FREESCALE MRF6V2150NR1

Freescale Semiconductor
Technical Data
Document Number: MRF6V2150N
Rev. 3, 12/2008
RF Power Field - Effect Transistors
N - Channel Enhancement - Mode Lateral MOSFETs
Designed primarily for CW large - signal output and driver applications with
frequencies up to 450 MHz. Devices are unmatched and are suitable for use in
industrial, medical and scientific applications.
• Typical CW Performance at 220 MHz: VDD = 50 Volts, IDQ = 450 mA,
Pout = 150 Watts
Power Gain — 25 dB
Drain Efficiency — 68.3%
MRF6V2150NR1
MRF6V2150NBR1
10 - 450 MHz, 150 W, 50 V
LATERAL N - CHANNEL
SINGLE - ENDED
BROADBAND
RF POWER MOSFETs
• Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 150 Watts CW
Output Power
Features
• Integrated ESD Protection
CASE 1486 - 03, STYLE 1
TO - 270 WB - 4
PLASTIC
MRF6V2150NR1
• Excellent Thermal Stability
• Facilitates Manual Gain Control, ALC and Modulation Techniques
• 200°C Capable Plastic Package
• RoHS Compliant
• In Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel.
CASE 1484 - 04, STYLE 1
TO - 272 WB - 4
PLASTIC
MRF6V2150NBR1
PARTS ARE SINGLE - ENDED
Table 1. Maximum Ratings
Symbol
Value
Unit
Drain - Source Voltage
Rating
VDSS
- 0.5, +110
Vdc
Gate - Source Voltage
VGS
- 0.5, + 12
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Case Operating Temperature
TC
150
°C
Operating Junction Temperature
TJ
200
°C
Thermal Resistance, Junction to Case
Case Temperature 80°C, 150 W CW
RFout/VDS
RFin/VGS
RFout/VDS
(Top View)
Table 2. Thermal Characteristics
Characteristic
RFin/VGS
Symbol
Value (1,2)
Unit
Note: Exposed backside of the package is
the source terminal for the transistor.
RθJC
0.24
°C/W
Figure 1. Pin Connections
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
2 (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access
MTTF calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2007-2008. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
1
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
2.5
mA
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
μAdc
V(BR)DSS
110
—
—
Vdc
IGSS
—
—
10
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 400 μAdc)
VGS(th)
1
1.62
3
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 450 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.6
3.5
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 1 Adc)
VDS(on)
—
0.26
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
1.6
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
93
—
pF
Input Capacitance
(VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)
Ciss
—
163
—
pF
Off Characteristics
Drain - Source Breakdown Voltage
(ID = 75 mA, VGS = 0 Vdc)
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
On Characteristics
Dynamic Characteristics
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 450 mA, Pout = 150 W, f = 220 MHz, CW
Power Gain
Gps
23.5
25
26.5
dB
Drain Efficiency
ηD
66
68.3
—
%
Input Return Loss
IRL
—
- 17
-9
dB
Typical Performances (In Freescale 27 MHz and 450 MHz Test Fixtures, 50 ohm system) VDD = 50 Vdc, IDQ = 450 mA, Pout = 150 W CW
Power Gain
f = 27 MHz
f = 450 MHz
Gps
—
—
32.3
22.9
—
—
dB
Drain Efficiency
f = 27 MHz
f = 450 MHz
ηD
—
—
78.7
57.6
—
—
%
Input Return Loss
f = 27 MHz
f = 450 MHz
IRL
—
—
- 10.6
- 17.6
—
—
dB
ATTENTION: The MRF6V2150N and MRF6V2150NB are high power devices and special considerations
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263
(for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to
ensure proper mounting of these devices.
MRF6V2150NR1 MRF6V2150NBR1
2
RF Device Data
Freescale Semiconductor
B3
VSUPPLY
+
B1
VBIAS
+
+
+
C1
C2
C3
C17
L2
C4
C5
C6
C14
L1
C8
RF
INPUT
Z1
C9
C10 C11 R2
Z2
Z3
Z4
C19
C20
B2
R1
C7
C18
L3
Z5
Z7
Z8
C15
C16
Z9
Z11
Z10
RF
OUTPUT
C23
Z6
C21
C22
C12
DUT
C13
Z1
Z2
Z3
Z4
Z5
Z6, Z7
0.352″
0.944″
1.480″
0.276″
0.434″
0.298″
x 0.082″
x 0.082″
x 0.082″
x 0.220″
x 0.220″
x 0.630″
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z8
Z9
Z10
Z11
PCB
0.443″ x 0.170″ Microstrip
2.360″ x 0.170″ Microstrip
0.502″ x 0.170″ Microstrip
0.443″ x 0.082″ Microstrip
Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55
Figure 2. MRF6V2150NR1(NBR1) Test Circuit Schematic — 220 MHz
Table 6. MRF6V2150NR1(NBR1) Test Circuit Component Designations and Values — 220 MHz
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads, Surface Mount
2743021447
Fair - Rite
B3
47 Ω, 100 MHz Short Ferrite Bead, Surface Mount
2743019447
Fair - Rite
C1
47 μF, 50 V Electrolytic Capacitor
476KXM063M
Illinois Capacitor
C2
22 μF, 35 V Tantalum Chip Capacitor
T494X226K035AT
Kemet
C3
10 μF, 35 V Tantalum Chip Capacitor
T491D106K035AT
Kemet
C4, C17
39 K pF Chip Capacitors
ATC200B393KT50XT
ATC
C5, C18
22 K pF Chip Capacitors
ATC200B203KT50XT
ATC
C6, C11, C19
0.1 μF, 50 V Chip Capacitors
CDR33BX104AKYS
Kemet
C7, C8, C15, C16
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C9, C12, C14, C23
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C10
220 nF Chip Capacitor
C1812C224K5RAC
Kemet
C13
75 pF Chip Capacitor
ATC100B750JT500XT
ATC
C20
470 μF, 63 V Electrolytic Capacitor
ESME630ELL471MK25S
United Chemi - Con
C21
30 pF Chip Capacitor
ATC100B300JT500XT
ATC
C22
33 pF Chip Capacitor
ATC100B330JT500XT
ATC
L1
4 Turn #18 AWG, 0.18″ ID
None
None
L2
82 nH Inductor
1812SMS - 82NJL
Coilcraft
L3
17.5 nH Inductor
B06TJL
Coilcraft
R1
270 Ω, 1/4 W Chip Resistor
CRCW12062700FKEA
Vishay
R2
27 Ω, 1/4 W Chip Resistor
CRCW12064R75FKEA
Vishay
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
3
C2
C1
C3
+
B1
B3
C4
C5
C6
C7
C18
C17
C20
R1
B2
C10
C15*
C16*
C8
C11
L2
C9
C12
C14
L1
L3
CUT OUT AREA
R2
+
C19
C23
C21
C22
C13
MRF6V2150N/NB
Rev. 3
* Stacked
Figure 3. MRF6V2150NR1(NBR1) Test Circuit Component Layout — 220 MHz
MRF6V2150NR1 MRF6V2150NBR1
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
1000
100
100
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
Ciss
Coss
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
10
Crss
10
TC = 25°C
1
1
0
10
20
30
40
50
1
10
100
200
100
200
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
Figure 4. Capacitance versus Drain - Source Voltage
Figure 5. DC Safe Operating Area
27
IDQ = 675 mA
26
4
Gps, POWER GAIN (dB)
ID, DRAIN CURRENT (AMPS)
5
VGS = 3 V
3
2.75 V
2
2.63 V
2.5 V
1
563 mA
25
450 mA
24
337 mA
23
VDD = 50 Vdc
f = 220 MHz
225 mA
22
2.25 V
21
0
0
20
40
60
80
100
120
DRAIN VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 6. DC Drain Current versus Drain Voltage
Figure 7. CW Power Gain versus Output Power
58
−10
VDD = 50 Vdc, f1 = 220 MHz, f2 = 220.1 MHz
Two−Tone Measurements, 100 kHz Tone Spacing
−15
−20
Pout, OUTPUT POWER (dBm)
IMD, THIRD ORDER INTERMODULATION
DISTORTION (dBc)
10
1
IDQ = 225 mA
−25
−30
336 mA
−35
450 mA
−40
563 mA
−45
685 mA
−50
P1dB = 52.27 dBm (168.66 W)
54
Actual
52
50
900 mA
−55
VDD = 50 Vdc, IDQ = 450 mA
f = 220 MHz
−60
5
10
Ideal
P3dB = 52.61 dBm (182.39 W)
56
100
300
48
22
24
26
28
30
32
Pout, OUTPUT POWER (WATTS) PEP
Pin, INPUT POWER (dBm)
Figure 8. Third Order Intermodulation Distortion
versus Output Power
Figure 9. CW Output Power versus Input Power
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
26
55
Pout, OUTPUT POWER (dBm)
Gps, POWER GAIN (dB)
24
22
45 V
50 V
40 V
20
35 V
18
30 V
25 V
16
IDQ = 450 mA
f = 220 MHz
VDD = 20 V
50
100
150
200
85_C
25_C
45
40
VDD = 50 Vdc
IDQ = 450 mA
f = 220 MHz
35
10
14
0
TC = −30_C
50
15
20
25
30
35
Pout, OUTPUT POWER (WATTS) CW
Pin, INPUT POWER (dBm)
Figure 10. Power Gain versus Output Power
Figure 11. Power Output versus Power Input
28
108
80
25_C
−30_C
Gps
26
60
TC = −30_C
50
25
25_C
24
40
85_C
23
30
ηD
22
VDD = 50 Vdc
IDQ = 450 mA
f = 220 MHz
21
5
10
100
Pout, OUTPUT POWER (WATTS) CW
Figure 12. Power Gain and Drain Efficiency
versus CW Output Power
MTTF (HOURS)
70
85_C
ηD, DRAIN EFFICIENCY (%)
Gps, POWER GAIN (dB)
27
107
106
20
10
200
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 150 W CW, and ηD = 68.3%.
MTTF calculator available at http://www.freescale.com/rf. Select
Software & Tools/Development Tools/Calculators to access MTTF
calculators by product.
Figure 13. MTTF versus Junction Temperature
MRF6V2150NR1 MRF6V2150NBR1
6
RF Device Data
Freescale Semiconductor
Zsource
f = 220 MHz
Zo = 10 Ω
Zload
f = 220 MHz
VDD = 50 Vdc, IDQ = 450 mA, Pout = 150 W CW
f
MHz
Zsource
W
Zload
W
220
2.45 + j6.95
3.90 + j5.50
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 14. Series Equivalent Source and Load Impedance — 220 MHz
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
7
C14 C15
C19
B1
B3
C6
C13
C12
C11
B2
L3*, R3*, **
L4*, R4*, **
C20
C10
C7
C8
C18
C17
C16
C9
L2*
C4
C2
L1
C3
C1
R1, R2
CUT OUT AREA
T1
C5
T2
27 MHz
272−WB
Rev. 1
Figure 15. MRF6V2150NR1(NBR1) Test Circuit Component Layout — 27 MHz
Table 7. MRF6V2150NR1(NBR1) Test Circuit Component Designations and Values — 27 MHz
Part
Description
Part Number
Manufacturer
B1, B3
95 Ω, 100 MHz Long Ferrite Beads
2743021447
Fair - Rite
B2
47 Ω, 100 MHz Short Ferrite Bead
2743019447
Fair - Rite
C1, C4, C5, C16
100 pF Chip Capacitors
ATC100B101JT500XT
ATC
C2
620 pF Chip Capacitor
ATC100B621JT200XT
ATC
C3
1000 pF Chip Capacitor
ATC100B102JT50XT
ATC
C6
2.2 μF, 50 V Chip Capacitor
C1825C225J5RAC - TU
Kemet
C7
0.1 μF Chip Capacitor
CDR33BX104AKYS
Kemet
C8
0.22 μF, 50 V Chip Capacitor
C1812C224K5RAC - TU
Kemet
C9, C12
22K pF Chip Capacitors
ATC200B223KT50XT
ATC
C10, C18
0.01 μF, 100 V Chip Capacitors
C1825C103K1GAC - TU
Kemet
C11, C19
0.1 pF Chip Capacitors
ATC100B0R1BT500XT
ATC
C13, C17
39K pF Chip Capacitors
ATC200B393KT50XT
ATC
C14
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C15
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C20
470 μF, 63 V Electrolytic Capacitor
MCGPR63V477M13X26 - RH
Multicomp
L1
47 nH Inductor
1812SMS - 47NJ
Coilcraft
L2*
9 Turn, #16 AWG, Inductor, Hand Wound, 0.250″ ID
Copper Wire
L3*
10 Turn, #16 AWG, Inductor, Hand Wound, 0.375″ ID
Copper Wire
L4*
9 Turn, #16 AWG, Inductor, Hand Wound, 0.375″ ID
Copper Wire
R1, R2
3.3 Ω, 1/2 W Chip Resistors
RK73B2ETTD3R3J
KOA
R3*, **
1 KΩ, 1/4 W Resistor
MCCFR0W4J0102A50
Multicomp
R4*, **
510 Ω, 1/2 W Resistor
MCRC1/2G511JT - RH
Multicomp
T1
RF600 Transformer 16:1 Impedance Ratio
RF600LF - 16
Comm Concepts
T2
RF1000 Transformer 9:1 Impedance Ratio
RF1000LF - 9
Comm Concepts
* Leaded components mounted over traces.
** Resistor is mounted at center of inductor coil.
MRF6V2150NR1 MRF6V2150NBR1
8
RF Device Data
Freescale Semiconductor
C10 C9
C8
C6
C21
C20
C19
C7
+
B1
B2
B3
C22
L4
C18
C11
C5
L1
C13
L2
C3
C1
C4
CUT OUT AREA
C2
C16
C17
L3
C15
C12
C14
450 MHz
272−WB
Rev. 1
Figure 16. MRF6V2150NR1(NBR1) Test Circuit Component Layout — 450 MHz
Table 8. MRF6V2150NR1(NBR1) Test Circuit Component Designations and Values — 450 MHz
Part
Description
Part Number
Manufacturer
B1, B2, B3
47 Ω, 100 MHz Short Ferrite Beads
2743019447
Fair - Rite
C1
6.8 pF Chip Capacitor
ATC100B6R8CT500XT
ATC
C2
15 pF Chip Capacitor
ATC100B150JT500XT
ATC
C3, C5, C17, C18
240 pF Chip Capacitors
ATC100B241JT200XT
ATC
C4
36 pF Chip Capacitor
ATC100B360JT500XT
ATC
C6, C21
0.1 μF, 50 V Chip Capacitors
CDR33BX104AKYS
Kemet
C7, C20
10K pF Chip Capacitors
ATC200B103KT50XT
ATC
C8, C19
22K pF Chip Capacitors
ATC200B223KT50XT
ATC
C9
10 μF, 35 V Tantalum Capacitor
T491D106K035AS
Kemet
C10
22 μF, 35 V Tantalum Capacitor
T491X226K035AS
Kemet
C11
47 μF, 50 V Electrolytic Capacitor
476KXM050M
Illinois Capacitor
C12
18 pF Chip Capacitor
ATC100B180JT500XT
ATC
C13
10 pF Chip Capacitor
ATC100B100JT500XT
ATC
C14
0.6 - 4.5 pF Variable Capacitor
27271SL
Johanson
C15
3 pF Chip Capacitor
ATC100B3R0CT500XT
ATC
C16
0.5 pF Chip Capacitor
ATC100B0R5BT500XT
ATC
C22
470 μF, 63 V Electrolytic Capacitor
MCGPR63V477M13X26 - RH
Multicomp
L1, L2
5 nH Mini Spring Air Core Inductors
A02TKLC
Coilcraft
L3
17.5 nH Mini Spring Air Core Inductor
B06TJLC
Coilcraft
L4
82 nH Midi Spring Air Core Inductor
1812SMS - 82NJLC
Coilcraft
PCB
Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55
DS2054
DS
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
9
f = 27 MHz
Zsource
Zo = 50 Ω
f = 450 MHz
Zsource
f = 27 MHz
Zload
f = 450 MHz
Zload
VDD = 50 Vdc, IDQ = 450 mA, Pout = 150 W CW
f
MHz
Zsource
W
Zload
W
27
6.57 + j41.4
7.16 + j3.02
450
0.80 + j3.20
2.20 + j2.30
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured from
drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 17. Series Equivalent Source and Load Impedance — 27, 450 MHz
MRF6V2150NR1 MRF6V2150NBR1
10
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
11
MRF6V2150NR1 MRF6V2150NBR1
12
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
13
MRF6V2150NR1 MRF6V2150NBR1
14
RF Device Data
Freescale Semiconductor
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
15
MRF6V2150NR1 MRF6V2150NBR1
16
RF Device Data
Freescale Semiconductor
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Feb. 2007
• Initial Release of Data Sheet
1
May 2007
• Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C4,
C17, C5, C18, C9, C12, C14, C23, C13, C21, and C22, p. 3
2
Apr. 2008
• Added Case Operating Temperature limit to the Maximum Ratings table and set limit to 150°C, p. 1
• Corrected Ciss test condition to indicate AC stimulus on the VGS connection versus the VDS connection,
Dynamic Characteristics table, p. 2
• Updated PCB information to show more specific material details, Fig. 2, Test Circuit Schematic, p. 3
• Updated Part Numbers in Table 6, Component Designations and Values, to latest RoHS compliant part
numbers, p. 3
• Replaced Case Outline 1486 - 03, Issue C, with 1486 - 03, Issue D, p. 8 - 10. Added pin numbers 1 through 4
on Sheet 1.
• Replaced Case Outline 1484 - 04, Issue D, with 1484 - 04, Issue E, p. 11 - 13. Added pin numbers 1 through
4 on Sheet 1, replacing Gate and Drain notations with Pin 1 and Pin 2 designations.
3
Dec. 2008
• Added Typical Performances table for 27 MHz, 450 MHz applications, p. 2
• Added Figs. 15 and 16, Test Circuit Component Layout - 27 MHz and 450 MHz, and Tables 7 and 8, Test
Circuit Component Designations and Values - 27 MHz and 450 MHz, p. 8, 9
• Added Fig. 17, Series Equivalent Source and Load Impedance for 27 MHz, 450 MHz, p. 10
MRF6V2150NR1 MRF6V2150NBR1
RF Device Data
Freescale Semiconductor
17
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140
Fax: +1 - 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007-2008. All rights reserved.
MRF6V2150NR1 MRF6V2150NBR1
Document Number: MRF6V2150N
Rev. 3, 12/2008
18
RF Device Data
Freescale Semiconductor