TI TLV2252ID

  SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
D
D
D
D
D
D
Output Swing Includes Both Supply Rails
Low Noise . . . 19 nV/√Hz Typ at f = 1 kHz
Low Input Bias Current . . . 1 pA Typ
Fully Specified for Both Single-Supply and
Split-Supply Operation
Very Low Power . . . 34 µA Per Channel Typ
Common-Mode Input Voltage Range
Includes Negative Rail
D Low Input Offset Voltage
D
D
D
850 µV Max at TA = 25°C
Wide Supply Voltage Range
2.7 V to 8 V
Macromodel Included
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
3
VDD = 3 V
VOH − High-Level Output Voltage − V
The TLV2252 and TLV2254 are dual and
quadruple low-voltage operational amplifiers from
Texas Instruments. Both devices exhibit rail-to-rail
output performance for increased dynamic range
in single- or split-supply applications. The
TLV225x family consumes only 34 µA of supply
current per channel. This micropower operation
makes them good choices for battery-powered
applications. This family is fully characterized at
3 V and 5 V and is optimized for low-voltage
applications. The noise performance has been
dramatically improved over previous generations
of CMOS amplifiers. The TLV225x has a noise
level of 19 nV/√Hz at 1kHz, four times lower than
competitive micropower solutions.
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
2.5
TA = − 40°C
2
TA = 25°C
1.5
TA = 85°C
1
ÁÁ
ÁÁ
TA = 125°C
0.5
The TLV225x, exhibiting high input impedance
and low noise, are excellent for small-signal
0
conditioning for high-impedance sources, such as
600
800
0
200
400
piezoelectric transducers. Because of the micro| IOH | − High-Level Output Current − µ A
power dissipation levels combined with 3-V
Figure 1
operation, these devices work well in hand-held
monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV225xA family is
available and has a maximum input offset voltage of 850 µV.
The TLV2252/4 also make great upgrades to the TLV2322/4 in standard designs. They offer increased output
dynamic range, lower noise voltage, and lower input offset voltage. This enhanced feature set allows them to
be used in a wider range of applications. For applications that require higher output drive and wider input voltage
range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the
TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their
small size and low power consumption, make them ideal for high density, battery-powered equipment.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments.
Copyright  1997−2006, Texas Instruments Incorporated
!"#$%" & '##% & "! (')*%" %+
#"'%& "!"#$ %" &(!%"& (# %, %#$& "! & &%#'$%&
&%# -##%.+ #"'%" (#"&&/ "& "% &&#*. *'
%&%/ "! ** (#$%#&+
(#"'%& "$(*% %" 010 ** (#$%#& # %&%
'*&& "%,#-& "%+ ** "%,# (#"'%& (#"'%"
(#"&&/ "& "% &&#*. *' %&%/ "! ** (#$%#&+
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
TSSOP‡
(PW)
CERAMIC
FLATPACK
(U)
−40°C to 125°C
850 µV
1500 µV
TLV2252AID
TLV2252ID
—
—
—
—
TLV2252AIP
TLV2252IP
TLV2252AIPWLE
—
—
—
−40°C to 125°C
850 µV
1500 µV
TLV2252AQD
TLV2252QD
—
—
—
—
—
—
—
—
—
—
−55°C to 125°C
850 µV
1500 µV
—
—
TLV2252AMFK
TLV2252MFK
TLV2252AMJG
TLV2252MJG
—
—
—
—
TLV2252AMU
TLV2252MU
† The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2252CDR).
‡ The PW package is available only left-end taped and reeled.
§ Chips are tested at 25°C.
TLV2254 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE†
(D)
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
PLASTIC
DIP
(N)
TSSOP‡
(PW)
CERAMIC
FLATPACK
(W)
−40°C to 125°C
850 µV
1500 µV
TLV2254AID
TLV2254ID
—
—
—
—
TLV2254AIN
TLV2254IN
TLV2254AIPWLE
—
—
—
−40°C to 125°C
850 µV
1500 µV
TLV2254AQD
TLV2254QD
—
—
—
—
—
—
—
—
—
—
−55°C to 125°C
850 µV
1500 µV
—
—
TLV2254AMFK
TLV2254MFK
TLV2254AMJ
TLV2254MJ
—
—
—
—
TLV2254AMW
TLV2254MW
† The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2254CDR).
‡ The PW package is available only left-end taped and reeled.
§ Chips are tested at 25°C.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252I, TLV2252AI
TLV2252Q, TLV2252AQ
D, P, OR PW PACKAGE
(TOP VIEW)
1
8
2
7
3
6
4
5
VDD +
2OUT
2IN −
2IN +
TLV2252M, TLV2252AM . . . JG PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN +
VDD − /GND
1
8
2
7
3
6
4
5
VDD +
2OUT
2IN −
2IN +
TLV2252M, TLV2252AM . . . U PACKAGE
(TOP VIEW)
NC
1OUT
1IN −
1IN +
VCC − /GND
1
NC
VCC +
2OUT
2IN −
2IN +
10
2
9
3
8
4
7
5
6
5
17
6
16
7
15
14
8
9 10 11 12 13
3
12
4
11
5
10
6
9
7
8
7
4OUT
4IN −
4IN +
VDD − / GND
3IN +
3IN −
3OUT
4OUT
4IN −
4IN +
VDD − / GND
3IN +
3IN −
3OUT
14
8
TLV2254M, TLV2254AM . . . FK PACKAGE
(TOP VIEW)
NC
2OUT
NC
2IN −
NC
1IN+
NC
VDD+
NC
2IN+
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
2IN −
2OUT
3 2 1 20 19
18
13
1
1OUT
1IN −
1IN +
VDD+
2IN +
2IN −
2OUT
NC
1OUT
NC
VDD+
NC
4
14
2
TLV2254I, TLV2254AI . . . PW PACKAGE
(TOP VIEW)
NC
VDD− /GND
NC
2IN+
NC
NC
1IN −
NC
1IN +
NC
1
1IN −
1OUT
NC
4OUT
4IN −
TLV2252M, TLV2252AM . . . FK PACKAGE
(TOP VIEW)
1OUT
1IN −
1IN +
VDD +
2IN +
2IN −
2OUT
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
4IN+
NC
VDD −/ GND
NC
3IN+
NC
3OUT
3IN −
1OUT
1IN −
1IN +
VDD − /GND
TLV2254I, TLV2254AI, TLV2254Q, TLV2254AQ . . . D OR N PACKAGE
TLV2254M, TLV2254AM . . . J OR W PACKAGE
(TOP VIEW)
3
4
IN −
IN +
Q1
Q5
R4
Q2
R3
Q3
Q4
equivalent schematic (each amplifier)
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Q10
R6
Q9
3
Capacitors
6
18
56
76
TLV2254
† Includes both amplifiers and all ESD, bias, and trim circuitry
9
30
Resistors
Diodes
38
TLV2252
Transistors
R1
Q13
C1
Q12
VDD −/ GND
Q11
R5
ACTUAL DEVICE COMPONENT COUNT†
Q8
COMPONENT
Q7
Q6
VDD +
R2
Q15
Q14
D1
Q17
Q16
OUT
Template Release Date: 7−11−94
2
2 222
SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD − −0.3 V to VDD+
Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current out of VDD − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: I Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
Q Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C
M Suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages . . . . . . . 260°C
J, JG, U, and W packages . . . . . . . 300°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to VDD − .
2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought
below VDD − − 0.3 V.
3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
25 C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
85°C
TA = 85
C
POWER RATING
125°C
TA = 125
C
POWER RATING
D−8
725 mW
5.8 mW/°C
377 mW
145 mW
D−14
950 mW
7.6 mW/°C
494 mW
190 mW
FK
1375 mW
11.0 mW/°C
715 mW
275 mW
J
1375 mW
11.0 mW/°C
715 mW
275 mW
JG
1050 mW
8.4 mW/°C
546 mW
210 mW
N
1150 mW
9.2 mW/°C
598 mW
230 mW
P
1000 mW
8.0 mW/°C
520 mW
200 mW
PW−8
525 mW
4.2 mW/°C
273 mW
105 mW
PW−14
700 mW
5.6 mW/°C
364 mW
140 mW
U
700 mW
5.5 mW/°C
370 mW
150 mW
W
700 mW
5.5 mW/°C
370 mW
150 mW
recommended operating conditions
TLV225xI
MIN
Supply voltage, VDD Input voltage range, VI
Common-mode input voltage, VIC
2.7
VDD −
VDD −
TLV225xQ
MAX
8
VDD + − 1.3
VDD + − 1.3
Operating free-air temperature, TA
−40
125
NOTE 1: All voltage values, except differential voltages, are with respect to VDD − .
POST OFFICE BOX 655303
MIN
2.7
VDD −
VDD −
−40
• DALLAS, TEXAS 75265
TLV225xM
MAX
8
VDD + − 1.3
VDD + − 1.3
125
MIN
2.7
VDD −
VDD −
−55
MAX
8
UNIT
V
VDD + − 1.3
VDD + − 1.3
V
125
°C
V
5
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift (see
Note 4)
IIO
TEST CONDITIONS
TA†
TLV2252I
MIN
25°C
MAX
200
1500
Full range
VIC = 0,
RS = 50 Ω
Input offset current
0.003
0.003
µV/mo
25°C
0.5
−40°C
to 85°C
|VIO | ≤ 5 mV
Full range
IOH = − 20 µA
VOH
High-level output
voltage
VOL
AVD
Large-signal differential
voltage amplification
0.5
1000
1
1
25°C
2.98
IOH = − 75 µA
Full range
2.8
2.8
IOH = − 150 µA
25°C
2.8
IOL = 500 µA
Full range
VIC = 1.5 V,
IOL = 1 A
Full range
VIC = 1.5 V,
VO = 1 V to 2 V
RL = 100 kه
RL = 1 Mه
V
10
80
25°C
80
100
100
150
25°C
150
200
100
Full range
10
250
mV
200
300
25°C
V
2.8
10
Full range
VIC = 1.5 V,
−0.3
to
2.2
2.98
2.9
IOL = 50 µA
pA
1000
0
to
2
0
to
1.7
2.9
25°C
60
150
1000
−0.3
to
2.2
pA
1000
60
150
0
to
2
0
to
1.7
60
150
25°C
VIC = 1.5 V,
Low-level output
voltage
60
150
−40°C
to 85°C
RS = 50 Ω
Ω,
µV
25°C
25°C
25
C
VICR
850
1000
UNIT
µV/°C
Full range
Common-mode input
voltage range
200
MAX
0.5
25°C
Input bias current
TYP
0.5
Full range
IIB
MIN
1750
25°C
25
C
to 85°C
VDD ± = ± 1.5 V,
VO = 0,
TLV2252AI
TYP
300
100
250
10
V/mV
25°C
800
800
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
P package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
220
220
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.7 V,
VO = 1.5 V,
RS = 50 Ω
25°C
65
Full range
60
75
65
60
77
dB
† Full range is − 40°C to 125°C.
‡ Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted) (continued)
PARAMETER
TEST CONDITIONS
TA†
kSVR
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 8 V,
VIC = VDD /2,
No load
IDD
Supply current
VO = 1.5 V,
Full range
No load
TLV2252I
MIN
TYP
25°C
80
95
Full range
80
TLV2252AI
MAX
MIN
TYP
80
100
MAX
UNIT
dB
80
25°C
68
125
68
125
150
150
µA
† Full range is − 40°C to 125°C.
TLV2252I operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
equivalent input noise
voltage
In
Equivalent input noise
current
TEST CONDITIONS
TLV2252I
TA†
MIN
TYP
0.1
TLV2252AI
MAX
MIN
TYP
0.07
0.1
MAX
UNIT
VO = 1.1 V to 1.9 V,
RL = 100 kkه,
CL = 100 pF‡
25 C
25°C
0.07
Full
range
0.05
f = 10 Hz
25°C
35
35
f = 1 kHz
25°C
19
19
f = 0.1 Hz to 1 Hz
25°C
0.6
0.6
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
25°C
0.6
0.6
25°C
0.187
0.187
MHz
25°C
60
60
kHz
25°C
63°
63°
25°C
15
15
Gain-bandwidth product
f = 1 kHz,
CL = 100 pF‡
RL = 50 kه,
BOM
Maximum output-swing
bandwidth
VO(PP) = 1 V,
RL = 50 kه,
AV = 1,
CL = 100 pF‡
φm
Phase margin at unity
gain
RL = 50 kه,
CL = 100 pF‡
Gain margin
† Full range is − 40°C to 125°C.
‡ Referenced to 1.5 V
POST OFFICE BOX 655303
V/µs
• DALLAS, TEXAS 75265
0.05
nV/√Hz
µV
V
fA /√Hz
dB
7
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
PARAMETER
TA†
TEST CONDITIONS
25°C
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
25°C
25
C
to 85°C
Input offset voltage longterm drift (see Note 4)
IIO
Input offset current
TLV2252I
MIN
VICR
VIC = 0,
RS = 50 Ω
Input bias current
Common-mode input
voltage range
|VIO | ≤ 5 mV,
High-level output voltage
IOH = − 75 µA
AVD
Low-level output voltage
Large-signal differential
voltage amplification
IOL = 50 µA
VIC = 2.5 V,
IOL = 500 µA
VIC = 2.5 V,
IOL = 1 A
VIC = 2.5 V,
VO = 1 V to 4 V
RL = 1 Mه
µV
25°C
0.003
0.003
µV/mo
25°C
0.5
60
0.5
60
−40°C
to 85°C
150
150
Full range
1000
1000
1
60
1
150
150
Full range
1000
1000
25°C
0
to
4
Full range
0
to
3.5
−0.3
to
4.2
0
to
4
25°C
4.9
Full range
4.8
25°C
4.8
−0.3
to
4.2
4.98
4.94
4.9
4.94
4.88
4.8
0.01
4.88
0.01
0.06
25°C
0.09
0.06
0.15
0.09
0.15
25°C
0.2
Full range
100
Full range
10
350
0.15
0.15
0.3
0.2
0.3
25°C
V
4.8
Full range
pA
V
0
to
3.5
4.98
pA
60
−40°C
to 85°C
Full range
RL = 100 kه
850
1000
UNIT
µV/°C
25°C
VIC = 2.5 V,
200
MAX
0.5
25°C
IOH = − 150 µA
VOL
1500
TYP
0.5
RS = 50 Ω
IOH = − 20 µA
VOH
200
MIN
1750
25°C
IIB
MAX
Full range
VDD ± = ± 2.5 V,
VO = 0,
TLV2252AI
TYP
V
0.3
0.3
100
350
10
V/mV
25°C
1700
1700
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
P package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
200
200
Ω
CMRR
Common-mode rejection
ratio
VIC = 0 to 2.7 V,
RS = 50 Ω
VO = 2.5 V,
25°C
70
Full range
70
83
70
70
83
dB
† Full range is − 40°C to 125°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted) (continued)
PARAMETER
TEST CONDITIONS
TA†
kSVR
Supply voltage rejection
ratio (∆VDD /∆VIO)
VDD = 4.4 V to 8 V,
VIC = VDD /2,
No load
IDD
Supply current
VO = 2.5 V,
No load
TLV2252I
MIN
TYP
25°C
80
95
Full range
80
TLV2252AI
MAX
MIN
TYP
80
95
MAX
dB
80
25°C
70
Full range
125
UNIT
70
125
150
150
µA
† Full range is − 40°C to 125°C.
TLV2252I operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
VO = 1.5 V to 3.5 V,
CL = 100 pF‡
RL = 100 kه,
TLV2252I
TA†
MIN
TYP
25°C
0.07
0.12
Full
range
0.05
TLV2252AI
MAX
MIN
TYP
0.07
0.12
MAX
UNIT
SR
Slew rate at unity gain
V/µs
Equivalent input noise
voltage
f = 10 Hz
25°C
36
36
Vn
f = 1 kHz
25°C
19
19
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
0.7
0.7
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
In
Equivalent input noise
current
25°C
0.6
0.6
Total harmonic
distortion plus noise
VO = 0.5 V to 2.5 V,
f = 20 kHz,
RL = 50 kه
AV = 1
0.2%
0.2%
THD + N
1%
1%
Gain-bandwidth
product
f = 50 kHz,
CL = 100 pF‡
RL = 50 kه,
25°C
0.2
0.2
MHz
BOM
Maximum output-swing
bandwidth
VO(PP) = 2 V,
RL = 50 kه,
AV = 1,
CL = 100 pF‡
25°C
30
30
kHz
φm
Phase margin at unity
gain
RL = 50 kه,
CL = 100 pF‡
25°C
63°
63°
25°C
15
15
0.05
nV/√Hz
µV
V
fA /√Hz
25°C
AV = 10
Gain margin
† Full range is − 40°C to 125°C.
‡ Referenced to 2.5 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
9
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
TA†
TEST CONDITIONS
TLV2254I
MIN
25°C
MAX
200
1500
Full range
VIC = 0,
RS = 50 Ω
VICR
0.003
0.003
µV/mo
25°C
0.5
VOH
High-level output
voltage
VOL
AVD
Large-signal
differential voltage
amplification
0.5
150
150
1000
1
1
1000
Full range
−0.3
to 2.2
0
to 2
0
to 1.7
25°C
2.98
IOH = − 75 µA
2.9
Full range
2.8
2.8
IOH = − 150 µA
25°C
2.8
Full range
VIC = 1.5 V,
IOL = 500 µA
Full range
VIC = 1.5 V,
IOL = 1 A
Full range
RL = 100 kه
80
80
100
150
150
200
100
Full range
10
225
mV
200
300
25°C
RL = 1 Mه
V
10
100
25°C
V
2.8
10
25°C
pA
2.98
2.9
25°C
−0.3
to 2.2
0
to 1.7
25°C
VIC = 1.5 V,
VO = 1 V to 2 V
60
1000
0
to 2
pA
1000
60
Full range
|VIO | ≤ 5 mV
IOL = 50 µA
60
150
25°C
VIC = 1.5 V,
Low-level output
voltage
60
150
IOH = − 20 µA
µV
25°C
−40°C
to 85°C
Input bias current
RS = 50 Ω,
850
1000
UNIT
µV/°C
25°C
Common-mode input
voltage range
200
MAX
0.5
Full range
IIB
TYP
0.5
−40°C
to 85°C
Input offset current
MIN
1750
25°C
25
C
to 85°C
VDD ± = ± 1.5 V,
VO = 0,
TLV2254AI
TYP
300
100
225
10
V/mV
25°C
800
800
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
N package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
220
220
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.7 V,
RS = 50 Ω
VO = 1.5 V,
25°C
65
Full range
60
75
65
60
77
dB
† Full range is − 40°C to 125°C.
‡ Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise
noted) (continued)
PARAMETER
TA†
TEST CONDITIONS
TLV2254I
MIN
TYP
95
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 8 V,
VIC = VDD /2,
No load
25°C
80
kSVR
Full range
80
IDD
Supply current
(four amplifiers)
VO = 1.5 V,
Full range
No load
TLV2254AI
MAX
MIN
TYP
80
100
MAX
UNIT
dB
80
25°C
135
250
135
300
250
300
µA
† Full range is − 40°C to 125°C.
TLV2254I operating characteristics at specified free-air temperature, VDD = 3 V
SR
TLV2254I
PARAMETER
TEST CONDITIONS
TA†
MIN
TYP
VO = 0.7 V to 1.7 V,
k ‡,
RL = 100 kΩ
CL = 100 pF‡
25 C
25°C
0.07
0.1
Slew rate at unity gain
Full range
0.05
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input
noise voltage
In
Equivalent input noise current
TLV2254AI
MAX
MIN
TYP
0.07
0.1
MAX
UNIT
V/ s
V/µs
0.05
f = 10 Hz
25°C
35
35
f = 1 kHz
25°C
19
19
f = 0.1 Hz to 1 Hz
25°C
0.6
0.6
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
25°C
0.6
0.6
nV/√Hz
µV
V
fA /√Hz
Gain-bandwidth product
f = 1 kHz,
RL = 50 kΩ ‡,
CL = 100 pF ‡
25°C
0.187
0.187
MHz
BOM
Maximum output-swing
bandwidth
VO(PP) = 1 V,
AV = 1,
RL = 50 kه,
CL = 100 pF ‡
25°C
60
60
kHz
φm
Phase margin at unity gain
25°C
63°
63°
25°C
15
15
Gain margin
RL = 50 kه,
CL = 100 pF ‡
dB
† Full range is − 40°C to 85°C.
‡ Referenced to 1.5 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted)
PARAMETER
TEST CONDITIONS
TA†
MIN
25°C
VIO
Input offset voltage
αVIO
Temperature
coefficient of input
offset voltage
25
C
25°C
to 85°C
Input offset voltage
long-term drift
(see Note 4)
IIO
TLV2254I
TYP
MAX
200
1500
Full range
VDD ± = ± 2.5 V,
VO = 0,
VIC = 0,
RS = 50 Ω
Common-mode input
voltage range
0.003
0.003
µV/mo
25°C
0.5
25°C
RS = 50 Ω
Full range
IOH = − 20 µA
VOH
High-level output
voltage
IOH = − 150 µA
IOL = 50 µA
VIC = 2.5 V,
VOL
AVD
Low-level output
voltage
Large-signal
differential voltage
amplification
VIC = 2.5 V,
IOL = 500 µA
VIC = 2.5 V,
IOL = 1 A
VIC = 2.5 V,
VO = 1 V to 4 V
RL = 100 kه
RL = 1 Mه
60
0.5
150
1
4.9
Full range
4.8
25°C
4.8
25°C
−0.3
to 4.2
4.98
4.94
4.9
4.94
4.88
Full range
4.8
4.88
0.01
0.06
0.09
Full range
0.06
0.15
0.09
0.15
25°C
0.2
Full range
100
Full range
10
350
0.15
0.15
0.3
0.2
0.3
25°C
V
4.8
0.01
25°C
V
0
to 3.5
4.98
25°C
pA
1000
0
to 4
0
to 3.5
60
150
1000
−0.3
to 4.2
pA
1000
60
150
0
to 4
60
150
1000
1
25°C
IOH = − 75 µA
µV
25°C
−40°C
to 85°C
|VIO | ≤ 5 mV,
850
1000
UNIT
µV/°C
Full range
VICR
200
MAX
0.5
25°C
Input bias current
TYP
0.5
Full range
IIB
MIN
1750
−40°C
to 85°C
Input offset current
TLV2254AI
V
0.3
0.3
100
350
10
V/mV
25°C
1700
1700
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
N package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
200
200
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 to 2.7 V,
RS = 50 Ω
VO = 2.5 V,
25°C
70
Full range
70
83
70
70
83
dB
† Full range is − 40°C to 125°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise
noted) (continued)
PARAMETER
TA†
TEST CONDITIONS
kSVR
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 4.4 V to 8 V,
VIC = VDD /2,
No load
IDD
Supply current
(four amplifiers)
VO = 2.5 V,
TLV2254I
MIN
TYP
25°C
80
95
Full range
80
MAX
MIN
TYP
80
95
MAX
UNIT
dB
80
25°C
No load
TLV2254AI
140
Full range
250
140
300
250
300
µA
A
† Full range is − 40°C to 125°C.
TLV2254I operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
RL = 100 kΩ ‡,
TLV2254I
TA†
MIN
TYP
25°C
0.07
0.12
Full
range
0.05
TLV2254AI
MAX
MIN
TYP
0.07
0.12
MAX
UNIT
SR
Slew rate at unity
gain
VO = 1.4 V to 2.6 V,
CL = 100 pF ‡
Equivalent input
noise voltage
f = 10 Hz
25°C
36
36
Vn
f = 1 kHz
25°C
19
19
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
0.7
0.7
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
In
Equivalent input
noise current
25°C
0.6
0.6
Total harmonic
distortion plus
noise
VO = 0.5 V to 2.5 V,
f = 20 kHz,
RL = 50 kΩ ‡
AV = 1
0.2%
0.2%
THD + N
1%
1%
Gain-bandwidth
product
f = 50 kHz,
CL = 100 pF ‡
RL = 50 kΩ ‡,
25°C
0.2
0.2
MHz
BOM
Maximum outputswing bandwidth
VO(PP) = 2 V,
RL = 50 kΩ ‡,
AV = 1,
CL = 100 pF ‡
25°C
30
30
kHz
φm
Phase margin at
unity gain
RL = 50 kΩ ‡,
CL = 100 pF ‡
25°C
63°
63°
25°C
15
15
V/µs
0.05
nV/√Hz
µV
V
fA /√Hz
25°C
AV = 10
Gain margin
† Full range is − 40°C to 125°C.
‡ Referenced to 2.5 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
13
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLV2252Q,
TLV2252M
MIN
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
25°C
Common-mode input
voltage range
VIC = 0,
RS = 50 Ω
Low-level output
voltage
VIC = 1.5 V,
VIC = 1.5 V,
AVD
Large-signal differential
voltage amplification
VIC = 1.5 V,
VO = 1 V to 2 V
IOL = 500 µA
IOL = 1 A
RL = 100 kه
RL = 1 Mه
µV
0.003
0.003
µV/mo
25°C
0.5
60
0.5
1000
1
0
to
2
0
to
1.7
60
−0.3
to
2.2
1
0
to
2
0
to
1.7
2.98
2.9
Full range
2.8
2.8
25°C
2.8
2.8
10
100
Full range
−0.3
to
2.2
200
Full range
100
Full range
10
V
10
150
100
250
150
165
300
200
300
25°C
pA
V
165
25°C
pA
2.98
2.9
25°C
60
1000
25°C
25°C
60
1000
1000
25°C
IOL = 50 µA
850
1000
25°C
|VIO | ≤ 5 mV
IOH = − 75 µA
200
UNIT
MAX
µV/°C
25°C
RS = 50 Ω
Ω,
TYP
0.5
125°C
IOH = − 150 µA
VIC = 1.5 V,
VOL
1500
125°C
IOH = − 20 µA
VOH
200
MIN
0.5
Full range
High-level output
voltage
MAX
1750
25°C
25
C
to 85°C
25°C
25
C
VICR
TYP
Full range
VDD ± = ± 1.5 V,
VO = 0,
TLV2252AQ,
TLV2252AM
mV
300
300
100
250
10
V/mV
25°C
800
800
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
P package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
220
220
Ω
CMRR
Common-mode rejection
ratio
VIC = 0 to 1.7 V,
RS = 50 Ω
VO = 1.5 V,
kSVR
Supply voltage rejection
VDD /∆V
/ VIO)
ratio ((∆V
VDD = 2.7 V to 8 V,
VIC = VDD /2,
No load
IDD
Supply current
VO = 1.5 V,
No load
25°C
65
Full range
60
25°C
80
Full range
80
25°C
Full range
75
65
77
dB
60
95
80
100
dB
80
68
125
150
68
125
150
µA
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TA†
TEST CONDITIONS
VO = 0.8 V to 1.4 V,
CL = 100 pF‡
RL = 100 kه,
TLV2252Q,
TLV2252M
MIN
TYP
25°C
0.07
0.1
Full
range
0.05
TLV2252AQ,
TLV2252AM
MAX
MIN
TYP
0.07
0.1
UNIT
MAX
SR
Slew rate at unity gain
Equivalent input noise
voltage
f = 10 Hz
25°C
35
35
Vn
f = 1 kHz
25°C
19
19
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
0.6
0.6
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
In
Equivalent input noise
current
25°C
0.6
0.6
25°C
0.187
0.187
MHz
25°C
60
60
kHz
25°C
63°
63°
Gain margin
25°C
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 1.5 V
15
15
Gain-bandwidth
product
f = 1 kHz,
CL = 100 pF‡
RL = 50 kه,
BOM
Maximum
output-swing
bandwidth
VO(PP) = 1 V,
RL = 50 kه,
AV = 1,
CL = 100 pF‡
φm
Phase margin at unity
gain
RL = 50 kه,
CL = 100 pF‡
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
V/µs
0.05
nV/√Hz
µV
V
fA /√Hz
dB
15
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLV2252Q,
TLV2252M
MIN
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage longterm drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input
voltage range
25°C
VOL
High-level output voltage
Low-level output voltage
Large-signal differential
voltage amplification
200
1500
VIC = 0,
RS = 50 Ω
VIC = 2.5 V,
IOL = 500 µA
VIC = 2.5 V,
VO = 1 V to 4 V
IOL = 1 A
RL = 100 kه
RL = 1 Mه
µV
0.003
0.003
µV/mo
25°C
0.5
60
0.5
1000
1
25°C
0
to
4
60
Full range
0
to
3.5
−0.3
to
4.2
1
4.9
Full range
4.8
25°C
4.8
0
to
4
−0.3
to
4.2
4.9
4.94
4.88
25°C
0.09
4.8
4.88
0.01
0.15
0.09
0.15
0.2
Full range
100
Full range
10
350
0.15
0.15
0.3
0.2
0.3
25°C
V
4.8
Full range
pA
4.98
4.94
0.01
pA
V
0
to
3.5
25°C
25°C
60
1000
4.98
25°C
60
1000
1000
25°C
IOL = 50 µA
850
1000
25°C
RS = 50 Ω
IOH = − 150 µA
VIC = 2.5 V,
200
UNIT
MAX
µV/°C
125°C
IOH = − 75 µA
TYP
0.5
25°C
|VIO | ≤ 5 mV,
MIN
0.5
125°C
VIC = 2.5 V,
AVD
MAX
1750
25°C
25
C
to 85°C
IOH = − 20 µA
VOH
TYP
Full range
VDD ± = ± 2.5 V,
VO = 0,
TLV2252AQ,
TLV2252AM
V
0.3
0.3
100
350
10
V/mV
25°C
1700
1700
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
P package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
200
200
Ω
CMRR
Common-mode rejection
ratio
VIC = 0 to 2.7 V,
VO = 2.5 V,
RS = 50 Ω
25°C
70
Full range
70
kSVR
Supply voltage rejection
ratio (∆VDD /∆VIO)
VDD = 4.4 V to 8 V,
VIC = VDD /2,
No load
25°C
80
Full range
80
83
70
83
70
95
80
80
95
dB
dB
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2252Q, and TLV2252M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
PARAMETER
TA†
TEST CONDITIONS
TLV2252Q,
TLV2252M
MIN
IDD
Supply current
VO = 2.5 V,
No load
25°C
TLV2252AQ,
TLV2252AM
TYP
MAX
70
125
Full range
MIN
UNIT
TYP
MAX
70
125
150
150
µA
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
TLV2252Q, and TLV2252M operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
SR
Slew rate at unity gain
TA†
TEST CONDITIONS
TLV2252Q,
TLV2252M
MIN
TYP
0.12
VO = 1.25 V to 2.75 V,
RL = 100 kkه,
CL = 100 pF‡
25 C
25°C
0.07
Full
range
0.05
MAX
TLV2252AQ,
TLV2252AM
MIN
TYP
0.07
0.12
UNIT
MAX
V/µs
0.05
f = 10 Hz
25°C
36
36
f = 1 kHz
25°C
19
19
f = 0.1 Hz to 1 Hz
25°C
0.7
0.7
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
25°C
0.6
0.6
0.2%
0.2%
1%
1%
25°C
0.2
0.2
MHz
25°C
30
30
kHz
25°C
63°
63°
Gain margin
25°C
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 2.5 V
15
15
Vn
Equivalent input noise
voltage
VN(PP)
Peak-to-peak
equivalent input
noise voltage
In
Equivalent input noise
current
Total harmonic
distortion plus noise
VO = 0.5 V to 2.5 V,
f = 20 kHz,
RL = 50 kه
AV = 1
THD + N
Gain-bandwidth product
f = 50 kHz,
CL = 100 pF‡
RL = 50 kه,
BOM
Maximum output-swing
bandwidth
VO(PP) = 2 V,
RL = 50 kه,
AV = 1,
CL = 100 pF‡
φm
Phase margin at unity
gain
RL = 50 kه,
CL = 100 pF‡
nV/√Hz
µV
V
fA /√Hz
25°C
AV = 10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
17
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLV2254Q,
TLV2254M
MIN
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
longterm drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input
voltage range
25°C
VOL
High-level output
voltage
Low-level output
voltage
Large-signal differential
voltage amplification
200
1500
VIC = 0,
RS = 50 Ω
0.003
µV/mo
25°C
0.5
1
0.5
25°C
25
C
0
to
2
60
Full range
0
to
1.7
−0.3
to
2.2
1
0
to
2
−0.3
to
2.2
2.98
Full range
2.8
2.8
25°C
2.8
10
VIC = 1.5 V,
IOL = 500 µA
25°C
100
Full range
V
2.8
10
150
100
165
200
Full range
Full range
10
225
150
165
300
200
300
100
pA
2.98
2.9
25°C
pA
V
0
to
1.7
2.9
25°C
60
1000
25°C
25°C
60
1000
1000
IOL = 50 µA
RL = 1 Mه
60
1000
25°C
RL = 100 kه
µV
0.003
IOH = − 150 µA
VIC = 1.5 V,
VIC = 1.5 V,
VO = 1 V to 2 V
850
1000
25°C
|VIO | ≤ 5 mV
IOL = 1 A
200
UNIT
MAX
µV/°C
125°C
IOH = − 75 µA
TYP
0.5
25°C
RS = 50 Ω
Ω,
MIN
0.5
125°C
VIC = 1.5 V,
AVD
MAX
1750
25°C
25
C
to 125°C
IOH = − 20 µA
VOH
TYP
Full range
VDD ± = ± 1.5 V,
VO = 0,
TLV2254AQ,
TLV2254AM
mV
300
300
100
225
10
V/mV
25°C
800
800
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
N package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
220
220
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 to 1.7 V,
RS = 50 Ω
VO = 1.5 V,
kSVR
Supply voltage
rejection ratio
(∆VDD /∆VIO)
VDD = 2.7 V to 8 V,
VIC = VDD /2,
No load
25°C
65
Full range
60
25°C
80
Full range
80
75
65
77
60
95
80
dB
100
dB
80
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 1.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
18
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 3 V
(unless otherwise noted) (continued)
PARAMETER
TLV2254Q,
TLV2254M
TA†
TEST CONDITIONS
MIN
IDD
Supply current
(four amplifiers)
VO = 1.5 V,
25°C
No load
TLV2254AQ,
TLV2254AM
TYP
MAX
135
250
Full range
MIN
UNIT
TYP
MAX
135
250
300
300
µA
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak-to-peak equivalent input
noise voltage
In
Equivalent input noise current
TA†
TEST CONDITIONS
VO = 0.5 V to 1.7 V,
RL = 100 kه,
CL = 100 pF‡
TLV2254Q,
TLV2254M
MIN
TYP
25°C
0.07
0.1
Full range
0.05
TLV2254AQ,
TLV2254AM
MAX
MIN
TYP
0.07
0.1
UNIT
MAX
V/µs
0.05
f = 10 Hz
25°C
35
35
f = 1 kHz
25°C
19
19
f = 0.1 Hz to 1 Hz
25°C
0.6
0.6
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
25°C
0.6
0.6
nV/√Hz
µV
V
fA /√Hz
Gain-bandwidth product
f = 1 kHz,
RL = 50 kΩ ‡,
CL = 100 pF ‡
25°C
0.187
0.187
MHz
BOM
Maximum output-swing
bandwidth
VO(PP) = 1 V,
AV = 1,
RL = 50 kه,
CL = 100 pF ‡
25°C
60
60
kHz
φm
Phase margin at unity gain
25°C
63°
63°
15
15
RL = 50 kه,
CL = 100 pF ‡
Gain margin
25°C
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 1.5 V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
19
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA†
TLV2254Q,
TLV2254M
MIN
VIO
Input offset voltage
αVIO
Temperature coefficient
of input offset voltage
Input offset voltage
long-term drift
(see Note 4)
IIO
Input offset current
IIB
Input bias current
VICR
Common-mode input
voltage range
25°C
High-level output
voltage
Low-level output
voltage
Large-signal differential
voltage amplification
1500
VIC = 0,
RS = 50 Ω
IOL = 500 µA
VIC = 2.5 V,
IOL = 1 A
VIC = 2.5 V,
VO = 1 V to 4 V
RL = 100 kه
RL = 1 Mه
850
1000
µV
25°C
0.003
0.003
µV/mo
25°C
0.5
60
0.5
1000
1
25°C
25
C
0
to
4
60
Full range
0
to
3.5
−0.3
to
4.2
1
4.9
Full range
4.8
25°C
4.8
0
to
4
−0.3
to
4.2
4.9
4.94
4.88
0.09
Full range
4.8
4.88
0.01
0.15
0.09
0.15
0.2
Full range
100
Full range
10
350
0.15
0.15
0.3
0.2
0.3
25°C
V
4.8
25°C
pA
4.98
4.94
0.01
pA
V
0
to
3.5
25°C
25°C
60
1000
4.98
25°C
60
1000
1000
25°C
IOL = 50 µA
200
UNIT
MAX
µV/°C
RS = 50 Ω
IOH = − 75 µA
TYP
0.5
25°C
|VIO | ≤ 5 mV,
MIN
0.5
125°C
VIC = 2.5 V,
AVD
200
125°C
IOH = − 150 µA
VIC = 2.5 V,
VOL
MAX
1750
25°C
25
C
to 125°C
IOH = − 20 µA
VOH
TYP
Full range
VDD ± = ± 2.5 V,
VO = 0,
TLV2254AQ,
TLV2254AM
V
0.3
0.3
100
350
10
V/mV
25°C
1700
1700
ri(d)
Differential input
resistance
25°C
1012
1012
Ω
ri(c)
Common-mode input
resistance
25°C
1012
1012
Ω
ci(c)
Common-mode input
capacitance
f = 10 kHz,
N package
25°C
8
8
pF
zo
Closed-loop output
impedance
f = 25 kHz,
AV = 10
25°C
200
200
Ω
CMRR
Common-mode
rejection ratio
VIC = 0 to 2.7 V,
RS = 50 Ω
VO = 2.5 V,
25°C
70
Full range
70
83
70
70
83
dB
Supply voltage
25°C
80
95
80
95
VDD = 4.4 V to 8 V,
rejection ratio
dB
VIC = VDD /2,
No load
Full range
80
80
(∆VDD /∆VIO)
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
kSVR
20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TLV2254Q, and TLV2254M electrical characteristics at specified free-air temperature, VDD = 5 V
(unless otherwise noted) (continued)
PARAMETER
TEST CONDITIONS
TLV2254Q,
TLV2254M
TA†
MIN
Supply current
(four amplifiers)
IDD
25°C
VO = 2.5 V,
No load
TLV2254AQ,
TLV2254AM
TYP
MAX
140
250
Full range
MIN
UNIT
TYP
MAX
140
250
300
300
A
µA
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
TLV2254Q, and TLV2254M operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
RL = 100 kΩ ‡,
TA†
TLV2254Q,
TLV2254M
MIN
TYP
25°C
0.07
0.12
Full
range
0.05
TLV2254AQ,
TLV2254AM
MAX
MIN
TYP
0.07
0.12
UNIT
MAX
Slew rate at unity
gain
VO = 0.5 V to 3.5 V,
CL = 100 pF ‡
Equivalent input
noise voltage
f = 10 Hz
25°C
36
36
Vn
f = 1 kHz
25°C
19
19
Peak-to-peak
equivalent input
noise voltage
f = 0.1 Hz to 1 Hz
25°C
0.7
0.7
VN(PP)
f = 0.1 Hz to 10 Hz
25°C
1.1
1.1
In
Equivalent input
noise current
25°C
0.6
0.6
Total harmonic
distortion plus
noise
VO = 0.5 V to 2.5 V,
f = 20 kHz,
RL = 50 kΩ ‡
AV = 1
0.2%
0.2%
THD + N
1%
1%
Gain-bandwidth
product
f = 50 kHz,
CL = 100 pF ‡
RL = 50 kΩ ‡,
25°C
0.2
0.2
MHz
BOM
Maximum outputswing bandwidth
VO(PP) = 2 V,
RL = 50 kΩ ‡,
AV = 1,
CL = 100 pF ‡
25°C
30
30
kHz
φm
Phase margin at
unity gain
RL = 50 kΩ ‡,
CL = 100 pF ‡
25°C
63°
63°
Gain margin
25°C
† Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part.
‡ Referenced to 2.5 V
15
15
SR
V/µs
0.05
nV/√Hz
µV
V
fA /√Hz
25°C
AV = 10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
dB
21
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
vs Common-mode voltage
2−5
6, 7
αVIO
IIB /IIO
Input offset voltage temperature coefficient
Distribution
8 − 11
Input bias and input offset currents
vs Free-air temperature
12
VI
Input voltage
vs Supply voltage
vs Free-air temperature
13
14
VOH
VOL
High-level output voltage
vs High-level output current
15, 18
Low-level output voltage
vs Low-level output current
16, 17, 19
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
20
IOS
Short-circuit output current
vs Supply voltage
vs Free-air temperature
21
22
VID
AVD
Differential input voltage
vs Output voltage
23, 24
Differential voltage amplification
vs Load resistance
25
AVD
Large-signal differential voltage amplification
vs Frequency
vs Free-air temperature
26, 27
28, 29
zo
Output impedance
vs Frequency
30, 31
CMRR
Common-mode rejection ratio
vs Frequency
vs Free-air temperature
32
33
kSVR
Supply-voltage rejection ratio
vs Frequency
vs Free-air temperature
34, 35
36
IDD
Supply current
vs Supply voltage
37, 38
SR
Slew rate
vs Load capacitance
vs Free-air temperature
VO
VO
Inverting large-signal pulse response
41, 42
Voltage-follower large-signal pulse response
43, 44
VO
VO
Inverting small-signal pulse response
45, 46
Vn
Equivalent input noise voltage
vs Frequency
Input noise voltage
Over a 10-second period
51
Integrated noise voltage
vs Frequency
52
Total harmonic distortion plus noise
vs Frequency
53
Gain-bandwidth product
vs Supply voltage
vs Free-air temperature
54
55
Phase margin
vs Frequency
vs Load capacitance
26, 27
56
Gain margin
vs Load capacitance
57
Unity-gain bandwidth
vs Load capacitance
58
Overestimation of phase margin
vs Load capacitance
59
THD + N
φm
B1
22
Voltage-follower small-signal pulse response
POST OFFICE BOX 655303
39
40
47, 48
• DALLAS, TEXAS 75265
49, 50
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2252
INPUT OFFSET VOLTAGE
DISTRIBUTION OF TLV2252
INPUT OFFSET VOLTAGE
20
20
1020 Amplifiers From 1 Wafer Lot
VDD = ± 2.5 V
TA = 25°C
Precentage of Amplifiers − %
Precentage of Amplifiers − %
1020 Amplifiers From 1 Wafer Lot
VDD = ± 1.5 V
TA = 25°C
15
10
5
0
−1.6
−0.8
0
0.8
VIO − Input Offset Voltage − mV
15
10
5
0
−1.6
1.6
Figure 2
DISTRIBUTION OF TLV2254
INPUT OFFSET VOLTAGE
35
35
682 Amplifiers From 1 Wafer Lot
VDD ± = ± 1.5 V
30 TA = 25°C
682 Amplifiers From 1 Wafer Lot
VDD ± = ± 2.5 V
30 TA = 25°C
Percentage of Amplifiers − %
Percentage of Amplifiers − %
1.6
Figure 3
DISTRIBUTION OF TLV2254
INPUT OFFSET VOLTAGE
25
20
15
10
5
0
−1.6
−0.8
0
0.8
VIO − Input Offset Voltage − mV
25
20
15
10
5
−0.8
0
0.8
VIO − Input Offset Voltage − mV
1.6
0
−1.6
Figure 4
−0.8
0
0.8
VIO − Input Offset Voltage − mV
1.6
Figure 5
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
INPUT OFFSET VOLTAGE†
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET VOLTAGE†
vs
COMMON-MODE INPUT VOLTAGE
1
1
VDD = 3 V
RS = 50 Ω
TA = 25°C
0.8
VIO − Input Offset Voltage − mV
0.6
VIO − Input Offset Voltage − mV
VDD = 5 V
RS = 50 Ω
TA = 25°C
0.8
0.4
0.2
0
−0.2
0.6
0.4
0.2
0
−0.2
ÁÁ
ÁÁ
−0.4
ÁÁ
ÁÁ
−0.6
−0.4
−0.6
−0.8
−0.8
−1
−1
0
1
−1
−1
3
2
0
Figure 6
4
15
10
5
−1
0
1
α VIO − Temperature Coefficient − µ V / °C
2
62 Amplifiers From 1 Wafer Lot
VDD± = ± 2.5 V
P Package
20 T = 25°C to 85°C
A
15
10
5
0
−2
−1
0
1
α VIO − Temperature Coefficient − µ V / °C
Figure 8
Figure 9
† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
24
5
25
62 Amplifiers From 1 Wafer Lot
VDD± = ± 1.5 V
P Package
TA = 25°C to 85°C
Percentage of Amplifiers − %
Percentage of Amplifiers − %
3
DISTRIBUTION OF TLV2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT †
25
0
−2
2
Figure 7
DISTRIBUTION OF TLV2252 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT †
20
1
VIC − Common-Mode Input Voltage − V
VIC − Common-Mode Input Voltage − V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
25
62 Amplifiers From 1 Wafer Lot
VDD± = ± 1.5 V
P Package
TA = 25°C to 85°C
20
62 Amplifiers From 1 Wafer Lot
VDD ± = ± 2.5 V
P Package
20 TA = 25°C to 85°C
Percentage of Amplifiers − %
Percentage of Amplifiers − %
25
DISTRIBUTION OF TLV2254 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
15
10
5
15
10
5
0
−2
−1
0
1
0
2
−2
−1
0
1
αVIO − Temperature Coefficient
of Input Offset Voltage − µV / °C
αVIO − Temperature Coefficient
of Input Offset Voltage − µV / °C
Figure 11
INPUT VOLTAGE
vs
SUPPLY VOLTAGE
INPUT BIAS AND INPUT OFFSET CURRENTS†
vs
FREE-AIR TEMPERATURE
35
30
2.5
VDD± = ± 2.5 V
VIC = 0
VO = 0
RS = 50 Ω
1.5
25
20
10
IIB
1
0.5
0
ÁÁ
ÁÁ
15
| VIO | ≤ 5 mV
−0.5
−1
−1.5
IIO
5
0
25
RS = 50 Ω
TA = 25°C
2
VI − Input Voltage − V
IIIB
IB and IIIO
IO − Input Bias and Input Offset Currents − pA
Figure 10
2
−2
−2.5
105
45
65
85
TA − Free-Air Temperature − °C
125
1
1.5
2
2.5
3
3.5
| VDD ± | − Supply Voltage − V
4
Figure 13
Figure 12
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
INPUT VOLTAGE†‡
vs
FREE-AIR TEMPERATURE
HIGH-LEVEL OUTPUT VOLTAGE†‡
vs
HIGH-LEVEL OUTPUT CURRENT
5
3
VDD = 5 V
VDD = 3 V
ÁÁ
VOH − High-Level Output Voltage − V
VI − Input Voltage − V
4
3
| VIO | ≤ 5 mV
2
1
0
−1
−55 −35 −15
5
25
45
65 85 105
TA − Free-Air Temperature − °C
125
ÁÁ
ÁÁ
ÁÁ
2.5
TA = − 40°C
2
TA = 25°C
1.5
TA = 85°C
1
TA = 125°C
0.5
0
0
200
LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT
1.4
1.2
VOL − Low-Level Output Voltage − V
VDD = 3 V
TA = 25°C
1
VIC = 0
0.8
VIC = 0.75 V
0.6
VIC = 1.5 V
0.4
ÁÁ
ÁÁ
ÁÁ
0.2
0
0
1
2
3
4
5
IOL − Low-Level Output Current − mA
VDD = 3 V
VIC = 1.5 V
1.2
TA = 125°C
1
TA = 85°C
0.8
TA = 25°C
0.6
0.4
TA = − 40°C
0.2
0
0
1
2
3
4
IOL − Low-Level Output Current − mA
Figure 16
Figure 17
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
26
800
Figure 15
LOW-LEVEL OUTPUT VOLTAGE‡
vs
LOW-LEVEL OUTPUT CURRENT
VOL − Low-Level Output Voltage − V
600
| IOH | − High-Level Output Current − µ A
Figure 14
ÁÁ
ÁÁ
400
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
HIGH-LEVEL OUTPUT VOLTAGE†‡
vs
HIGH-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE†‡
vs
LOW-LEVEL OUTPUT CURRENT
5
1.4
VDD = 5 V
VIC = 2.5 V
ÁÁ
ÁÁ
1.2
4
VOL − Low-Level Output Voltage − V
VOH − High-Level Output Voltage − V
VDD = 5 V
TA = − 40°C
3
TA = 25°C
2
TA = 85°C
ÁÁ
ÁÁ
1
TA = 125°C
0
0
200
400
600
TA = 125°C
1
TA = 85°C
0.8
TA = 25°C
0.6
0.4
TA = − 40°C
0.2
0
800
0
| IOH | − High-Level Output Current − µA
1
2
Figure 18
5
6
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
10
5
RI = 50 kΩ
TA = 25°C
VDD = 5 V
I OS − Short-Circuit Output Current − mA
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
4
Figure 19
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE‡
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
3
IOL − Low-Level Output Current − mA
4
3
VDD = 3 V
2
1
0
10 2
9
8
6
5
10 5
VO = VDD/2
TA = 25°C
VIC = VDD/2
4
3
2
1
VID = 100 mV
0
−1
10 3
10 4
f − Frequency − Hz
VID = − 100 mV
7
2
3
Figure 20
6
4
5
VDD − Supply Voltage − V
7
8
Figure 21
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
DIFFERENTIAL INPUT VOLTAGE‡
vs
OUTPUT VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
1000
VO = 2.5 V
VDD = ± 5 V
10
9
8
VID = − 100 mV
7
6
5
4
3
2
1
600
400
200
0
−200
−400
−600
−800
VID = 100 mV
0
−1
−75
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
VDD = 3 V
RI = 50 kΩ
VIC = 1.5 V
TA = 25°C
800
V ID − Differential Input Voltage − µ V
I OS − Short-Circuit Output Current − mA
11
−1000
125
0
0.5
1
1.5
2
VO − Output Voltage − V
Figure 22
DIFFERENTIAL VOLTAGE AMPLIFICATION†‡
vs
LOAD RESISTANCE
V ID − Differential Input Voltage − µ V
AVD − Differential Voltage Amplification − V/mV
1000
VDD = 5 V
VIC = 2.5 V
RL = 50 kΩ
TA = 25°C
600
400
200
0
−200
−400
−600
−800
−1000
0
1
3
2
4
VO − Output Voltage − V
5
10 4
VO(PP) = 2 V
TA = 25°C
10 3
VDD = 5 V
10 2
VDD = 3 V
101
ÁÁ
ÁÁ
1
1
101
10 2
RL − Load Resistance − kΩ
Figure 24
Figure 25
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
28
3
Figure 23
DIFFERENTIAL INPUT VOLTAGE‡
vs
OUTPUT VOLTAGE
800
2.5
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 3
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE†
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD
A
VD − Large-Signal Differential
Voltage Amplification − dB
60
ÁÁ
ÁÁ
ÁÁ
180°
VDD = 5 V
RL = 50 kΩ
CL= 100 pF
TA = 25°C
135°
40
90°
Phase Margin
20
45°
Gain
0
0°
−20
φom
m − Phase Margin
80
−45°
−40
10 3
10 4
10 5
10 6
f − Frequency − Hz
−90°
10 7
Figure 26
LARGE-SIGNAL DIFFERENTIAL VOLTAGE†
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
AVD
A
VD − Large-Signal Differential
Voltage Amplification − dB
60
ÁÁ
ÁÁ
ÁÁ
180°
VDD = 3 V
RL= 50 kΩ
CL= 100 pF
TA = 25°C
135°
40
Phase Margin
20
45°
Gain
0
0°
−20
−40
10 3
90°
φom
m − Phase Margin
80
−45°
10 4
10 5
10 6
f − Frequency − Hz
−90°
10 7
Figure 27
† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
29
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL†‡
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL†‡
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
10 4
VDD = 3 V
VIC = 1.5 V
VO = 0.5 V to 2.5 V
AVD − Large-Signal Differential Voltage
Amplification − V/mV
AVD − Large-Signal Differential Voltage
Amplification − V/mV
10 4
RL = 1 MΩ
10 3
RL = 50 kΩ
10 2
101
−75
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 MΩ
10 3
RL = 50 kΩ
10 2
101
−75
125
−50
−25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 28
Figure 29
OUTPUT IMPEDANCE‡
vs
FREQUENCY
OUTPUT IMPEDANCE‡
vs
FREQUENCY
1000
1000
VDD = 5 V
TA = 25°C
z o − Output Impedance − Ω
z o − Output Impedance − Ω
VDD = 3 V
TA = 25°C
100
125
AV = 100
10
AV = 10
1
100
AV = 100
10
AV = 10
1
AV = 1
AV = 1
0.1
10 2
10 3
10 4
f− Frequency − Hz
10 5
10 6
0.1
10 2
Figure 30
10 3
10 4
f− Frequency − Hz
10 5
Figure 31
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 6
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
COMMON-MODE REJECTION RATIO†‡
vs
FREE-AIR TEMPERATURE
COMMON-MODE REJECTION RATIO†
vs
FREQUENCY
94
VDD = 5 V
VIC = 2.5 V
CMMR − Common-Mode Rejection Ratio − dB
CMRR − Common-Mode Rejection Ratio − dB
100
TA = 25°C
80
VDD = 3 V
VIC = 1.5 V
60
40
20
0
10 1
10 2
10 4
10 3
f − Frequency − Hz
10 5
92
90
VDD = 5 V
88
VDD = 3 V
86
84
82
80
0
25
50
75 100
− 75 − 50 − 25
TA − Free-Air Temperature − °C
10 6
Figure 33
Figure 32
SUPPLY-VOLTAGE REJECTION RATIO†
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO†
vs
FREQUENCY
100
VDD = 3 V
TA = 25°C
k SVR − Supply-Voltage Rejection Ratio − dB
k SVR − Supply-Voltage Rejection Ratio − dB
100
80
60
kSVR +
40
kSVR −
20
ÁÁ
ÁÁ
ÁÁ
0
−20
10 1
125
10 2
10 3
10 4
f − Frequency − Hz
10 5
10 6
ÁÁ
ÁÁ
ÁÁ
VDD = 5 V
TA = 25°C
kSVR +
80
60
kSVR −
40
20
0
−20
101
10 2
10 3
10 4
10 5
10 6
f − Frequency − Hz
Figure 34
Figure 35
† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
31
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
TLV2252
SUPPLY CURRENT †
vs
SUPPLY VOLTAGE
SUPPLY-VOLTAGE REJECTION RATIO†
vs
FREE-AIR TEMPERATURE
Á
Á
120
VDD = 2.7 V to 8 V
VIC = VO = VDD / 2
VO = 0
No Load
100
I DD − Supply Current − µ A
k SVR − Supply-Voltage Rejection Ratio − dB
110
105
100
60
ÁÁ
ÁÁ
95
90
−75 −50
TA = − 40°C
80
TA = 85°C
TA = 25°C
40
20
0
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
0
1
2
3
4
5
6
VDD − Supply Voltage − V
Figure 36
SLEW RATE‡
vs
LOAD CAPACITANCE
0.2
240
VO = 0
No Load
0.18
VDD = 5 V
AV = − 1
TA = 25°C
0.16
SR − Slew Rate − V/ µ s
I DD − Supply Current − µ A
200
TA = − 40°C
160
120
TA = 85°C
TA = 25°C
80
0.14
SR −
0.12
0.1
SR +
0.08
0.06
0.04
40
0.02
0
0
1
2
3
4
5
6
| VDD ± | − Supply Voltage − V
7
8
0
101
Figure 38
10 2
10 3
CL − Load Capacitance − pF
Figure 39
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
32
8
Figure 37
TLV2254
SUPPLY CURRENT †
vs
SUPPLY VOLTAGE
ÁÁ
ÁÁ
ÁÁ
7
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 4
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
SLEW RATE†‡
vs
FREE-AIR TEMPERATURE
INVERTING LARGE-SIGNAL PULSE
RESPONSE†
0.2
0.16
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
AV = −1
TA = 25°C
2.5
SR −
VO − Output Voltage − V
SR − Slew Rate − V/ µ s
3
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
AV = 1
0.12
SR +
0.08
0.04
2
1.5
1
0.5
0
−75
0
−50
−25
0
25
50
75 100
TA − Free-Air Temperature − °C
125
0
10
20
Figure 40
40 50 60 70
t − Time − µs
80
90
100
Figure 41
INVERTING LARGE-SIGNAL PULSE
RESPONSE†
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE†
5
3
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
4 A = −1
V
TA = 25°C
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
AV = 1
TA = 25°C
2.5
VO − Output Voltage − V
VO − Output Voltage − V
30
3
2
1
2
1.5
1
0.5
0
0
0
10
20
30
40
50
60
70
80
90 100
0
10
t − Time − µs
20
30
40
50
60
70
80
90 100
t − Time − µs
Figure 42
Figure 43
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
33
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
INVERTING SMALL-SIGNAL
PULSE RESPONSE†
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE†
0.95
5
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
AV = 1
TA = 25°C
0.9
VO − Output Voltage − V
VO − Output Voltage − V
4
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
AV = − 1
TA = 25°C
3
2
0.85
0.8
0.75
0.7
1
0.65
0.6
0
0
10
20
30
40 50 60
t − Time − µs
70
80
0
90 100
10
30
40
50
t − Time − µs
Figure 44
Figure 45
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE†
INVERTING SMALL-SIGNAL
PULSE RESPONSE†
0.95
2.65
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
AV = − 1
TA = 25°C
VDD = 3 V
RL = 50 kΩ
CL = 100 pF
AV = 1
TA = 25°C
0.9
VO
VO − Output Voltage − V
2.6
VO
VO − Output Voltage − V
20
2.55
2.5
0.85
0.8
0.75
0.7
2.45
0.65
0.6
2.4
0
10
20
30
t − Time − µs
40
50
0
Figure 46
10
20
30
t − Time − µs
40
Figure 47
† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
50
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
EQUIVALENT INPUT NOISE VOLTAGE†
vs
FREQUENCY
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE†
60
2.65
VO
VO − Output Voltage − V
2.6
V n − Equivalent Input Noise Voltage − nV/ Hz
VDD = 5 V
RL = 50 kΩ
CL = 100 pF
AV = 1
TA = 25°C
2.55
2.5
2.45
2.4
0
10
20
30
t − Time − µs
40
50
VDD = 3 V
RS = 20 Ω
TA = 25°C
40
30
20
10
0
10 1
50
10 2
10 3
f − Frequency − Hz
Figure 48
Figure 49
EQUIVALENT INPUT NOISE VOLTAGE†
vs
FREQUENCY
INPUT NOISE VOLTAGE OVER
A 10-SECOND PERIOD†
1000
VDD = 5 V
RS = 20 Ω
TA = 25°C
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
750
500
Noise Voltage − nV
V n − Equivalent Input Noise Voltage − nV/ Hz
60
50
10 4
40
30
20
250
0
−250
−500
10
−750
0
101
10 2
10 3
f − Frequency − Hz
10 4
−1000
0
2
4
6
8
10
t − Time − s
Figure 51
Figure 50
† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
35
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
INTEGRATED NOISE VOLTAGE†
vs
FREQUENCY
THD + N − Total Harmonic Distortion Plus Noise − %
TOTAL HARMONIC DISTORTION PLUS NOISE†
vs
FREQUENCY
Integrated Noise Voltage − µ V
100
Calculated Using Ideal Pass-Band Filter
Low Frequency = 1 Hz
TA = 25°C
10
1
0.1
101
1
10 2
10 3
f − Frequency − Hz
10 4
10 5
1
AV = 100
0.1
AV = 10
0.01
AV = 1
VDD = 5 V
RL = 50 kΩ
TA = 25°C
0.001
101
10 2
10 3
Figure 52
GAIN-BANDWIDTH PRODUCT†‡
vs
FREE-AIR TEMPERATURE
300
VDD = 5 V
f = 10 kHz
RL = 50 kHz
CL = 100 pF
Gain-Bandwidth Product − kHz
220
210
200
190
260
220
180
140
180
100
−75
170
0
1
4
6
2
3
5
VDD − Supply Voltage − V
7
8
−50 −25
0
25
50
75
100
TA − Free-Air Temperature − °C
Figure 55
Figure 54
† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
36
10 5
Figure 53
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
Gain-Bandwidth Product − kHz
10 4
f − Frequency − Hz
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
TYPICAL CHARACTERISTICS
PHASE MARGIN
vs
LOAD CAPACITANCE
75°
GAIN MARGIN
vs
LOAD CAPACITANCE
20
Rnull = 200 Ω
TA = 25°C
Rnull = 500 Ω
Rnull = 500 Ω
60°
Gain Margin − dB
φom
m − Phase Margin
15
45°
Rnull = 100 Ω
Rnull = 50 Ω
30°
Rnull = 10 Ω
50 kΩ
VI
0°
101
Rnull = 100 Ω
10
Rnull = 50 Ω
Rnull = 10 Ω
50 kΩ
15°
Rnull = 200 Ω
5
VDD +
Rnull
−
+
Rnull = 0
Rnull = 0
CL
TA = 25°C
VDD −
10 2
10 3
CL − Load Capacitance − pF
0
101
10 4
10 4
10 2
10 3
CL − Load Capacitance − pF
Figure 56
Figure 57
OVERESTIMATION OF PHASE MARGIN†
vs
LOAD CAPACITANCE
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
25
TA = 25°C
200
TA = 25°C
Rnull = 500 Ω
Overestimation of Phase Margin
B1 − Unity-Gain Bandwidth − kHz
175
ÁÁ
ÁÁ
10 5
150
125
100
75
50
20
15
Rnull = 100 Ω
10
Rnull = 200 Ω
Rnull = 50 Ω
Rnull = 10 Ω
5
25
0
101
0
101
10 2
10 3
10 4
CL − Load Capacitance − pF
10 5
10 2
10 3
10 4
CL − Load Capacitance − pF
† See application information
10 5
Figure 59
Figure 58
† For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V.
‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
37
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
APPLICATION INFORMATION
driving large capacitive loads
The TLV2252 is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 56
and Figure 57 illustrate its ability to drive loads up to 1000 pF while maintaining good gain and phase margins
(Rnull = 0).
A smaller series resistor (Rnull) at the output of the device (see Figure 60) improves the gain and phase margins
when driving large capacitive loads. Figure 55 and Figure 56 show the effects of adding series resistances of
10 Ω, 50 Ω, 100 Ω, 200 Ω, and 500 Ω. The addition of this series resistor has two effects: the first adds a zero
to the transfer function and the second reduces the frequency of the pole associated with the output load in the
transfer function.
The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To
calculate the improvement in phase margin, equation 1 can be used.
ǒ
∆φ m1 + tan –1 2 × π × UGBW × R
null
×C
Ǔ
(1)
L
Where :
∆φ m1 + improvement in phase margin
UGBW + unity-gain bandwidth frequency
R null + output series resistance
C L + load capacitance
The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 58). To
use equation 1, UGBW must be approximated from Figure 58.
Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The
overestimation is caused by the decrease in the frequency of the pole associated with the load, providing
additional phase shift and reducing the overall improvement in phase margin.
Using Figure 60, with equation 1 enables the designer to choose the appropriate output series resistance to
optimize the design of circuits driving large capacitance loads.
50 kΩ
VDD +
VI
50 kΩ
Rnull
−
+
CL
VDD − / GND
Figure 60. Series-Resistance Circuit
38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
 SLOS185D − FEBRUARY 1997 − REVISED AUGUST 2006
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts, the model generation software used
with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 61 are generated using
the TLV2252 typical electrical and operating characteristics at TA = 25°C. Using this information, output
simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity-gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
9
RSS
92
FB
10
J1
DP
VC
J2
IN +
11
RD1
VAD
DC
12
C1
R2
−
53
HLIM
−
+
C2
6
−
−
−
+
VLN
+
GCM
GA
VLIM
8
−
RD2
54
4
91
+
VLP
7
60
+
−
+ DLP
90
RO2
VB
IN −
VCC −
−
+
ISS
RP
2
1
DLN
EGND +
−
RO1
DE
5
+
VE
OUT
.SUBCKT TLV225x 1 2 3 4 5
C1
11
12
6.369E−12
C2
6
7
25.00E−12
DC
5
53
DX
DE
54
5
DX
DLP
90
91
DX
DLN
92
90
DX
DP
4
3
DX
EGND
99
0
POLY (2) (3,0) (4,0) 0 .5 .5
FB
7
99
POLY (5) VB VC VE VLP
+ VLN 0 57.62E6 −60E6 60E6 60E6 −60E6
GA
6
0
11
12 26.86E−6
GCM
0
6
10
99 2.686E−9
ISS
3
10
DC 3.1E−6
HLIM
90
0
VLIM 1K
J1
11
2
10 JX
J2
12
1
10 JX
R2
6
9
100.0E3
RD1
60
11
37.23E3
RD2
60
12
37.23E3
R01
8
5
84
R02
7
99
84
RP
3
4
71.43E3
RSS
10
99
64.52E6
VAD
60
4
−.5
VB
9
0
DC 0
VC
3
53
DC .605
VE
54
4
DC .605
VLIM
7
8
DC 0
VLP
91
0
DC −0.235
VLN
0
92
DC 7.5
.MODEL DX D (IS=800.0E−18)
.MODEL JX PJF (IS=500.0E−15 BETA=139E−6
+ VTO=−.05)
.ENDS
Figure 61. Boyle Macromodel and Subcircuit
PSpice and Parts are trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
39
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
5962-9550401Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9550401QHA
ACTIVE
CFP
U
10
1
TBD
5962-9550401QPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9550403Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9550403QHA
ACTIVE
CFP
U
10
1
TBD
5962-9550403QPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9566601Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9566601QHA
ACTIVE
CFP
U
10
1
TBD
5962-9566601QPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9566602Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9566602QCA
ACTIVE
CDIP
J
14
1
TBD
5962-9566602QDA
ACTIVE
CFP
W
14
1
TBD
5962-9566603Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9566603QHA
ACTIVE
CFP
U
10
1
TBD
5962-9566603QPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9566604Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9566604QCA
ACTIVE
CDIP
J
14
1
TBD
A42 SNPB
N / A for Pkg Type
5962-9566604QDA
ACTIVE
CFP
W
14
1
TBD
A42 SNPB
N / A for Pkg Type
TLV2252AID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AIDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AIDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AIDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AIP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2252AIPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2252AIPW
ACTIVE
TSSOP
PW
8
150
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AIPWG4
ACTIVE
TSSOP
PW
8
150
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AIPWLE
OBSOLETE
TSSOP
PW
8
TBD
Call TI
TLV2252AIPWR
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AIPWRG4
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2252AMJGB
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
TLV2252AQD
NRND
SOIC
D
8
75
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
TLV2252AQDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252AQDR
NRND
SOIC
D
8
2500
Pb-Free
CU NIPDAU
Level-2-250C-1 YEAR/
Addendum-Page 1
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
Call TI
POST-PLATE N / A for Pkg Type
N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2252AQDRG4
ACTIVE
SOIC
D
8
TLV2252CP
ACTIVE
PDIP
P
8
TBD
Call TI
TLV2252ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252IP
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2252IPE4
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2252MFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2252MJGB
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
N / A for Pkg Type
TLV2252MUB
ACTIVE
CFP
U
10
1
TBD
A42 SNPB
N / A for Pkg Type
Lead/Ball Finish
(RoHS)
2500 Green (RoHS &
no Sb/Br)
MSL Peak Temp (3)
Level-1-235C-UNLIM
CU NIPDAU
Level-1-260C-UNLIM
Call TI
POST-PLATE N / A for Pkg Type
TLV2252QD
NRND
SOIC
D
8
75
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLV2252QDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2252QDR
NRND
SOIC
D
8
2500
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLV2252QDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2254AID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254AIDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254AIDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254AIDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254AIN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2254AINE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2254AIPW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2254AIPWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2254AIPWLE
OBSOLETE
TSSOP
PW
14
TLV2254AIPWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2254AIPWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2254AMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2254AMJB
ACTIVE
CDIP
J
14
1
TBD
A42 SNPB
N / A for Pkg Type
TLV2254AMWB
ACTIVE
CFP
W
14
1
TBD
A42 SNPB
N / A for Pkg Type
TBD
Addendum-Page 2
Call TI
Call TI
POST-PLATE N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
TLV2254AQD
ACTIVE
SOIC
D
14
50
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLV2254AQDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TBD
CU NIPDAU
Level-1-220C-UNLIM
CU NIPDAU
Level-1-260C-UNLIM
TLV2254AQDR
ACTIVE
SOIC
D
14
2500
TLV2254AQDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
TLV2254ID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254IDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254IDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254IDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
Call TI
Level-1-260C-UNLIM
TLV2254IN
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2254INE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
TLV2254MFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2254MJB
ACTIVE
CDIP
J
14
1
TBD
TLV2254MWB
ACTIVE
CFP
W
14
1
TLV2254QD
ACTIVE
SOIC
D
14
50
TLV2254QDG4
ACTIVE
SOIC
D
14
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
TBD
A42 SNPB
N / A for Pkg Type
TBD
CU NIPDAU
Level-1-220C-UNLIM
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TBD
CU NIPDAU
Level-1-220C-UNLIM
CU NIPDAU
Level-1-260C-UNLIM
TLV2254QDR
ACTIVE
SOIC
D
14
2500
TLV2254QDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
TLV2262AMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2262AMJGB
ACTIVE
CDIP
JG
8
1
TBD
TLV2262AMUB
ACTIVE
CFP
U
10
1
TBD
TLV2262MFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2262MJGB
ACTIVE
CDIP
JG
8
1
TBD
A42 SNPB
N / A for Pkg Type
TLV2262MUB
ACTIVE
CFP
U
10
1
TBD
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
9-Oct-2007
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 4
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Oct-2007
TAPE AND REEL BOX INFORMATION
Device
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TLV2252AIDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLV2252AIPWR
PW
8
SITE 41
330
12
7.0
3.6
1.6
8
12
Q1
TLV2252IDR
D
8
SITE 60
330
12
6.4
5.2
2.1
8
12
Q1
TLV2254AIDR
D
14
SITE 60
330
16
6.5
9.0
2.1
8
16
Q1
TLV2254AIPWR
PW
14
SITE 41
330
12
7.0
5.6
1.6
8
12
Q1
TLV2254IDR
D
14
SITE 60
330
16
6.5
9.0
2.1
8
16
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
Device
5-Oct-2007
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
TLV2252AIDR
D
8
SITE 60
346.0
346.0
29.0
TLV2252AIPWR
PW
8
SITE 41
346.0
346.0
29.0
TLV2252IDR
D
8
SITE 60
346.0
346.0
29.0
TLV2254AIDR
D
14
SITE 60
346.0
346.0
33.0
TLV2254AIPWR
PW
14
SITE 41
346.0
346.0
29.0
TLV2254IDR
D
14
SITE 60
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MPDI001A – JANUARY 1995 – REVISED JUNE 1999
P (R-PDIP-T8)
PLASTIC DUAL-IN-LINE
0.400 (10,60)
0.355 (9,02)
8
5
0.260 (6,60)
0.240 (6,10)
1
4
0.070 (1,78) MAX
0.325 (8,26)
0.300 (7,62)
0.020 (0,51) MIN
0.015 (0,38)
Gage Plane
0.200 (5,08) MAX
Seating Plane
0.010 (0,25) NOM
0.125 (3,18) MIN
0.100 (2,54)
0.021 (0,53)
0.015 (0,38)
0.430 (10,92)
MAX
0.010 (0,25) M
4040082/D 05/98
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001
For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated