SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 D D D D D D Output Swing Includes Both Supply Rails Low Noise . . . 12 nV/√Hz Typ at f = 1 kHz Low Input Bias Current . . . 1 pA Typ Fully Specified for Both Single-Supply and Split-Supply Operation Low Power . . . 500 µA Max Common-Mode Input Voltage Range Includes Negative Rail D Low Input Offset Voltage D D D 950 µV Max at TA = 25°C (TLV226xA) Wide Supply Voltage Range 2.7 V to 8 V Macromodel Included Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards description 4 VDD = 3 V 3.5 VOH − High-Level Output Voltage − V The TLV2262 and TLV2264 are dual and quad low voltage operational amplifiers from Texas Instruments. Both devices exhibit rail-to-rail output performance for increased dynamic range in single or split supply applications. The TLV226x family offers a compromise between the micropower TLV225x and the ac performance of the TLC227x. It has low supply current for batterypowered applications, while still having adequate ac performance for applications that demand it. This family is fully characterized at 3 V and 5 V and is optimized for low-voltage applications. The noise performance has been dramatically improved over previous generations of CMOS amplifiers. Figure 1 depicts the low level of noise voltage for this CMOS amplifier, which has only 200 µA (typ) of supply current per amplifier. HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT 3 TA = − 55°C 2.5 TA = 125°C 2 TA = 25°C 1.5 ÁÁ ÁÁ 1 0.5 TA = 85°C TA = − 40°C 0 The TLV226x, exhibiting high input impedance 0 500 1000 1500 2000 and low noise, are excellent for small-signal | IOH | − High-Level Output Current − µ A conditioning for high-impedance sources, such as Figure 1 piezoelectric transducers. Because of the micropower dissipation levels combined with 3-V operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single or split supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV226xA family is available and has a maximum input offset voltage of 950 µV. The TLV2262/4 also makes great upgrades to the TLV2332/4 in standard designs. They offer increased output dynamic range, lower noise voltage and lower input offset voltage. This enhanced feature set allows them to be used in a wider range of applications. For applications that require higher output drive and wider input voltage range, see the TLV2432 and TLV2442 devices. If your design requires single amplifiers, please see the TLV2211/21/31 family. These devices are single rail-to-rail operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments. Copyright 2001, Texas Instruments Incorporated !"# $ %!!# $ &%'(# #) !%#$ !" # $&#$ &! #* #!"$ $ $#!%"#$ $#! +!!#,) !%# &!$$- $ # $$!(, (% #$#- (( &!"#!$) &!%#$ "&(# # ./0.0 (( &!"#!$ ! #$# %($$ #*!+$ #) (( #*! &!%#$ &!%# &!$$- $ # $$!(, (% #$#- (( &!"#!$) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262 AVAILABLE OPTIONS PACKAGED DEVICES VIOmax AT 25°C TA SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) PLASTIC DIP (P) TSSOP (PW) CERAMIC FLATPACK (U) 0°C to 70°C 2.5 mV TLV2262CD — — TLV2262CP TLV2262CPWLE — −40°C to 125°C 950 µV 2.5 mV TLV2262AID TLV2262ID — — — — TLV2262AIP TLV2262IP TLV2262AIPWLE — — — −40°C to 125°C 950 µV 2.5 mV TLV2262AQD TLV2262QD — — — — — — — — — — −55°C to 125°C 950 µV 2.5 mV — — TLV2262AMFK TLV2262MFK TLV2262AMJG TLV2262MJG — — — — TLV2262AMU TLV2262MU † The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2262CDR). ‡ The PW package is available only left-end taped and reeled. § Chips are tested at 25°C. TLV2264 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (J) PLASTIC DIP (N) TSSOP (PW) CERAMIC FLATPACK (W) −40°C −40 C to 125°C 950 µV 2.5 mV TLV2264AID TLV2264ID — — — — TLV2264AIN TLV2264IN TLV2264AIPWLE — — — −40 C to −40°C 125°C 950 µV 2.5 mV TLV2264AQD TLV2264QD — — — — — — — — — — −55°C to 125°C 950 µV 2.5 mV — — TLV2264AMFK TLV2264MFK TLV2264AMJ TLV2264MJ — — — — TLV2264AMW TLV2264MW † The D packages are available taped and reeled. Add R suffix to device type (e.g., TLV2262IDR). ‡ The PW package is available only left-end taped and reeled. § Chips are tested at 25°C. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262C, TLV2262AC TLV2262I, TLV2262AI TLV2262Q, TLV2262AQ D, P, OR PW PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + VDD − /GND 1 8 2 7 3 6 4 5 TLV2264I, TLV2264AI TLV2264Q, TLV2264AQ D, N, OR PW PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + VDD + 2IN + 2IN − 2OUT VDD + 2OUT 2IN − 2IN + TLV2262M, TLV2262AM JG PACKAGE (TOP VIEW) 1OUT 1IN − 1IN + VDD − /GND 1 8 2 7 3 6 4 5 1OUT 1IN − 1IN + VDD + 2IN + 2IN − 2OUT NC VCC + 2OUT 2IN − 2IN + 10 2 9 3 8 4 7 5 6 1IN + NC VCC + NC 2IN + NC 1OUT NC VDD+ NC 17 6 16 7 15 8 14 9 10 11 12 13 11 5 10 6 9 7 8 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN − 4IN + VDD − / GND 3IN + 3IN − 3OUT NC 2OUT NC 2IN − NC 4 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 4IN + NC VCC − /GND NC 3IN + 2IN − 2OUT NC 3OUT 3IN − 5 12 4 NC VDD− /GND NC 2IN+ NC NC 1IN − NC 1IN + NC 3 4OUT 4IN − 4IN + VDD − / GND 3IN + 3IN − 3OUT TLV2264M, TLV2264AM FK PACKAGE (TOP VIEW) TLV2262M, TLV2262AM FK PACKAGE (TOP VIEW) 3 2 1 20 19 18 4 13 1IN − 1OUT NC 4OUT 4IN − 1 14 2 TLV2264M, TLV2264AM J OR W PACKAGE (TOP VIEW) VDD + 2OUT 2IN − 2IN + TLV2662M, TLV2262AM U PACKAGE (TOP VIEW) NC 1OUT 1IN − 1IN + VCC − /GND 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 4 IN − IN + Q1 Q5 R4 Q2 R3 Q3 Q4 equivalent schematic (each amplifier) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Q8 Q10 R6 Q9 3 Capacitors 6 18 54 76 TLV2254 † Includes both amplifiers and all ESD, bias, and trim circuitry 9 28 Diodes Resistors TLV2252 38 COMPONENT Transistors R1 Q13 C1 Q12 VDD −/ GND Q11 R5 ACTUAL DEVICE COMPONENT COUNT† Q7 Q6 VDD + R2 Q15 Q14 D1 Q17 Q16 OUT Template Release Date: 7−11−94 1 1 1 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage range, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDD − −0.3 V to VDD+ Input current, II (each input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current (at or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, and PW packages . . . . . . . 260°C FK, J, JG, U, AND W packages . . 300°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to VDD − . 2. Differential voltages are at the noninverting input with respect to the inverting input. Excessive current flows when input is brought below VDD − − 0.3 V. 3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C 25 C POWER RATING DERATING FACTOR ABOVE TA = 25°C 85°C TA = 85 C POWER RATING 125°C TA = 125 C POWER RATING D−8 725 mW 5.8 mW/°C 377 mW 145 mW D−14 950 mW 7.6 mW/°C 494 mW 190 mW FK 1375 mW 11.0 mW/°C 715 mW 275 mW J 1375 mW 11.0 mW/°C 715 mW 275 mW JG 1050 mW 8.4 mW/°C — 210 mW N 1150 mW 9.2 mW/°C 598 mW — P 1000 mW 8.0 mW/°C 520 mW 200 mW PW−8 525 mW 4.2 mW/°C 273 mW 105 mW PW−14 700 mW 5.6 mW/°C 364 mW — U 700 mW 5.5 mW/°C — 150 mW W 700 mW 5.5 mW/°C 370 mW 150 mW recommended operating conditions I SUFFIX Supply voltage, VDD ± Input voltage range, VI Common-mode input voltage, VIC Q SUFFIX M SUFFIX UNIT MIN MAX MIN MAX MIN MAX 2.7 16 2.7 16 2.7 16 V VDD + − 1.3 VDD + − 1.3 V VDD − VDD − VDD + − 1.3 VDD − VDD + − 1.3 VDD − 125 −40 Operating free-air temperature, TA −40 NOTE 1: All voltage values, except differential voltages, are with respect to VDD − . POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 VDD + − 1.3 VDD − VDD + − 1.3 VDD − 125 −55 125 V °C 5 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TEST CONDITIONS TA† TLV2262I MIN 25°C MAX 300 2500 Full range Input offset current Common-mode input voltage range RS = 50 Ω Ω, VOH High-level output voltage 0.003 0.003 µV/mo 25°C 0.5 IOH = − 400 µA VIC = 1.5 V, VOL Low-level output voltage VIC = 1.5 V, VIC = 1.5 V, AVD Large-signal differential voltage amplification IOL = 50 µA IOL = 500 µA IOL = 1 A RL = 50 kΩ‡ VIC = 1.5 V, VO = 1 V to 2 V RL = 1 MΩ‡ 60 0.5 150 60 150 800 1 1 60 150 150 Full range 800 800 25°C 0 to 2 Full range 0 to 1.7 −0.3 to 2.2 0 to 2 −0.3 to 2.2 2.99 2.99 2.85 2.85 Full range 2.825 2.825 25°C 2.7 2.7 Full range 2.65 V 2.65 25°C 10 10 25°C 100 100 Full range 150 150 200 Full range 25°C 60 30 100 mV 200 300 Full range pA V 0 to 1.7 25°C 25°C pA 800 60 85°C 25°C IOH = − 100 µA µV 25°C |VIO | ≤ 5 mV IOH = − 20 µA 950 1500 UNIT µV/°C 25°C VICR 300 MAX 2 85°C Input bias current TYP 2 Full range IIB MIN 3000 25°C to 85°C VDD ± = ± 1.5 V, VIC = 0, VO = 0, RS = 50 Ω TLV2262AI TYP 300 60 100 30 V/mV 25°C 100 100 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 270 270 Ω CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, VO = 1.5 V, RS = 50 Ω kSVR Supply voltage rejection ratio (∆VDD/∆VIO) VDD = 2.7 V to 8 V, VIC = VDD /2, No load 25°C 65 Full range 60 25°C 80 Full range 80 75 65 77 60 95 80 80 100 dB dB † Full range is − 40°C to 125°C. ‡ Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER IDD Supply current TA† TEST CONDITIONS VO = 1.5 V, No load TLV2262I MIN 25°C TLV2262AI TYP MAX 400 500 Full range MIN TYP MAX 400 500 500 500 UNIT µA † Full range is − 40°C to 125°C. TLV2262I operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS VO = 1.1 V to 1.9 V, CL = 100 pF‡ RL = 50 kΩ‡, TLV2262I TA† MIN TYP 25°C 0.35 0.55 Full range 0.3 TLV2262AI MAX MIN TYP 0.35 0.55 MAX UNIT V/µs 0.3 Equivalent input noise voltage f = 10 Hz 25°C 43 43 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1 1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ‡ AV = 1 0.03% 0.03% THD + N 0.05% 0.05% Gain-bandwidth product f = 1 kHz, CL = 100 pF‡ RL = 50 kΩ‡, 25°C 0.67 0.67 MHz Maximum output-swing bandwidth VO(PP) = 1 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ 25°C 395 395 kHz 5.6 5.6 Settling time AV = − 1, Step = 1 V to 2 V, RL = 50 kΩ‡, CL = 100 pF‡ 12.5 12.5 25°C 55° 55° 25°C 11 11 BOM ts φm Phase margin at unity gain RL = 50 kΩ‡, nV/√Hz µV V fA /√Hz 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF‡ Gain margin † Full range is − 40°C to 125°C. ‡ Referenced to 1.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 7 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TEST CONDITIONS TA† TLV2262I MIN 25°C 25°C 25 C to 85°C Input offset current Input bias current Common-mode input voltage range |VIO | ≤ 5 mV, High-level output voltage IOH = − 400 µA VIC = 2.5 V, VOL Low-level output voltage VIC = 2.5 V, VIC = 2.5 V, IOL = 50 µA IOL = 500 µA IOL = 1 A RL = 50 kΩ‡ VIC = 2.5 V, VO = 1 V to 4 V RL = 1 MΩ‡ µV 25°C 0.003 0.003 µV/mo 25°C 0.5 60 0.5 60 85°C 150 150 Full range 800 800 1 60 1 150 150 Full range 800 800 0 to 4 0 to 3.5 −0.3 to 4.2 0 to 4 0 to 3.5 4.99 25°C 4.85 Full range 4.82 25°C 4.7 Full range 4.6 −0.3 to 4.2 4.85 4.85 4.94 4.7 V 4.85 4.6 0.01 0.09 Full range 0.01 0.15 0.09 0.15 0.2 Full range Full range 55 170 0.15 0.15 0.3 0.2 0.3 80 V 4.82 25°C 25°C pA 4.99 4.94 25°C 25°C pA 60 85°C 25°C IOH = − 100 µA 950 1500 UNIT µV/°C RS = 50 Ω IOH = − 20 µA 300 MAX 2 Full range VOH 2500 TYP 2 25°C 25 C VICR 300 MIN 3000 25°C IIB MAX Full range VDD ± = ± 2.5 V, VIC = 0, VO = 0, RS = 50 Ω TLV2262AI TYP V 0.3 0.3 80 170 AVD Large-signal differential voltage amplification 25°C 550 550 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω 25°C 70 Full range 70 Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 8 V, VIC = VDD /2, No load 25°C 80 kSVR Full range 80 55 83 70 V/mV 83 70 95 80 80 dB 95 dB † Full range is − 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TA† TLV2262I MIN 25°C IDD Supply current VO = 2.5 V, No load TLV2262AI TYP MAX 400 500 Full range MIN TYP MAX 400 500 500 500 UNIT µA A † Full range is − 40°C to 125°C. TLV2262I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS RL = 50 kΩ‡, TLV2262I TA† MIN TYP 25°C 0.35 0.55 Full range 0.3 TLV2262AI MAX MIN TYP 0.35 0.55 Slew rate at unity gain VO = 1.5 V to 3.5 V, CL = 100 pF‡ Equivalent input noise voltage f = 10 Hz 25°C 40 40 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ‡ AV = 1 THD + N Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ Settling time AV = − 1, Step = 0.5 V to 2.5 V, RL = 50 kΩ‡, CL = 100 pF‡ SR BOM ts φm Phase margin at unity gain RL = 50 kΩ‡, MAX UNIT V/µs 0.3 nV/√Hz µV V fA /√Hz 0.017% 0.017% 0.03% 0.03% 25°C 0.71 0.71 MHz 25°C 185 185 kHz 6.4 6.4 14.1 14.1 25°C 56° 56° 25°C 11 11 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF‡ Gain margin † Full range is − 40°C to 125°C. ‡ Referenced to 2.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 9 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current TEST CONDITIONS TA† TLV2264I MIN 25°C 25°C 25 C to 85°C Input bias current Common-mode input voltage range RS = 50 Ω Ω, High-level output voltage IOH = − 400 µA VOL Low-level output voltage 0.003 0.003 µV/mo 25°C 0.5 AVD Large-signal differential voltage amplification 60 150 Full range 800 800 1 60 1 150 150 Full range 800 800 0 to 2 0 to 1.7 −0.3 to 2.2 0 to 2 0 to 1.7 2.99 −0.3 to 2.2 pA V 2.99 25°C 2.85 2.85 Full range 2.825 2.825 25°C 2.7 2.7 Full range 2.65 V 2.65 10 VIC = 1.5 V, IOL = 500 µA 25°C 100 Full range 10 100 150 25°C pA 60 85°C 25°C VIC = 1.5 V, VO = 1 to 2 V 0.5 150 IOL = 50 µA IOL = 1 A 60 85°C VIC = 1.5 V, VIC = 1.5 V, µV 25°C 25°C IOH = − 100 µA 950 1500 UNIT µV/°C |VIO | ≤ 5 mV IOH = − 20 µA 300 MAX 2 Full range VOH 2500 TYP 2 25°C 25 C VICR 300 MIN 3000 25°C IIB MAX Full range VDD ± = ± 1.5 V, VIC = 0, VO = 0, RS= 50 Ω TLV2264AI TYP 150 200 Full range 300 100 mV 200 300 RL = 50 kΩ‡ 25°C 60 60 100 Full range 30 RL = 1 MΩ‡ 25°C 100 100 30 V/mV ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 270 270 Ω CMRR Common-mode rejection ratio kSVR Supply voltage rejection ratio ((∆V VDD /∆V / VIO) VIC = 0 to 1.7 V, RS = 50 Ω VO = 1.5 V, VDD = 2.7 V to 8 V, 25°C 65 Full range 60 25°C 80 VIC = VDD /2, Full range 80 No load 75 65 77 60 95 80 80 100 dB dB † Full range is − 40°C to 125°C. ‡ Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264I electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER Supply current (four amplifiers) IDD TA† TEST CONDITIONS VO = 1.5 V, No load TLV2264I MIN 25°C TLV2264AI TYP MAX 0.8 1 Full range MIN TYP MAX 0.8 1 1 1 UNIT mA † Full range is − 40°C to 125°C. TLV2264I operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TEST CONDITIONS RL = 50 kΩ‡, TA† TLV2264I MIN TYP 25°C 0.35 0.55 Full range 0.3 TLV2264AI MAX MIN TYP 0.35 0.55 MAX UNIT SR Slew rate at unity gain VO = 0.7 V to 1.7 V, CL = 100 pF‡ Equivalent input noise voltage f = 10 Hz 25°C 43 43 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1 1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ ‡ AV = 1 0.03% 0.03% THD + N 0.05% 0.05% Gain-bandwidth product f = 1 kHz, CL = 100 pF ‡ RL = 50 kΩ ‡, 25°C 0.67 0.67 MHz Maximum output-swing bandwidth VO(PP) = 1 V, RL = 50 kΩ ‡, AV = 1, CL = 100 pF ‡ 25°C 395 395 kHz 5.6 5.6 Settling time AV = −1, Step = 1 V to 2 V, RL = 50 kΩ ‡, CL = 100 pF ‡ 12.5 12.5 25°C 55° 55° 25°C 11 11 BOM ts φm Phase margin at unity gain RL = 50 kΩ‡, V/µs 0.3 nV/√Hz µV V fA /√Hz 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF ‡ Gain margin † Full range is − 40°C to 125°C. ‡ Referenced to 1.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 11 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current TEST CONDITIONS TA† TLV2264I MIN 25°C VICR 25°C 25 C to 85°C Input bias current Common-mode input voltage range |VIO | ≤ 5 mV, High-level output voltage IOH = − 100 µA VIC = 2.5 V, VOL VIC = 2.5 V, VIC = 2.5 V, AVD Large-signal differential voltage amplification IOL = 50 µA IOL = 500 µA IOL = 1 A RL = 50 kΩ‡ VIC = 2.5 V, VO = 1 V to 4 V RL = 1 MΩ‡ 300 MAX 950 1500 UNIT µV 2 µV/°C 25°C 0.003 0.003 µV/mo 25°C 0.5 60 0.5 60 85°C 150 150 Full range 800 800 1 60 1 150 150 Full range 800 800 25°C 25 C 0 to 4 Full range 0 to 3.5 −0.3 to 4.2 0 to 4 4.85 Full range 4.82 25°C 4.7 Full range 4.6 −0.3 to 4.2 4.99 4.94 4.85 4.94 4.82 4.85 4.7 V 4.85 4.6 25°C 0.01 25°C 0.09 Full range 0.01 0.15 0.09 0.15 25°C 0.2 Full range 80 Full range 55 170 0.15 0.15 0.3 0.2 0.3 25°C pA V 0 to 3.5 4.99 25°C pA 60 85°C 25°C IOH = − 400 µA Low-level output voltage 2500 TYP 2 RS = 50 Ω IOH = − 20 µA VOH 300 MIN 3000 25°C IIB MAX Full range VDD ± = ± 2.5 V, VIC = 0, VO = 0, RS = 50 Ω TLV2264AI TYP V 0.3 0.3 80 170 55 V/mV 25°C 550 550 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω 25°C 70 Full range 70 kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 8 V, VIC = VDD /2, No load 25°C 80 Full range 80 83 70 83 70 95 80 80 95 dB dB † Full range is − 40°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264I electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER Supply current (four amplifiers) IDD TEST CONDITIONS VO = 2.5 V, No load TA† TLV2264I MIN 25°C TLV2264AI TYP MAX 0.8 1 Full range MIN TYP MAX 0.8 1 1 1 UNIT mA † Full range is − 40°C to 125°C. TLV2264I operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS RL = 50 kΩ ‡, TA† TLV2264I MIN TYP 25°C 0.35 0.55 Full range 0.3 TLV2264AI MAX MIN TYP 0.35 0.55 MAX UNIT SR Slew rate at unity gain VO = 1.4 V to 2.6 V, CL = 100 pF ‡ Equivalent input noise voltage f = 10 Hz 25°C 40 40 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ ‡ AV = 1 0.017% 0.017% THD + N 0.03% 0.03% Gain-bandwidth product f = 50 kHz, CL = 100 pF ‡ RL = 50 kΩ ‡, 25°C 0.71 0.71 MHz Maximum outputswing bandwidth VO(PP) = 2 V, RL = 50 kΩ ‡, AV = 1, CL = 100 pF ‡ 25°C 185 185 kHz 6.4 6.4 Settling time AV = − 1, Step = 0.5 V to 2.5 V, RL = 50 kΩ ‡, CL = 100 pF ‡ 14.1 14.1 25°C 56° 56° 25°C 11 11 BOM ts φm Phase margin at unity gain RL = 50 kΩ ‡, V/µs 0.3 nV/√Hz µV V fA /√Hz 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF ‡ Gain margin † Full range is − 40°C to 125°C. ‡ Referenced to 2.5 V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 13 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLV2262Q, TLV2262M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current 25°C Common-mode input voltage range VIC = 1.5 V, Low-level output voltage VIC = 1.5 V, VIC = 1.5 V, AVD Large-signal differential voltage amplification IOL = 500 µA IOL = 1 A RL = 50 kΩ‡ VIC = 1.5 V, VO = 1 V to 2 V RL = 1 MΩ‡ µV 0.003 0.003 µV/mo 25°C 0.5 60 0.5 800 1 0 to 2 0 to 1.7 60 −0.3 to 2.2 1 0 to 2 0 to 1.7 2.99 −0.3 to 2.2 2.85 Full range 2.82 2.82 25°C 2.7 2.7 Full range 2.55 10 25°C 100 Full range 200 Full range 10 150 100 100 150 165 300 200 300 25 V V 165 Full range pA 2.55 25°C 60 pA 2.99 2.85 25°C 60 800 25°C 25°C 60 800 800 25°C IOL = 50 µA 950 1500 25°C |VIO | ≤ 5 mV IOH = − 100 µA 300 UNIT MAX µV/°C 25°C RS = 50 Ω Ω, TYP 2 125°C IOH = − 400 µA VOL 2500 125°C IOH = − 20 µA High-level output voltage 300 MIN 2 Full range VOH MAX 3000 25°C 25 C to 125°C 25°C 25 C VICR TYP Full range VDD ± = ± 1.5 V, VIC = 0, VO = 0, RS = 50 Ω TLV2262AQ, TLV2262AM mV 300 300 60 100 25 V/mV 25°C 100 100 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 270 270 Ω CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, VO = 1.5 V, RS = 50 Ω 25°C 65 Full range 60 kSVR Supply voltage rejection ratio ((∆V VDD /∆V / VIO) VDD = 2.7 V to 8 V, VIC = VDD /2, No load 25°C 80 Full range 80 75 65 77 60 95 80 80 100 dB dB † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER TA† TEST CONDITIONS TLV2262Q, TLV2262M MIN IDD Supply current VO = 1.5 V, No load 25°C TLV2262AQ, TLV2262AM TYP MAX 400 500 Full range MIN UNIT TYP MAX 400 500 500 500 µA † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER SR Slew rate at unity gain VO = 0.5 V to 1.7 V, CL = 100 pF‡ TLV2262Q, TLV2262M TA† TEST CONDITIONS RL = 50 kΩ‡, MIN TYP 25°C 0.35 0.55 Full range 0.25 MAX TLV2262AQ, TLV2262AM MIN TYP 0.35 0.55 UNIT MAX V/µs 0.25 Equivalent input noise voltage f = 10 Hz 25°C 43 43 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1 1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise 0.03% 0.03% THD + N 0.05% 0.05% 25°C 0.67 0.67 MHz 25°C 395 395 kHz 5.6 5.6 12.5 12.5 25°C 55° 55° Gain margin 25°C † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 1.5 V 11 11 BOM ts φm VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ‡ AV = 1 Gain-bandwidth product f = 1 kHz, CL = 100 pF‡ RL = 50 kΩ‡, Maximum output-swing bandwidth VO(PP) = 1 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ Settling time AV = − 1, Step = 1 V to 2 V, RL = 50 kΩ‡, CL = 100 pF‡ Phase margin at unity gain RL = 50 kΩ‡, nV/√Hz µV V fA /√Hz 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF‡ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 15 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TLV2262Q, TLV2262M TA† TEST CONDITIONS MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C High-level output voltage 2500 VIC = 2.5 V, VIC = 2.5 V, IOL = 500 µA IOL = 1 A RL = 50 kΩ‡ VIC = 2.5 V, VO = 1 V to 4 V RL = 1 MΩ‡ 950 1500 µV 25°C 0.003 0.003 µV/mo 25°C 0.5 60 0.5 800 1 25°C 25 C 0 to 4 60 Full range 0 to 3.5 −0.3 to 4.2 1 25°C 4.85 4.82 25°C 4.7 Full range 4.5 0 to 4 −0.3 to 4.2 4.85 4.85 4.94 4.7 V 4.85 4.5 0.09 Full range 0.01 0.15 0.09 0.15 0.2 Full range 50 170 0.15 0.15 0.3 0.2 0.3 80 V 4.82 25°C 25°C pA 4.99 4.94 0.01 Full range pA 0 to 3.5 25°C 25°C 60 800 4.99 Full range 60 800 800 25°C IOL = 50 µA 300 UNIT MAX µV/°C RS = 50 Ω IOH = − 100 µA TYP 2 125°C |VIO | ≤ 5 mV, MIN 2 25°C VIC = 2.5 V, Low-level output voltage 300 125°C IOH = − 400 µA VOL MAX 3000 25°C 25 C to 125°C IOH = − 20 µA VOH TYP Full range VDD ± = ± 2.5 V, VIC = 0, VO = 0, RS = 50 Ω TLV2262AQ, TLV2262AM V 0.3 0.3 80 170 AVD Large-signal differential voltage amplification ri(d) Differential input resistance 25°C 550 1012 550 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, P package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω 25°C 70 Full range 70 kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 8 V, VIC = VDD /2, No load 25°C 80 Full range 80 25°C 50 83 70 V/mV 83 70 95 80 80 95 dB dB † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2262Q and TLV2262M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TLV2262Q, TLV2262M TA† MIN IDD Supply current VO = 2.5 V, No load 25°C TLV2262AQ, TLV2262AM TYP MAX 400 500 Full range MIN UNIT TYP MAX 400 500 500 500 µA † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. TLV2262Q and TLV2262M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS RL = 50 kΩ‡ TLV2262Q, TLV2262M TA† MIN TYP 25°C 0.35 0.55 Full range 0.25 TLV2262AQ, TLV2262AM MAX MIN TYP 0.35 0.55 Slew rate at unity gain VO = 0.5 V to 3.5 V, CL = 100 pF‡ Equivalent input noise voltage f = 10 Hz 25°C 40 40 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ‡ AV = 1 THD + N Gain-bandwidth product f = 50 kHz, CL = 100 pF‡ RL = 50 kΩ‡, Maximum output-swing bandwidth VO(PP) = 2 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF‡ Settling time AV = − 1, Step = 0.5 V to 2.5 V, RL = 50 kΩ‡, CL = 100 pF‡ SR UNIT MAX V/µs 0.25 nV/√Hz µV V fA /√Hz 0.017% 0.017% 0.03% 0.03% 25°C 0.71 0.71 MHz 25°C 185 185 kHz 6.4 6.4 14.1 14.1 25°C 56° 56° Gain margin 25°C † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 2.5 V 11 11 BOM ts φm Phase margin at unity gain RL = 50 kΩ‡, 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF‡ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 17 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA† TLV2264Q, TLV2264M MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current 25°C Common-mode input voltage range VIC = 1.5 V, Low-level output voltage VIC = 1.5 V, VIC = 1.5 V, AVD Large-signal differential voltage amplification IOL = 500 µA IOL = 1 A RL = 50 kΩ‡ VIC = 1.5 V, VO = 1 V to 2 V RL = 1 MΩ‡ µV 0.003 0.003 µV/mo 25°C 0.5 60 0.5 800 1 0 to 2 0 to 1.7 60 −0.3 to 2.2 1 0 to 2 0 to 1.7 2.99 −0.3 to 2.2 2.85 Full range 2.82 2.82 25°C 2.7 2.7 Full range 2.6 10 25°C 100 Full range 200 Full range 10 150 100 100 150 150 300 200 300 25 V V 150 60 pA 2.6 25°C 25°C pA 2.99 2.85 Full range 60 800 25°C 25°C 60 800 800 25°C IOL = 50 µA 950 1500 25°C |VIO | ≤ 5 mV IOH = − 100 µA 300 UNIT MAX µV/°C 25°C RS = 50 Ω Ω, TYP 2 125°C IOH = − 400 µA VOL 2500 125°C IOH = − 20 µA High-level output voltage 300 MIN 2 Full range VOH MAX 3000 25°C 25 C to 125°C 25°C 25 C VICR TYP Full range VDD ± = ± 1.5 V, VIC = 0, VO = 0, RS = 50 Ω TLV2264AQ, TLV2264AM mV 300 300 60 100 25 V/mV 25°C 100 100 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 270 270 Ω CMRR Common-mode rejection ratio VIC = 0 to 1.7 V, VO = 1.5 V, RS = 50 Ω VDD = 2.7 V to 8 V, 25°C 65 Full range 60 75 65 60 77 dB 25°C 80 95 80 100 dB VIC = VDD /2, No load Full range 80 80 † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 1.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. kSVR 18 Supply voltage rejection VDD /∆V / VIO) ratio ((∆V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TLV2264Q, TLV2264M TA† MIN Supply current (four amplifiers) IDD VO = 1.5 V, No load 25°C TLV2264AQ, TLV2264AM TYP MAX 0.8 1 Full range MIN UNIT TYP MAX 0.8 1 1 1 mA † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER TEST CONDITIONS RL = 50 kΩ‡, TLV2264Q, TLV2264M TA† MIN TYP 25°C 0.35 0.55 Full range 0.25 TLV2264AQ, TLV2264AM MAX MIN TYP 0.35 0.55 UNIT MAX SR Slew rate at unity gain VO = 0.5 V to 1.7 V, CL = 100 pF‡ Equivalent input noise voltage f = 10 Hz 25°C 43 43 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.6 0.6 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1 1 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ ‡ AV = 1 0.03% 0.03% THD + N 0.05% 0.05% Gain-bandwidth product f = 1 kHz, CL = 100 pF ‡ RL = 50 kΩ ‡, 25°C 0.67 0.67 MHz Maximum outputswing bandwidth VO(PP) = 1 V, RL = 50 kΩ‡, AV = 1, CL = 100 pF ‡ 25°C 395 395 kHz 5.6 5.6 Settling time AV = − 1, Step = 1 V to 2 V, RL = 50 kΩ ‡, CL = 100 pF ‡ 12.5 12.5 25°C 55° 55° Gain margin 25°C † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 1.5 V 11 11 BOM ts φm Phase margin at unity gain RL = 50 kΩ‡, V/µs 0.25 nV/√Hz µV V fA /√Hz 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF ‡ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 19 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TLV2264Q, TLV2264M TA† TEST CONDITIONS MIN VIO Input offset voltage αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO Input offset current IIB Input bias current VICR Common-mode input voltage range 25°C High-level output voltage |VIO | ≤ 5 mV, VIC = 2.5 V, Large-signal differential voltage amplification IOL = 500 µA IOL = 1 A RL = 50 kΩ‡ VIC = 2.5 V, VO = 1 V to 4 V RL = 1 MΩ‡ 950 1500 µV 25°C 0.003 0.003 µV/mo 25°C 0.5 60 0.5 800 1 25°C 25 C 0 to 4 60 Full range 0 to 3.5 −0.3 to 4.2 1 4.85 Full range 4.82 25°C 4.7 Full range 4.5 0 to 4 −0.3 to 4.2 4.85 4.94 4.82 4.85 4.7 V 4.85 4.5 0.01 0.09 Full range 0.01 0.15 0.09 0.15 0.2 Full range Full range 50 170 0.15 0.15 0.3 0.2 0.3 80 pA 4.99 4.94 25°C 25°C pA V 0 to 3.5 25°C 25°C 60 800 4.99 25°C 60 800 800 25°C IOL = 50 µA 300 UNIT MAX µV/°C RS = 50 Ω IOH = − 100 µA TYP 2 125°C VIC = 2.5 V, AVD 2500 MIN 2 25°C VIC = 2.5 V, Low-level output voltage 300 125°C IOH = − 400 µA VOL MAX 3000 25°C 25 C to 125°C IOH = − 20 µA VOH TYP Full range VDD ± = ± 2.5 V, VIC = 0, VO = 0, RS = 50 Ω TLV2264AQ, TLV2264AM V 0.3 0.3 80 170 50 V/mV 25°C 550 550 ri(d) Differential input resistance 25°C 1012 1012 Ω ri(c) Common-mode input resistance 25°C 1012 1012 Ω ci(c) Common-mode input capacitance f = 10 kHz, N package 25°C 8 8 pF zo Closed-loop output impedance f = 100 kHz, AV = 10 25°C 240 240 Ω CMRR Common-mode rejection ratio VIC = 0 to 2.7 V, VO = 2.5 V, RS = 50 Ω 25°C 70 Full range 70 kSVR Supply voltage rejection ratio (∆VDD /∆VIO) VDD = 4.4 V to 8 V, VIC = VDD /2, No load 25°C 80 Full range 80 83 70 83 70 95 80 80 95 dB dB † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TLV2264Q and TLV2264M electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS TLV2264Q, TLV2264M TA† MIN Supply current (four amplifiers) IDD VO = 2.5 V, No load 25°C TLV2264AQ, TLV2264AM TYP MAX 0.8 1 Full range MIN UNIT TYP MAX 0.8 1 1 1 mA † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. TLV2264Q and TLV2264M operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER TEST CONDITIONS RL = 50 kΩ ‡, TLV2264Q, TLV2264M TA† MIN TYP 25°C 0.35 0.55 Full range 0.25 TLV2264AQ, TLV2264AM MAX MIN TYP 0.35 0.55 UNIT MAX SR Slew rate at unity gain VO = 0.5 V to 3.5 V, CL = 100 pF ‡ Equivalent input noise voltage f = 10 Hz 25°C 40 40 Vn f = 1 kHz 25°C 12 12 Peak-to-peak equivalent input noise voltage f = 0.1 Hz to 1 Hz 25°C 0.7 0.7 VN(PP) f = 0.1 Hz to 10 Hz 25°C 1.3 1.3 In Equivalent input noise current 25°C 0.6 0.6 Total harmonic distortion plus noise 0.017% 0.017% THD + N 0.03% 0.03% 25°C 0.71 0.71 MHz 25°C 185 185 kHz 6.4 6.4 14.1 14.1 25°C 56° 56° Gain margin 25°C † Full range is − 40°C to 125°C for Q level part, − 55°C to 125°C for M level part. ‡ Referenced to 2.5 V 11 11 BOM ts φm VO = 0.5 V to 2.5 V, f = 20 kHz, RL = 50 kΩ ‡ AV = 1 Gain-bandwidth product f = 50 kHz, CL = 100 pF ‡ RL = 50 kΩ ‡, Maximum output-swing bandwidth VO(PP) = 2 V, RL = 50 kΩ ‡, AV = 1, CL = 100 pF ‡ Settling time AV = − 1, Step = 0.5 V to 2.5 V, RL = 50 kΩ ‡, CL = 100 pF ‡ Phase margin at unity gain RL = 50 kΩ ‡, V/µs 0.25 nV/√Hz µV V fA /√Hz 25°C AV = 10 To 0.1% µss 25°C To 0.01% CL = 100 pF ‡ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 dB 21 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS Table of Graphs FIGURE VIO Input offset voltage Distribution vs Common-mode voltage 2−5 6, 7 αVIO IIB/IIO Input offset voltage temperature coefficient Distribution 8 − 11 Input bias and input offset currents vs Free-air temperature 12 VI Input voltage vs Supply voltage vs Free-air temperature 13 14 VOH VOL High-level output voltage vs High-level output current 15, 18 Low-level output voltage vs Low-level output current 16, 17, 19 VO(PP) Maximum peak-to-peak output voltage vs Frequency 20 IOS Short-circuit output current vs Supply voltage vs Free-air temperature 21 22 VID AVD Differential input voltage vs Output voltage Differential voltage amplification vs Load resistance AVD Large-signal differential voltage amplification vs Frequency vs Free-air temperature 26, 27 28, 29 zo Output impedance vs Frequency 30, 31 CMRR Common-mode rejection ratio vs Frequency vs Free-air temperature 32 33 kSVR Supply-voltage rejection ratio vs Frequency vs Free-air temperature 34, 35 36, 37 IDD Supply current vs Free-air temperature 38, 39 SR Slew rate vs Load capacitance vs Free-air temperature 40 41 VO VO Inverting large-signal pulse response 42, 43 Voltage-follower large-signal pulse response 44, 45 VO VO Inverting small-signal pulse response 46, 47 Voltage-follower small-signal pulse response 48, 49 Vn Equivalent input noise voltage vs Frequency Input noise voltage Over a 10-second period 52 Integrated noise voltage vs Frequency 53 Total harmonic distortion plus noise vs Frequency 54 Gain-bandwidth product vs Supply voltage vs Free-air temperature 55 56 Phase margin vs Frequency vs Load capacitance 26, 27 57 Gain margin vs Load capacitance 58 Unity-gain bandwidth vs Load capacitance 59 Overestimation of phase margin vs Load capacitance 60 THD + N φm B1 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23, 24 25 50, 51 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2262 INPUT OFFSET VOLTAGE DISTRIBUTION OF TLV2262 INPUT OFFSET VOLTAGE 15 12 841 Amplifiers From 2 Wafer Lots VDD± = ± 1.5 V TA = 25°C Precentage of Amplifiers − % Precentage of Amplifiers − % 15 9 6 3 0 −1.6 −0.8 0 0.8 VIO − Input Offset Voltage − mV 12 841 Amplifiers From 2 Wafer Lots VDD± = ± 2.5 V TA = 25°C 9 6 3 0 −1.6 1.6 Figure 2 20 16 Percentage of Amplifiers − % Percentage of Amplifiers − % DISTRIBUTION OF TLV2264 INPUT OFFSET VOLTAGE 2272 Amplifiers From 2 Wafer Lots VDD ± = ± 1.5 V TA = 25°C 12 8 4 0 −1.6 1.6 Figure 3 DISTRIBUTION OF TLV2264 INPUT OFFSET VOLTAGE 20 −0.8 0 0.8 VIO − Input Offset Voltage − mV −0.8 0 0.8 VIO − Input Offset Voltage − mV 1.6 2272 Amplifiers From 2 Wafer Lots VDD ± = ± 2.5 V TA = 25°C 16 12 8 4 0 −1.6 Figure 4 −0.8 0 0.8 VIO − Input Offset Voltage − mV 1.6 Figure 5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS INPUT OFFSET VOLTAGE† vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE† vs COMMON-MODE INPUT VOLTAGE 1 1 VIO − Input Offset Voltage − mV VIO − Input Offset Voltage − mV VDD = 3 V RS = 50 Ω TA = 25°C 0.5 0 ÁÁ ÁÁ ÁÁ ÁÁ −0.5 −1 −1 −0.5 0 0.5 1 1.5 2 2.5 VDD = 5 V RS = 50 Ω TA = 25°C 0.5 0 −0.5 −1 −1 3 VIC − Common-Mode Input Voltage − V 0 Figure 6 3 4 30 Percentage of Amplifiers − % 128 Amplifiers From 2 Wafer Lots VDD± = ± 1.5 V 25 P Package TA = 25°C to 85°C 20 15 10 128 Amplifiers From 2 Wafer Lots VDD± = ± 2.5 V 25 P Package TA = 25°C to 85°C 20 15 10 5 5 −4 −3 −2 −1 0 1 2 3 4 α VIO − Temperature Coefficient − µ V / °C 5 0 −5 −4 −3 −2 −1 0 1 2 3 4 α VIO − Temperature Coefficient − µ V / °C Figure 8 Figure 9 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 24 5 DISTRIBUTION OF TLV2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 30 Percentage of Amplifiers − % 2 Figure 7 DISTRIBUTION OF TLV2262 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 0 −5 1 VIC − Common-Mode Input Voltage − V POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2264 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLV2264 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 35 128 Amplifiers From 2 Wafer Lots 30 VDD± = ± 1.5 V N Package TA = 25°C to 125°C 25 128 Amplifiers From 2 Wafer Lots VDD ± = ± 2.5 V N Package TA = 25°C to 125°C 30 Percentage of Amplifiers − % Percentage of Amplifiers − % 35 20 15 10 5 25 20 15 10 5 0 −5 −4 −3 −2 −1 0 1 2 3 4 0 5 −5 −4 −3 −2 −1 0 1 2 3 αVIO − Temperature Coefficient of Input Offset Voltage − µV / °C αVIO − Temperature Coefficient of Input Offset Voltage − µV / °C ÁÁ ÁÁ INPUT BIAS AND INPUT OFFSET CURRENTS† vs FREE-AIR TEMPERATURE INPUT VOLTAGE vs SUPPLY VOLTAGE 35 30 5 Figure 11 2.5 VDD ± = ± 2.5 V VIC = 0 VO = 0 RS = 50 Ω 2 RS = 50 Ω TA = 25°C 1.5 25 IIB 20 15 IIO 10 VI − Input Voltage − V IIO − Input Bias and Input Offset Currents − pA IIIB IB and IIO Figure 10 4 1 0.5 0 | VIO | ≤ 5 mV ÁÁ ÁÁ −0.5 −1 −1.5 5 −2 0 25 45 65 85 105 TA − Free-Air Temperature − °C 125 −2.5 1 1.5 Figure 12 2 2.5 3 3.5 | VDD± | − Supply Voltage − V 4 Figure 13 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS INPUT VOLTAGE†‡ vs FREE-AIR TEMPERATURE HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT 5 4 VDD = 5 V VDD = 3 V 3.5 VOH − High-Level Output Voltage − V 4 VI − Input Voltage − V 3 | VIO | ≤ 5 mV 2 ÁÁ 1 0 −1 −55 −35 −15 5 25 45 65 85 105 125 TA − Free-Air Temperature − °C ÁÁ ÁÁ ÁÁ 3 TA = − 55°C 2.5 TA = 125°C 2 TA = 25°C 1.5 TA = 85°C 1 TA = − 40°C 0.5 0 0 500 1.4 1 VOL − Low-Level Output Voltage − V VOL − Low-Level Output Voltage − V LOW-LEVEL OUTPUT VOLTAGE†‡ vs LOW-LEVEL OUTPUT CURRENT VDD = 3 V TA = 25°C VIC = 0 0.8 VIC = 0.75 V 0.6 VIC = 1.5 V 0.4 ÁÁ ÁÁ ÁÁ 0.2 0 0 1 2 3 4 5 VDD = 3 V VIC = 1.5 V 1.2 TA = 125°C 1 TA = 85°C 0.8 TA = 25°C 0.6 TA = − 55°C 0.4 TA = − 40°C 0.2 0 0 IOL − Low-Level Output Current − mA Figure 16 1 2 3 4 IOL − Low-Level Output Current − mA Figure 17 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 26 2000 Figure 15 LOW-LEVEL OUTPUT VOLTAGE‡ vs LOW-LEVEL OUTPUT CURRENT ÁÁ ÁÁ 1500 | IOH | − High-Level Output Current − µ A Figure 14 1.2 1000 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE†‡ vs HIGH-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE†‡ vs LOW-LEVEL OUTPUT CURRENT 6 1.4 VDD = 5 V VIC = 2.5 V ÁÁ ÁÁ 1.2 5 VOL − Low-Level Output Voltage − V VOH − High-Level Output Voltage − V VDD = 5 V TA = − 55°C 4 TA = − 40°C 3 TA = 25°C TA = 125°C 2 TA = 85°C 0 500 TA = 85°C 0.8 TA = 25°C 0.6 TA = 125°C 1000 1500 2000 2500 3000 TA = − 40°C 0.2 0 0 | IOH | − High-Level Output Current − µA 4 5 1 2 3 IOL − Low-Level Output Current − mA Figure 18 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE 5 12 RI = 10 kΩ TA = 25°C VDD = 5 V I OS − Short-Circuit Output Current − mA VO(PP) − Maximum Peak-to-Peak Output Voltage − V 6 Figure 19 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE‡ vs FREQUENCY ÁÁ ÁÁ ÁÁ TA = − 55°C 0.4 ÁÁ ÁÁ 1 0 1 4 3 VDD = 3 V 2 1 0 10 3 10 4 10 5 f − Frequency − Hz 10 6 10 VIC = VDD/2 TA = 25°C VID = − 100 mV 8 6 4 2 0 VID = 100 mV −2 2 Figure 20 3 4 5 6 VDD − Supply Voltage − V 7 8 Figure 21 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT † vs FREE-AIR TEMPERATURE DIFFERENTIAL INPUT VOLTAGE‡ vs OUTPUT VOLTAGE 1000 VO = 2.5 V VDD = 5 V 10 VID = − 100 mV 8 6 4 2 0 VID = 100 mV −2 −4 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C VDD = 3 V RI = 50 kΩ VIC = 1.5 V TA = 25°C 800 V ID − Differential Input Voltage − µ V I OS − Short-Circuit Output Current − mA 12 600 400 200 0 −200 −400 −600 −800 −1000 125 0 0.5 1 1.5 2 VO − Output Voltage − V Figure 22 DIFFERENTIAL VOLTAGE AMPLIFICATION‡ vs LOAD RESISTANCE V ID − Differential Input Voltage − µ V AVD − Differential Voltage Amplification − V/mV 1000 VDD = 5 V VIC = 2.5 V RL = 50 kΩ TA = 25°C 600 400 200 0 −200 −400 −600 −800 −1000 0 1 2 4 3 VO − Output Voltage − V 5 1000 ÁÁ ÁÁ VO(PP) = 2 V TA = 25°C VDD = 5 V 100 VDD = 3 V 10 1 10 3 10 4 10 5 RL − Load Resistance − kΩ Figure 24 Figure 25 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 28 3 Figure 23 DIFFERENTIAL INPUT VOLTAGE‡ vs OUTPUT VOLTAGE 800 2.5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 6 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN† vs FREQUENCY 60 AVD A VD − Large-Signal Differential Voltage Amplification − dB 180° VDD = 5 V CL= 100 pF TA = 25°C 135° 40 Phase Margin 20 ÁÁ ÁÁ ÁÁ 90° 45° Gain 0 0° −20 φom m − Phase Margin 80 −45° −40 103 104 105 −90° 107 106 f − Frequency − Hz Figure 26 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN† vs FREQUENCY 60 180° VDD = 3 V CL = 100 pF TA = 25°C 135° 40 Phase Margin 20 ÁÁ ÁÁ ÁÁ 90° 45° Gain 0 0° −20 φom m − Phase Margin AVD A VD − Large-Signal Differential Voltage Amplification − dB 80 −45° −40 103 104 105 106 −90° 107 f − Frequency − Hz Figure 27 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION†‡ vs FREE-AIR TEMPERATURE 1000 10000 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V AVD − Large-Signal Differential Voltage Amplification − V/mV AVD − Large-Signal Differential Voltage Amplification − V/mV RL = 1 MΩ RL = 50 kΩ 100 RL = 10 kΩ VDD = 3 V VIC = 1.5 V VO = 0.5 V to 2.5 V 10 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C RL = 1 MΩ 1000 RL = 50 kΩ 100 RL = 10 kΩ 10 −75 125 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 28 Figure 29 OUTPUT IMPEDANCE‡ vs FREQUENCY 100 10 OUTPUT IMPEDANCE‡ vs FREQUENCY 1000 VDD = 3 V TA = 25°C VDD = 5 V TA = 25°C A V = 100 z o − Output Impedance − Ω z o − Output Impedance − Ω 1000 A V = 10 AV = 1 1 0.1 10 2 10 3 10 4 f− Frequency − Hz 10 5 100 A V = 100 10 A V = 10 1 AV = 1 0.1 10 2 Figure 30 10 3 10 4 f− Frequency − Hz Figure 31 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 30 125 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 5 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS COMMON-MODE REJECTION RATIO† vs FREQUENCY COMMON-MODE REJECTION RATIO†‡ vs FREE-AIR TEMPERATURE 90 VDD = 5 V VIC = 2.5 V CMMR − Common-Mode Rejection Ratio − dB CMRR − Common-Mode Rejection Ratio − dB 100 TA = 25°C 80 VDD = 5 V VIC = 1.5 V 60 40 20 0 10 1 10 2 10 4 10 3 f − Frequency − Hz 10 5 88 86 84 VDD = 5 V 82 80 78 VDD = 3 V 76 74 72 70 − 75 − 50 − 25 0 25 50 75 100 TA − Free-Air Temperature − °C 10 6 Figure 32 Figure 33 SUPPLY-VOLTAGE REJECTION RATIO† vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO† vs FREQUENCY 100 VDD = 3 V TA = 25°C k SVR − Supply-Voltage Rejection Ratio − dB k SVR − Supply-Voltage Rejection Ratio − dB 100 80 60 kSVR + 40 kSVR − 20 ÁÁ ÁÁ 0 −20 10 1 125 10 2 10 3 10 4 f − Frequency − Hz 10 5 10 6 VDD = 5 V TA = 25°C 80 60 kSVR + 40 kSVR − 20 ÁÁ ÁÁ ÁÁ 0 −20 10 1 Figure 34 10 2 10 3 10 4 f − Frequency − Hz 10 5 10 6 Figure 35 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS TLV2262 SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE 110 VDD = 2.7 V to 8 V VIC = VO = VDD / 2 k SVR − Supply-Voltage Rejection Ratio − dB k SVR − Supply-Voltage Rejection Ratio − dB 110 TLV2264 SUPPLY-VOLTAGE REJECTION RATIO† vs FREE-AIR TEMPERATURE 105 100 ÁÁ ÁÁ 95 90 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C VDD = 2.7 V to 8 V VIC = VO = VDD / 2 105 100 ÁÁ ÁÁ ÁÁ 95 90 −75 125 −50 TLV2264 SUPPLY CURRENT†‡ vs FREE-AIR TEMPERATURE 600 1200 500 1000 I DD − Supply Current − µ A I DD − Supply Current − µ A TLV2262 SUPPLY CURRENT †‡ vs FREE-AIR TEMPERATURE VDD = 5 V VO = 2.5 V 400 ÁÁ ÁÁ ÁÁ VDD = 3 V VO = 1.5 V 300 200 −75 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C 125 VDD = 5 V VO = 2.5 V 800 VDD = 3 V VO = 1.5 V 600 400 −75 −50 Figure 38 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 39 † Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. ‡ For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 32 125 Figure 37 Figure 36 ÁÁ ÁÁ −25 0 25 50 75 100 TA − Free-Air Temperature − °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 125 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS SLEW RATE†‡ vs FREE-AIR TEMPERATURE SLEW RATE† vs LOAD CAPACITANCE 1 1.2 SR − 1 SR − SR − Slew Rate − V/ µ s SR − Slew Rate − V/ µ s 0.8 0.6 SR + 0.4 0.2 SR + 0.6 0.4 0.2 VDD = 5 V AV = −1 TA = 25°C 0 10 1 0.8 10 2 10 3 CL − Load Capacitance − pF 0 −75 10 4 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 −50 −25 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 40 Figure 41 INVERTING LARGE-SIGNAL PULSE RESPONSE† INVERTING LARGE-SIGNAL PULSE RESPONSE† 3 2 1.5 1 3 2 1 0.5 0 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = −1 TA = 25°C 4 VO − Output Voltage − V VO − Output Voltage − V 5 VDD = 3 V RL = 50 kΩ CL = 100 pF AV = −1 TA = 25°C 2.5 125 0 2 4 6 8 10 12 14 t − Time − µs 16 18 20 0 0 2 Figure 42 4 6 8 10 12 t − Time − µs 14 16 18 20 Figure 43 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE† VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE† 3 5 VDD = 3 V RL = 50 kΩ CL = 100 pF AV = −1 TA = 25°C 4 VO − Output Voltage − V VO − Output Voltage − V 2.5 2 1.5 1 3 2 1 0.5 0 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = −1 TA = 25°C 0 2 4 6 8 10 12 14 16 18 0 20 0 2 4 6 t − Time − µs Figure 44 18 0.8 0.75 0.7 VDD = 5 V RL = 50 kΩ CL = 100 pF 2.6 A = − 1 V TA = 25°C 2.55 2.5 2.45 0.65 0.6 0 2 4 6 8 10 12 14 16 18 20 2.4 0 2 t − Time − µs 4 6 8 10 12 14 16 18 t − Time − µs Figure 46 Figure 47 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 34 20 2.65 VO VO − Output Voltage − V VO − Output Voltage − V 0.85 16 INVERTING SMALL-SIGNAL PULSE RESPONSE† VDD = 3 V RL = 50 kΩ CL = 100 pF AV = − 1 TA = 25°C 0.9 14 Figure 45 INVERTING SMALL-SIGNAL PULSE RESPONSE† 0.95 8 10 12 t − Time − µs POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 20 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE† VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE† 0.95 VDD = 5 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 2.6 VO VO − Output Voltage − V 0.9 VO VO − Output Voltage − V 2.65 VDD = 3 V RL = 50 kΩ CL = 100 pF AV = 1 TA = 25°C 0.85 0.8 0.75 2.55 2.5 2.45 0.7 0 2 4 6 8 10 12 t − Time − µs 14 16 18 2.4 20 0 2 4 Figure 48 14 16 18 20 EQUIVALENT INPUT NOISE VOLTAGE† vs FREQUENCY 60 60 VDD = 3 V RS = 20 Ω TA = 25°C V n − Equivalent Input Noise Voltage − nV/ Hz V n − Equivalent Input Noise Voltage − nV/ Hz 8 10 12 t − Time − µs Figure 49 EQUIVALENT INPUT NOISE VOLTAGE† vs FREQUENCY 50 6 40 30 20 10 0 10 1 10 2 10 3 f − Frequency − Hz 10 4 50 VDD = 5 V RS = 20 Ω TA = 25°C 40 30 20 10 0 10 1 Figure 50 10 2 10 3 f − Frequency − Hz 10 4 Figure 51 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS INTEGRATED NOISE VOLTAGE vs FREQUENCY INPUT NOISE VOLTAGE OVER A 10-SECOND PERIOD† 100 1000 Calculated Using Ideal Pass-Band Filter Lower Frequency = 1 Hz TA = 25°C Integrated Noise Voltage − µ V Input Noise Voltage − nV 750 500 250 0 −250 −500 −750 −1000 0 VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 2 10 1 0.1 4 6 8 10 10 1 1 t − Time − s Figure 52 10 4 10 5 Figure 53 TOTAL HARMONIC DISTORTION PLUS NOISE† vs FREQUENCY GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE 10 −1 900 A V = 100 10 −2 Gain-Bandwidth Product − kHz THD + N − Total Harmonic Distortion Plus Noise − % 10 2 10 3 f − Frequency − Hz A V = 10 AV = 1 10 −3 10 1 VDD = 5 V RL = 50 kΩ TA = 25°C 10 2 10 3 10 4 10 4 860 820 780 740 700 0 1 f − Frequency − Hz Figure 54 2 3 5 4 6 VDD − Supply Voltage − V 7 Figure 55 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 8 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS PHASE MARGIN vs LOAD CAPACITANCE GAIN-BANDWIDTH PRODUCT †‡ vs FREE-AIR TEMPERATURE 75° 1200 TA = 25°C 60° Rnull = 100 Ω 1000 φom m − Phase Margin Gain-Bandwidth Product − kHz VDD = 5 V f = 10 kHz CL = 100 pF 800 Rnull = 50 Ω 45° Rnull = 20 Ω 30° Rnull = 10 Ω 50 kΩ 600 15° 50 kΩ VI 400 −75 0 25 50 75 100 TA − Free-Air Temperature − °C Figure 56 Rnull = 0 10 4 UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE 20 1000 RL = 50 kΩ AV = 1 TA = 25°C B1 − Unity-Gain Bandwidth − kHz TA = 25°C Rnull = 100 Ω 15 Gain Margin − dB CL Figure 57 GAIN MARGIN vs LOAD CAPACITANCE 10 Rnull = 50 Ω Rnull = 20 Ω Rnull = 10 Ω Rnull = 0 10 2 10 3 CL − Load Capacitance − pF 800 600 ÁÁ ÁÁ 5 0 10 Rnull 10 2 10 3 CL − Load Capacitance − pF 10 125 − + VDD −/GND 0° −50 −25 VDD + 10 4 400 200 10 Figure 58 10 2 10 3 CL − Load Capacitance − pF 10 4 Figure 59 † For all curves where VDD = 5 V, all loads are referenced to 2.5 V. For all curves where VDD = 3 V, all loads are referenced to 1.5 V. ‡ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 TYPICAL CHARACTERISTICS OVERESTIMATION OF PHASE MARGIN† vs LOAD CAPACITANCE 14° TA = 25°C Overestimation of Phase Margin 12° Rnull = 100 Ω 10° 8° Rnull = 50 Ω 6° 4° Rnull = 10 Ω Rnull = 20 Ω 2° 0 10 10 2 10 3 CL − Load Capacitance − pF † See application information Figure 60 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 4 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 APPLICATION INFORMATION driving large capacitive loads The TLV226x is designed to drive larger capacitive loads than most CMOS operational amplifiers. Figure 51 and Figure 52 illustrate its ability to drive loads greater than 400 pF while maintaining good gain and phase margins (Rnull = 0). A smaller series resistor (Rnull) at the output of the device (see Figure 61) improves the gain and phase margins when driving large capacitive loads. Figure 51 and Figure 52 show the effects of adding series resistances of 10 Ω, 20 Ω, 50 Ω, and 100 Ω. The addition of this series resistor has two effects: the first is that it adds a zero to the transfer function and the second is that it reduces the frequency of the pole associated with the output load in the transfer function. The zero introduced to the transfer function is equal to the series resistance times the load capacitance. To calculate the improvement in phase margin, equation (1) can be used. ǒ ∆θ m1 + tan –1 2 × π × UGBW × R null ×C Ǔ (1) L Where : ∆θ m1 + improvement in phase margin UGBW + unity-gain bandwidth frequency R null + output series resistance C L + load capacitance The unity-gain bandwidth (UGBW) frequency decreases as the capacitive load increases (see Figure 53). To use equation 1, UGBW must be approximated from Figure 53. Using equation 1 alone overestimates the improvement in phase margin as illustrated in Figure 59. The overestimation is caused by the decrease in the frequency of the pole associated with the load, providing additional phase shift and reducing the overall improvement in phase margin. The pole associated with the load is reduced by the factor calculated in equation 2. F + 1 1 ) g m × R null (2) Where : F + factor reducing frequency of pole g m + small-signal output transconductance (typically 4.83 × 10 – 3 mhos) R null + output series resistance For the TLV226x, the pole associated with the load is typically 7 MHz with 100-pF load capacitance. This value varies inversely with CL: at CL = 10 pF, use 70 MHz, at CL = 1000 pF, use 700 kHz, and so on. Reducing the pole associated with the load introduces phase shift, thereby reducing phase margin. This results in an error in the increase in phase margin expected by considering the zero alone (equation 1). Equation 3 approximates the reduction in phase margin due to the movement of the pole associated with the load. The result of this equation can be subtracted from the result of the equation 1 to better approximate the improvement in phase margin. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 APPLICATION INFORMATION driving large capacitive loads (continued) ȱ ȧ Ȳ ǒ ȳ ȧ ȴ Ǔ ∆θ m2 + tan –1 UGBW – tan –1 UGBW P2 ǒF × P2Ǔ Where : ∆θ m2 + reduction in phase margin (3) UGBW + unity-gain bandwidth frequency F + factor from equation (2) P 2 + unadjusted pole (70 MHz @ 10 pF, 7 MHz @ 100 pF, etc.) Using these equations with Figure 60 and Figure 61 enables the designer to choose the appropriate output series resistance to optimize the design of circuits driving large capacitive loads. 50 kΩ VDD + 50 kΩ VI − Rnull + CL VDD − / GND Figure 61. Series-Resistance Circuit 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLOS186B − FEBRUARY 1997 − REVISED MARCH 2001 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using Microsim Parts, the model generation software used with Microsim PSpice. The Boyle macromodel (see Note 5) and subcircuit in Figure 62 are generated using the TLV226x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity-gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Intergrated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS 92 FB + 10 J1 DP VC J2 IN + 11 RD1 VAD DC 12 C1 R2 − 53 HLIM − C2 6 − − + VLN + GCM GA VLIM 8 − RD2 54 4 − 7 60 + − + DLP 91 + VLP 90 RO2 VB IN − VCC − − + ISS RP 2 1 DLN EGND + − RO1 DE 5 + VE OUT .SUBCKT TLV226x 1 2 3 4 5 C1 11 12 5.5E−12 C2 6 7 20.00E−12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,0) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP + VLN 0 8.84E6 −10E6 10E6 10E6 −10E6 GA 6 0 11 12 62.83E−6 GCM 0 6 10 99 12.34E−9 ISS 3 10 DC 11.05E−6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.0E3 RD1 60 11 15.92E3 RD2 60 12 15.92E3 R01 8 5 135 R02 7 99 135 RP 3 4 15.87E3 RSS 10 99 18.18E6 VAD 60 4 −.5 VB 9 0 DC 0 VC 3 53 DC .615 VE 54 4 DC .615 VLIM 7 8 DC 0 VLP 91 0 DC 1 VLN 0 92 DC 5.1 .MODEL DX D (IS=800.0E−18) .MODEL JX PJF (IS=500.0E−15 BETA=325E−6 + VTO=−.08) .ENDS Figure 62. Boyle Macromodel and Subcircuit PSpice and Parts are trademarks of MicroSim Corporation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 PACKAGE OPTION ADDENDUM www.ti.com 27-Sep-2005 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 5962-9550401Q2A ACTIVE LCCC FK 20 1 TBD 5962-9550401QHA ACTIVE CFP U 10 1 TBD 5962-9550401QPA ACTIVE CDIP JG 8 1 TBD 5962-9550402Q2A ACTIVE LCCC FK 20 1 TBD 5962-9550402QCA ACTIVE CDIP J 14 1 TBD 5962-9550402QDA ACTIVE CFP W 14 1 TBD 5962-9550403Q2A ACTIVE LCCC FK 20 1 TBD 5962-9550403QHA ACTIVE CFP U 10 1 TBD 5962-9550403QPA ACTIVE CDIP JG 8 1 TBD 5962-9550404Q2A ACTIVE LCCC FK 20 1 TBD 5962-9550404QCA ACTIVE CDIP J 14 1 TBD 5962-9550404QDA ACTIVE CFP W 14 1 TLV2262AID ACTIVE SOIC D 8 75 TLV2262AIDR ACTIVE SOIC D 8 TLV2262AIDRG4 ACTIVE SOIC D 8 TLV2262AIP ACTIVE PDIP P 8 50 TLV2262AIPE4 ACTIVE PDIP P 8 TLV2262AIPW ACTIVE TSSOP PW TLV2262AIPWG4 ACTIVE TSSOP TLV2262AIPWLE OBSOLETE TLV2262AIPWR ACTIVE TLV2262AIPWRG4 Lead/Ball Finish MSL Peak Temp (3) POST-PLATE Level-NC-NC-NC A42 SNPB Level-NC-NC-NC A42 SNPB Level-NC-NC-NC POST-PLATE Level-NC-NC-NC A42 SNPB Level-NC-NC-NC A42 SNPB Level-NC-NC-NC POST-PLATE Level-NC-NC-NC A42 SNPB Level-NC-NC-NC A42 SNPB Level-NC-NC-NC POST-PLATE Level-NC-NC-NC A42 SNPB Level-NC-NC-NC TBD A42 SNPB Level-NC-NC-NC Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Pb-Free (RoHS) CU NIPDAU Level-NC-NC-NC 50 Pb-Free (RoHS) CU NIPDAU Level-NC-NC-NC 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TSSOP PW 8 TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262AMFKB ACTIVE LCCC FK 20 1 TBD TLV2262AMJGB ACTIVE CDIP JG 8 1 TBD A42 SNPB Level-NC-NC-NC TLV2262AMUB ACTIVE CFP U 10 1 TBD A42 SNPB Level-NC-NC-NC TLV2262AQD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIM TLV2262AQDR ACTIVE SOIC D 8 2500 TBD CU NIPDAU Level-1-220C-UNLIM TLV2262ID ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262IDG4 ACTIVE SOIC D 8 75 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262IDR ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262IP ACTIVE PDIP P 8 CU NIPDAU Level-NC-NC-NC TBD 50 Addendum-Page 1 Pb-Free (RoHS) Call TI Call TI POST-PLATE Level-NC-NC-NC PACKAGE OPTION ADDENDUM www.ti.com 27-Sep-2005 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLV2262IPE4 ACTIVE PDIP P 8 50 Pb-Free (RoHS) CU NIPDAU Level-NC-NC-NC TLV2262IPW ACTIVE TSSOP PW 8 150 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262IPWR ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262IPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2262MFKB ACTIVE LCCC FK 20 1 TBD TLV2262MJGB ACTIVE CDIP JG 8 1 TBD A42 SNPB Level-NC-NC-NC TLV2262MUB ACTIVE CFP U 10 1 TBD A42 SNPB Level-NC-NC-NC TLV2262QD ACTIVE SOIC D 8 75 TBD CU NIPDAU Level-1-220C-UNLIM TLV2262QDR ACTIVE SOIC D 8 2500 TBD CU NIPDAU Level-1-220C-UNLIM TLV2264AID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AIDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AIDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AIDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AIN ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPD Level-NC-NC-NC TLV2264AINE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPD Level-NC-NC-NC TLV2264AIPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AIPWLE OBSOLETE TSSOP PW 14 TBD Call TI TLV2264AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264AMFKB ACTIVE LCCC FK 20 1 TBD TLV2264AMJB ACTIVE CDIP J 14 1 TBD A42 SNPB Level-NC-NC-NC TLV2264AMWB ACTIVE CFP W 14 1 TBD A42 SNPB Level-NC-NC-NC Lead/Ball Finish MSL Peak Temp (3) POST-PLATE Level-NC-NC-NC Call TI POST-PLATE Level-NC-NC-NC TLV2264AQD ACTIVE SOIC D 14 50 TBD CU NIPDAU Level-1-220C-UNLIM TLV2264AQDR ACTIVE SOIC D 14 2500 TBD CU NIPDAU Level-1-220C-UNLIM TLV2264ID ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264IDG4 ACTIVE SOIC D 14 50 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264IDR ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264IN ACTIVE PDIP N 14 25 Addendum-Page 2 Pb-Free (RoHS) CU NIPD Level-NC-NC-NC PACKAGE OPTION ADDENDUM www.ti.com 27-Sep-2005 Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty TLV2264INE4 ACTIVE PDIP N 14 25 Pb-Free (RoHS) CU NIPD TLV2264IPW ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264IPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264IPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM TLV2264MFKB ACTIVE LCCC FK 20 1 TBD TLV2264MJ ACTIVE CDIP J 14 1 TBD A42 SNPB Level-NC-NC-NC TLV2264MJB ACTIVE CDIP J 14 1 TBD A42 SNPB Level-NC-NC-NC TLV2264MWB ACTIVE CFP W 14 1 TBD A42 SNPB Level-NC-NC-NC TLV2264QD ACTIVE SOIC D 14 50 TBD CU NIPDAU Level-1-220C-UNLIM TLV2264QDR ACTIVE SOIC D 14 2500 TBD CU NIPDAU Level-1-220C-UNLIM Lead/Ball Finish MSL Peak Temp (3) Level-NC-NC-NC POST-PLATE Level-NC-NC-NC (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 3 MECHANICAL DATA MCER001A – JANUARY 1995 – REVISED JANUARY 1997 JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE 0.400 (10,16) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 0.063 (1,60) 0.015 (0,38) 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.023 (0,58) 0.015 (0,38) 0°–15° 0.100 (2,54) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification. Falls within MIL STD 1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MCFP001A – JANUARY 1995 – REVISED DECEMBER 1995 U (S-GDFP-F10) CERAMIC DUAL FLATPACK Base and Seating Plane 0.250 (6,35) 0.246 (6,10) 0.045 (1,14) 0.026 (0,66) 0.008 (0,20) 0.004 (0,10) 0.080 (2,03) 0.050 (1,27) 0.300 (7,62) MAX 1 0.019 (0,48) 0.015 (0,38) 10 0.050 (1,27) 0.280 (7,11) 0.230 (5,84) 5 6 4 Places 0.005 (0,13) MIN 0.350 (8,89) 0.250 (6,35) 0.350 (8,89) 0.250 (6,35) 4040179 / B 03/95 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MLCC006B – OCTOBER 1996 FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 25 5 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MPDI001A – JANUARY 1995 – REVISED JUNE 1999 P (R-PDIP-T8) PLASTIC DUAL-IN-LINE 0.400 (10,60) 0.355 (9,02) 8 5 0.260 (6,60) 0.240 (6,10) 1 4 0.070 (1,78) MAX 0.325 (8,26) 0.300 (7,62) 0.020 (0,51) MIN 0.015 (0,38) Gage Plane 0.200 (5,08) MAX Seating Plane 0.010 (0,25) NOM 0.125 (3,18) MIN 0.100 (2,54) 0.021 (0,53) 0.015 (0,38) 0.430 (10,92) MAX 0.010 (0,25) M 4040082/D 05/98 NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Falls within JEDEC MS-001 For the latest package information, go to http://www.ti.com/sc/docs/package/pkg_info.htm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated