components of the C-5e NP are:
•
•
•
•
•
•
Channel Processors
Executive Processor
Fabric Processor
Buffer Management Unit
Table Lookup Unit
Queue Management Unit
The C-5e NP conforms with both SONET and SDH. Therefore, OC-3(STS-3/STM-1), OC-12
(STS-12/STM-4, and OC48 (STS-48/STM-16).
Figure 1 shows a block diagram of the C-5e NP, including its potential external interfaces.
For more information about the architecture of the C-5e NP, see the C-5e/C-3e Network
Processor Architecture Guide (part number C5EC3EARCH-RM).
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Block Diagram
23
Figure 1 C-5e Network Processor Block Diagram
SRAM
External
PROM
(optional)
External
Host CPU
(optional)
SRAM
Fabric
SDRAM
Control
Logic
(optional)
Table
Lookup
Unit
Fabric
Processor
Queue
Mgmt
Unit
C-5e
NP
PCI
Serial
PROM
Executive Processor
Buffer
Mgmt
Unit
Buses (68Gbps Bandwidth)
CP-0
CP-1
CP-2
CP-3
Channel
Processors
CP-12 CP-13 CP-14 CP-15
Cluster
Cluster
Processor Boundary
PHY
PHY
PHY
PHY
PHY
PHY
PHY
PHY
PHY Interface Examples:
10/100 Ethernet
Gigabit Ethernet - Aggregated
OC-3
OC-12
1xOC-48c or 48x STS-1 with M-5 Companion Device
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
24
CHAPTER 1: FUNCTIONAL DESCRIPTION
Channel Processors
The C-5e NP contains sixteen programmable Channel Processors (CPs) that receive,
process, and transmit network data. The number of CPs per port is configurable,
depending on the line interface. Typically one CP is assigned to each port for medium
bandwidth applications (Fast Ethernet to OC-3). Multiple CPs can be assigned to a port in
a configuration called channel aggregation in high bandwidth applications (greater than
OC-3). Multiple logical ports can be assigned to a single CP, with the addition of an
external multiplexor, for low bandwidth applications, such as DS1 to DS3.
The C-5e NP’s architecture supports a variety of industry-standard serial and parallel
protocols and individual port data rates including:
•
•
•
•
•
•
•
•
10/100Mb Ethernet (RMII)
1Gb Ethernet (GMII and TBI)
OC-3c
OC-12
OC-48c (using various configurations with M-5 Channel Adapter)
OC-48 (using various configurations with M-5 Channel Adapter)
100Mbit FibreChannel
DS1/DS3, supported through the use of external framers/multiplexors
The C-5e NP’s programmability can also support a variety of special interfaces, such as
various xDSL encapsulations and proprietary protocols.
Key components of each CP are a RISC Core (CPRC) that orchestrates cell/packet
processing and a set of microprogrammable, special-purpose processors, called Serial
Data Processors (SDPs), that provide features such as Ethernet MAC and SONET/SDH
framing, multichannel HDLC, and ATM cell delineation. This means you usually only need
to include PHYs to complete the system.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Executive Processor
Executive Processor
25
The Executive Processor (XP) serves as a centralized computing resource for the C-5e NP
and manages the system interfaces.
The XP performs conventional supervisory tasks in the C-5e NP, including:
•
•
•
•
•
System Interfaces
Reset and initialization of the C-5e NP
Program loading and control of CPs
Centralized exception handling
Management of a host interface through the PCI
Management of system interfaces (PCI, Serial Bus, PROM)
The system interfaces to the XP are:
•
PCI — Provides an industry standard 32bit 33/66MHz PCI channel used for chip-level
shared resources. The PCI has both initiator and target capabilities. The PCI interface is
typically connected to a host processor.
•
Serial Bus Interface — Provides a general purpose bi-directional, two-wire serial bus
and I/O port that allows the C-5e NP to control external logic with either of two
standard protocols:
– The MDIO (high-speed) protocol: uses a 16bit data format with 10bits of
addressing and supports transfers up to 25MHz.
– The low-speed protocol: uses an 8bit data format followed by an acknowledge bit
and supports transfers up to 400kbps.
Software is used to select which protocol to use, by setting the appropriate bits in the
Serial Bus Configuration Register. When a serial bus transfer is active, an external pin is
driven by the C-5e NP to indicate which protocol is being used (SPLD=0 indicates
MDIO protocol; SPLD=1 indicates low-speed protocol).
Both SIDA and SICL are bi-directional lines that are connected, via an external pull-up
resistor, to a positive supply voltage. When the bus is free, both lines are HIGH because
of the pull-up resistor. The output stages of the devices connected to the bus must
have either an open-drain or open-collector in order to perform the wired-AND
function required for its arbitration mechanism.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
26
CHAPTER 1: FUNCTIONAL DESCRIPTION
•
Fabric Processor
PROM Interface — Allows the XP to boot from nonvolatile, flash memory. The PROM
interface is a low-speed, serial I/O port that runs at 1/2 to 1/16 the core clock rate. The
maximum PROM size addressable is 4MBytes, and must use a “by 16” part. External
board logic is required to perform serial-to-parallel conversion for PROM address
outputs and parallel-to-serial conversion for PROM data inputs.
The Fabric Processor (FP) acts as a high-speed network interface port with advanced
functionality. It allows the C-5e NP to interface to an application-specific switching
solution internal to your design. The FP port supports the bidirectional transfer of
segments from the C-5e NP to a hardware interface that provides connectivity to other
network processors or other similar line processing hardware. There are numerous
parameters that can be configured within the FP to allow the interface to be adapted to
different fabric protocols. The FP can be configured to conform to seven (7) different
fabric interfaces that include: CSIX-L1, UTOPIA-1, -2, -3, PRIZMA, Power X(CSIX-L0), and
UTOPIA3 like to M-5.
The FP can be configured to run at any frequency up to 125MHz, with the receive and
transmit data buses up to 32 bits wide. This allows a wide range of supported bandwidths
to and from the switching fabric, all the way up to 4000 Mbps full duplex bandwidth.
Buffer Management Unit
The Buffer Management Unit (BMU) interfaces the C-5e NP to external pipeline
architecture, Single Data Rate Synchronous DRAM. The external memory is partitioned
and used as buffers for receiving and transmitting data between CPs, the FP, and the XP. It
is also used as second level storage in the XP memory hierarchy.
The interface to an array of SDRAM chips is 139bits wide, composed of 128 data bits, two
internal control bits, and nine SECDED (single error correction-double error detection) ECC
(error correction code) bits. The interface is compliant with the PC100 standard and
operates at up to 133MHz with 3.3V LVTTL-compatible inputs and outputs. The refresh
period, Trcd, Tcas, Trp, Tmrd, and Trc are configurable via boot time configuration (see the
C-5e/C-3e Network Processor Architecture Guide (part number C5EC3EARCH-RM) for more
details).
The C-5e NP non-configurable interface transfers four beats of data for each read and
write using a sequential burst type. In addition, the C-5e NP uses an auto-refresh mode for
the RAM’s.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Table Lookup Unit
27
Some of these parameters are programmed into the SDRAMs’ mode register and can be
applied only once per power cycle. The ECC functionality can be enabled or disabled via
configuration register writes.
If needed, the interface can narrowed to 128bits by disabling ECC and providing board
pull-ups for the two control bits and nine ECC bits. This is useful if DIMMs are used in the
board design. If individual SDRAM parts are used, x16 and x32 are supported. The BMU
supports SDRAM devices that use 12 address lines. Internal address calculation paths limit
the maximum memory size to 128MBytes. Only one physical bank of SDRAM is supported.
Table Lookup Unit
The Table Lookup Unit (TLU) performs table lookups in external SRAM. It can also be used
for statistics accumulation and retrieval and as general data storage. The TLU
simultaneously supports multiple application-defined tables and multiple search
strategies, such as those needed for routing, circuit switching, and QoS lookup tasks.
The C-5e NP uses external 64bit wide ZBT Pipelined Bursting Static RAM (SRAM) modules
(at frequencies up to 133MHz) for storage of its tables. These modules allow
implementation of tables with 225 x 64bit entries using 8Mbit SRAM technology. The
maximum amount of memory supported by the TLU is 128MBytes in four banks, when
SRAM technology supports 4M x 18pins parts.
Table 5 TLU SRAM Configurations
FREESCALE SEMICONDUCTOR
SRAM TECHNOLOGY
MIN TABLE SIZE
(ONE BANK)
MAXIMUM TABLE SIZE
(FOUR BANKS)
1Mbit (32k x 32pins)
256kBytes
1MBytes
2Mbit (64k x 32pins)
512kBytes
2MBytes
4Mbit (256k x 18pins)
2MBytes
8MBytes
8Mbit (512k x 18pins)
4MBytes
16MBytes
16Mbit (1M x 18pins)
8MBytes
32MBytes
32Mbit (2M x 18pins)
16MBytes
64MBytes
64Mbit (4M x 18pins)
32MBytes
128MBytes
C5ENPB0-DS REV 08
28
CHAPTER 1: FUNCTIONAL DESCRIPTION
Queue Management Unit
The Queue Management Unit (QMU) autonomously manages a number of
application-defined descriptor queues. It handles inter-CP and inter-C-5e NP descriptor
flows by providing switching and buffering. It also performs descriptor replication for
multicast applications. A number of up to 128 queues can be assigned to each CPRC for
QoS-based services.
The QMU provides a queuing engine internal to the chip and uses external SRAM to store
the descriptors. Scheduling is done by the CPs. The QMU supports up to 512 queues and
16, 384 descriptor buffers. A descriptor buffer holds an application-defined “descriptor”,
which is a structure that defines the payload buffer handle and other attributes of the
forwarded cell or packet.
The QMU’s external SRAM interface uses ZBT synchronous SRAMs organized in a single
bank of up to 128k, 32bit words. This interface runs at up to 160MHz frequency (refer to
Table 57 on page 102 for details).
The C-5e provides two (2) modes for managing queues. They consist of:
•
•
Internal Mode (using the internal QMU only)
External Mode
Although the C-5e NP provides an external mode, it does not support an external traffic
manager device.
See the C-5e/C-3e Network Processor Architecture Guide (part number C5EC3EARCH-RM) for
more details.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Chapter 2
Rev 08
SIGNAL DESCRIPTIONS
Signal Summary
There are ten (10) functional groupings of signals in the C-5e Network Processor:
•
•
•
Clock — 11 pins
Channel Processors (CP0 - CP15) — 16x7 = 112 pins
Executive Processor (XP) — 57 pins
– PCI Interface — 50 pins
– PROM Interface — 4 pins
– Serial Bus Interface — 2 pins
– General System Interface — 1 pin
•
•
•
•
•
•
•
Fabric Processor (FP) — 80 pins
Buffer Management Unit (BMU) — 160 pins
Table Lookup Unit (TLU) — 99 pins
Queue Management Unit (QMU) — 59 pins
Power — 245 pins
Test — 14 pins
No connection (NC) — 3 pins
Two (2) of the sections (CPs and FP) are configurable, depending on the type of device
being implemented.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
30
CHAPTER 2: SIGNAL DESCRIPTIONS
Pinout Diagram
The C-5e NP contains 840 pins. These pin numbers are referenced throughout the
remaining chapter. Figure 2 shows the pin locations from the top view. In contrast,
Figure 3 shows the pin locations from the bottom view.
Figure 2 Pin Locations (Top View)
29
28
27
26
25
AJ
CP0_0
CP1_0
21
20
19
CP7_1
CP8_1
CP8_6
FOUT0 FOUT6 FOUT12 FOUT19 FOUT24
AH
CP0_1 VDD33 CP1_6 CP2_5 CP3_5
CP5_3 CP6_2
CP7_2
VDD33
CP9_0
FOUT1 FOUT7 FOUT13
AG
CP0_2
CP1_1
AF
CP0_3
CP1_2 VDD33 CP3_0 CP4_0 CP4_6
CP2_0 CP2_6 CP3_6 CP4_5 CP5_4 CP6_3
AE
CP0_4
AD
AC
24
23
22
CP1_5 CP2_4 CP3_4 CP4_4 CP5_2 CP6_1
GND
18
17
15
GND
14
11
10
9
8
7
6
5
4
3
2
1
FOUT31 FTXCTL5
FIN3
FIN10
FIN15
FIN22
FIN29
FRXCTL3
PAD0
PAD1
PAD2
PAD3
PAD4
AJ
FOUT25 FTXCTL0 FTXCTL6
FIN4
VDDF
FIN16
FIN23
FIN30
GND
PAD5
PAD6
PAD7
VDD33
PAD8
AH
AG
CP8_2
CP9_1
FOUT2
CP7_4
CP8_3
CP9_2
GND
GND
CP2_1 CP3_1 CP4_1 VDD33 CP5_5 CP6_5
CP7_5
GND
CP9_3
FOUT3 FOUT9 FOUT16
CP0_5
CP1_3
CP2_2 CP3_2 CP4_2 CP5_0 CP5_6 CP6_6
CP7_6
CP8_4
CP9_4
FOUT4 FOUT10 FOUT17 FOUT22 FOUT29 FTXCTL3
FIN1
FIN8
FIN13
FIN20
CP0_6
CP1_4
CP2_3 CP3_3 CP4_3 CP5_1 CP6_0 CP7_0
CP8_0
CP8_5
CP9_5
FOUT5 FOUT11 FOUT18 FOUT23 FOUT30 FTXCTL4
FIN2
FIN9
FIN14
FIN21
VDD33 PTRDYX
CP9_6 CPA_0 VDD33 CPA_1 CPA_2 CPA_3
AA
CPA_6
FOUT8 FOUT15 FOUT21 FOUT27 FTXCTL1
VDDF
FOUT28 FTXCTL2
FTXCLK
FIN5
FIN11
FIN17
FIN24
FIN31
FRXCTL4
PAD9
PAD10
PAD11
PAD12
PAD13
GND
FIN6
FIN12
FIN18
FIN25
GND
FRXCTL5 PAD14
PAD15
VDD33
PAD16
PAD17
AF
FIN0
FIN7
GND
FIN19
FIN26
FRXCTL0
PAD18
PAD19
PAD20
GND
PAD21
AE
FIN27
FRXCTL1 FRXCTL6 PAD22
PAD23
PAD24
PAD25
PAD26
AD
FIN28
FRXCTL2 FRXCLK
PAD28
PAD29
PAD30
PAD31
AC
VDDF
PAD27
PPAR
AB
GND
PSERRX
AA
SPLD
SPDI
SPDO
Y
TA18
TA17
TA16
TA15
W
TA11
TA10
GND
TA9
TA8
V
TA4
TA3
TA2
VDDT
TA1
U
CPA_4
CPA_5
VDD33
GND
VDD33
GND
VDDF
GND
VDDF
GND
VDDF
GND
PIRDYX
GND
CPB_0 CPB_1 CPB_2 VDD33 CPB_3 CPB_4
CPB_5
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
PREQX
PRSTX
PCLK
VDD33
Y
CPB_6 CPC_0 CPC_1 CPC_2 CPC_3 CPC_4 CPC_5 CPC_6
CPD_0
VDD33
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
PINTA
PIDSEL
PGNTX
SIDA
SICL
SPCK
W
CPD_1 CPD_2 CPD_3 CPD_4 CPD_5 CPD_6 CPE_0 CPE_1
CPE_2
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
TA21
TA20
TA19
V
CPE_3 CPE_4
CPF_2
VDD33
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
TA14
TA13
VDDT
TA12
U
CPF_3 VDD33 CPF_4 CPF_5 CPF_6
MD2
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
TA7
TA6
TA5
GND
GND
GND
GND
VDDF
12
CP7_3
AB
FOUT14 FOUT20 FOUT26
13
CP6_4
GND
VDDF
16
CPE_5 CPE_6 CPF_0 VDD33 CPF_1
GND
MD0
MD1
PFRAMEX XPUHOT
PCBEX0 PCBEX1
PCBEX2
VDD33 PCBEX3
PSTOPX PDEVSELX PPERRX
T
MD3
MD4
MD5
MD6
MD7
MD8
MD9
MD10
MD11
VDD33
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
TWE3X
TWE2X
TWE1X
TWE0X
TCE3X
TCE2X
TCE1X
TCE0X
TA0
T
R
MD12
MD13
MD14
MD15
MD16
MD17
MD18
MD19
MD20
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
TD63
TD62
TD61
TD60
TPAR3
TPAR2
TPAR1
TPAR0
TCLKI
R
P
MD21
MD22
VDD33 MD23
MD24
MD25
GND
MD26
MD27
VDD33
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
TD59
TD58
GND
TD57
TD56
TD55
VDDT
TD54
TD53
P
N
MD28
GND
MD29
MD30
MD31 VDD33 MD32
MD33
MD34
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
GND
TD52
TD51
TD50
VDDT
TD49
TD48
TD47
GND
TD46
N
M
MD35
MD36
MD37
MD38
MD39
MD40
MD41
MD42
MD43
VDD33
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
TD45
TD44
TD43
TD42
TD41
TD40
TD39
TD38
TD37
M
L
MD44
MD45
MD46
MD47
MD48
MD49
MD50
MD51
MD52
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
TD36
TD35
TD34
TD33
TD32
TD31
TD30
TD29
TD28
L
K
MD53
MD54
GND
MD55
MD56
MD57 VDD33 MD58
MD59
VDD33
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
TD27
TD26
VDDT
TD25
TD24
TD23
GND
TD22
TD21
K
J
MD60
VDD33
MD61
MD62
MD63
GND
MD64
MD65
MD66
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDDT
GND
TD20
TD19
TD18
GND
TD17
TD16
TD15
VDDT
TD14
J
H
MD67
MD68
MD69
MD70
MD71
MD72
MD73
MD74
MD75
VDD33
GND
VDD33
GND
VDD33
GND
VDD33
GND
VDD33
GND
VDDT
TD13
TD12
TD11
TD10
TD9
TD8
TD7
TD6
TD5
H
G
MD76
MD77
MD78
MD79
MD80
MD81
MD82
MD83
MD84
MDECC7 MDECC2
MDQM
MA11
MA5
SCLK
CCLK0
CCLK3
CPREF
QA13
TD4
TD3
TD2
TD1
TD0
QD23
QD16
QD11
QD6
QD0
G
F
MD85
MD86
VDD33 MD87
MD88
MD89 VDD33 MD90
MD91
MDECC6 MDECC1 MDQML MA10
MA4
SCLKX
CCLK1
CCLK4
CCLK6
QA14
QA9
QA3
QDPH
VDDT
QD30
QD24
QD17
VDDT
QD7
QD1
F
E
MD92
GND
MD93
MD95
GND
MD96
MD98
MA9
MA3
VDD33
CCLK2
CCLK5
CCLK7
QA15
GND
QA4
QARDY
QBCLKI
GND
QD25
QD18
QD12
GND
QD2
E
JSE
JSO0
QA16
QA10
QA5
QDQPAR QA11
QA6
D
MD99
C
MD108 MD109
MD94
MD97
MD100 MD101 MD102 MD103 MD104 MD105 MD106
GND
MD110 MD111 MD112 VDD33 MD113
GND
MCASX
GND
MA8
MA2
MD114 MDECC4
MRASX
MBA1
VDD33
MA1
MD121
MWEX
MDCLK
MA7
MCSX
NC5
MA6
19
18
17
16
MD115 VDD33 MD116 MD117 MD118
A
MD122 MD123 MD124 MD125 MD126 MD127 MD128 MD129 MDECC8 MDECC3
29
28
27
26
C5ENPB0-DS REV 08
25
24
MD119 MD120
23
22
MBA0
MD107 MDECC5
B
GND
MDECC0
21
VDD33
20
JSO2
GND
JTCK JCLKBYP
VDD33
JSO3
MA0
GND
JTDI
JHIGHZ
JSO5
NC3
VDDT
JSO1
JSO4
JTMS
JTDO
JTRSTX
NC4
QA12
15
14
13
12
11
10
9
QNQRDY QACLKO
QD31
QD26
QD19
QD13
QD8
QD3
D
QWEX
QD27
QD20
GND
QD9
QD4
C
QD21
QD14
VDDT
QD5
B
QD22
QD15
QD10
3
2
QA0
VDDT
QA7
QA1
QACLKI
GND
QD28
QA8
QA2
QDPL
QBCLKO
QD29
8
7
6
5
4
A
1
FREESCALE SEMICONDUCTOR
31
Pinout Diagram
Figure 3 Pin Locations (Bottom View)
1
2
3
4
5
6
7
8
9
10
11
19
20
21
24
25
26
27
28
29
AJ
PAD4
PAD3
PAD2
PAD1
PAD0
FRXCTL3
FIN29
FIN22
FIN15
FIN10
FIN3
FTXCTL5 FOUT31 FOUT24 FOUT19 FOUT12 FOUT6 FOUT0
CP8_6
CP8_1
CP7_1
CP6_1 CP5_2
CP4_4
CP3_4
CP2_4
CP1_5
CP1_0
CP0_0
AJ
AH
PAD8
VDD33
PAD7
PAD6
PAD5
GND
FIN30
FIN23
FIN16
VDDF
FIN4
FTXCTL6 FTXCTL0 FOUT25
CP9_0
VDD33
CP7_2
CP6_2 CP5_3
GND
CP3_5
CP2_5
CP1_6
VDD33
CP0_1
AH
AG
PAD13
PAD12 PAD11
PAD10
PAD9
FRXCTL4
FIN31
FIN24
FIN17
FIN11
FIN5
FTXCLK
FOUT2
CP9_1
CP8_2
CP7_3
CP6_3 CP5_4
CP4_5
CP3_6
CP2_6
CP2_0
CP1_1
CP0_2
AG
AF
PAD17
PAD16 VDD33
PAD15
PAD14 FRXCTL5
GND
FIN25
FIN18
FIN12
FIN6
GND
FTXCTL1 FOUT27 FOUT21 FOUT15 FOUT8
GND
CP9_2
CP8_3
CP7_4
CP6_4
CP4_6
CP4_0
CP3_0
VDD33
CP1_2
CP0_3
AF
AE
PAD21
PAD20
PAD19
PAD18
FRXCTL0 FIN26
FIN19
GND
FIN7
FIN0
FTXCTL2 FOUT28
CP9_3
GND
CP7_5
CP6_5 CP5_5
VDD33
CP4_1
CP3_1
CP2_1
GND
CP0_4
AE
AD
PAD26
PAD25 PAD24
PAD23
PAD22 FRXCTL6 FRXCTL1 FIN27
FIN20
FIN13
FIN8
FIN1
FTXCTL3 FOUT29 FOUT22 FOUT17 FOUT10 FOUT4
CP9_4
CP8_4
CP7_6
CP6_6 CP5_6
CP5_0
CP4_2
CP3_2
CP2_2
CP1_3
CP0_5
AD
AC
PAD31
PAD30 PAD29
PAD28
PAD27
FIN21
FIN14
FIN9
FIN2
FTXCTL4 FOUT30 FOUT23 FOUT18 FOUT11 FOUT5
CP9_5
CP8_5
CP8_0
CP7_0 CP6_0
CP5_1
CP4_3
CP3_3
CP2_3
CP1_4
CP0_6
AC
AB
PPAR
PCBEX3 VDD33
PCBEX2
CPA_3 CPA_2
CPA_1 VDD33
CPA_0
CP9_6
AB
AA
PSERRX
GND
CPA_6
AA
Y
SPDO
SPDI
SPLD
SPCK
SICL
SIDA
W
TA15
TA16
TA17
TA18
TA19
TA20
TA21
V
TA8
TA9
GND
TA10
TA11
TA12
VDDT
TA13
U
TA1
VDDT
TA2
TA3
TA4
GND
TA5
TA6
T
TA0
TCE0X TCE1X
TCE2X
TCE3X
TWE0X
TWE1X
R
TCLKI
TPAR0 TPAR1
TPAR2
TPAR3
TD60
TD61
GND
VDDF
FRXCLK FRXCTL2 FIN28
PCBEX1 PCBEX0
GND PPERRX PDEVSELX PSTOPX VDD33
12
13
VDDF
14
15
GND
16
18
FOUT13 FOUT7 FOUT1
FOUT26 FOUT20 FOUT14
VDDF
17
VDDF
FOUT16 FOUT9 FOUT3
22
23
GND
GND
PIRDYX
PTRDYX
VDD33
GND
VDDF
GND
VDDF
GND
VDDF
GND
VDD33
GND
VDD33
CPA_5
CPA_4
PCLK
PRSTX
PREQX
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
CPB_5
CPB_4 CPB_3 VDD33 CPB_2
CPB_1
PGNTX PIDSEL
PINTA
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD33
CPD_0
CPC_6 CPC_5 CPC_4 CPC_3
CPC_2 CPC_1
CPC_0
CPB_6
Y
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
CPE_2
CPE_1 CPE_0 CPD_6 CPD_5
CPD_4 CPD_3
CPD_2
CPD_1
W
TA14
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD33
CPF_2
CPF_1 VDD33
TA7
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
MD2
MD1
TWE2X
TWE3X
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD33
MD11
MD10
MD9
MD8
MD7
MD6
MD5
MD4
MD3
T
TD62
TD63
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
MD20
MD19
MD18
MD17
MD16
MD15
MD14
MD13
MD12
R
XPUHOT PFRAMEX
GND
MD0
CPB_0
CPF_0
CPE_6
CPE_5
GND
CPE_4
CPE_3
V
GND
CPF_6
CPF_5
CPF_4
VDD33
CPF_3
U
P
TD53
TD54
VDDT
TD55
TD56
TD57
GND
TD58
TD59
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD33
MD27
MD26
GND
MD25
MD24
MD23
VDD33
MD22
MD21
P
N
TD46
GND
TD47
TD48
TD49
VDDT
TD50
TD51
TD52
GND
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
MD34
MD33
MD32
VDD33
MD31
MD30
MD29
GND
MD28
N
M
TD37
TD38
TD39
TD40
TD41
TD42
TD43
TD44
TD45
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD33
MD43
MD42
MD41
MD40
MD39
MD38
MD37
MD36
MD35
M
L
TD28
TD29
TD30
TD31
TD32
TD33
TD34
TD35
TD36
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
MD52
MD51
MD50
MD49
MD48
MD47
MD46
MD45
MD44
L
K
TD21
TD22
GND
TD23
TD24
TD25
VDDT
TD26
TD27
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
VDD33
MD59
MD58
VDD33
MD57
MD56
MD55
GND
MD54
MD53
K
J
TD14
VDDT
TD15
TD16
TD17
GND
TD18
TD19
TD20
GND
VDDT
GND
VDD
GND
VDD
GND
VDD
GND
VDD
GND
MD66
MD65
MD64
GND
MD63
MD62
MD61
VDD33
MD60
J
H
TD5
TD6
TD7
TD8
TD9
TD10
TD11
TD12
TD13
VDDT
GND
VDD33
GND
VDD33
GND
VDD33
GND
VDD33
GND
VDD33
MD75
MD74
MD73
MD72
MD71
MD70
MD69
MD68
MD67
H
G
G
QD0
QD6
QD11
QD16
QD23
TD0
TD1
TD2
TD3
TD4
QA13
CPREF
CCLK3
CCLK0
SCLK
MA5
MA11
MDQM MDECC2 MDECC7
MD84
MD83
MD82
MD81
MD80
MD79
MD78
MD77
MD76
F
QD1
QD7
VDDT
QD17
QD24
QD30
VDDT
QDPH
QA3
QA9
QA14
CCLK6
CCLK4
CCLK1
SCLKX
MA4
MA10 MDQML MDECC1 MDECC6
MD91
MD90
VDD33
MD89
MD88
MD87
VDD33
MD86
MD85
F
E
QD2
GND
QD12
QD18
QD25
GND
QBCLKI QARDY
QA4
GND
QA15
CCLK7
CCLK5
CCLK2
VDD33
MA3
MA9
GND
MD98
MD97
MD96
GND
MD95
MD94
MD93
GND
MD92
E
D
QD3
QD8
QD13
QD19
QD26
QD31
QACLKO QNQRDY
QA5
QA10
QA16
JSO2
JSO0
JSE
MA2
MA8
GND
MCASX
MDECC5
MD107
MD106 MD105 MD104 MD103
MD102 MD101
MD100
MD99
D
C
QD4
QD9
GND
QD20
QD27
QWEX
VDDT
QA0
QA6
QA11 QDQPAR
JTCK
MA1
VDD33
MBA1
MRASX
MDECC4
MD114
MD113 VDD33 MD112 MD111
MD110
MD109
MD108
C
B
QD5
VDDT
QD14
QD21
QD28
GND
QACLKI
QA1
QA7
VDDT
VDD33
MD121
MD120 MD119
QD10
QD15
QD22
QD29
QBCLKO
QDPL
QA2
QA8
QA12
2
3
4
5
6
7
8
9
10
A
1
FREESCALE SEMICONDUCTOR
GND
MBA0 MDECC0
JSO3
VDD33 JCLKBYP
NC3
JSO5
JHIGHZ
JTDI
GND
MA0
MA7
MDCLK
MWEX
NC4
JTRSTX
JTDO
JTMS
JSO4
JSO1
MA6
NC5
MCSX
11
12
13
14
15
16
17
18
19
GND
MD118
MD117 MD116
VDD33
MD115
B
MDECC3 MDECC8 MD129 MD128 MD127 MD126
MD125 MD124
MD123
MD122
A
28
29
20
21
22
23
GND
24
25
26
27
C5ENPB0-DS REV 08
32
CHAPTER 2: SIGNAL DESCRIPTIONS
Pin Descriptions Grouped
by Function
The C-5e NP pins are categorized in groups, reflecting interfaces to the chip:
•
•
•
•
•
•
•
•
•
•
•
Clock Signals
CP Interface Signals
Executive Processor System Interface Signals
Fabric Processor Interface Signals
BMU SDRAM Interface Signals
TLU SRAM Interface Signals
QMU SRAM (Internal Mode) Interface Signals
QMU (External Mode) Interface Signals
Power Supply Signals
Test Signals
No Connection Pins
Pins conform to Joint Electronic Devices Engineering Council (JEDEC) standards.
LVTTL and LVPECL
Specifications
C-5e NP pins are the following types:
•
Low Voltage TTL-Compatible (LVTTL). The C-5e NP’s LVTTL pins conform to the JEDEC
JESD8-B specification.
•
Low Voltage Positive Emitter Coupled Logic (LVPECL).
All of the signals in the following tables in this chapter denote whether the individual
signal is an Input (I), Output (O), both Input and Output (I/O), or power (P). In addition, a
PU, PD, and nc are used. The PU indicates that an internal resistor will pullup the pad if
left unconnected. PD indicates an internal pulldown resistor. NC means the pad is to be
left unconnected.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
Clock Signals
33
Table 6 describes the C-5e NP clock signals.
Table 6 Clock and Reference Signals
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
SCLK*
SCLKX*
G15
F15
1
1
LVPECL
LVPECL
I
I
Core Clock Rate (Differential)
CCLK0
G14
1
LVTTL
IPD
1_544MHZ_CLK (T1)†
CCLK1
F14
1
LVTTL
IPD
2_048MHZ_CLK (E1)†
CCLK2
E14
1
LVTTL
IPD
34_368MHZ_CLK (E3)†
CCLK3
G13
1
LVTTL
IPD
44_736MHZ_CLK (T3)†
CCLK4
F13
1
LVTTL
IPD
50MHZ_CLK (100Mbit Ethernet)†
CCLK5
E13
1
LVTTL
IPD
106_25MHZ_CLK (Fibre Channel)†
CCLK6
F12
1
LVTTL
IPD
125MHZ_CLK (Gigabit Ethernet)†
CCLK7
E12
1
LVTTL
IPD
155_52MHZ_CLK (OC-3)†
CPREF‡
G12
1
LVPECL
IPD
Reference
TOTAL
*
†
‡
FREESCALE SEMICONDUCTOR
11
SCLK and SCLKX must not be AC-coupled.
The frequencies specified for CCLK0 - CCLK7 allow full flexibility for the C-5e NP. It is also possible to use one
or more CCLKn inputs for other frequencies. Contact your Freescale representative for more information.
If any of the CPs are configured for LVPECL operation (OC3) using the pin mode registers, then CPREF must
be wired to an external reference, as specified in Table 38 on page 77. If none of the CPs are configured for
LVPECL operation, then the CPREF pin can be left unconnected.
C5ENPB0-DS REV 08
34
CHAPTER 2: SIGNAL DESCRIPTIONS
CP Interface Signals
The C-5e NP’s 16 CPs support various network physical interfaces, providing a serial
interface to the PHY layer. Interfaces are configured via bits in the C-5e NP register set.
Many interfaces are possible by programming the configuration registers. CPs can be
used individually or in a cluster (four CPs) to implement the various interfaces.
Table 7 provides a quick reference of all the CP pins organized by clusters. There are seven
physical I/O pins associated with each CP. All pins are capable of receiving data, with some
configurable to be input clocks, output clocks, or data drivers. In addition, pairs of pins can
be configured as differential pairs for LVPECL compatibility.
In the case of RMII, OC-3, DS1, and DS3, the drivers and receivers at the pin are locally
configured to match the relevant PHY or Framer chip. OC-12 uses the aggregation of four
CPs (one cluster), while GMII and Ten Bit Interface (TBI) can use either eight CPs (four for
receive and four for transmit) or four CPs that share the transmit and receive functions for
non-wire speed applications.
During CP aggregation, all 28 pins associated with a cluster are routed to all of the Serial
Data Processors (SDPs) in that cluster. This allows round-robin usage of portions of the
SDPs, with each getting access to the necessary I/O pins.
The signals for the following CP physical interfaces are included in this section:
•
•
•
•
•
•
C5ENPB0-DS REV 08
DS1/T1 Framer Interface Configuration
10/100 Ethernet (RMII) Configuration
Gigabit Ethernet (GMII) Configuration
Gigabit Ethernet and Fibre Channel TBI Configuration
SONET OC-3 Transceiver Interface Configuration
SONET OC-12 Transceiver Interface Configuration
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
35
Table 7 CP Physical Interface Signals and Pins (Grouped by Clusters)
CP CLUSTER 1
FREESCALE SEMICONDUCTOR
CP CLUSTER 2
CP CLUSTER 3
CP CLUSTER 4
SIGNAL
PIN #
SIGNAL
PIN #
SIGNAL
PIN #
SIGNAL
PIN #
CP0_0
AJ29
CP4_0
AF25
CP8_0
AC21
CPC_0
Y28
CP0_1
AH29
CP4_1
AE25
CP8_1
AJ20
CPC_1
Y27
CP0_2
AG29
CP4_2
AD25
CP8_2
AG20
CPC_2
Y26
CP0_3
AF29
CP4_3
AC25
CP8_3
AF20
CPC_3
Y25
CP0_4
AE29
CP4_4
AJ24
CP8_4
AD20
CPC_4
Y24
CP0_5
AD29
CP4_5
AG24
CP8_5
AC20
CPC_5
Y23
CP0_6
AC29
CP4_6
AF24
CP8_6
AJ19
CPC_6
Y22
CP1_0
AJ28
CP5_0
AD24
CP9_0
AH19
CPD_0
Y21
CP1_1
AG28
CP5_1
AC24
CP9_1
AG19
CPD_1
W29
CP1_2
AF28
CP5_2
AJ23
CP9_2
AF19
CPD_2
W28
CP1_3
AD28
CP5_3
AH23
CP9_3
AE19
CPD_3
W27
CP1_4
AC28
CP5_4
AG23
CP9_4
AD19
CPD_4
W26
CP1_5
AJ27
CP5_5
AE23
CP9_5
AC19
CPD_5
W25
CP1_6
AH27
CP5_6
AD23
CP9_6
AB29
CPD_6
W24
CP2_0
AG27
CP6_0
AC23
CPA_0
AB28
CPE_0
W23
CP2_1
AE27
CP6_1
AJ22
CPA_1
AB26
CPE_1
W22
CP2_2
AD27
CP6_2
AH22
CPA_2
AB25
CPE_2
W21
CP2_3
AC27
CP6_3
AG22
CPA_3
AB24
CPE_3
V29
CP2_4
AJ26
CP6_4
AF22
CPA_4
AB22
CPE_4
V28
CP2_5
AH26
CP6_5
AE22
CPA_5
AB21
CPE_5
V26
CP2_6
AG26
CP6_6
AD22
CPA_6
AA29
CPE_6
V25
CP3_0
AF26
CP7_0
AC22
CPB_0
AA27
CPF_0
V24
CP3_1
AE26
CP7_1
AJ21
CPB_1
AA26
CPF_1
V22
CP3_2
AD26
CP7_2
AH21
CPB_2
AA25
CPF_2
V21
CP3_3
AC26
CP7_3
AG21
CPB_3
AA23
CPF_3
U29
CP3_4
AJ25
CP7_4
AF21
CPB_4
AA22
CPF_4
U27
C5ENPB0-DS REV 08
36
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 7 CP Physical Interface Signals and Pins (Grouped by Clusters) (continued)
CP CLUSTER 1
CP CLUSTER 2
CP CLUSTER 3
CP CLUSTER 4
SIGNAL
PIN #
SIGNAL
PIN #
SIGNAL
PIN #
SIGNAL
PIN #
CP3_5
AH25
CP7_5
AE21
CPB_5
AA21
CPF_5
U26
CP3_6
AG25
CP7_6
AD21
CPB_6
Y29
CPF_6
U25
DS1/T1 Framer Interface Configuration
Table 8 describes the serial framer interface signals. For each CP (0-15), you can
implement one serial Framer interface.
Table 8 DS1/T1 Framer Interface Signals
SIGNAL NAME*
PIN #†
TOTAL
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
CPn_0
CPn_1
CPn_2
CPn_3
CPn_4
CPn_5
CPn_6
Table 7
Table 7
Table 7
Table 7
Table 7
Table 7
Table 7
1
1
1
1
1
1
1
7
LVTTL
LVTTL
LVTTL
LVTTL
LVTTL
LVTTL
nc
OPD
IPU
OPD
OPU
IPD
IPU
ncPU
TCLK
RCLK
TData
TFrame
RData
RFrame
nc
Transmit Clock (1.544MHz)
Receive Clock (1.544MHz)
Transmit Data
Transmit Frame Synchronization
Receive Data
Receive Frame Synchronization
nc
TOTAL PINS
*
†
n can be from 0 to 15. See Table 7.
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.
10/100 Ethernet (RMII) Configuration
Table 9 describes the 10/100BASE-T Ethernet Reduced Media Independent Interface
(RMII) signals. For each CP (0-15), you can implement one 10/100 Ethernet interface.
Table 9 10/100 Ethernet Signals
SIGNAL NAME*
PIN #
TOTAL
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
CPn_0
CPn_1
Table 7
Table 7
1
1
LVTTL
LVTTL
OPD
IPU
REF_CLK
CRS_DV
Transmit and Receive Clock (50MHz)
Carrier Sense (CRS)/ Receive Data Valid (RX_DV). CRS indicates that
traffic is on the link, and is asserted if the signal is a 1 or an
alternating 1010... RX_DV indicates that a receive frame is in
progress and the data present on the RXD pins is valid. It is
asserted if this signal is a 1 for more than one cycle.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
37
Table 9 10/100 Ethernet Signals (continued)
SIGNAL NAME*
PIN #
TOTAL
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
CPn_2
CPn_3
CPn_4
CPn_5
CPn_6
Table 7
Table 7
Table 7
Table 7
Table 7
1
1
1
1
1
LVTTL
LVTTL
LVTTL
LVTTL
LVTTL
OPD
OPU
IPD
IPU
OPU
TXD(0)
TXD(1)
RXD(0)
RXD(1)
TX_EN
Transmit Data 0 (first on wire)
Transmit Data 1 (second on wire)
Receive Data 0 (first on wire)
Receive Data 1 (second on wire)
Transmit Enable. When asserted, the data on TXD is encoded and
transmitted on the twisted pair cable.
TOTAL PINS
*
7
n can be from 0 to 15. See Table 7.
Gigabit Ethernet (GMII) Configuration
Gigabit Ethernet Media Independent Interface (GMII) is configured in one of two ways:
•
Use one CP cluster when density is more important than wire-speed performance
because you can then implement up to four Gigabit Ethernet ports per C-5e NP.
•
Use two CP clusters for wire-speed performance and additional processing power. You
can implement up to two Gigabit Ethernet ports per C-5e NP.
Table 10 lists the possible CP cluster combinations you can use and Figure 4 shows receive
and transmit pin configurations by cluster. Table 11 lists the signals and pinouts for
Gigabit Ethernet (GMII).
Table 10 Transmit and Receive Pin Combinations for Gigabit Ethernet and Fibre Channel
*
FREESCALE SEMICONDUCTOR
CLUSTER
SINGLE CLUSTER MODE (TBI OR GMII)
TWO CLUSTER MODE (GMII)*
0
Port 1 Tx and Rx
Port 1 Tx
1
Port 2 Tx and Rx
Port 1 Rx
2
Port 3 Tx and Rx
Port 2 Tx
3
Port 4 Tx and Rx
Port 2 Rx
The Two Cluster Mode column lists typical configurations. Any cluster can be set up to either receive
or transmit. So you could configure a dual cluster mode where cluster 0 receives and cluster 3
transmits.
C5ENPB0-DS REV 08
38
CHAPTER 2: SIGNAL DESCRIPTIONS
Figure 4 GMII/TBI Transmit and Receive Pin Configurations
Two Cluster Mode
Pin Configuration
Single Cluster Mode
Pin Configuration
Tx
Cluster
0
Rx
Tx
Cluster
1
Rx
Tx
Cluster
2
Rx
Tx
Cluster
3
Rx
Tx
} Port 1
Cluster
0
Rx
nc
Tx
} Port 2
Cluster
1
} Port 3
Cluster
2
} Port 4
Cluster
3
nc
Rx
Tx
Rx
nc
Tx
nc
Rx
}
}
Port 1
Port 2
nc = not connected
Table 11 Gigabit Ethernet (GMII/MII) Signals One Cluster Example
SIGNAL NAME*
PIN #†
CPn_0
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
Table 7 1
LVTTL
OPD
T_CLK
GMII Transmit Clock (125MHz). This clock is used to synchronize the
transmit data.
CPn_1
Table 7 1
LVTTL
IPU
TCLKI
MII transmit clock. Transmit data aligned to this clock input from
phy in MII mode. 25 Mhz in 100BaseT, 2.5 in Mhz in 10BaseT
CPn_2
Table 7 1
LVTTL
OPD
TXD(0)
Transmit Data (byte-wide data, least significant bit)
CPn_3
Table 7 1
LVTTL
OPU
TXD(1)
Transmit Data
CPn_4
Table 7 1
LVTTL
OPD
TXD(2)
Transmit Data
CPn_5
Table 7 1
LVTTL
OPU
TXD(3)
Transmit Data
CPn_6
Table 7 1
LVTTL
OPU
TX_EN
Transmit Enable. When asserted, the data on TXD is encoded and
transmitted on the twisted pair cable.
CPn+1_0
Table 7 1
nc
ncPD nc
nc
CPn+1_1
Table 7 1
LVTTL
IPU
COL
Collision. Asserted when both RX_DV and TX_EN are valid during
half duplex operation.
CPn+1_2
Table 7 1
LVTTL
OPD
TXD(4)
Transmit Data
CPn+1_3
Table 7 1
LVTTL
OPU
TXD(5)
Transmit Data
C5ENPB0-DS REV 08
TOTAL
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
39
Table 11 Gigabit Ethernet (GMII/MII) Signals One Cluster Example (continued)
SIGNAL NAME*
PIN #†
CPn+1_4
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
Table 7 1
LVTTL
OPD
TXD(6)
Transmit Data
CPn+1_5
Table 7 1
LVTTL
OPU
TXD(7)
Transmit Data (byte-wide receive data, most significant bit)
CPn+1_6
Table 7 1
LVTTL
OPU
TX_ER
Transmit Error. Asserting TX_ER when TX_EN is a 1 causes
transmission of the designated “bad code” in lieu of the normal
encoded data on the twisted pair data.
CPn+2_0
Table 7 1
nc
ncPD nc
nc
CPn+2_1
Table 7 1
LVTTL
IPU
RCLK
Receive Clock (125MHz)
CPn+2_2
Table 7 1
LVTTL
IPD
RXD(0)
Receive Data (byte-wide receive data, least significant bit)
CPn+2_3
Table 7 1
LVTTL
IPU
RXD(1)
Receive Data
CPn+2_4
Table 7 1
LVTTL
IPD
RXD(2)
Receive Data
CPn+2_5
Table 7 1
LVTTL
IPU
RXD(3)
Receive Data
CPn+2_6
Table 7 1
LVTTL
IPU
RX_DV
Receive Data Valid. Indicates that there is a receive frame in progress
and that the data present on the RXD signals is valid.
CPn+3_0
Table 7 1
nc
ncPD nc
nc
CPn+3_1
Table 7 1
LVTTL
IPU
CRS
Carrier Sense. Indicates traffic is on the link. CRS is asserted when a
non-idle condition is detected on the receive data stream. CRS is
deasserted when an end of frame or idle condition is detected.
CPn+3_2
Table 7 1
LVTTL
IPD
RXD(4)
Receive Data
CPn+3_3
Table 7 1
LVTTL
IPU
RXD(5)
Receive Data
CPn+3_4
Table 7 1
LVTTL
IPD
RXD(6)
Receive Data
CPn+3_5
Table 7 1
LVTTL
IPU
RXD(7)
Receive Data (most significant bit)
CPn+3_6
Table 7 1
LVTTL
IPU
RX_ER
Receive Error Detected. Indicates that there has been an error
received in the receive frame.
TOTAL PINS
*
†
TOTAL
28
n can be 0, 4, 8, or 12.
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.
Gigabit Ethernet and Fibre Channel TBI Configuration
1000BASE-T Gigabit Ethernet and Fibre Channel TBI is implemented in much the same
way as Gigabit Ethernet (GMII). Table 10 shows the possible CP pin combinations you can
use and Figure 4 shows receive and transmit pin configurations by cluster. Table 12 shows
the signals and pinouts for a single cluster for Gigabit Ethernet and Fibre Channel TBI.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
40
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 12 Gigabit Ethernet and Fibre Channel TBI Signals Example
SIGNAL NAME*
PIN #†
CPn_0
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
Table 7 1
LVTTL
OPD
TCLK
Transmit Clock (125MHz). This clock is used to synchronize the
transmit data.
CPn_1
Table 7 1
nc
ncPU
nc
nc
CPn_2
Table 7 1
LVTTL
OPD
TXD(9)
Transmit Data (ten bits wide, last on wire)
CPn_3
Table 7 1
LVTTL
OPU
TXD(8)
Transmit Data
CPn_4
Table 7 1
LVTTL
OPD
TXD(7)
Transmit Data
CPn_5
Table 7 1
LVTTL
OPU
TXD(6)
Transmit Data
CPn_6
Table 7 1
LVTTL
OPU
TXD(1)
Transmit Data
CPn+1_0
Table 7 1
nc
ncPD
nc
nc
CPn+1_1
Table 7 1
nc
ncPU
nc
nc
CPn+1_2
Table 7 1
LVTTL
OPD
TXD(5)
Transmit Data
CPn+1_3
Table 7 1
LVTTL
OPU
TXD(4)
Transmit Data
CPn+1_4
Table 7 1
LVTTL
OPD
TXD(3)
Transmit Data
CPn+1_5
Table 7 1
LVTTL
OPU
TXD(2)
Transmit Data
CPn+1_6
Table 7 1
LVTTL
OPU
TXD(0)
Transmit Data (ten bits wide, first on wire)
CPn+2_0
Table 7 1
nc
ncPD
nc
nc
CPn+2_1
Table 7 1
LVTTL
IPU
RCLK
Receive Clock (62.5 MHz)
CPn+2_2
Table 7 1
LVTTL
IPD
RXD(9)
Receive Data (ten bits wide, last on wire)
CPn+2_3
Table 7 1
LVTTL
IPU
RXD(8)
Receive Data
CPn+2_4
Table 7 1
LVTTL
IPD
RXD(7)
Receive Data
CPn+2_5
Table 7 1
LVTTL
IPU
RXD(6)
Receive Data
CPn+2_6
Table 7 1
LVTTL
IPU
RXD(1)
Receive Data
CPn+3_0
Table 7 1
nc
ncPD
nc
nc
CPn+3_1
Table 7 1
LVTTL
IPU
RCLKN
Receive Clock Inverted
CPn+3_2
Table 7 1
LVTTL
IPD
RXD(5)
Receive Data
CPn+3_3
Table 7 1
LVTTL
IPU
RXD(4)
Receive Data
CPn+3_4
Table 7 1
LVTTL
IPD
RXD(3)
Receive Data
CPn+3_5
Table 7 1
LVTTL
IPU
RXD(2)
Receive Data
CPn+3_6
Table 7 1
LVTTL
IPU
RXD(0)
Receive Data (ten bits wide, first on wire)
C5ENPB0-DS REV 08
TOTAL
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
41
Table 12 Gigabit Ethernet and Fibre Channel TBI Signals Example (continued)
SIGNAL NAME*
PIN #†
†
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
28
TOTAL PINS
*
TOTAL
n can be 0, 4, 8, or 12
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.
SONET OC-3 Transceiver Interface Configuration
Table 13 describes the SONET Optical Carrier (OC) 3 transceiver interface signals. For each
CP (0-15), you can implement a single OC-3 interface.
Table 13 OC-3 Signals
SIGNAL NAME*
PIN #†
TOTAL
TYPE
CPn_0
Table 7
1
CPn_1
Table 7
CPn_2
LABEL
SIGNAL DESCRIPTION
LVPECL IPD
RCLK_H
Receive Clock noninverted side of pair (155.52MHz)
1
LVPECL IPU
RCLK_L
Receive Clock inverted side of pair (155.52MHz)
Table 7
1
LVPECL OPD
TXD_H
Transmit Data noninverted side of pair
CPn_3
Table 7
1
LVPECL OPU
TXD_L
Transmit Data inverted side of pair
CPn_4
Table 7
1
LVPECL IPD
RXD_H
Receive Data noninverted side of pair
CPn_5
Table 7
1
LVPECL IPU
RXD_L
Receive Data inverted side of pair
CPn_6
Table 7
1
LVPECL IPU
SIGNAL_DET
A light level above a certain threshold is present at the optical
receiver - single ended LVPECL.
TOTAL PINS
*
†
I/O
7
n can be from 0 to 15.
Reference Table 7 for pin numbers for the actual cluster(s) you are configuring.
SONET OC-12 Transceiver Interface Configuration
SONET Optical Carrier (OC) 12 is implemented by using one cluster of CPs. At any time, a
CP within a cluster spends half its time performing receive functions, and the other half
performing transmit functions. Table 14 shows a CP Cluster configured for one OC-12
interface.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
42
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 14 OC-12 Signals Example
SIGNAL NAME*
PIN #†
TOTAL
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
CPn_0
Table 7
1
LVTTL
OPD
TCLK
Deskewed Transmit Clock (77.76MHz). This clock is used to
synchronize the transmit data.
CPn_1
Table 7
1
LVTTL
IPU
TCLKI
Transceiver Transmit Clock. This clock sets the frequency of the
transmit data and is typically sourced by the PHY chip.
CPn_2
Table 7
1
LVTTL
OPD
TXD(0)
Transmit Data (byte-wide data, least significant bit)
CPn_3
Table 7
1
LVTTL
OPU
TXD(1)
Transmit Data
CPn_4
Table 7
1
LVTTL
OPD
TXD(2)
Transmit Data
CPn_5
Table 7
1
LVTTL
OPU
TXD(3)
Transmit Data
CPn_6
Table 7
1
LVTTL
OPU
OOF
Out of Frame
CPn+1_0
Table 7
1
nc
ncPD
nc
nc
CPn+1_1
Table 7
1
nc
ncPU
nc
nc
CPn+1_2
Table 7
1
LVTTL
OPD
TXD(4)
Transmit Data
CPn+1_3
Table 7
1
LVTTL
OPU
TXD(5)
Transmit Data
CPn+1_4
Table 7
1
LVTTL
OPD
TXD(6)
Transmit Data
CPn+1_5
Table 7
1
LVTTL
OPU
TXD(7)
Transmit Data (byte-wide data, most significant bit)
CPn+1_6
Table 7
1
nc
ncPU
nc
nc
CPn+2_0
Table 7
1
nc
ncPD
nc
nc
CPn+2_1
Table 7
1
LVTTL
IPU
RCLK
Receive Clock (77.76MHz)
CPn+2_2
Table 7
1
LVTTL
IPD
RXD(0)
Receive Data (byte-wide receive data, least significant bit)
CPn+2_3
Table 7
1
LVTTL
IPU
RXD(1)
Receive Data
CPn+2_4
Table 7
1
LVTTL
IPD
RXD(2)
Receive Data
CPn+2_5
Table 7
1
LVTTL
IPU
RXD(3)
Receive Data
CPn+2_6
Table 7
1
LVTTL
IPU
FP
Frame Synchronization Pulse. This is valid during the third A2 of
the receive SONET frame.
CPn+3_0
Table 7
1
nc
ncPD
nc
nc
CPn+3_1
Table 7
1
nc
ncPU
nc
nc
CPn+3_2
Table 7
1
LVTTL
IPD
RXD(4)
Receive Data
CPn+3_3
Table 7
1
LVTTL
IPU
RXD(5)
Receive Data
CPn+3_4
Table 7
1
LVTTL
IPD
RXD(6)
Receive Data
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
43
Table 14 OC-12 Signals Example (continued)
SIGNAL NAME*
PIN #†
TOTAL
TYPE
I/O
LABEL
SIGNAL DESCRIPTION
CPn+3_5
Table 7
1
LVTTL
IPU
RXD(7)
Receive Data (most significant bit)
CPn+3_6
Table 7
1
nc
ncPU
nc
nc
28
TOTAL PINS
*
†
n can be 0, 4, 8, or 12
Reference Table 7 for pin numbers for a different cluster.
Executive Processor
System Interface Signals
The XP’s system interface manages the supervisory controls for the network interfaces, as
well as the set of pins that provide interfaces to other components in the system that are
not memories or network interfaces. It is also the primary interface used for initializing the
C-5e NP after reset. The XP signals include PCI signals, Serial interface signals, and PROM
interface signals.
PCI Signals
The PCI can be configured to support a 32bit PCI capable of operating at either 33MHz or
66MHz. The PCI is fully compliant with PCI Specification revision 2.1. Table 15 describes
the PCI signals.
Table 15 PCI Signals
SIGNAL NAME
PIN #
PAD0 - PAD31
PCBEX0 - PCBEX3
TYPE
I/O
SIGNAL DESCRIPTION
AJ5, AJ4, AJ3, AJ2, AJ1, AH5, AH4, 32
AH3, AH1, AG5, AG4, AG3, AG2,
AG1, AF5, AF4, AF2, AF1, AE5,
AE4, AE3, AE1, AD5, AD4, AD3,
AD2, AD1, AC5, AC4, AC3, AC2,
AC1
PCI
I/O
Multiplexed Address/Data Bus. These signals are
multiplexed address and data bits. The C-5e NP
receives addresses as target and drives addresses as
master. It drives the data and receives read data as
master.
AB6, AB5, AB4, AB2
PCI
I/O
Command byte enables. These signals are
multiplexed command and byte enabled signals.
The C-5e NP receives byte enables as target and drives
byte enables as master.
FREESCALE SEMICONDUCTOR
TOTAL
4
C5ENPB0-DS REV 08
44
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 15 PCI Signals (continued)
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
PPAR
AB1
1
PCI
I/O
Parity. This signal carries even parity for AD and CBE#
pins. It has the same receive and drive characteristics
as the address and data bus, except that it is one PCI
cycle later.
PFRAMEX
W9
1
PCI
I/O
Cycle frame
PTRDYX
AB9
1
PCI
I/O
Target ready for data transfer
PIRDYX
AB8
1
PCI
I/O
Initiator ready for data transfer
PSTOPX
AA5
1
PCI
I/O
Target transaction stop request
PDEVSELX
AA4
1
PCI
I/O
Target device selected
PPERRX
AA3
1
PCI
I/O
Bus parity error
PSERRX
AA1
1
PCI
I/O
System error
PCLK
AA7
1
LVTTL
IPD
Bus clock
PRSTX
AA8
1
PCI
I
Bus reset
PREQX
AA9
1
PCI
O
Initiator bus request (arbitration)
PGNTX
Y7
1
LVTTL
IPD
Initiator bus grant (arbitration)
PIDSEL
Y8
1
PCI
I
Initialization device select
PINTA
Y9
1
PCI
O
Interrupt (active low)
50
TOTAL PINS
Serial Interface Signals
The Serial interface is a bidirectional two-wire serial bus. It can use one of the following
formats:
•
An 8bit data format followed by an acknowledge bit, which supports transfers at up to
400kbps (low speed).
•
A 16bit IEEE 802.3 MDIO data format with 10bits of addressing, which supports
transfers up to 25MHz (high speed).
The signals and pins are identical for both the high and low speed protocols.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
45
Which of the two data rates used is selected by the state of the PROM interface’s SPLD
signal that is asserted while the PROM interface is idle. When SPLD is asserted HI the low
speed serial bus protocol is selected and when SPLD is asserted LOW the MDIO protocol is
selected.
The bus only supports a single master hierarchy that can operate as either a receiver or a
transmitter.
Both SIDA and SICL are bidirectional lines that are connected, through a pull-up resistor, to
a positive supply voltage. When the bus is free, both lines are HIGH. The output stages of
the devices connected to the bus must have either an open-drain or open-collector in
order to perform the wired-AND function required for its arbitration mechanism.
Table 16 Serial Interface Signals
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
SICL
Y5
1
LVTTL
IPD/O Serial Clock line
SIDA
Y6
1
LVTTL
IPD/O Serial Data line
2
TOTAL PINS
PROM Interface Signals
The PROM interface is a low speed I/O port that allows the C-5e NP to communicate
through external logic to PROM. The PROM clock is 1/2 to 1/16 the core clock rate. The
maximum PROM size addressable is 4MBytes, and must use a “by 16” part. The PROM
signals are listed in Table 17.
Table 17 PROM Interface Signals
FREESCALE SEMICONDUCTOR
SIGNAL
NAME
PIN #
TOTAL TYPE
I/O
SIGNAL DESCRIPTION
SPDO
Y1
1
LVTTL
O
Serial Data Out
SPDI
Y2
1
LVTTL
IPD
Serial Data In
C5ENPB0-DS REV 08
46
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 17 PROM Interface Signals (continued)
SIGNAL
NAME
PIN #
TOTAL TYPE
I/O
SIGNAL DESCRIPTION
SPLD
Y3
1
LVTTL
O
When load is asserted on a positive clock
edge, the external logic performs a parallel
load. On each positive clock edge when
load is de-asserted, the shift registers shift.
When the PROM interface is idle:
• If SPLD is asserted HI it indicates low
speed serial protocol,
• If asserted LOW it indicates MDIO serial
protocol.
SPCK
Y4
1
LVTTL
O
Clock
4
TOTAL PINS
Figure 5 shows the connections between the PROM Interface and external board logic.
The application is required to provide an external shift register with parallel-in and
parallel-out capabilities, and a parallel load register. Both devices should be
positive-edge-triggered and perform a parallel load whenever SPLD is asserted. When
SPLD is deasserted the shift register shifts.
Figure 5 PROM Interface Diagram
21
C-5e Network Processor
0
PROM_ADDR<21:1>
External Logic
CE
SPDO
21
21
6
1
0
SPDI
15
31
16
PROM _H_Word
21
6 0
21
External Shift
Register
0
Internal Shift
Register
15
0
PROM_ADDR<21:1>
CE
PROM _LO_Word
1
21
16
PROM _Return_Data
PROM Clock Gen.
SPCLK
PROM Sequencer SPLD
C5ENPB0-DS REV 08
PROM
PROM_Data
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
47
The PROM interface operates in the following manner (Note that two accesses are
piplined together to execute one 32-bit fetch). The steps are shown in Figure 6.
1 The PROM_ADDR is loaded into the network processor internal shift register.
2 The PROM_ADDR is shifted into the external shift register for 22 SPCLK cycles.
3 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external
presentation register.
4 SPLD is deasserted for 22 SPCLK cycles. The PROM presents the first 16bit PROM_DATA.
At the same time, the next PROM_ADDR is shifted into the external shift register.
5 SPLD is asserted for one SPCLK cycle, loading the PROM_ADDR into the external
presentation register and the first PROM_DATA into the external shift register.
6 SPLD is deasserted for 22 SPCLK cycles, shifting the first PROM_DATA into the network
processor internal shift register.
7 SPLD is asserted for one SPCLK cycle, loading the first PROM_DATA into the network
processor PROM_RETURN_DATA register and the second PROM_DATA into the
external shift register.
8 SPLD is deasserted for 22 SPCLK cycles, shifting the second PROM_DATA into the
network processor internal shift register.
9 SPLD is asserted for one SPCLK cycle, loading the second PROM_DATA into the
network processor PROM_RETURN_DATA register.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
48
CHAPTER 2: SIGNAL DESCRIPTIONS
Figure 6 PROM Interface Timing Outline
XP PROM Interface outline
`
SPLD
SPDTO
`
A1
`
A2
SPDTI
`
`
A3
A4
A5
D1
D2
D3
XP PROM Interface detail
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 1
2
3
4
5
6
7
SPCLK
SPLD
A1
SPDTO
1
x
A A A A A A A A A A A A A
21 20 19 18 17 16 15 14 13 12 11 10 9
A
8
A
7
A
6
A
5
A
4
A
3
The PROM_ADDR is loaded into the
C-5's internal shift register.
The PROM_ADDR is shifted into
the external shift register.
(SPCLK Rising Edge used for shifting)
2
A
2
A2
A CE
1
3
A3
A4
5
The PROM_ADDR is loaded into the
external presentation register.
4
The PROM_DATA is
presenting.
The PROM_DATA is loaded into the
external shift register.
D1
x
SPDTI
6
D D D D D D D
15 14 13 12 11 10 9
D
8
D
7
D
6
D
5
D D
4 3
D
2
D
1
D2
D
0
x
x
x
x
x
x
The PROM_DATA is shifted into the C-5's
Internal shift register.
8
7
9
The PROM_DATA is loaded into the C-5's
internal PROM_RETURN_DATA register.
General System Interface Signal
Table 18 provides the signal for the Executive Processor reset power status and I/O clock.
The C-5e NP can be powered up with the XP either running or with the XP in reset mode
similar to the CPs. When the XP remains in reset mode, an external host can be used to
control the initialization of the C-5e NP.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
49
Table 18 General System Interface Signal
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
XPUHOT
W8
1
LVTTL
IPD
Sample at Power On Reset determines if the XP RISC Core is held in reset. Low
equals reset and High equals active. During normal operation, this is an
external interrupt, triggered asynchronously on the rising edge of XPUHOT.
1
TOTAL PINS
Fabric Processor Interface
Signals
The FP has logical signal interfaces: a receive data interface and a transmit data interface,
each with its own control, data, and clock signals. The interface has the following
characteristics:
•
The interface clocks, FRXCLK and FTXCLK can have a different frequency from the core
C-5e NP clock frequency. The FP supports a fabric interface frequency from 10MHz to
125MHz.
•
FRXCLK and FTXCLK can be independent of each other; typically they have the same
frequency, but are allowed to be skewed relative to each other.
•
Each data bus can be configured for widths of 8 (data bits 7:0 are used), 16 (bits 15:0),
or 32 (bits 31:0). In 8bit mode, data bits 31:8 are unused. In 16bit mode, data bits 31:16
are unused.
Table 19 Fabric Interface Signals
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
FIN0 - FIN31
AE12, AD12, AC12, AJ11, AH11, AG11,AF11,
AE11, AD11, AC11, AJ10, AG10, AF10, AD10,
AC10, AJ9, AH9, AG9, AF9, AE9, AD9, AC9, AJ8,
AH8, AG8, AF8, AE8, AD8, AC8, AJ7, AH7, AG7
32
LVTTL
IPD
Fabric Data Bus In
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
50
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 19 Fabric Interface Signals (continued)
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
FOUT0 - FOUT31
AJ18, AH18, AG18, AE18, AD18, AC18, AJ17,
AH17, AF17, AE17, AD17, AC17, AJ16, AH16,
AG16, AF16, AE16, AD16, AC16, AJ15, AG15,
AF15, AD15, AC15, AJ14, AH14, AG14, AF14,
AE14, AD14, AC14, AJ13
32
LVTTL
O
Fabric Data Bus Out
FRXCLK
AC6
1
LVTTL
IPD
Receive Clock
FTXCLK
AG12
1
LVTTL
IPD
Transmit Clock
FRXCTL0 - FRXCTL6
AE7, AD7, AC7, AJ6, AG6, AF6, AD6
7
LVTTL
IPD, O Receive Control Signals
FTXCTL0 - FTXCTL6
AH13, AF13, AE13, AD13, AC13, AJ12, AH12
7
LVTTL
IPD, O Transmit Control Signals
80
TOTAL PINS
The following tables list the Fabric Interface pin mappings:
•
•
•
Utopia1, Utopia2, Utopia3 ATM Mode mappings are listed in Table 20
•
•
Power X(CSIX-L0) Mode mappings are listed in Table 23
Utopia1, Utopia2, Utopia3 PHY Mode mappings are listed in Table 21
PRIZMA Mode mappings are listed in Table 22 (PRIZMA protocol is a subset of Utopia3
PHY)
CSIX-L1 Mode mappings are listed in Table 24
Table 20 Utopia1*, 2*, 3 ATM Mode, C-5e Network Processor to Fabric Interface Pin Mapping
RECEIVE SIGNALS
TRANSMIT SIGNALS
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
FRXCTL0
Output
RxEnb*
Pullup or No
Connection
FRXCTL1
Input
FRXCTL2
Input
C5ENPB0-DS REV 08
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
FTXCTL0
Output
TxEnb*
Pullup or No
Connection
RxClav
FTXCTL1
Input
TxClav
RxSOC
FTXCTL2
Output
TxSOC
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
51
Table 20 Utopia1*, 2*, 3 ATM Mode, C-5e Network Processor to Fabric Interface Pin Mapping
RECEIVE SIGNALS
*
TRANSMIT SIGNALS
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
FRXCTL3
Input
n/a
FTXCTL3
Input
n/a
FRXCTL4
Input
n/a
FTXCTL4
Input
n/a
FRXCTL5
Input
n/a
FTXCTL5
Input
n/a
FRXCTL6
Input
RxPrty
FTXCTL6
Output
TxPrty
NOTE
NOTE
Cell size must be 4Byte aligned. Both RxEnb and TxEnb are Active Low.
Table 21 Utopia1*, 2*, 3 PHY Mode, C-5e Network Processor to Fabric Interface Pin Mapping
RECEIVE SIGNALS
*
TRANSMIT SIGNALS
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
FRXCTL0
Input
TxEnb*
Pullup
FTXCTL0
Input
RxEnb*
Pullup
FRXCTL1
Output
TxClav
No Connection
FTXCTL1
Output
RxClav
No Connection
FRXCTL2
Input
TxSOC
FTXCTL2
Output
RxSOC
FRXCTL3
Input
n/a
FTXCTL3
Input
n/a
FRXCTL4
Input
n/a
FTXCTL4
Input
n/a
FRXCTL5
Input
n/a
FTXCTL5
Input
n/a
FRXCTL6
Input
TxPrty
FTXCTL6
Output
RxPrty
Cell size must be 4Byte aligned. Both TxEnb and RxEnb are Active Low.
When configuring two C-5e network processors back-to-back using the Fabric Port, set
up the transmit side of each C-5e network processor in Utopia ATM mode and the receive
side of each C-5e network processor in Utopia PHY mode.
Table 22 PRIZMA Mode, C-5e Network Processor to Fabric Interface Pin Mapping
RECEIVE SIGNALS
TRANSMIT SIGNALS
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
FRXCTL0
Input
TxEnb*
Not connected to
fabric.
FREESCALE SEMICONDUCTOR
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
FTXCTL0
Input
RxEnb*
Not connected to
fabric.
C5ENPB0-DS REV 08
52
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 22 PRIZMA Mode, C-5e Network Processor to Fabric Interface Pin Mapping
RECEIVE SIGNALS
*
TRANSMIT SIGNALS
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
C-5e NETWORK
PROCESSOR
I/O
UTOPIA
NOTE
FRXCTL1
Output
TxClav
No connection
FTXCTL1
Output
RxClav
No Connection
FRXCTL2
Input
TxSOP
FTXCTL2
Output
RxSOP
FRXCTL3
Input
n/a
FTXCTL3
Input
n/a
FRXCTL4
Input
n/a
FTXCTL4
Input
n/a
FRXCTL5
Input
n/a
FTXCTL5
Input
n/a
FRXCTL6
Input
TxPrty
FTXCTL6
Output
RxPrty
Optional
Optional
Both TxEnb and RxEnb are Active Low.
Table 23 Power X(CSIX-L0) Mode, C-5e Network Processor to Fabric Interface Pin Mapping
RECEIVE SIGNALS
TRANSMIT SIGNALS
C-5e NETWORK
PROCESSOR
I/O
POWER X
C-5e NETWORK
PROCESSOR
I/O
POWER X
FRXCTL0
Input
RxCtrl[0]
FTXCTL0
Output
TxCtrl[0]
FRXCTL1
Input
RxCtrl[1]
FTXCTL1
Output
TxCtrl[1]
FRXCTL2
Input
RxCtrl[2]
FTXCTL2
Output
TxCtrl[2]
FRXCTL3
Input
RxPrty[3]
FTXCTL3
Output
TxPrty[3]
FRXCTL4
Input
RxPrty[2]
FTXCTL4
Output
TxPrty[2]
FRXCTL5
Input
RxPrty[1]
FTXCTL5
Output
TxPrty[1]
FRXCTL6
Input
RxPrty[0]
FTXCTL6
Output
TxPrty[0]
NOTE
NOTE
For the CSIX-L1 Mode, VDDF= 2.5V.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
53
Table 24 CSIX-L1 Mode, C-5e Network to Fabric Interface Pin Mapping
FPRX SIGNALS
FPTX SIGNALS
C-5E NP
I/O
CSIX-L1
FRxCTL0
Input
FRxCTL1
C-5E NP
I/O
CSIX-L1
n/a
FTxCTL0
Input
n/a
Input
n/a
FTxCTL1
Input
n/a
FRxCTL2
Input
TxSOF
FTxCTL2
Output
RxSOF
FRxCTL3
Input
n/a
FTxCTL3
Input
n/a
FRxCTL4
Input
n/a
FTxCTL4
Input
n/a
FRxCTL5
Input
n/a
FTxCTL5
Input
n/a
FRxCTL6
Input
TxPrty
FTxCTL6
Output
RxPrty
FREESCALE SEMICONDUCTOR
NOTE
NOTE
C5ENPB0-DS REV 08
54
CHAPTER 2: SIGNAL DESCRIPTIONS
BMU SDRAM Interface
Signals
The BMU and SDRAM interface signals are described in Table 25.
The BMU is designed to support SDRAM devices with 12 address lines. All 139 data lines
and all 12 address lines must be connected to the SDRAM in order for the BMU to be able
to read and write external SDRAM properly.
Table 25 BMU SDRAM Interface Signals
SIGNAL NAME
PIN #
TOTAL
MD0 - MD129
U23, U22, U21, T29, T28, T27, T26,
130
T25, T24, T23, T22, T21, R29, R28,
R27, R26, R25, R24, R23, R22, R21,
P29, P28, P26, P25, P24, P22, P21,
N29, N27, N26, N25, N23, N22, N21,
M29, M28, M27, M26, M25, M24,
M23, M22, M21, L29, L28, L27, L26,
L25, L24, L23, L22, L21, K29, K28,
K26, K25, K24, K22, K21, J29, J27,
J26, J25, J23, J22, J21, H29, H28,
H27, H26, H25, H24, H23, H22, H21,
G29, G28, G27, G26, G25, G24, G23,
G22, G21, F29, F28, F26, F25, F24,
F22, F21, E29, E27, E26, E25, E23,
E22, E21, D29, D28, D27, D26, D25,
D24, D23, D22, D21, C29, C28, C26,
C25, C24, C22, C21, B29, B27, B26,
B25, B23, B22, B21, A29, A28, A27,
A26, A25, A24, A23, A22
TYPE
I/O
SIGNAL DESCRIPTION
LVTTL
IPD/O Data Lines
MDECC0 - MDECC8 E19, F19, G19, A20, C20, D20, F20,
G20, A21
9
LVTTL
IPD/O Stored as data, ECC bits
MA0 - MA11
B16, C16, D16, E16, F16, G16, A17,
B17, D17, E17, F17, G17
12
LVTTL
OPD
Address Outputs: A0-A11 are sampled during the
ACTIVE command and READ/WRITE to select one
location out of the memory array in the respective
bank. The address inputs also provide the
op-code during a LOAD MODE REGISTER
command
MBA0 - MBA1
E18, C18
2
LVTTL
OPD
Bank Address Outputs: BA0 and BA1 define which
bank the ACTIVE, READ, WRITE or PRECHARGE
command is being applied
MCASX
D19
1
LVTTL
OPD
Command Outputs: MRASX, MCASX, MWEX and
MCSX define the command being entered.
NOTE: MCSX is considered part of the command
code.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
55
Table 25 BMU SDRAM Interface Signals (continued)
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
MRASX
C19
1
LVTTL
OPD
Command Outputs: MRASX, MCASX, MWEX and
MCSX define the command being entered. MCSX
is considered part of the command code.
MWEX
B19
1
LVTTL
OPD
Command Outputs: MRASX, MCASX, MWEX and
MCSX define the command being entered. MCSX
is considered part of the command code.
MCSX
A19
1
LVTTL
OPD
Chip Select: MCSX enables (registered LOW) and
disables (registered HIGH) the command decoder.
All commands are masked when MCSX is
registered HIGH. MCSX provides the external bank
selection on systems with multiple banks. MCSX is
considered part of the command code.
MDQM
MDQML
G18
F18
1
1
LVTTL
LVTTL
OPD
OPD
Input/Output Mask: MDQM is an input mask
signal for write accesses and an output enable
signal for read accesses. Input data is masked
when MDQM is sampled HIGH during a WRITE
cycle. The output buffers are placed in a high Z
state (two-clock latency) when MDQM is sampled
HIGH during the READ cycle.
NOTE: MDQML is an identical copy of MDQM
used to drive the loading on SDRAM
configurations with 2 DQM pins.
MDCLK
B18
1
LVTTL
IPD
Clock: MDCLK is driven by the system clock. All
SDRAM input signals are sampled on the positive
edge of the MDCLK. MDCLK also increments the
internal burst counter and controls the output
registers.
TOTAL PINS
FREESCALE SEMICONDUCTOR
160
C5ENPB0-DS REV 08
56
CHAPTER 2: SIGNAL DESCRIPTIONS
TLU SRAM Interface
Signals
The TLU SRAM interface supports up to 128MBytes of SRAM at frequencies to 133MHz
using LVTTL signaling levels (in single bank-mode only) and SRAM technologies up to
64Mbits. The TLU SRAM interface signals are described in Table 26.
Table 26 TLU SRAM Interface Signals
SIGNAL NAME
PIN #
TYPE
I/O
TD0 - TD63
G6, G7, G8, G9, G10, H1, H2, H3, H4, H5, H6, H7, H8, 64
H9, J1, J3, J4, J5, J7, J8, J9, K1, K2, K4, K5, K6, K8, K9,
L1, L2, L3, L4, L5, L6, L7, L8, L9, M1, M2, M3, M4,
M5, M6, M7, M8, M9, N1, N3, N4, N5, N7, N8, N9,
P1, P2, P4, P5, P6, P8, P9, R6, R7, R8, R9
LVTTL
IPD/O TLU Memory Data
TA0 - TA21
T1, U1, U3, U4, U5, U7, U8, U9, V1, V2, V4, V5, V6,
V8, V9, W1, W2, W3, W4, W5, W6, W7
22
LVTTL
OPD
TPAR0 - TPAR3
R2, R3, R4, R5
4
LVTTL
IPD/O Word Data Parity (i.e. TPAR0 across
TD15:0)
TCE0X - TCE3X
T2, T3, T4, T5
4
LVTTL
OPD
TLU Memory Chip Enable
TWE0X - TWE3X
T6, T7, T8, T9
4
LVTTL
OPD
TLU Memory Write Enable
TCLKI
R1
1
LVTTL
IPD
TLU Clock Input
TOTAL PINS
C5ENPB0-DS REV 08
TOTAL
SIGNAL DESCRIPTION
TLU Memory Address
99
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
QMU SRAM (Internal
Mode) Interface Signals
57
The QMU signals are described in Table 27.
Table 27 QMU SRAM (Internal Mode) Interface Signals
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
QA0 - QA16
C8, B8, A8, F9, E9, D9, C9, B9, A9, F10, D10, C10,
A10, G11, F11, E11, D11
17
LVTTL
O
Address [16:0]
QD0 - QD31
G1, F1, E1, D1, C1, B1, G2, F2, D2, C2, A2, G3, E3,
D3, B3, A3, G4, F4, E4, D4, C4, B4, A4, G5, F5, E5,
D5, C5, B5, A5, F6, D6
32
LVTTL
IPD/O Data
QDQPAR
C11
1
LVTTL
IPD
nc
QARDY
E8
1
LVTTL
IPD
nc
QNQRDY
D8
1
LVTTL
IPD
nc
QWEX
C6
1
LVTTL
O
Write Enable
QBCLKO
A6
1
LVTTL
O
nc
QBCLKI
E7
1
LVTTL
IPD
nc
QACLKO
D7
1
LVTTL
O
nc
QACLKI
B7
1
LVTTL
IPD
Input Clock (drives QMU and
external SRAM)
QDPL
A7
1
LVTTL
IPD/O Data Parity Low
QDPH
F8
1
LVTTL
IPD/O Data Parity High
TOTAL PINS
FREESCALE SEMICONDUCTOR
59
C5ENPB0-DS REV 08
58
CHAPTER 2: SIGNAL DESCRIPTIONS
QMU (External Mode)
Interface Signals
The QMU External Mode signals are described in Table 28.
Table 28 QMU (External Mode) Interface Signals
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
QA0 - QA15
C8, B8, A8, F9, E9, D9, C9, B9, A9, F10, D10,
C10, A10, G11, F11, E11
16
LVTTL
O
Enqueue Data [8:23]
QA16
D11
1
LVTTL
O
Enqueue Parity
QD0 - QD23
G1, F1, E1, D1, C1, B1, G2, F2, D2, C2, A2, G3,
E3, D3, B3, A3, G4, F4, E4, D4, C4, B4, A4, G5
24
LVTTL
IPD
Dequeue Data [0:23]
QD24 - QD31
F5, E5, D5, C5, B5, A5, F6, D6
8
LVTTL
IPD
Enqueue Data [0:7]
QDQPAR
C11
1
LVTTL
IPD
Dequeue Parity
QARDY
E8
1
LVTTL
IPD
Dequeue Ack Ready
QNQRDY
D8
1
LVTTL
IPD
Enqueue Ready
QWEX
C6
1
LVTTL
O
Dequeue Ready
QBCLKO
A6
1
LVTTL
O
Output ClockB
QBCLKI
E7
1
LVTTL
IPD
Input ClockB
QACLKO
D7
1
LVTTL
O
Output ClockA
QACLKI
B7
1
LVTTL
IPD
Input ClockA
QDPL
A7
1
LVTTL
O
Dequeue Ack [0]
QDPH
F8
1
LVTTL
O
Dequeue Ack [1]
TOTAL PINS
59
Although the C-5e NP provides an external mode, it does not support an external traffic
manager device.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Pin Descriptions Grouped by Function
Power Supply Signals
59
Power supply and ground signals are described in Table 29.
Table 29 Power Supply Signals
SIGNAL NAME
PIN #
VDD
TYPE
SIGNAL DESCRIPTION
J13, J15, J17, J19, K12, K14, K16, K18, L11, L13, L15, 57
L17, L19, M12, M14, M16, M18, N13, N15, N17, N19,
P12, P14, P16, P18, R11, R13, R15, R17, R19, T12, T14,
T16, T18, U11, U13, U15, U17, U19, V12, V14, V16,
V18, W11, W13, W15, W17, W19, Y12, Y14, Y16, Y18,
AA11, AA13, AA15, AA17, AA19,
P
Core Supply Voltage (1.25V Input)
VDD33
B20, B28, C13, C17, C23, E15, F23, F27, H12, H14,
H16, H18, H20, J28, K20, K23, M20, N24, P20, P27,
T20, U28, V20, V23, Y20, AA6, AA24, AB3, AB10,
AB18, AB20, AB27, AE24, AF3, AF27, AH2, AH20,
AH28
P
I/O Supply Voltage (3.3V Input)
GND
B6, B15, B24, C3, C27, D12, D18, E2, E6, E10, E20, E24, 122
E28, H11, H13, H15, H17, H19, J6, J10, J12, J14, J16,
J18, J20, J24, K3, K11, K13, K15, K17, K19, K27, L10,
L12, L14, L16, L18, L20, M11, M13, M15, M17, M19,
N2, N10, N12, N14, N16, N18, N20, N28, P7, P11, P13,
P15, P17, P19, P23, R10, R12, R14, R16, R18, R20, T11,
T13, T15, T17, T19, U6, U10, U12, U14, U16, U18, U20,
U24, V3, V11, V13, V15, V17, V19, V27, W10, W12,
W14, W16, W18, W20, Y11, Y13, Y15, Y17, Y19, AA2,
AA10, AA12, AA14, AA16, AA18, AA20, AA28, AB7,
AB11, AB13, AB15, AB17, AB19, AB23, AE2, AE10,
AE20, AE28, AF7, AF12, AF18, AF23, AH6, AH15,
AH24
P
Ground
VDDF
AB12, AB14, AB16, AE6, AE15, AG13, AG17, AH10
8
P
Fabric I/O supply (3.3 or 2.5V)
VDDT
B2, B10, C7, F3, F7, H10, J2, J11, K7, K10, M10, N6,
N11, P3, P10, T10, U2, V7, V10, Y10
20
P
TLU and QMU I/O supply (3.3V)
TOTAL PINS
FREESCALE SEMICONDUCTOR
TOTAL
38
245
C5ENPB0-DS REV 08
60
CHAPTER 2: SIGNAL DESCRIPTIONS
Test Signals
Test signals are described in Table 30.
Table 30 Miscellaneous Test Signals For JTAG, Scan, and Internal Test Routines
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
SIGNAL DESCRIPTION
JTCK
C15
1
LVTTL
IPD
JTAG Test Clock. External pull-up
resistor required if not open.1
JTMS
A14
1
LVTTL
IPD
JTAG Test Mode Select. External pull-up
resistor required if not open. High
selects modes as defined in the IEEE
1149.1 JTAG specification.1
JTRSTX†
A12
1
LVTTL
IPD
JTAG Test Reset. External pull-down
resistor required if not open (low
active).1
JTDI†
B14
1
LVTTL
IPD
JTAG Test Data In. External pull-up
resistor required if not open.1
JTDO
A13
1
LVTTL
O
JTAG Test Data Out. No external pull
required.1
JHIGHZ
B13
1
LVTTL
IPD
Internal pull-down. High turns off all
output drivers.2
JCLKBYP
C14
1
LVTTL
IPD
Internal pull-down selects 1X clock
mode when open (recommended).
High selects 2X clock mode. 2
JSE
D15
1
LVTTL
IPD
Internal pull-down. High enables scan
test.2
JS00-JS05
D14, A16, D13, C12, A15, B12
6
LVTTL
O
No internal pull. Scan out pins.2
TOTAL PINS
14
1 JTAG
test signal. If JTAG is not used, this pin may be left open because it is internally pulled to turn JTAG off. However, if this pin is connected to an
external circuit, an external pull-up or pull-down resistor is required as noted in the “Signal Descriptions” column. 4.7 kohm is sufficient for external
pull-up or pull-down on JTAG signals.
2 Manufacturing test signal not supported for customer use. This pin should be left open.
During JTAG, SCLK and SCLKX must remain as differential inputs.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Signals Grouped by Pin Number
No Connection Pins
61
No connection pins are listed in Table 31.
Table 31 No Connection Pins
SIGNAL NAME
PIN #
TOTAL
TYPE
I/O
NC3 - NC5
B11, A11, A18
3
nc
IPD/O Reserved for future functionality
3
TOTAL PINS
Signals Grouped by Pin
Number
SIGNAL DESCRIPTION
The C-5e NP signals are listed by pin number in Table 32.
Table 32 Signals Listed by Pin Number
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
A 1-29
A1
Not present
A9
QA8
A17
MA6
A25
MD126
A2
QD10
A10
QA12
A18
NC5
A26
MD125
A3
QD15
A11
NC4
A19
MCSX
A27
MD124
A4
QD22
A12
JTRSTX
A20
MDECC3
A28
MD123
A5
QD29
A13
JTDO
A21
MDECC8
A29
MD122
A6
QBCLKO
A14
JTMS
A22
MD129
A7
QDPL
A15
JSO4
A23
MD128
A8
QA2
A16
JSO1
A24
MD127
B1
QD5
B9
QA7
B17
MA7
B25
MD118
B2
VDDT
B10
VDDT
B18
MDCLK
B26
MD117
B3
QD14
B11
NC3
B19
MWEX
B27
MD116
B4
QD21
B12
JSO5
B20
VDD33
B28
VDD33
B5
QD28
B13
JHIGHZ
B21
MD121
B29
MD115
B6
GND
B14
JTDI
B22
MD120
B7
QACLKI
B15
GND
B23
MD119
B8
QA1
B16
MA0
B24
GND
C25
MD111
B 1-29
C 1-29
C1
FREESCALE SEMICONDUCTOR
QD4
C9
QA6
C17
VDD33
C5ENPB0-DS REV 08
62
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
C2
QD9
C10
QA11
C18
MBA1
C26
MD110
C3
GND
C11
QDQPAR
C19
MRASX
C27
GND
C4
QD20
C12
JSO3
C20
MDECC4
C28
MD109
C5
QD27
C13
VDD33
C21
MD114
C29
MD108
C6
QWEX
C14
JCLKBYP
C22
MD113
C7
VDDT
C15
JTCK
C23
VDD33
C8
QA0
C16
MA1
C24
MD112
D 1-29
D1
QD3
D9
QA5
D17
MA8
D25
MD103
D2
QD8
D10
QA10
D18
GND
D26
MD102
D3
QD13
D11
QA16
D19
MCASX
D27
MD101
D4
QD19
D12
GND
D20
MDECC5
D28
MD100
D5
QD26
D13
JSO2
D21
MD107
D29
MD99
D6
QD31
D14
JSO0
D22
MD106
D7
QACLKO
D15
JSE
D23
MD105
D8
QNQRDY
D16
MA2
D24
MD104
E 1-29
E1
QD2
E9
QA4
E17
MA9
E25
MD95
E2
GND
E10
GND
E18
MBA0
E26
MD94
E3
QD12
E11
QA15
E19
MDECC0
E27
MD93
E4
QD18
E12
CCLK7
E20
GND
E28
GND
E5
QD25
E13
CCLK5
E21
MD98
E29
MD92
E6
GND
E14
CCLK2
E22
MD97
E7
QBCLKI
E15
VDD33
E23
MD96
E8
QARDY
E16
MA3
E24
GND
F 1-29
C5ENPB0-DS REV 08
F1
QD1
F9
QA3
F17
MA10
F25
MD88
F2
QD7
F10
QA9
F18
MDQML
F26
MD87
FREESCALE SEMICONDUCTOR
Signals Grouped by Pin Number
63
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
F3
VDDT
F11
QA14
F19
MDECC1
F27
VDD33
F4
QD17
F12
CCLK6
F20
MDECC6
F28
MD86
F5
QD24
F13
CCLK4
F21
MD91
F29
MD85
F6
QD30
F14
CCLK1
F22
MD90
F7
VDDT
F15
SCLKX
F23
VDD33
F8
QDPH
F16
MA4
F24
MD89
G 1-29
G1
QD0
G9
TD3
G17
MA11
G25
MD80
G2
QD6
G10
TD4
G18
MDQM
G26
MD79
G3
QD11
G11
QA13
G19
MDECC2
G27
MD78
G4
QD16
G12
CPREF
G20
MDECC7
G28
MD77
G5
QD23
G13
CCLK3
G21
MD84
G29
MD76
G6
TD0
G14
CCLK0
G22
MD83
G7
TD1
G15
SCLK
G23
MD82
G8
TD2
G16
MA5
G24
MD81
H 1-29
H1
TD5
H9
TD13
H17
GND
H25
MD71
H2
TD6
H10
VDDT
H18
VDD33
H26
MD70
H3
TD7
H11
GND
H19
GND
H27
MD69
H4
TD8
H12
VDD33
H20
VDD33
H28
MD68
H5
TD9
H13
GND
H21
MD75
H29
MD67
H6
TD10
H14
VDD33
H22
MD74
H7
TD11
H15
GND
H23
MD73
H8
TD12
H16
VDD33
H24
MD72
J 1-29
FREESCALE SEMICONDUCTOR
J1
TD14
J9
TD20
J17
VDD
J25
MD63
J2
VDDT
J10
GND
J18
GND
J26
MD62
J3
TD15
J11
VDDT
J19
VDD
J27
MD61
C5ENPB0-DS REV 08
64
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
J4
TD16
J12
GND
J20
GND
J28
VDD33
J5
TD17
J13
VDD
J21
MD66
J29
MD60
J6
GND
J14
GND
J22
MD65
J7
TD18
J15
VDD
J23
MD64
J8
TD19
J16
GND
J24
GND
K 1-29
K1
TD21
K9
TD27
K17
GND
K25
MD56
K2
TD22
K10
VDDT
K18
VDD
K26
MD55
K3
GND
K11
GND
K19
GND
K27
GND
K4
TD23
K12
VDD
K20
VDD33
K28
MD54
K5
TD24
K13
GND
K21
MD59
K29
MD53
K6
TD25
K14
VDD
K22
MD58
K7
VDDT
K15
GND
K23
VDD33
K8
TD26
K16
VDD
K24
MD57
L 1-29
L1
TD28
L9
TD36
L17
VDD
L25
MD48
L2
TD29
L10
GND
L18
GND
L26
MD47
L3
TD30
L11
VDD
L19
VDD
L27
MD46
L4
TD31
L12
GND
L20
GND
L28
MD45
L5
TD32
L13
VDD
L21
MD52
L29
MD44
L6
TD33
L14
GND
L22
MD51
L7
TD34
L15
VDD
L23
MD50
L8
TD35
L16
GND
L24
MD49
M 1-29
C5ENPB0-DS REV 08
M1
TD37
M9
TD45
M17
GND
M25
MD39
M2
TD38
M10
VDDT
M18
VDD
M26
MD38
M3
TD39
M11
GND
M19
GND
M27
MD37
M4
TD40
M12
VDD
M20
VDD33
M28
MD36
FREESCALE SEMICONDUCTOR
Signals Grouped by Pin Number
65
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
M5
TD41
M13
GND
M21
MD43
M29
MD35
M6
TD42
M14
VDD
M22
MD42
M7
TD43
M15
GND
M23
MD41
M8
TD44
M16
VDD
M24
MD40
N 1-29
N1
TD46
N9
TD52
N17
VDD
N25
MD31
N2
GND
N10
GND
N18
GND
N26
MD30
N3
TD47
N11
VDDT
N19
VDD
N27
MD29
N4
TD48
N12
GND
N20
GND
N28
GND
N5
TD49
N13
VDD
N21
MD34
N29
MD28
N6
VDDT
N14
GND
N22
MD33
N7
TD50
N15
VDD
N23
MD32
N8
TD51
N16
GND
N24
VDD33
P 1-29
P1
TD53
P9
TD59
P17
GND
P25
MD24
P2
TD54
P10
VDDT
P18
VDD
P26
MD23
P3
VDDT
P11
GND
P19
GND
P27
VDD33
P4
TD55
P12
VDD
P20
VDD33
P28
MD22
P5
TD56
P13
GND
P21
MD27
P29
MD21
P6
TD57
P14
VDD
P22
MD26
P7
GND
P15
GND
P23
GND
P8
TD58
P16
VDD
P24
MD25
R 1-29
FREESCALE SEMICONDUCTOR
R1
TCLKI
R9
TD63
R17
VDD
R25
MD16
R2
TPAR0
R10
GND
R18
GND
R26
MD15
R3
TPAR1
R11
VDD
R19
VDD
R27
MD14
R4
TPAR2
R12
GND
R20
GND
R28
MD13
R5
TPAR3
R13
VDD
R21
MD20
R29
MD12
C5ENPB0-DS REV 08
66
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
R6
TD60
R14
GND
R22
MD19
R7
TD61
R15
VDD
R23
MD18
R8
TD62
R16
GND
R24
MD17
PIN
FUNCTION
T 1-29
T1
TA0
T9
TWE3X
T17
GND
T25
MD7
T2
TCE0X
T10
VDDT
T18
VDD
T26
MD6
T3
TCE1X
T11
GND
T19
GND
T27
MD5
T4
TCE2X
T12
VDD
T20
VDD33
T28
MD4
T5
TCE3X
T13
GND
T21
MD11
T29
MD3
T6
TWE0X
T14
VDD
T22
MD10
T7
TWE1X
T15
GND
T23
MD9
T8
TWE2X
T16
VDD
T24
MD8
U 1-29
U1
TA1
U9
TA7
U17
VDD
U25
CPF_6
U2
VDDT
U10
GND
U18
GND
U26
CPF_5
U3
TA2
U11
VDD
U19
VDD
U27
CPF_4
U4
TA3
U12
GND
U20
GND
U28
VDD33
U5
TA4
U13
VDD
U21
MD2
U29
CPF_3
U6
GND
U14
GND
U22
MD1
U7
TA5
U15
VDD
U23
MD0
U8
TA6
U16
GND
U24
GND
V 1-29
C5ENPB0-DS REV 08
V1
TA8
V9
TA14
V17
GND
V25
CPE_6
V2
TA9
V10
VDDT
V18
VDD
V26
CPE_5
V3
GND
V11
GND
V19
GND
V27
GND
V4
TA10
V12
VDD
V20
VDD33
V28
CPE_4
V5
TA11
V13
GND
V21
CPF_2
V29
CPE_3
V6
TA12
V14
VDD
V22
CPF_1
FREESCALE SEMICONDUCTOR
Signals Grouped by Pin Number
67
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
V7
VDDT
V15
GND
V23
VDD33
V8
TA13
V16
VDD
V24
CPF_0
PIN
FUNCTION
W 1-29
W1
TA15
W9
PFRAMEX
W17
VDD
W25
CPD_5
W2
TA16
W10
GND
W18
GND
W26
CPD_4
W3
TA17
W11
VDD
W19
VDD
W27
CPD_3
W4
TA18
W12
GND
W20
GND
W28
CPD_2
W5
TA19
W13
VDD
W21
CPE_2
W29
CPD_1
W6
TA20
W14
GND
W22
CPE_1
W7
TA21
W15
VDD
W23
CPE_0
W8
XPUHOT
W16
GND
W24
CPD_6
Y 1-29
Y1
SPDO
Y9
PINTA
Y17
GND
Y25
CPC_3
Y2
SPDI
Y10
VDDT
Y18
VDD
Y26
CPC_2
Y3
SPLD
Y11
GND
Y19
GND
Y27
CPC_1
Y4
SPCK
Y12
VDD
Y20
VDD33
Y28
CPC_0
Y5
SICL
Y13
GND
Y21
CPD_0
Y29
CPB_6
Y6
SIDA
Y14
VDD
Y22
CPC_6
Y7
PGNTX
Y15
GND
Y23
CPC_5
Y8
PIDSEL
Y16
VDD
Y24
CPC_4
AA 1-29
FREESCALE SEMICONDUCTOR
AA1
PSERRX
AA9
PREQX
AA17
VDD
AA25
CPB_2
AA2
GND
AA10
GND
AA18
GND
AA26
CPB_1
AA3
PPERRX
AA11
VDD
AA19
VDD
AA27
CPB_0
AA4
PDEVSELX
AA12
GND
AA20
GND
AA28
GND
AA5
PSTOPX
AA13
VDD
AA21
CPB_5
AA29
CPA_6
AA6
VDD33
AA14
GND
AA22
CPB_4
AA7
PCLK
AA15
VDD
AA23
CPB_3
C5ENPB0-DS REV 08
68
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
AA8
PRSTX
AA16
GND
AA24
VDD33
PIN
FUNCTION
AB 1-29
AB1
PPAR
AB9
PTRDYX
AB17
GND
AB25
CPA_2
AB2
PCBEX3
AB10
VDD33
AB18
VDD33
AB26
CPA_1
AB3
VDD33
AB11
GND
AB19
GND
AB27
VDD33
AB4
PCBEX2
AB12
VDDF
AB20
VDD33
AB28
CPA_0
AB5
PCBEX1
AB13
GND
AB21
CPA_5
AB29
CP9_6
AB6
PCBEX0
AB14
VDDF
AB22
CPA_4
AB7
GND
AB15
GND
AB23
GND
AB8
PIRDYX
AB16
VDDF
AB24
CPA_3
AC 1-29
AC1
PAD31
AC9
FIN21
AC17
FOUT11
AC25
CP4_3
AC2
PAD30
AC10
FIN14
AC18
FOUT5
AC26
CP3_3
AC3
PAD29
AC11
FIN9
AC19
CP9_5
AC27
CP2_3
AC4
PAD28
AC12
FIN2
AC20
CP8_5
AC28
CP1_4
AC5
PAD27
AC13
FTXCTL4
AC21
CP8_0
AC29
CP0_6
AC6
FRXCLK
AC14
FOUT30
AC22
CP7_0
AC7
FRXCTL2
AC15
FOUT23
AC23
CP6_0
AC8
FIN28
AC16
FOUT18
AC24
CP5_1
AD 1-29
C5ENPB0-DS REV 08
AD1
PAD26
AD9
FIN20
AD17
FOUT10
AD25
CP4_2
AD2
PAD25
AD10
FIN13
AD18
FOUT4
AD26
CP3_2
AD3
PAD24
AD11
FIN8
AD19
CP9_4
AD27
CP2_2
AD4
PAD23
AD12
FIN1
AD20
CP8_4
AD28
CP1_3
AD5
PAD22
AD13
FTXCTL3
AD21
CP7_6
AD29
CP0_5
AD6
FRXCTL6
AD14
FOUT29
AD22
CP6_6
AD7
FRXCTL1
AD15
FOUT22
AD23
CP5_6
AD8
FIN27
AD16
FOUT17
AD24
CP5_0
FREESCALE SEMICONDUCTOR
Signals Grouped by Pin Number
69
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
AE 1-29
AE1
PAD21
AE9
FIN19
AE17
FOUT9
AE25
CP4_1
AE2
GND
AE10
GND
AE18
FOUT3
AE26
CP3_1
AE3
PAD20
AE11
FIN7
AE19
CP9_3
AE27
CP2_1
AE4
PAD19
AE12
FIN0
AE20
GND
AE28
GND
AE5
PAD18
AE13
FTXCTL2
AE21
CP7_5
AE29
CP0_4
AE6
VDDF
AE14
FOUT28
AE22
CP6_5
AE7
FRXCTL0
AE15
VDDF
AE23
CP5_5
AE8
FIN26
AE16
FOUT16
AE24
VDD33
AF 1-29
AF1
PAD17
AF9
FIN18
AF17
FOUT8
AF25
CP4_0
AF2
PAD16
AF10
FIN12
AF18
GND
AF26
CP3_0
AF3
VDD33
AF11
FIN6
AF19
CP9_2
AF27
VDD33
AF4
PAD15
AF12
GND
AF20
CP8_3
AF28
CP1_2
AF5
PAD14
AF13
FTXCTL1
AF21
CP7_4
AF29
CP0_3
AF6
FRXCTL5
AF14
FOUT27
AF22
CP6_4
AF7
GND
AF15
FOUT21
AF23
GND
AF8
FIN25
AF16
FOUT15
AF24
CP4_6
AG 1-29
AG1
PAD13
AG9
FIN17
AG17
VDDF
AG25
CP3_6
AG2
PAD12
AG10
FIN11
AG18
FOUT2
AG26
CP2_6
AG3
PAD11
AG11
FIN5
AG19
CP9_1
AG27
CP2_0
AG4
PAD10
AG12
FTXCLK
AG20
CP8_2
AG28
CP1_1
AG5
PAD9
AG13
VDDF
AG21
CP7_3
AG29
CP0_2
AG6
FRXCTL4
AG14
FOUT26
AG22
CP6_3
AG7
FIN31
AG15
FOUT20
AG23
CP5_4
AG8
FIN24
AG16
FOUT14
AG24
CP4_5
AH 1-29
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
70
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 32 Signals Listed by Pin Number (continued)
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
PIN
FUNCTION
AH1
PAD8
AH9
FIN16
AH17
FOUT7
AH25
CP3_5
AH2
VDD33
AH10
VDDF
AH18
FOUT1
AH26
CP2_5
AH3
PAD7
AH11
FIN4
AH19
CP9_0
AH27
CP1_6
AH4
PAD6
AH12
FTXCTL6
AH20
VDD33
AH28
VDD33
AH5
PAD5
AH13
FTXCTL0
AH21
CP7_2
AH29
CP0_1
AH6
GND
AH14
FOUT25
AH22
CP6_2
AH7
FIN30
AH15
GND
AH23
CP5_3
AH8
FIN23
AH16
FOUT13
AH24
GND
AJ 1-29
C5ENPB0-DS REV 08
AJ1
PAD4
AJ9
FIN15
AJ17
FOUT6
AJ25
CP3_4
AJ2
PAD3
AJ10
FIN10
AJ18
FOUT0
AJ26
CP2_4
AJ3
PAD2
AJ11
FIN3
AJ19
CP8_6
AJ27
CP1_5
AJ4
PAD1
AJ12
FTXCTL5
AJ20
CP8_1
AJ28
CP1_0
AJ5
PAD0
AJ13
FOUT31
AJ21
CP7_1
AJ29
CP0_0
AJ6
FRXCTL3
AJ14
FOUT24
AJ22
CP6_1
AJ7
FIN29
AJ15
FOUT19
AJ23
CP5_2
AJ8
FIN22
AJ16
FOUT12
AJ24
CP4_4
FREESCALE SEMICONDUCTOR
JTAG Support
JTAG Support
71
The C-5e NP contains Joint Test Action Group (JTAG) test logic compliant with the IEEE
1149.1 specification. All required public instructions are implemented, as well as some
optional instructions. This section contains information regarding the pinout, instructions,
identification codes, and boundary scan cell types.
Pinout
JTAG Data Registers
The C-5e NP uses the standard JTAG pins including the optional test reset pin. Table 30
describes the pins, their functions, and termination circuits required to ensure predictable
NP behavior.
The C-5e NP contains the standard internal registers as specified in IEEE 1149.1. These
registers are described in Table 33.
Table 33 JTAG Internal Register Descriptions
Boundary Scan Cell Types
FREESCALE SEMICONDUCTOR
REGISTER NAME
REGISTER LENGTH
DESCRIPTION
Bypass
1
Standard JTAG bypass register
Boundary
1549
Boundary Scan Register
Device Identification
32
Standard JTAG IDCODE Register
The C-5e NP boundary scan register contains only two cell types. All input cells are observe
only cells of type BC_4. All enable and output cells are standard cells of type BC_1. In IEEE
1149.1-1990 specification, the BC_4 cell is shown in Figure 7 and the BC_1 cell is shown in
Figure 8.
C5ENPB0-DS REV 08
72
CHAPTER 2: SIGNAL DESCRIPTIONS
Figure 7 Observe-Only Cell
To next cell
From System Pin
To System Logic
G1
1D
C1
Clock DR
From last cell
Shift DR
0
1
Figure 8 Cell Design That Can Be Used for Both Input and Output Pins
Node
To next cell
Shift DR
To/From
System Pin
G1
0
1
From/To
System
G1
0
1
From last cell
C5ENPB0-DS REV 08
1D
C1
Clock DR
1D
C1
Update DR
FREESCALE SEMICONDUCTOR
JTAG Support
IDcode Register
73
The C-5e NP implements a standard 32bit JTAG identification register. Table 34 lists the
value of the code for full identification and its subcomponents.
Table 34 JTAG Identification Code and Its Subcomponents
FIELD NAME
WIDTH
BIT POSITIONS
BINARY VALUE
Version
4
31-28
0000
Part Number
16
27-12
0000_0000_0010_0010
Manufacturer Identity
11
11-1
001_1001_0110
LSB
1
0
1
The concatenated 32bit value is hexidecimal 0002232d.
JTAG Instruction Register
The C-5e NP contains a 4bit instruction register. Table 35 lists the instructions that are
supported.
Table 35 Instruction Register Instructions
FREESCALE SEMICONDUCTOR
INSTRUCTION MNEMONIC SELECTED REGISTER
INSTRUCTION OPCODE
Extest
Boundary Scan
0000
Idcode
Identification Register
0001
Sample/Preload
Boundary Scan
0010
Highz
Bypass Register
0011
Clamp
Bypass Register
0100
Bypass
Bypass Register
0101
Reserved*
Bypass Register
0110
Reserved*
Bypass Register
0111
Bypass
Bypass Register
1000
Bypass
Bypass Register
1001
Bypass
Bypass Register
1010
Bypass
Bypass Register
1011
Bypass
Bypass Register
1100
Bypass
Bypass Register
1101
C5ENPB0-DS REV 08
74
CHAPTER 2: SIGNAL DESCRIPTIONS
Table 35 Instruction Register Instructions (continued)
*
Boundary Scan
Description Language
INSTRUCTION MNEMONIC SELECTED REGISTER
INSTRUCTION OPCODE
Bypass
Bypass Register
1110
Bypass
Bypass Register
1111
There are two reserved instructions intended for Freescale’s internal use. These
should not be programmed by users.
In order to simplify board test, Freescale Semiconductor has provided a boundary scan
description language (BSDL) file (c5e.bsdl) in the Freescale web site that describes the
complete set of instructions, boundary scan order, and identification code value in an
industry standard format.
http://www.freescale.com/networkprocessors
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Chapter 3
Rev 08
ELECTRICAL SPECIFICATIONS
Absolute Maximum
Ratings
Table 36 lists the absolute maximum ratings for the C-5e network processor. Stresses
beyond those listed may cause permanent damage to the device. These are stress ratings
only and do not imply that operation under any conditions other than those listed under
“Recommended Operating Conditions” (Table 37) is possible.
Exposure to conditions beyond Table 36 can:
•
•
Reduce device reliability
Result in premature device failure, even with no immediate sign of failure
Prolonged exposure to conditions at or near the absolute maximum ratings could also
result in reduced useful life and reliability of the C-5e NP.
Table 36 C-5e Network Processor Absolute Maximum Ratings
*
†
‡
FREESCALE SEMICONDUCTOR
PARAMETER
MIN
MAX
UNIT
VDD33/VDDT/VDDF Supply Voltage (3.3V input)*
-0.5
+5
V
VDD Supply Voltage (1.25V input)*
-0.5
+2.2
V
Voltage on any pin
-0.5
VDD33 + 0.5†
V
Static Discharge Voltage
2000/200‡
Storage Temperature
-40
+125
°C
Absolute Maximum Junction Temperature
-40
+125
°C
V
Voltages are relative to Ground
5.5V allowed on PCI pins (pin name beginning with letter “P”)
HBM/MM
C5ENPB0-DS REV 08
76
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Recommended Operating
Conditions
The recommended operating conditions describe an environment the C-5e NP network
processor is expected to encounter during normal operation. Table 37 delineates the
recommended operating parameters for the C-5e NP.
Table 37 C-5e Network Processor Recommended Operating Conditions
PARAMETER
MIN
NOMINAL MAX
UNIT
VDD33 Supply Voltage
3.135
3.3
3.465
V
VDDTSupply Voltage
3.135
3.3
3.465
V
VDDFSupply Voltage
2.375
3.135
2.5
3.3
2.625*
3.465
V
VDD Supply Voltage
1.19
1.25
1.31
V
IDD33 (VDD33 Supply Current)
0.7
A
IDDT (VDDT Supply Current)
0.5
A
IDDF (VDDF Supply Current)
0.1†
A
IDD (VDD Supply Current)
8.5 (266Mhz)
9.8 (300Mhz)
A
125
°C
Tj Junction Temperature
*
†
C5ENPB0-DS REV 08
-40
For FP operation with I/Os @ 2.5V nominal.
For FP operation with I/Os @ 3.3V nominal.
FREESCALE SEMICONDUCTOR
DC Characteristics
DC Characteristics
77
The DC electrical characteristics define the input operating conditions for proper
operation and the output responses to applied DC signals and switch characteristics over
specified voltage and temperature ranges. The DC electrical characteristics are specified
within the recommended operating conditions including operating temperature and power
supply range as stated in this data sheet. Table 38 outlines the C-5e NP DC characteristics.
Table 38 C-5e Network Processor DC Characteristics
PARAMETER*
MIN
MAX
UNIT
LVTTL Input High Voltage
2.0
VDD33+.3
V
LVTTL Input High Voltage
(PCI pins)
2.0
5.5
V
LVTTL Input Low Voltage
-0.3
0.8
V
LVTTL Output High Voltage
2.4
LVTTL Output Low Voltage
*
†
NOTES
PCI pins begin with letter “P”
in pin name.
V
@IOH = -2mA
0.4
V
@IOL = +2mA
VIN = 0V or VDD33 †
LVTTL Input Current
-150
+150
µA
LVPECL Input High Voltage
VDD33 -1.165
VDD33+.3V
V
LVPECL Input Low Voltage
-0.3
VDD33 -1.475
V
LVPECL Output High Voltage VDD33 -1.025
VDD33 -0.60
V
Load = 50ohm to VDD33 - 2V
LVPECL Output Low Voltage
VDD33 -2.20
VDD33 -1.620
V
Load = 50ohm to VDD33 - 2V
LVPECL Input Current
-100
+100
µA
CPREF
VDD33 -1.38
VDD33 -1.26
V
Single-ended LVPECL
reference
All voltages are relative to Ground unless otherwise indicated.
Reflects current due to pullup/pulldown internal resistors.
Each control input pin has a capacitance associated with it. The capacitance at the control
input is due to the package and the input circuitry connected to the pin. Capacitance is
based on these conditions: TA = 25°C; VDD33 = 3.3V; f = 1MHz. Table 39 provides
capacitance data.
Table 39 C-5e Network Processor Capacitance Data
FREESCALE SEMICONDUCTOR
PARAMETER
TYPICAL
UNIT
All Pins
5
pF
C5ENPB0-DS REV 08
78
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Power Sequencing
It is intended that the VDD33/VDDT/VDDF and VDD rails are sequenced to their final value
together. VDD33, VDDT and VDDF must be above VDD at all times to prevent internal
parasitic diodes from turning on and possibly damaging the device. VDD must be brought
to its final value within 100ms of sequencing on VDD33, VDDT and VDDF. During this
100ms, significant current may be drawn by the three IO supplies (up to 30A total) until
VDD is asserted to reset the IO drivers. To minimize this current draw during power-on, it
is recommended that this sequencing time be minimized in the power supply design.
It is also required that SCLK, SCLKX, TCLKI, PCLK, MDCLK, FTXCLK, and FRXCLK be running
or begin running during power sequencing to propagate reset inside the C-5e NP. Figure 9
indicates the relationship between the clocks and PRSTX. There is no requirement that the
asserting and deasserting edges of PRSTX be synchronous to the clocks. Reset must be
asserted within 100µs of power initiation. Typically, reset is held low during power
initiation.
Figure 9 Bringup Clock Timing Diagram
VDD, VDD33,
VDDT, VDDF
≤100µs
PRSTX
) (
≥1ms
TCLKI, PCLK,
SCLK, SCLKX,
MDCLK, FTXCLK,
FRXCLK
C5ENPB0-DS REV 08
≥100µs
) (
FREESCALE SEMICONDUCTOR
Power and Thermal Characteristics
Power and Thermal
Characteristics
79
Table 40 provides the derived power and thermal characteristics for the production
version of the C-5e NP.
Table 40 C-5e Network Processor Power and Thermal Characteristics
PARAMETER
MIN
TYP
MAX
UNITS
TEST CONDITIONS
Power Dissipation, PD
5.5
10.6
15.0
W
300MHz core clock*
Power Dissipation, PD
5.5
9.2
13.0
W
266MHz core clock*
125
oC
All clock speeds
Maximum Junction
Temperature, TJ
*
FREESCALE SEMICONDUCTOR
Thermal Resistance, junction
to case, θJC
<0.1
oC/W
Thermal Resistance, junction
to printed circuit board, θJB
4.8
oC/W
Power dissipation values assume the following conditions: BMU memory operating at 133MHz. TLU memory
operating at 133MHz. QMU memory operating at 160MHz (refer to Table 57 for details. VDD= 1.25V, VDD33=
3.3V, TJ at approximately 50°C for typical values. VDD and VDD33 are 5% higher for maximum values.
“Minimum” PD based on idle conditions (clocks running and no programs executing). “Typical” PD based on
test application that implements Fast Ethernet forwarding actively running on all CPs. “Maximum” PD based
on maximum consumption for any high-bandwidth communications application executing on all CPs, FP
and XP.
C5ENPB0-DS REV 08
80
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Thermal Management
Information
This section provides thermal management information for the ceramic ball grid array
(CBGA) package for air-cooled applications. Proper thermal control design is primarily
dependent on the system-level design—the heat sink, airflow, and thermal interface
material. To reduce the die-junction temperature, heat sinks may be attached to the
package by several methods—spring clip to holes in the printed-circuit board or package,
and mounting clip and screw assembly (refer to Figure 10); however, due to the potential
large mass of the heat sink, attachment through the printed circuit board is suggested. If a
spring clip is used, the spring force should not exceed 5.5 pounds.
Figure 10 Package Cross Section View with Several Heat Sink Options
Heat Sink
Heat Sink Clip
Thermal Interface Material
CBGA Package
Printed Circuit Board
Internal Package Conduction Resistance
For the exposed-die packaging technology the intrinsic conduction thermal resistance
paths are as follows:
•
•
The die junction-to-case (or top-of-die for exposed silicon) thermal resistance
The die junction-to-ball thermal resistance
Figure 11 depicts the primary heat transfer path for a package with an attached heat sink
mounted to a printed-circuit board.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
Power and Thermal Characteristics
81
Figure 11 Package with Heat Sink Mounted to the Printed Circuit Board
Radiation
External Resistance
Convection
Heat Sink
Thermal Interface Material
Die/Package
Internal Resistance
Die Junction
Package/Leads
Printed Circuit Board (PCB)
External Resistance
Radiation
Convection
Heat generated on the active side of the chip is conducted through the silicon, then
through the heat sink attach material (or thermal interface material), and finally to the
heat sink where it is removed by convection.
Because the silicon thermal resistance is quite small, for a first-order analysis, the
temperature drop in the silicon may be neglected. Thus, the thermal interface material
and the heat sink conduction/convective thermal resistances are the dominant terms.
Heat Sink Selection Example
For preliminary heat sink sizing, the die-junction temperature can be expressed as follows:
T j = T a + T r + (θjc + θint + θsa) x P d
where:
T j is the die-junction temperature
T a is the inlet cabinet ambient temperature
T r is the air temperature rise within the computer cabinet
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
82
CHAPTER 3: ELECTRICAL SPECIFICATIONS
θjc is the junction-to-case thermal resistance
θint is the adhesive or interface material thermal resistance
θsa is the heat sink base-to-ambient thermal resistance
P d is the power dissipated by the device
During operation, the die-junction temperatures (T j) should be maintained less than the
value specified in Table 40. The temperature of the air cooling the component greatly
depends upon the ambient inlet air temperature and the air temperature rise within the
electronic cabinet. An electronic cabinet inlet-air temperature (T a) may range from 30° to
40°C. The air temperature rise within a cabinet (T r) may be in the range of 5° to 10°C. The
thermal resistance of the thermal interface material (θint) is typically about 1.5°C/W. For
example, assuming a T a of 30°C, a T r of 5°C, a CBGA package θjc = 0.1, and a maximum
power consumption (P d) of 13.0 W, the following expression for T j is obtained:
Die-junction temperature: T j = 30°C + 5°C + (0.1°C/W + 1.5°C/W + θsa) x 13.0 W
For this example, a θsa value of 5.3°C/W or less is required to maintain the die junction
temperature below the maximum value of Table 40.
Though the die junction-to-ambient and the heat sink-to-ambient thermal resistances are
a common figure-of-merit used for comparing the thermal performance of various
microelectronic packaging technologies, one should exercise caution when only using
this metric in determining thermal management because no single parameter can
adequately describe three-dimensional heat flow. The final die-junction operating
temperature is not only a function of the component-level thermal resistance, but the
system-level design and its operating conditions. In addition to the component's power
consumption, a number of factors affect the final operating die-junction
temperature—airflow, board population (local heat flux of adjacent components), heat
sink efficiency, heat sink attach, heat sink placement, next-level interconnect technology,
system air temperature rise, altitude, etc.
Due to the complexity and the many variations of system-level boundary conditions for
today's microelectronic equipment, the combined effects of the heat transfer
mechanisms (radiation, convection, and conduction) may vary widely. For these reasons,
we recommend using conjugate heat transfer models for the board, as well as
system-level designs.
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
AC Timing Specifications
AC Timing Specifications
83
AC timing specifications consist of input requirements and output responses. The input
requirements include setup and hold times, pulse widths, and high and low times. The
output responses include delays from clock to signal. The AC timing specifications are
defined separately for each interface to the C-5e NP.
See Figure 12. Output timing specifications for LVTTL pins are given with a 20pF load on
the output. Other loads can be simulated with the IBIS model available from Freescale.
The LVPECL driver is specified into a 50Ω load terminated to a (VDD33 - 2V) reference.
Figure 12 Test Loading Conditions
LVTTL
DUT
20pF
VDD33
+2V
LVPECL
DUT
50Ω
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
84
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Clock Timing
Specifications
The system clock timing is shown in Figure 13 and described in Table 41.
Figure 13 System Clock Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
SCLK
SCLKX
Tsc
Tsh
Tsl
CCLKn
TccN
Tcch
Tccl
Table 41 System Clock Timing Description
SYMBOL PARAMETER
*
C5ENPB0-DS REV 08
MIN
TYP
MAX
UNIT
COMMENT
Tsc
System Cycle Time 3.76
ns
266MHz core clock
Tsc
System Cycle Time 3.33
ns
300MHz core clock
Tsh
Sys Clk High Pulse
45
55
Duty cycle*
Tsl
Sys Clk Low Pulse
45
55
Duty cycle*
Tcc0
CCLK0 Cycle Time
647.67
ns
T1†
Tcc1
CCLK1 Cycle Time
488.28
ns
E1†
Tcc2
CCLK2 Cycle Time
29.097
ns
E3†
Tcc3
CCLK3 Cycle Time
22.353
ns
T3†
Tcc4
CCLK4 Cycle Time
20.00
ns
RMII†
Tcc5
CCLK5 Cycle Time
9.412
ns
Fibre Channel†
Tcc6
CCLK6 Cycle Time
8.00
ns
GMII†
Tcc7
CCLK7 Cycle Time
6.43
ns
OC-3†
Tcch
CCLKm High Time
40%
60%
% cycle pulse is high
Tccl
CCLKm Low Time
40%
60%
% cycle pulse is low
Pulse duty cycle measured at crossing voltage of SCLK/SCLKX
FREESCALE SEMICONDUCTOR
AC Timing Specifications
†
CP Timing Specifications
85
The frequencies specified for CCLK0 - CCLK7 allow full flexibility for the C-5e NP. It is also possible to use one
or more CCLKn inputs for other frequencies; contact your Freescale representative for more information.
This section describes the timing for the following CP interfaces:
•
•
•
•
•
DS1/DS3
10/100 Ethernet
Gigabit Ethernet
OC-3
OC-12
DS1/DS3 Timing Specifications
The DS1/DS3 interface timing is shown in Figure 14 and described in Table 42.
Figure 14 DS1/DS3 Ethernet Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
CPn_0 (TCLK)
Tcdt
CPn_2/3 (Tx)
Tcdo
Cycle 2
Cycle 3
Cycle 4
Cycle 5
CPn_1 (RCLK)
Tcdr
CPn_4/5 (Rx)
Tcds
FREESCALE SEMICONDUCTOR
Tcdh
C5ENPB0-DS REV 08
86
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Table 42 DS1/DS3 Ethernet Timing Description
SYMBOL
PARAMETER
MIN
TYP
MAX
Tcdt
DS1/DS3 Transmit Cycle Time
Tcdo
DS1/DS3 Output Time
Tcdr
DS1/DS3 Receive Cycle Time
Tcds
DS1/DS3 Setup Time
2.0
ns
Tcdh
DS1/DS3 Hold Time
0
ns
647/22.4
3.0/3.0
UNIT
ns
400/15.0
647/22.4
ns
ns
10/100 Ethernet Timing Specifications
The 10/100 Ethernet interface timing is shown in Figure 15 and described in Table 43.
Figure 15 10/100 Ethernet Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
CPn_0 (TCLK)
Tcet
CPn_2/3/6 (Tx)
Tceo
CPn_1/4/5 (Rx)
Tces
Tceh
Table 43 10/100 Ethernet Timing Description
*
C5ENPB0-DS REV 08
SYMBOL
PARAMETER
MIN
TYP
MAX
Tcet
Transmit Cycle Time*
Tceo
Output Time
3.0
Tces
Setup Time
2.0
ns
Tceh
Hold Time
0
ns
20
UNIT
ns
15.0
ns
STD/Fast Ethernet
FREESCALE SEMICONDUCTOR
AC Timing Specifications
87
Gigabit GMII Ethernet, TBI and MII Interface Timing Specifications
The Gigabit GMII Ethernet interface timing is shown in Figure 16 and described in
Table 44. The TBI interface timing is shown in Figure 16 and described in Table 45.
Figure 16 Gigabit Ethernet and TBI Interface Timing Diagram
GMII / TBI Tx
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
CPn_0 (TCLK)
Tcgt
CPn_2-6 (Tx)
CPn+1_2-6 (Tx)
Tcgo
MII Tx
Cycle 1
Cycle 2
Cycle 3
MII CPn_1 (TCLKI)
Tcmt
MII CPn_2-6 (Tx)
Tcmo
TBI Rx
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 3
Cycle 4
Cycle 5
CPn+2_1 (RCLK)
CPn+3_1 (RCLKN)
Tctr
Tctd
CPn+2_2-6 (Rx)
CPn+3_2-6 (Rx)
Tcts
GMII/MII Rx
Cycle 1
Tcth
Cycle 2
CPn+2_1 (RCLK)
Tcgr
CPn+2_2-6 (Rx)
CPn+3_1-6 (Rx)
Tcgs
FREESCALE SEMICONDUCTOR
Tcgh
C5ENPB0-DS REV 08
88
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Table 44 Gigabit GMII/MII Ethernet Interface Timing Description
SYMBOL
GIGABIT
PARAMETER
Tcgt
Transmit Cycle Time, GMII
Tcgo
Output Time, GMII
Tcgr
Receive Cycle Time
Tcgs
Setup Time
2.0
ns
Tcgh
Hold Time
0.0
ns
Tcmt
Transmit Cycle Time, MII
Tcmo
Output Time, MII
MIN
TYP
MAX
UNIT
8.0
COMMENT
ns
3.0
6.0
ns
8.0
ns
40/400
2
ns
8
100BaseT/10BaseT
ns
Table 45 Gigabit TBI Interface Timing Description
*
C5ENPB0-DS REV 08
SYMBOL
TBI
PARAMETER
Tctt
Transmit Cycle Time
Tcto
Output Time
Tctr
Receive Cycle Time
Tctd
Rclk/Rclkn Deviation
Tcts
Setup Time
2.0
ns
Tcth
Hold Time
0.0
ns
MIN
TYP
MAX
TOL
8.0
3.0
UNIT
ns
6.0*
ns
16.0
ns
1.0
ns
For Fibre Channel applications this value is 7.0ns for a transmit cycle time of 9.4ns.
FREESCALE SEMICONDUCTOR
AC Timing Specifications
89
OC-3 Timing Specifications
The OC-3 interface timing is shown in Figure 17 and described in Table 46.
Figure 17 OC-3 Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
CPn_2
Tc3t
CPn_3
Tc3i
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
CPn_0
CPn_1
Tc3r
Tc3d
CPn_4
Tc3s
Tc3h
Tc3s
Tc3h
CPn_5
Table 46 OC-3 Timing Description
FREESCALE SEMICONDUCTOR
SYMBOL
PARAMETER
MIN
TYP
MAX
Tc3t
OC-3 Transmit Cycle Time
Tc3i
OC-3 Pulse Width
2.0
ns
Tc3r
OC-3 Receive Cycle Time*
6.0
ns
Tc3d
OC-3 Clock Duty Cycle
40
Tc3s
OC-3 Setup Time
2.0
ns
Tc3h
OC-3 Hold Time
0.0
ns
6.43
UNIT
ns
60
%
C5ENPB0-DS REV 08
90
CHAPTER 3: ELECTRICAL SPECIFICATIONS
*
C5ENPB0-DS REV 08
155.52MHz
FREESCALE SEMICONDUCTOR
91
AC Timing Specifications
OC-12 Timing Specifications
The OC-12 interface timing is shown in Figure 18 and described in Table 47.
Figure 18 OC-12 Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
CPn_1 (TCLKI)
Tc12i
Tc12d
CPn_0 (TCLK)
Tc12t
CPn_2-6 (Tx)
CPn+1_2-5 (Tx)
Tc12o
Cycle 1
Cycle 3
Cycle 2
CPn+2_1 (RCLK)
Tc12r
CPn+2_2-6 (Rx)
CPn+3_2-5 (Rx)
Tc12s
Tc12h
Table 47 OC-12 Timing Description
*
†
‡
FREESCALE SEMICONDUCTOR
SYMBOL
PARAMETER
MIN
TYP
MAX
Tc12i
OC-12 Transmit Cycle Time*
Tc12d
OC-12 Clock Duty Cycle
Tc12t
OC-12 Transmit Cycle Time†
Tc12o
OC-12 Output Time‡
-0.1
Tc12r
OC-12 Receive Cycle Time
12.0
Tc12s
OC-12 Setup Time
2.0
ns
Tc12h
OC-12 Hold Time
0.0
ns
12.86
40
ns
60
12.86
%
ns
2.2
12.86
UNIT
ns
ns
Input from PHY
Output from C-5e NP
Aligned to TCLK, negative edge
C5ENPB0-DS REV 08
92
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Executive Processor
Timing Specifications
The XP timing specifications include:
•
•
•
•
PCI Timing Specifications
MDIO Serial Interface Timing Specifications
Low Speed Serial Interface Timing Specifications
PROM Interface Timing Specifications
PCI Timing Specifications
The PCI timing is shown in Figure 19 and described in Table 48.
Figure 19 PCI Timing Diagram
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
PCLK
Tpc
PAD/P_ctl
(output)
Tpao
Tpaz
Tpav
PAD/P_ctl
(input)
Tpas
Tpah
Tpgs
Tpgh
Tpis
Tpih
PGNTX
(input)
PIDSEL
(input)
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
AC Timing Specifications
93
Table 48 PCI Timing Description
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
Tpc
PCI Cycle Time*
15.0
ns
Tpas
PAD/P_ctl† Setup
3.0
ns
Tpah
PAD/P_ctl Hold
0.0
ns
Tpao
PAD/P_ctl Output
2.0
6.0
ns
Tpaz
PAD/P_ctl Clk to Tri‡
2.0
6.0
ns
Tpav
PAD/P_ctl Clk to Driven‡
2.0
6.0
ns
Tpgs
PGNTX Setup
5.1
ns
Tpgh
PGNTX Hold
0.0
ns
Tpis
PIDSEL Setup
3.0
ns
Tpih
PIDSEL Hold
0.0
ns
PRSTX**
ns
PINTA**
ns
*
66MHz PCI
P_ctl includes all PCI control parameters including: PPAR, PFRAMEX, PTRDYX, PIRDYX,
PSTOPX, PDEVSELX, PPERRX, PSERRX
‡ Not fully tested, values based on design/characterization.
** Asynchronous
†
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
94
CHAPTER 3: ELECTRICAL SPECIFICATIONS
MDIO Serial Interface Timing Specifications
The MDIO serial interface timing is shown in Figure 20 and described in Table 49.
Figure 20 MDIO Serial Interface Timing Diagram
Cycle 2
Cycle 3
Cycle 4
SICL
Tsic
SIDA
(output)
Tsods
Tsodh
SIDA
(input)
Tsids
Table 49 MDIO Serial Interface Timing Description
C5ENPB0-DS REV 08
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
Tsic
SICL Cycle Time
40
ns
Tsids
SIDA Input Setup
10
ns
Tsidh
SIDA Input Hold
0.0
ns
Tsods
SIDA Output Setup
10
ns
Tsodh
SIDA Output Hold
10
ns
FREESCALE SEMICONDUCTOR
AC Timing Specifications
95
Low Speed Serial Interface Timing Specifications
The low speed serial interface timing is shown in Figure 21 and described in Table 50.
Figure 21 Low Speed Serial Interface Timing Diagram
Cycle 2
Cycle 3
SICL
Tslss
Tslhs
Tslhd
Tslsd
Tslc
Tslb
Tslst
SIDA
Table 50 Low Speed Serial Interface Timing Description
FREESCALE SEMICONDUCTOR
SYMBOL
PARAMETER
MIN
Tslc
SICL Cycle Time
2500
MAX
ns
Tslss
Set-up Time for Repeated START Condition
600
ns
Tslhs
Hold Time START Condition
600
ns
Tslsd
Data Set-up Time
250
ns
Tslhd
Data Hold Time
0.0
ns
Tslst
Set-up Time for STOP Condition
600
ns
Tslb
Bus Free Time Between a STOP and START Condition
1250
ns
Cmax
Capacitive load for each line of the bus
400
UNIT
pF
C5ENPB0-DS REV 08
96
CHAPTER 3: ELECTRICAL SPECIFICATIONS
PROM Interface Timing Specifications
The PROM interface timing is shown in Figure 22 and described in Table 51.
Figure 22 PROM Interface Timing Diagram
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
SPCK
Tspc
SPDI
Tspis
Tspih
SPLD
Tsplo
SPDO
Tspdo
Table 51 PROM Interface Timing Description
C5ENPB0-DS REV 08
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
Tspc
SPCK Cycle Time
40.0
ns
Tspis
SPDI Setup
10.0
ns
Tspih
SPDI Hold
0.0
ns
Tsplo
SPLD Output
Tsc
Tsc + 3.0
ns
Tspdo
SPDO Output
Tsc
Tsc + 3.0
ns
FREESCALE SEMICONDUCTOR
AC Timing Specifications
Fabric Processor Timing
Specifications
97
The FP timing specifications are shown in Figure 23 and described in Table 52.
Figure 23 Fabric Processor Timing Diagram
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
FRXCLK
Tfrc
FRXCTL
(output)
Tfrco
Tfrcv
Tfrcz
FRXCTL
(input)
Tfrcs
Tfrch
Tfrds
Tfrdh
FINn
FTXCLK
Tftc
FTXCTL
(output)
Tftco
Tftcv
Tftcz
FTXCTL
(input)
Tftcs
Tftch
FOUTn
Tftdo
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
98
CHAPTER 3: ELECTRICAL SPECIFICATIONS
Table 52 Fabric Processor Timing Description
*
C5ENPB0-DS REV 08
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
Tfrc
FRX Cycle Time
8.0
ns
Tfrcs
FRXCTL Setup
4.0
1.5
ns
Tfrch
FRXCTL Hold
0.0
ns
Tfrco
FRXCTL Output
1.0
4.0
ns
Tfrcz
FRXCTL Clk to Tri*
1.0
4.0
ns
Tfrcv
FRXCTL Clk to Driven*
1.0
4.0
ns
Tfrds
FIN Setup
4.0
1.5
ns
Tfrdh
FIN Hold
0.0
ns
Tftc
FTX Cycle Time
8.0
ns
Tftcs
FTXCTL Setup
4.0
1.5
ns
Tftch
FTXCTL Hold
0.0
ns
Tftco
FTXCTL Output
1.0
4.0
ns
Tftcz
FTXCTL Clk to Tri*
1.0
4.0
ns
Tftcv
FTXCTL Tri to Driven*
1.0
4.0
ns
Tftdo
FOUT Output
1.0
4.0
ns
COMMENT
Utopia2 Mode
All other modes
Utopia2 Mode
All other modes
Utopia2 Mode
All other modes
Not fully tested, values based on design/characterization.
FREESCALE SEMICONDUCTOR
AC Timing Specifications
BMU Timing
Specifications
99
The BMU timing specifications are shown in Figure 24 and described in Table 53.
The BMU synchronous DRAM interface is PC100-compliant and designed to work with
industry standard SDRAM components with 12 or fewer address lines. The information
below is intended to provide the output, setup, and hold data required to design this
interface without duplicating the transaction waveform diagrams in SDRAM data sheets.
Figure 24 BMU Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
MDCLK
Tmc
M_ctl
Tmco
MAn
Tmao
MDn
(output)
Tmdo
Tmdv
Tmdz
MDn
(input)
Tmds
Tmdh
Table 53 BMU Timing Description
FREESCALE SEMICONDUCTOR
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
Tmc
BMU Cycle Time
7.5
Tmco
BMU Ctrl Output
0.8
3.5
ns
Tmao
BMU Addr Output
0.8
3.7
ns
Tmds
BMU Data Setup
0.5
ns
Tmdh
BMU Data Hold
1.1
ns
Tmdo
BMU Data Output
0.8
4.4
ns
Tmdz
BMU Data Clk to Tri*
0.8
4.4
ns
Tmdv
BMU Data Clk to Driven*
0.8
4.4
ns
Tr, Tf
MDCLK Rise, Fall
2.0 †
ns
ns
C5ENPB0-DS REV 08
100
CHAPTER 3: ELECTRICAL SPECIFICATIONS
*
†
Not fully tested, values based on design/characterization.
Measured 0.8V to 2.0V.
Table 54 Signal Groups in BMU Timing Diagrams
TLU Timing Specifications
SIGNAL GROUP
INCLUDED SIGNALS
Control (M_ctl)
MBA0, MBA1, MCASX, MRASX, MWEX, MCSX, MDQM, MDQML
Address (MAn)
MA0 - MA11
Data (MDn)
MD0 - MD129, MDECC0 - MDECC8
The TLU timing specifications are shown in Figure 25 and described in Table 55.
Figure 25 TLU Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
TCLKI
Ttc
T_ctl
Ttco
TAn
Ttao
TDn
(output)
Ttdo
Ttdv
Ttdz
TDn
(input)
Ttds
Ttdh
Table 55 TLU Timing Description
C5ENPB0-DS REV 08
SYMBOL
PARAMETER
MIN
TYP
MAX
UNIT
Ttc
TLU Cycle Time
7.5
Ttco
TLU Ctrl Output
0.8
4.0
ns
Ttao
TLU Addr Output
0.8
3.9
ns
Ttds
TLU Data Setup
1.0
ns
Ttdh
TLU Data Hold
1.2
ns
ns
FREESCALE SEMICONDUCTOR
AC Timing Specifications
101
Table 55 TLU Timing Description (continued) (continued)
*
†
SYMBOL
PARAMETER
MIN
Ttdo
TLU Data Output
Ttdz
TYP
MAX
UNIT
0.8
4.5
ns
TLU Data Clk to Tri*
0.8
4.5
ns
Ttdv
TLU Data Clk to Driven*
0.8
4.5
ns
Tr, Tf
TCLKI Rise, Fall
2.0 †
ns
Not fully tested, values based on design/characterization.
Measured 0.8V to 2.0V.
Table 56 Signal Groups in TLU Timing Diagrams
FREESCALE SEMICONDUCTOR
SIGNAL GROUP
INCLUDED SIGNALS
Control (T_ctl)
TCE0X - TCE3X, TWE0X - TWE3X
Address (TAn)
TA0 - TA21
Data (TDn)
TD0 - TD63, TPAR0-3
C5ENPB0-DS REV 08
102
CHAPTER 3: ELECTRICAL SPECIFICATIONS
QMU SRAM (Internal
Mode) Timing
Specifications
The QMU SRAM (Internal Mode) timing specifications are shown in Figure 26 and
described in Table 57.
Figure 26 QMU SRAM (Internal Mode) Timing Diagram
Cycle 2
Cycle 1
Cycle 3
Cycle 4
Cycle 5
QACLKI
Tqc
Q_ctl
Tqco
QAn
Tqao
QDn
(output)
Tqdo
Tqdv
Tqdz
QDn
(input)
Tqds
Tqdh
Table 57 QMU SRAM (Internal Mode) Timing Description
C5ENPB0-DS REV 08
SYMBOL PARAMETER
MIN
TYP
MAX UNIT
Tqc
QMU Cycle Time
6.25
6.67
Tqco
QMU Ctrl Output
0.8
Tqao
QMU Addr Output
0.8
Tqds
QMU Data Setup
0.8
ns
Tqdh
QMU Data Hold
0.8
ns
Tqdo
QMU Data Output
0.9
COMMENT
ns
With QMU on-board memory
With QMU memory daughter board
3.9
ns
Loading is 50Ω transmission line.
3.7
ns
Loading is 50Ω transmission line.
4.0
ns
Loading is 50Ω transmission line.
FREESCALE SEMICONDUCTOR
AC Timing Specifications
103
Table 57 QMU SRAM (Internal Mode) Timing Description (continued)
SYMBOL PARAMETER
*
†
MIN
TYP
MAX UNIT
Tqdz
QMU Data Clk to Tri* 0.9
4.0
ns
Tqdv
QMU Data Clk to
Driven*
4.0
ns
Tr, Tf
QACLKI Rise, Fall
0.9
COMMENT
2.0 † ns
Not fully tested, values based on design/characterization.
Measured 0.8V to 2.0V.
Table 58 Signal Groups in QMU SRAM (Internal Mode) Timing Diagrams
FREESCALE SEMICONDUCTOR
SIGNAL GROUP
INCLUDED SIGNALS
Control (Q_ctl)
QWEX
Address (QAn)
QA0-QA16
Data (QDn)
QD0-QD31, QDPL, QDPH
C5ENPB0-DS REV 08
104
CHAPTER 3: ELECTRICAL SPECIFICATIONS
QMU (External Mode)
Timing Specifications
The External Mode timing specifications are shown in Figure 27 and described in Table 59.
Figure 27 QMU External Mode Timing Diagram
Cycle 2
Cycle 1
Tqec
QACLKI
Tqep
Tqep
QBCLKI
Tqec
DQDATA
Tqeh
Tqes
Tqeh
Tqes
Tqec
QACLKO
Tqep
Tqep
QBCLKO
Tqec
NQDATA
Tqeomax
Tqeomax
Tqeomin
Tqeomin
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
AC Timing Specifications
105
Table 59 QMU External Mode Timing Description
*
SYMBOL
PARAMETER
MIN
Tqec
QMU External Cycle Time
Tqep
TYP
MAX
UNIT
COMMENT
10.0
ns
QACLKO/QBCLKO
derived from
QACLKI/QBCLKI
QMU CLKA-CLKB delta
between rising edges
4.8
ns
Tqes
QMU Input Data Setup
0.6
ns
Tqeh
QMU Input Data Hold
0.8
ns
Tqeo
QMU Data Output
-.85
Tr, Tf
QACLKI, QBCLKI Rise, Fall
1.3
ns
2.0 *
ns
Determines valid time
for data from each clock
rising edge
Measured 0.8V to 2.0V.
Table 60 Signal Groups in QMU External Mode Timing Diagrams
SIGNAL GROUP
INCLUDED SIGNALS
Input Clocks (QnCLKI)
QACLKI, QBCLKI
Output Clocks (QnCLKO)
QACLKO, QBCLKO
Input Data (DQDATA)
QD0-23, QARDY, QDPL, QDPH, QNQRDY, QDQPAR
Output Data (NQDATA)
QA0-16, QWEX, QD24-31
Although the C-5e NP provides an external mode, it does not support an external traffic
manager device.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
106
CHAPTER 3: ELECTRICAL SPECIFICATIONS
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Chapter 4
Rev 08
MECHANICAL SPECIFICATIONS
Package Views
The C-5e network processor is an 840 pin (29 pins x 29 pins) Ball Grid Array (BGA) package
as shown in the following illustrations. Table 61 defines the package measurements.
Figure 28 C-5e Network Processor BGA Package (Side View)
A4 A2
A3
A
A1
Seating Plane
HiTCE: Green ceramic is thermally matched to FR4 circuit board.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
108
CHAPTER 4: MECHANICAL SPECIFICATIONS
Figure 29 C-5e Network Processor BGA Package (Bottom View)
D
D1
e
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
e
E1
b
1
C5ENPB0-DS REV 08
E
2
3
4 5
6 7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
FREESCALE SEMICONDUCTOR
Package Measurements
Package Measurements
109
Table 61 defines the C-5e NP package measurements, providing nominal, minimum, and
maximum sizes where appropriate.
Table 61 Package Measurements (Reference Figure 28, and Figure 29 for Symbols)
Keep Out Zones
SYMBOL DEFINITION
NOM. (MM) MIN. (MM)
MAX. (MM)
A
Overall
3.26
2.97
3.55
A1
Ball height
0.70
0.6
0.8
A2
Die height
0.86
0.82
0.9
A3
Body thickness
1.7
1.55
1.85
A4
Capacitor height
D
Body size
D1
Ball footprint (X) 28.00
E
Body size
E1
Ball footprint (Y) 28.00
e
Ball pitch
1.00
b
Ball diameter
0.70
0.6
31.00
31.00
30.80
31.20
30.80
31.20
Figure 30 shows the C-5e NP keep out zones and Table 62 defines their measurements,
providing minimum and maximum sizes where appropriate.
Since 14 capacitors are present on all devices, caution must be taken not to short
capacitors or exposed metal capacitor pads on package top. This can be achieved by
noting the capacitors zones as detailed here.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
110
CHAPTER 4: MECHANICAL SPECIFICATIONS
Figure 30 C-5e Network Processor BGA Package (Top View)
D5
Probe Pad
Die
D3
D2
Capacitor
Pads
E3
E2
E4
18ARS10517D001
D4
Table 62 Keep Out Zone’s Measurements (Reference Figure 30 for Symbols)
SYMBOL DEFINITION
D2
Keep out zones
NOM. (MM)
MIN. (MM) MAX. (MM)
0.675
D3
D4
2.925
6.95
D5
E2
C5ENPB0-DS REV 08
9.25
9.5
E3
11.8
E4
7.875
FREESCALE SEMICONDUCTOR
Marking Codes
Marking Codes
111
Table 63 explains the marking on the C-5e NP.
Table 63 C-5e Network Processor Marking Codes
MARKING (EXPLANATION OF CODES)
Top
Logo/Part#/Date Code
Bottom
N/A
Pin 1 Marking Chamfered Corner
Reflow
Typical Reflow Profile for the C-5e Switch Module comprises:
1 Follow the guidelines recommended by your solder paste supplier.
Flux requirements must be met for best solderability.
2 The temperature profile should be carefully characterized to ensure uniform
temperature across the board and package.
Solder ball voiding may be affected by ramp rates and dwell times below and above
liquids.
3 A nitrogen atmosphere is not required, but will make the process more robust. It can
make a difference for marginally solderable PC board pads.
4 Full convection forced air furnaces work best, but IR, Convection/IR, or vapor phase can
be used.
FREESCALE SEMICONDUCTOR
C5ENPB0-DS REV 08
112
CHAPTER 4: MECHANICAL SPECIFICATIONS
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
C5ENPB0-DS
Rev 08
INDEX
Symbols
10/100 Ethernet (RMII) Configuration 36
10/100 Ethernet Signals 36
10/100 Ethernet Timing Description 86
10/100 Ethernet Timing Diagram 86
10/100 Ethernet Timing Specifications 86
A
Absolute Maximum Ratings 75
AC Timing Specifications 83
B
Block Diagram, C-5e Network Processor 22
BMU SDRAM Interface Signals 54
BMU Signal Groups 100
BMU Timing Description 99
BMU Timing Diagram 99
BMU Timing Specifications 99
Boundary Scan Cell Types 71
Boundary Scan Description Language 74
Bringup Clock Timing Diagram 78
Buffer Management Unit 26
C
C-5e Network Processor Absolute Maximum Ratings 75
C-5e Network Processor BGA Package, Bottom View 108
C-5e Network Processor BGA Package, Side View 107
C-5e Network Processor Capacitance Data 77
C-5e Network Processor DC Characteristics 77
C-5e Network Processor Power and Thermal Characteristics 79
C-5e NP Channel Processors 24
Channel Processor Interface Signals 34
FREESCALE SEMICONDUCTOR
Channel Processors 24
Channel Processors Physical Interface Signals and Pins
Grouped by Clusters 35
Clock and Reference Signals 33
Clock Signals 33
Clock Timing Specifications 84
Configuration
10/100 Ethernet (RMII) 36
DS1/T1 Framer Interface 36
FibreChannel TBI 39
Gigabit Ethernet 39
Gigabit Ethernet (GMII) 37
SONET OC-12 Transceiver Interface 41
SONET OC-3 Transceiver Interface 41
Configurations
GMII/TBI Transmit and Receive Pin 38
CP Timing Specifications 85
CSIX-L1 Mode, C-5e Network Processor to Fabric Interface Pin
Mapping 53
D
Data Registers
JTAG 71
DC Characteristics 77
Description
Functional 21
Description Language
Boundary Scan 74
Descriptions
Signal 29
Diagram
10/100 Ethernet Timing 86
BMU Timing 99
Bringup Clock Timing 78
DS1/DS3 Ethernet Timing 85
C5ENPB0-DS REV 08
114
INDEX
Fabric Processor Timing 97
Gigabit Ethernet (TBI) Timing 87
Low Speed Serial Interface Timing 95
MDIO Serial Interface Timing 94
OC-3 Timing 89
PCI Timing 92
Pinout 30
PROM Interface 46
PROM Interface Timing 96
QMU Timing 102
Signal Groups in BMU Timing 100
Signal Groups in QMU Timing 103
Signal Groups in TLU Timing 101
System Clock Timing 84
TLU Timing 100
Diagram, Block
C-5e Network Processor 22
DS1/DS3 Ethernet Timing Description 86
DS1/DS3 Ethernet Timing Diagram 85
DS1/DS3 Timing Specifications 85
DS1/T1 Framer Interface Configuration 36
DS1/T1 Framer Interface Signals 36
Fabric Processor Interface Signals 49
Fabric Processor Timing Description 98
Fabric Processor Timing Diagram 97
Fabric Processor Timing Specifications 97
Functional Description 21
G
General System Interface Signal 48
Gigabit Ethernet (GMII) Configuration 37
Gigabit Ethernet (GMII) Signals
One Cluster Example 38
Gigabit Ethernet (TBI) Timing Description 88, 88
Gigabit Ethernet (TBI) Timing Diagram 87
Gigabit Ethernet and FibreChannel TBI Configuration 39
Gigabit Ethernet and FibreChannel TBI Signals
Example 40
Gigabit GMII Ethernet, TBI and MII Interface Timing Specification 87
GMII/TBI Transmit and Receive Pin Configurations 38
I
E
Electrical Specifications 75
Absolute Maximum Ratings 75
Executive Processor 25
PCI 25
PROM Interface 26
Serial Bus Interface 25
System Interface Signals 43
System Interfaces 25
Executive Processor Timing Specifications 92
IDcode Register 73
Instruction Register Instructions 73
J
JTAG Data Registers 71
JTAG Identification Code and Its Sub-components 73
JTAG Instruction Register 73
JTAG Internal Register Descriptions 71
JTAG Support
Pinouts 71
F
Fabric Interface Pin Mapping
CSIX-L1 Mode 53
Power X(CSIX-L0) Mode 52
PRIZMA Mode 51
Utopia2/Utopia3 ATM Mode 50
Utopia2/Utopia3 PHY Mode 51
Fabric Processor 26
C5ENPB0-DS REV 08
L
Low Speed Serial Interface Timing Description 95
Low Speed Serial Interface Timing Diagram 95
Low Speed Serial Interface Timing Specifications 95
LVPECL Specifications 32
LVTTL Specifications 32
FREESCALE SEMICONDUCTOR
INDEX
M
MDIO Serial Interface Timing Description 94
MDIO Serial Interface Timing Diagram 94
MDIO Serial Interface Timing Specifications 94
Measurements
C-5e Network Processor 109
Mechanical Specifications 107
Miscellaneous Test Signals for JTAG, Scan, and Internal Test
Routines 60
N
No Connection Pins 61
O
OC-12 Signals 42
OC-12 Timing Description 91
OC-12 Timing Specifications 91
OC-3 Signals 41
OC-3 Timing Description 89
OC-3 Timing Diagram 89
OC-3 Timing Specifications 89
Operating Conditions, Recommended 76
115
PROM Interface Diagram 46
PROM Interface Signals 45
PROM Interface Timing Description 96
PROM Interface Timing Diagram 96
PROM Interface Timing Outline 48
PROM Interface Timing Specifications 96
Q
QMU External Mode Interface Signals 58
QMU External Mode Timing Diagram 104
QMU Signal Groups 103
QMU SRAM (Internal Mode) Interface Signals 57
QMU SRAM (Internal Mode) Timing Diagram 102
QMU Timing Description 102
QMU Timing Specifications 102
Queue Management Unit 28
R
Recommended Operating Conditions 76
Register
IDcode 73
JTAG Instruction 73
S
P
Package Measurements 109
PCI Signals 43
PCI Timing Description 93
PCI Timing Diagram 92
PCI Timing Specifications 92
Pin Descriptions
Grouped by Function 32
Pin Locations 30
Pin Number Signals Groups 61
Pinout Diagram 30
Power Sequencing 78, 79
Power Supply Signals 59
Power X(CSIX-L0) Mode, Fabric Interface Pin Mapping 52
PRIZMA Mode, C-5e Network Processor to Fabric Interface Pin
Mapping 51
Processor, Executive 25
Processor, Fabric 26
FREESCALE SEMICONDUCTOR
Serial Interface Signals 44
Serial Port Signals 45
Signal
General System Interface 48
Signal Descriptions 29
Signal Summary 29
Signals
10/100 Ethernet 36
BMU SDRAM Interface 54
Channel Processor Interface 34
Clock 33
Clock and Reference 33
DS1/T1 Framer Interface 36
Fabric Processor Interface 49
Grouped by Pin Number 61
OC-12 42
OC-3 41
PCI 43
C5ENPB0-DS REV 08
116
INDEX
Power Supply 59
PROM Interface 45
QMU External Mode Interface 58
QMU SRAM (Internal Mode) Interface 57
Serial Interface 44
Serial Port 45
Test 60
TLU SRAM Interface 56
SONET OC-12 Transceiver Interface Configuration 41
SONET OC-3 Transceiver Interface Configuration 41
Specifications
10/100 Ethernet Timing 86
AC Timing 83
BMU Timing 99
Clock Timing 84
CP Timing 85
DS1/DS3 Timing 85
Electrical 75
Executive Processor Timing 92
Fabric Processor Timing 97
Gigabit GMII Ethernet, TBI and MII Interface Timing
Specification 87
Low Speed Serial Interface Timing 95
MDIO Serial Interface Timing 94
Mechanical 107
OC-12 Timing 91
OC-3 Timing 89
PCI Timing 92
PROM Interface Timing 96
QMU Timing 102
TLU Timing 100
XP Timing 92
System Clock Timing Description 84
System Clock Timing Diagram 84
System Interfaces
Executive Processor 25
TLU Signal Groups 101
TLU SRAM Interface Signals 56
TLU Timing Description 100
TLU Timing Diagram 100
TLU Timing Specifications 100
Transceiver Interface Configuration
SONET OC-12 41
SONET OC-3 41
Transmit and Receive Pin Combinations for Gigabit Ethernet and
FibreChannel 37
U
Utopia2/Utopia3 ATM Mode, C-5e Network Processor to Fabric
Interface Pin Mapping 50
Utopia2/Utopia3 PHY Mode, C-5e Network Processor to Fabric
Interface Pin Mapping 51
X
XP Timing Specifications 92
T
Table Lookup Unit 27
Test Signals 60
Test Signals, Miscellaneous, For JTAG, Scan, and Internal Test
Routines 60
Timing Outline
PROM Interface 48
C5ENPB0-DS REV 08
FREESCALE SEMICONDUCTOR
How to Reach Us:
Home Page:
www.freescale.com
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
E-mail:
[email protected]
For information on Freescale.s Environmental Products program, go to
http://www.freescale.com/epp.
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale Semiconductor. C-Port Family of Network Processors
120 Water Street, No. Andover, MA 01845 Voice: (978) 773-2300 FAX: (978) 773-2301