MICROCHIP PIC10F200

PIC10F200/202/204/206
Data Sheet
6-Pin, 8-Bit Flash Microcontrollers
© 2005 Microchip Technology Inc.
Preliminary
DS41239B
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED,
WRITTEN OR ORAL, STATUTORY OR OTHERWISE,
RELATED TO THE INFORMATION, INCLUDING BUT NOT
LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE,
MERCHANTABILITY OR FITNESS FOR PURPOSE.
Microchip disclaims all liability arising from this information and
its use. Use of Microchip’s products as critical components in
life support systems is not authorized except with express
written approval by Microchip. No licenses are conveyed,
implicitly or otherwise, under any Microchip intellectual property
rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART,
PRO MATE, PowerSmart, rfPIC, and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.
AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB,
PICMASTER, SEEVAL, SmartSensor and The Embedded
Control Solutions Company are registered trademarks of
Microchip Technology Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, dsPICDEM,
dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR,
FanSense, FlexROM, fuzzyLAB, In-Circuit Serial
Programming, ICSP, ICEPIC, Linear Active Thermistor,
MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM,
PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo,
PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode,
Smart Serial, SmartTel, Total Endurance and WiperLock are
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2005, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for
its worldwide headquarters, design and wafer fabrication facilities in
Chandler and Tempe, Arizona and Mountain View, California in
October 2003. The Company’s quality system processes and
procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
DS41239B-page ii
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
6-Pin, 8-Bit Flash Microcontrollers
Devices Included In This Data Sheet:
Low-Power Features/CMOS Technology:
•
•
•
•
• Operating Current:
- < 350 μA @ 2V, 4 MHz
• Standby Current:
- 100 nA @ 2V, typical
• Low-power, high-speed Flash technology:
- 100,000 Flash endurance
- > 40 year retention
• Fully static design
• Wide operating voltage range: 2.0V to 5.5V
• Wide temperature range:
- Industrial: -40°C to +85°C
- Extended: -40°C to +125°C
PIC10F200
PIC10F202
PIC10F204
PIC10F206
High-Performance RISC CPU:
• Only 33 single-word instructions to learn
• All single-cycle instructions except for program
branches, which are two-cycle
• 12-bit wide instructions
• 2-level deep hardware stack
• Direct, Indirect and Relative Addressing modes
for data and instructions
• 8-bit wide data path
• 8 Special Function Hardware registers
• Operating speed:
- 4 MHz internal clock
- 1 μs instruction cycle
Special Microcontroller Features:
• 4 MHz precision internal oscillator:
- Factory calibrated to ±1%
• In-Circuit Serial Programming™ (ICSP™)
• In-Circuit Debugging (ICD) support
• Power-on Reset (POR)
• Device Reset Timer (DRT)
• Watchdog Timer (WDT) with dedicated on-chip
RC oscillator for reliable operation
• Programmable code protection
• Multiplexed MCLR input pin
• Internal weak pull-ups on I/O pins
• Power-saving Sleep mode
• Wake-up from Sleep on pin change
© 2005 Microchip Technology Inc.
Peripheral Features (PIC10F200/202):
• 4 I/O pins:
- 3 I/O pins with individual direction control
- 1 input only pin
- High current sink/source for direct LED drive
- Wake-on-change
- Weak pull-ups
• 8-bit real-time clock/counter (TMR0) with 8-bit
programmable prescaler
Peripheral Features (PIC10F204/206):
• 4 I/O pins:
- 3 I/O pins with individual direction control
- 1 input only pin
- High current sink/source for direct LED drive
- Wake-on-change
- Weak pull-ups
• 8-bit real-time clock/counter (TMR0) with 8-bit
programmable prescaler
• 1 Comparator:
- Internal absolute voltage reference
- Both comparator inputs visible externally
- Comparator output visible externally
Preliminary
DS41239B-page 1
PIC10F200/202/204/206
Pin Diagrams
1
VSS
2
GP1/ICSPCLK
3
GP0/ICSPDAT/CIN+
1
VSS
2
GP1/ICSPCLK/CIN-
3
PIC10F200/202
GP0/ICSPDAT
6
GP3/MCLR/VPP
5
VDD
4
GP2/T0CKI/FOSC4
PIC10F204/206
SOT-23
6
GP3/MCLR/VPP
5
VDD
4
GP2/T0CKI/COUT/FOSC4
SOT-23
1
VDD
2
GP2/T0CKI/FOSC4
3
GP1/ICSPCLK
4
PIC10F200/202
N/C
8
GP3/MCLR/VPP
7
VSS
6
N/C
5
GP0/ICSPDAT
PIC10F204/206
PDIP
8
GP3/MCLR/VPP
7
VSS
PDIP
TABLE 1-1:
N/C
1
VDD
2
GP2/T0CKI/COUT/FOSC4
3
GP1/ICSPCLK/CIN-
4
6
N/C
5
GP0/ICSPDAT/CIN+
PIC10F2XX MEMORY AND FEATURES
Program Memory
Data Memory
Flash (words)
SRAM (bytes)
PIC10F200
256
PIC10F202
512
PIC10F204
PIC10F206
I/O
Timers
8-bit
Comparator
16
4
1
0
24
4
1
0
256
16
4
1
1
512
24
4
1
1
Device
DS41239B-page 2
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
Table of Contents
1.0 General Description...................................................................................................................................................................... 5
2.0 PIC10F200/202/204/206 Device Varieties .................................................................................................................................. 7
3.0 Architectural Overview ................................................................................................................................................................. 9
4.0 Memory Organization ................................................................................................................................................................. 15
5.0 I/O Port ....................................................................................................................................................................................... 25
6.0 Timer0 Module and TMR0 Register (PIC10F200/202)............................................................................................................... 29
7.0 Timer0 Module and TMR0 Register (PIC10F204/206)............................................................................................................... 33
8.0 Comparator Module.................................................................................................................................................................... 37
9.0 Special Features of the CPU...................................................................................................................................................... 41
10.0 Instruction Set Summary ............................................................................................................................................................ 51
11.0 Development Support................................................................................................................................................................. 59
12.0 Electrical Characteristics ............................................................................................................................................................ 63
13.0 DC and AC Characteristics Graphs and Charts ......................................................................................................................... 73
14.0 Packaging Information................................................................................................................................................................ 75
Index .................................................................................................................................................................................................... 79
On-Line Support................................................................................................................................................................................... 81
Systems Information and Upgrade Hot Line ........................................................................................................................................ 81
Reader Response ................................................................................................................................................................................ 82
Product Identification System .............................................................................................................................................................. 83
TO OUR VALUED CUSTOMERS
It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined
and enhanced as new volumes and updates are introduced.
If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via
E-mail at [email protected] or fax the Reader Response Form in the back of this data sheet to (480) 792-4150.
We welcome your feedback.
Most Current Data Sheet
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:
http://www.microchip.com
You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page.
The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).
Errata
An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current
devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision
of silicon and revision of document to which it applies.
To determine if an errata sheet exists for a particular device, please check with one of the following:
• Microchip’s Worldwide Web site; http://www.microchip.com
• Your local Microchip sales office (see last page)
• The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277
When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.
Customer Notification System
Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 3
PIC10F200/202/204/206
NOTES:
DS41239B-page 4
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
1.0
GENERAL DESCRIPTION
1.1
Applications
The PIC10F200/202/204/206 devices fit in applications
ranging from personal care appliances and security
systems to low-power remote transmitters/receivers.
The Flash technology makes customizing application
programs (transmitter codes, appliance settings,
receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or
surface mounting, make these microcontrollers well
suited for applications with space limitations. Low cost,
low power, high performance, ease of use and I/O
flexibility make the PIC10F200/202/204/206 devices
very versatile even in areas where no microcontroller
use has been considered before (e.g., timer functions,
logic and PLDs in larger systems and coprocessor
applications).
The PIC10F200/202/204/206 devices from Microchip
Technology are low-cost, high-performance, 8-bit, fullystatic, Flash-based CMOS microcontrollers. They
employ a RISC architecture with only 33 single-word/
single-cycle instructions. All instructions are single
cycle (1 μs) except for program branches, which take
two cycles. The PIC10F200/202/204/206 devices
deliver performance in an order of magnitude higher
than their competitors in the same price category. The
12-bit wide instructions are highly symmetrical, resulting in a typical 2:1 code compression over other 8-bit
microcontrollers in its class. The easy-to-use and easy
to remember instruction set reduces development time
significantly.
The PIC10F200/202/204/206 products are equipped
with special features that reduce system cost and
power requirements. The Power-on Reset (POR) and
Device Reset Timer (DRT) eliminate the need for external Reset circuitry. INTRC Internal Oscillator mode is
provided, thereby preserving the limited number of I/O
available. Power-saving Sleep mode, Watchdog Timer
and code protection features improve system cost,
power and reliability.
The PIC10F200/202/204/206 devices are available in
cost-effective Flash, which is suitable for production in
any volume. The customer can take full advantage of
Microchip’s price leadership in Flash programmable
microcontrollers, while benefiting from the Flash
programmable flexibility.
The PIC10F200/202/204/206 products are supported
by a full-featured macro assembler, a software simulator, an in-circuit debugger, a ‘C’ compiler, a low-cost
development programmer and a full featured programmer. All the tools are supported on IBM® PC and
compatible machines.
TABLE 1-1:
PIC10F200/202/204/206 DEVICES
PIC10F200
Clock
Maximum Frequency of Operation (MHz)
Memory
Flash Program Memory
Data Memory (bytes)
Peripherals
Timer Module(s)
Wake-up from Sleep on Pin Change
Comparators
Features
PIC10F202
PIC10F204
PIC10F206
4
4
4
4
256
512
256
512
16
24
16
24
TMR0
TMR0
TMR0
TMR0
Yes
Yes
Yes
Yes
0
0
1
1
I/O Pins
3
3
3
3
Input Only Pins
1
1
1
1
Internal Pull-ups
Yes
Yes
Yes
Yes
In-Circuit Serial Programming
Yes
Yes
Yes
Yes
Number of Instructions
Packages
33
33
33
33
6-pin SOT-23
8-pin PDIP
6-pin SOT-23
8-pin PDIP
6-pin SOT-23
8-pin PDIP
6-pin SOT-23
8-pin PDIP
The PIC10F200/202/204/206 devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect, high I/O current
capability and precision internal oscillator.
The PIC10F200/202/204/206 device uses serial programming with data pin GP0 and clock pin GP1.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 5
PIC10F200/202/204/206
NOTES:
DS41239B-page 6
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
2.0
PIC10F200/202/204/206 DEVICE
VARIETIES
A variety of packaging options are available. Depending on application and production requirements, the
proper device option can be selected using the
information in this section. When placing orders, please
use the PIC10F200/202/204/206 Product Identification
System at the back of this data sheet to specify the
correct part number.
2.1
2.2
Serialized Quick Turn
ProgrammingSM (SQTPSM) Devices
Microchip offers a unique programming service, where
a few user-defined locations in each device are
programmed with different serial numbers. The serial
numbers may be random, pseudo-random or
sequential.
Serial programming allows each device to have a
unique number, which can serve as an entry code,
password or ID number.
Quick Turn Programming (QTP)
Devices
Microchip offers a QTP programming service for
factory production orders. This service is made
available for users who choose not to program
medium-to-high quantity units and whose code
patterns have stabilized. The devices are identical to
the Flash devices but with all Flash locations and fuse
options already programmed by the factory. Certain
code and prototype verification procedures do apply
before production shipments are available. Please
contact your local Microchip Technology sales office for
more details.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 7
PIC10F200/202/204/206
NOTES:
DS41239B-page 8
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
3.0
ARCHITECTURAL OVERVIEW
The high performance of the PIC10F200/202/204/206
devices can be attributed to a number of architectural
features commonly found in RISC microprocessors. To
begin with, the PIC10F200/202/204/206 devices use a
Harvard architecture in which program and data are
accessed on separate buses. This improves bandwidth over traditional von Neumann architectures
where program and data are fetched on the same bus.
Separating program and data memory further allows
instructions to be sized differently than the 8-bit wide
data word. Instruction opcodes are 12 bits wide,
making it possible to have all single-word instructions.
A 12-bit wide program memory access bus fetches a
12-bit instruction in a single cycle. A two-stage pipeline
overlaps fetch and execution of instructions.
Consequently, all instructions (33) execute in a single
cycle (1 μs @ 4 MHz) except for program branches.
The table below lists program memory (Flash) and data
memory (RAM) for the PIC10F200/202/204/206
devices.
TABLE 3-1:
The PIC10F200/202/204/206 devices contain an 8-bit
ALU and working register. The ALU is a general
purpose arithmetic unit. It performs arithmetic and
Boolean functions between data in the working register
and any register file.
The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise
mentioned, arithmetic operations are two’s complement in nature. In two-operand instructions, one operand is typically the W (working) register. The other
operand is either a file register or an immediate
constant. In single operand instructions, the operand is
either the W register or a file register.
The W register is an 8-bit working register used for ALU
operations. It is not an addressable register.
Depending on the instruction executed, the ALU may
affect the values of the Carry (C), Digit Carry (DC) and
Zero (Z) bits in the Status register. The C and DC bits
operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF
instructions for examples.
A simplified block diagram is shown in Figure 3-1 and
Figure 3-2, with the corresponding device pins
described in Table 3-2.
PIC10F2XX MEMORY
Memory
Device
Program
Data
PIC10F200
256 x 12
16 x 8
PIC10F202
512 x 12
24 x 8
PIC10F204
256 x 12
16 x 8
PIC10F206
512 x 12
24 x 8
The PIC10F200/202/204/206 devices can directly or
indirectly address its register files and data memory. All
Special Function Registers (SFR), including the PC,
are mapped in the data memory. The PIC10F200/202/
204/206 devices have a highly orthogonal
(symmetrical) instruction set that makes it possible to
carry out any operation, on any register, using any
addressing mode. This symmetrical nature and lack of
“special optimal situations” make programming with the
PIC10F200/202/204/206 devices simple, yet efficient.
In addition, the learning curve is reduced significantly.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 9
PIC10F200/202/204/206
FIGURE 3-1:
PIC10F200/202 BLOCK DIAGRAM
9-10
512 x12 or
256 x12
24 or 16
bytes
File
Registers
Stack 1
Stack 2
12
RAM Addr(1)
GPIO
GP0/ICSPDAT
GP1/ICSPCLK
GP2/T0CKI/FOSC4
GP3/MCLR/VPP
RAM
Program
Memory
Program
Bus
8
Data Bus
Program Counter
Flash
9
Addr MUX
Instruction Reg
Direct Addr
5
5-7
Indirect
Addr
FSR Reg
Status Reg
8
3
MUX
Device Reset
Timer
Instruction
Decode &
Control
Timing
Generation
Power-on
Reset
Watchdog
Timer
Internal RC
Clock
ALU
8
W Reg
Timer0
MCLR
VDD, VSS
DS41239B-page 10
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
FIGURE 3-2:
PIC10F204/206 BLOCK DIAGRAM
9-10
512 x12 or
256 x12
GPIO
GP0/ICSPDAT/CIN+
GP1/ICSPCLK/CINGP2/T0CKI/COUT/FOSC4
GP3/MCLR/VPP
RAM
Program
Memory
Program
Bus
8
Data Bus
Program Counter
Flash
24 or 16
bytes
Stack 1
Stack 2
File
Registers
12
RAM Addr(1)
9
Addr MUX
Instruction Reg
Direct Addr
5
5-7
Indirect
Addr
FSR Reg
Status Reg
8
3
MUX
Device Reset
Timer
Instruction
Decode &
Control
Timing
Generation
Power-on
Reset
Watchdog
Timer
Internal RC
Clock
ALU
8
W Reg
CIN+
Timer0
CIN-
MCLR
VDD, VSS
© 2005 Microchip Technology Inc.
Comparator
COUT
Preliminary
DS41239B-page 11
PIC10F200/202/204/206
TABLE 3-2:
PIC10F200/202/204/206 PINOUT DESCRIPTION
Name
GP0/ICSPDAT/CIN+
GP1/ICSPCLK/CIN-
GP2/T0CKI/COUT/
FOSC4
GP3/MCLR/VPP
Function
Input
Type
Output
Type
GP0
TTL
CMOS Bidirectional I/O pin. Can be software programmed for internal
weak pull-up and wake-up from Sleep on pin change.
ICSPDAT
ST
CMOS In-Circuit Serial Programming™ data pin.
CIN+
AN
GP1
TTL
CMOS Bidirectional I/O pin. Can be software programmed for internal
weak pull-up and wake-up from Sleep on pin change.
ICSPCLK
ST
CMOS In-Circuit Serial Programming clock pin.
CIN-
AN
GP2
TTL
T0CKI
ST
—
Description
—
Comparator input (PIC10F204/206 only).
Comparator input (PIC10F204/206 only).
CMOS Bidirectional I/O pin.
—
Clock input to TMR0.
COUT
—
CMOS Comparator output (PIC10F204/206 only).
FOSC4
—
CMOS Oscillator/4 output.
GP3
TTL
—
Input pin. Can be software programmed for internal weak
pull-up and wake-up from Sleep on pin change.
MCLR
ST
—
Master Clear (Reset). When configured as MCLR, this pin is
an active-low Reset to the device. Voltage on GP3/MCLR/VPP
must not exceed VDD during normal device operation or the
device will enter Programming mode. Weak pull-up always on
if configured as MCLR.
VPP
HV
—
Programming voltage input.
VDD
VDD
P
—
Positive supply for logic and I/O pins.
VSS
VSS
P
—
Ground reference for logic and I/O pins.
Legend: I = Input, O = Output, I/O = Input/Output, P = Power, — = Not used, TTL = TTL input,
ST = Schmitt Trigger input, AN = Analog input
DS41239B-page 12
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
3.1
Clocking Scheme/Instruction
Cycle
3.2
Instruction Flow/Pipelining
An instruction cycle consists of four Q cycles (Q1, Q2,
Q3 and Q4). The instruction fetch and execute are
pipelined such that fetch takes one instruction cycle,
while decode and execute take another instruction
cycle. However, due to the pipelining, each instruction
effectively executes in one cycle. If an instruction
causes the PC to change (e.g., GOTO), then two cycles
are required to complete the instruction (Example 3-1).
The clock is internally divided by four to generate four
non-overlapping quadrature clocks, namely Q1, Q2,
Q3 and Q4. Internally, the PC is incremented every Q1
and the instruction is fetched from program memory
and latched into the instruction register in Q4. It is
decoded and executed during the following Q1 through
Q4. The clocks and instruction execution flow is shown
in Figure 3-3 and Example 3-1.
A fetch cycle begins with the PC incrementing in Q1.
In the execution cycle, the fetched instruction is latched
into the Instruction Register (IR) in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3 and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).
FIGURE 3-3:
CLOCK/INSTRUCTION CYCLE
Q2
Q1
Q3
Q4
Q1
Q2
Q3
Q4
Q1
Q2
Q3
Q4
OSC1
Q1
Q2
Internal
phase
clock
Q3
Q4
PC
PC
PC + 1
Fetch INST (PC)
Execute INST (PC – 1)
EXAMPLE 3-1:
PC + 2
Fetch INST (PC + 1)
Execute INST (PC)
Fetch INST (PC + 2)
Execute INST (PC + 1)
INSTRUCTION PIPELINE FLOW
1. MOVLW 03H
2. MOVWF GPIO
3. CALL
SUB_1
4. BSF
GPIO, BIT1
Fetch 1
Execute 1
Fetch 2
Execute 2
Fetch 3
Execute 3
Fetch 4
Flush
Fetch SUB_1 Execute SUB_1
All instructions are single cycle, except for any program branches. These take two cycles, since the fetch instruction
is “flushed” from the pipeline, while the new instruction is being fetched and then executed.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 13
PIC10F200/202/204/206
NOTES:
DS41239B-page 14
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
4.0
MEMORY ORGANIZATION
FIGURE 4-1:
The PIC10F200/202/204/206 memories are organized
into program memory and data memory. Data memory
banks are accessed using the File Select Register
(FSR).
4.1
PC<7:0>
9
CALL, RETLW
Stack Level 1
Stack Level 2
Program Memory Organization for
the PIC10F200/204
The PIC10F200/204 devices have a 9-bit Program
Counter (PC) capable of addressing a 512 x 12
program memory space.
Reset Vector(1)
0000h
On-chip Program
Memory
User Memory
Space
Only the first 256 x 12 (0000h-00FFh) for the
PIC10F200/204 are physically implemented (see
Figure 4-1). Accessing a location above these
boundaries will cause a wraparound within the first
256 x 12 space (PIC10F200/204). The effective
Reset vector is at 0000h (see Figure 4-1). Location
00FFh (PIC10F200/204) contains the internal clock
oscillator calibration value. This value should never
be overwritten.
PROGRAM MEMORY MAP
AND STACK FOR THE
PIC10F200/204
256 Word
00FFh
0100h
01FFh
Note 1:
© 2005 Microchip Technology Inc.
Preliminary
Address 0000h becomes the
effective Reset vector. Location
00FFh contains the MOVLW XX
internal oscillator calibration value.
DS41239B-page 15
PIC10F200/202/204/206
4.2
Program Memory Organization for
the PIC10F202/206
The PIC10F202/206 devices have a 10-bit Program
Counter (PC) capable of addressing a 1024 x 12
program memory space.
Only the first 512 x 12 (0000h-01FFh) for the
PIC10F202/206 are physically implemented (see
Figure 4-2). Accessing a location above these
boundaries will cause a wraparound within the first
512 x 12 space (PIC10F202/206). The effective
Reset vector is at 0000h (see Figure 4-2). Location
01FFh (PIC10F202/206) contains the internal clock
oscillator calibration value. This value should never
be overwritten.
FIGURE 4-2:
PROGRAM MEMORY MAP
AND STACK FOR THE
PIC10F202/206
PC<8:0>
10
CALL, RETLW
Reset Vector
0000h
The Special Function Registers include the TMR0 register, the Program Counter (PCL), the Status register,
the I/O register (GPIO) and the File Select Register
(FSR). In addition, Special Function Registers are used
to control the I/O port configuration and prescaler
options.
The General Purpose Registers are used for data and
control information under command of the instructions.
For the PIC10F200/204, the register file is composed of
7 Special Function Registers and 16 General Purpose
Registers (see Figure 4-3 and Figure 4-4).
For the PIC10F202/206, the register file is composed of
8 Special Function Registers and 24 General Purpose
Registers (see Figure 4-4).
GENERAL PURPOSE REGISTER
FILE
The General Purpose Register file is accessed, either
directly or indirectly, through the File Select Register
(FSR). See Section 4.9 “Indirect Data Addressing:
INDF and FSR Registers”.
User Memory
Space
On-chip Program
Memory
Data Memory Organization
Data memory is composed of registers or bytes of
RAM. Therefore, data memory for a device is specified
by its register file. The register file is divided into two
functional groups: Special Function Registers (SFR)
and General Purpose Registers (GPR).
4.3.1
Stack Level 1
Stack Level 2
(1)
4.3
512 Words
01FFh
0200h
02FFh
Note 1:
Address 0000h becomes the
effective Reset vector. Location
01FFh contains the MOVLW XX
internal oscillator calibration value.
DS41239B-page 16
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
FIGURE 4-3:
PIC10F200/204 REGISTER
FILE MAP
FIGURE 4-4:
PIC10F202/206 REGISTER
FILE MAP
File Address
File Address
00h
INDF(1)
TMR0
01h
TMR0
02h
PCL
02h
PCL
03h
STATUS
03h
STATUS
04h
FSR
04h
FSR
05h
OSCCAL
05h
OSCCAL
06h
GPIO
06h
GPIO
07h
CMCON0(2)
07h
CMCON0(2)
00h
01h
INDF
(1)
08h
08h
Unimplemented(3)
General
Purpose
Registers
0Fh
10h
General
Purpose
Registers
1Fh
1Fh
Note 1:
Not a physical register. See Section 4.9
“Indirect Data Addressing: INDF and
FSR Registers”.
Note 1:
Not a physical register. See Section 4.9
“Indirect Data Addressing: INDF and
FSR Registers”.
2:
PIC10F204 only. Unimplemented on the
PIC10F200 and reads as 00h.
2:
PIC10F206 only. Unimplemented on the
PIC10F202 and reads as 00h.
3:
Unimplemented, read as 00h.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 17
PIC10F200/202/204/206
4.3.2
SPECIAL FUNCTION REGISTERS
The Special Function Registers (SFRs) are registers
used by the CPU and peripheral functions to control the
operation of the device (Table 4-1).
The Special Function Registers can be classified into
two sets. The Special Function Registers associated
with the “core” functions are described in this section.
Those related to the operation of the peripheral
features are described in the section for each
peripheral feature.
TABLE 4-1:
Address
SPECIAL FUNCTION REGISTER (SFR) SUMMARY (PIC10F200/202/204/206)
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Value on
Power-On
Reset(2)
Page #
00h
INDF
Uses Contents of FSR to Address Data Memory (not a physical register)
xxxx xxxx
23
01h
TMR0
8-bit Real-Time Clock/Counter
xxxx xxxx
29, 33
02h(1)
PCL
Low-order 8 bits of PC
1111 1111
22
03h
STATUS
04h
FSR
05h
OSCCAL
06h
GPIO
07h(4)
CMCON0
N/A
TRISGPIO
N/A
OPTION
Legend:
Note 1:
2:
3:
4:
5:
GPWUF
CWUF
(5)
—
TO
PD
Z
DC
C
Indirect Data Memory Address Pointer
00-1 1xxx
(3)
19
111x xxxx
23
CAL6
CAL5
CAL4
CAL3
CAL2
CAL1
CAL0
FOSC4
1111 1110
21
—
—
—
—
GP3
GP2
GP1
GP0
---- xxxx
25
CMPON
CNREF
CPREF
CWU
1111 1111
34
---- 1111
37
1111 1111
20
CMPOUT COUTEN
POL
CMPT0CS
—
—
—
—
GPWU
GPPU
T0CS
T0SE
I/O Control Register
PSA
PS2
PS1
PS0
– = unimplemented, read as ‘0’, x = unknown, u = unchanged, q = value depends on condition.
The upper byte of the Program Counter is not directly accessible. See Section 4.7 “Program Counter” for an
explanation of how to access these bits.
Other (non Power-up) Resets include external Reset through MCLR, Watchdog Timer and wake-up on pin change
Reset.
See Table 9-1 for other Reset specific values.
PIC10F204/206 only.
PIC10F204/206 only. On all other devices, this bit is reserved and should not be used.
DS41239B-page 18
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
4.4
Status Register
This register contains the arithmetic status of the ALU,
the Reset status and the page preselect bit.
The Status register can be the destination for any
instruction, as with any other register. If the Status
register is the destination for an instruction that affects
the Z, DC or C bits, then the write to these three bits is
disabled. These bits are set or cleared according to the
device logic. Furthermore, the TO and PD bits are not
writable. Therefore, the result of an instruction with the
Status register as destination may be different than
intended.
REGISTER 4-1:
For example, CLRF STATUS, will clear the upper three
bits and set the Z bit. This leaves the Status register as
000u u1uu (where u = unchanged).
Therefore, it is recommended that only BCF, BSF and
MOVWF instructions be used to alter the Status register.
These instructions do not affect the Z, DC or C bits from
the Status register. For other instructions which do
affect Status bits, see Section 10.0 “Instruction Set
Summary”.
STATUS REGISTER (ADDRESS: 03h)
R/W-0
GPWUF
R/W-0
CWUF
(1)
R/W-0
R-1
R-1
R/W-x
R/W-x
R/W-x
—
TO
PD
Z
DC
C
bit 7
bit 0
bit 7
GPWUF: GPIO Reset bit
1 = Reset due to wake-up from Sleep on pin change
0 = After power-up or other Reset
bit 6
CWUF: Comparator Wake-up on Change Flag bit(1)
1 = Reset due to wake-up from Sleep on comparator change
0 = After power-up or other Reset conditions.
bit 5
Reserved: Do not use. Use of this bit may affect upward compatibility with future products.
bit 4
TO: Time-out bit
1 = After power-up, CLRWDT instruction or SLEEP instruction
0 = A WDT time-out occurred
bit 3
PD: Power-down bit
1 = After power-up or by the CLRWDT instruction
0 = By execution of the SLEEP instruction
bit 2
Z: Zero bit
1 = The result of an arithmetic or logic operation is zero
0 = The result of an arithmetic or logic operation is not zero
bit 1
DC: Digit carry/borrow bit (for ADDWF and SUBWF instructions)
ADDWF:
1 = A carry from the 4th low-order bit of the result occurred
0 = A carry from the 4th low-order bit of the result did not occur
SUBWF:
1 = A borrow from the 4th low-order bit of the result did not occur
0 = A borrow from the 4th low-order bit of the result occurred
bit 0
C: Carry/borrow bit (for ADDWF, SUBWF and RRF, RLF instructions)
ADDWF:
SUBWF:
RRF or RLF:
1 = A carry occurred
1 = A borrow did not occur Load bit with LSb or MSb, respectively
0 = A carry did not occur 0 = A borrow occurred
Note 1: This bit is used on the PIC10F204/206. For code compatibility do not use this bit on
the PIC10F200/202.
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
© 2005 Microchip Technology Inc.
Preliminary
x = Bit is unknown
DS41239B-page 19
PIC10F200/202/204/206
4.5
OPTION Register
The OPTION register is a 8-bit wide, write-only register,
which contains various control bits to configure the
Timer0/WDT prescaler and Timer0.
By executing the OPTION instruction, the contents of
the W register will be transferred to the OPTION register. A Reset sets the OPTION<7:0> bits.
REGISTER 4-2:
Note:
If TRIS bit is set to ‘0’, the wake-up on
change and pull-up functions are disabled
for that pin (i.e., note that TRIS overrides
Option control of GPPU and GPWU).
Note:
If the T0CS bit is set to ‘1’, it will override
the TRIS function on the T0CKI pin.
OPTION REGISTER
W-1
W-1
W-1
W-1
W-1
W-1
W-1
W-1
GPWU
GPPU
T0CS
T0SE
PSA
PS2
PS1
PS0
bit 7
bit 0
bit 7
GPWU: Enable Wake-up on Pin Change bit (GP0, GP1, GP3)
1 = Disabled
0 = Enabled
bit 6
GPPU: Enable Weak Pull-ups bit (GP0, GP1, GP3)
1 = Disabled
0 = Enabled
bit 5
T0CS: Timer0 Clock Source Select bit
1 = Transition on T0CKI pin (overrides TRIS on the T0CKI pin)
0 = Transition on internal instruction cycle clock, FOSC/4
bit 4
T0SE: Timer0 Source Edge Select bit
1 = Increment on high-to-low transition on the T0CKI pin
0 = Increment on low-to-high transition on the T0CKI pin
bit 3
PSA: Prescaler Assignment bit
1 = Prescaler assigned to the WDT
0 = Prescaler assigned to Timer0
bit 2-0
PS<2:0>: Prescaler Rate Select bits
Bit Value
000
001
010
011
100
101
110
111
Timer0 Rate WDT Rate
1:2
1:4
1:8
1 : 16
1 : 32
1 : 64
1 : 128
1 : 256
1:1
1:2
1:4
1:8
1 : 16
1 : 32
1 : 64
1 : 128
Legend:
DS41239B-page 20
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
Preliminary
x = Bit is unknown
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
4.6
OSCCAL Register
The Oscillator Calibration (OSCCAL) register is used to
calibrate the internal precision 4 MHz oscillator. It
contains seven bits for calibration.
Note:
Erasing the device will also erase the preprogrammed internal calibration value for
the internal oscillator. The calibration
value must be read prior to erasing the
part so it can be reprogrammed correctly
later.
After you move in the calibration constant, do not
change the value. See Section 9.2.2 “Internal 4 MHz
Oscillator”.
REGISTER 4-3:
OSCCAL REGISTER (ADDRESS: 05h)
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-0
CAL6
CAL5
CAL4
CAL3
CAL2
CAL1
CAL0
FOSC4
bit 7
bit 0
bit 7-1
CAL<6:0>: Oscillator Calibration bits
0111111 = Maximum frequency
•
•
•
0000001
0000000 = Center frequency
1111111
•
•
•
1000000 = Minimum frequency
bit 0
FOSC4: INTOSC/4 Output Enable bit(1)
1 = INTOSC/4 output onto GP2
0 = GP2/T0CKI/COUT applied to GP2
Note 1: Overrides GP2/T0CKI/COUT control registers when enabled.
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
© 2005 Microchip Technology Inc.
Preliminary
x = Bit is unknown
DS41239B-page 21
PIC10F200/202/204/206
4.7
4.7.1
Program Counter
As a program instruction is executed, the Program
Counter (PC) will contain the address of the next
program instruction to be executed. The PC value is
increased by one every instruction cycle, unless an
instruction changes the PC.
For a GOTO instruction, bits 8:0 of the PC are provided
by the GOTO instruction word. The Program Counter
(PCL) is mapped to PC<7:0>.
For a CALL instruction, or any instruction where the
PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does
not come from the instruction word, but is always
cleared (Figure 4-5).
Instructions where the PCL is the destination, or modify
PCL instructions, include MOVWF PC, ADDWF PC and
BSF PC,5.
Note:
Because PC<8> is cleared in the CALL
instruction or any modify PCL instruction,
all subroutine calls or computed jumps are
limited to the first 256 locations of any
program memory page (512 words long).
FIGURE 4-5:
LOADING OF PC
BRANCH INSTRUCTIONS
GOTO Instruction
8 7
PC
0
EFFECTS OF RESET
The PC is set upon a Reset, which means that the PC
addresses the last location in program memory (i.e.,
the oscillator calibration instruction). After executing
MOVLW XX, the PC will roll over to location 0000h and
begin executing user code.
4.8
Stack
The PIC10F200/204 devices have a 2-deep, 8-bit wide
hardware PUSH/POP stack.
The PIC10F202/206 devices have a 2-deep, 9-bit wide
hardware PUSH/POP stack.
A CALL instruction will PUSH the current value of Stack 1
into Stack 2 and then PUSH the current PC value,
incremented by one, into Stack Level 1. If more than two
sequential CALLs are executed, only the most recent two
return addresses are stored.
A RETLW instruction will POP the contents of Stack
Level 1 into the PC and then copy Stack Level 2
contents into level 1. If more than two sequential
RETLWs are executed, the stack will be filled with the
address previously stored in Stack Level 2. Note that
the W register will be loaded with the literal value
specified in the instruction. This is particularly useful for
the implementation of data look-up tables within the
program memory.
Note 1: There are no Status bits to indicate stack
overflows or stack underflow conditions.
PCL
2: There are no instruction mnemonics
called PUSH or POP. These are actions
that occur from the execution of the CALL
and RETLW instructions.
Instruction Word
CALL or Modify PCL Instruction
8 7
PC
0
PCL
Instruction Word
Reset to ‘0’
DS41239B-page 22
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
4.9
EXAMPLE 4-1:
Indirect Data Addressing: INDF
and FSR Registers
The INDF register is not a physical register.
Addressing INDF actually addresses the register
whose address is contained in the FSR register (FSR
is a pointer). This is indirect addressing.
4.10
NEXT
MOVLW
MOVWF
CLRF
0x10
FSR
INDF
INCF
BTFSC
GOTO
CONTINUE
:
:
Indirect Addressing
•
•
•
•
Register file 09 contains the value 10h
Register file 0A contains the value 0Ah
Load the value 09 into the FSR register
A read of the INDF register will return the value
of 10h
• Increment the value of the FSR register by one
(FSR = 0A)
• A read of the INDR register now will return the
value of 0Ah.
HOW TO CLEAR RAM
USING INDIRECT
ADDRESSING
FSR,F
FSR,4
NEXT
;initialize pointer
;to RAM
;clear INDF
;register
;inc pointer
;all done?
;NO, clear next
;YES, continue
The FSR is a 5-bit wide register. It is used in conjunction with the INDF register to indirectly address the data
memory area.
The FSR<4:0> bits are used to select data memory
addresses 00h to 1Fh.
Reading INDF itself indirectly (FSR = 0) will produce
00h. Writing to the INDF register indirectly results in a
no operation (although Status bits may be affected).
Note:
PIC10F200/202/204/206 – Do not use
banking. FSR <7:5> are unimplemented
and read as ‘1’s.
A simple program to clear RAM locations 10h-1Fh
using indirect addressing is shown in Example 4-1.
FIGURE 4-6:
DIRECT/INDIRECT ADDRESSING (PIC10F200/202/204/206)
Direct Addressing
4
(opcode)
Indirect Addressing
4
0
Location Select
(FSR)
0
Location Select
00h
Data
Memory(1)
0Fh
10h
1Fh
Bank 0
Note 1:
For register map detail, see Section 4.3 “Data Memory Organization”.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 23
PIC10F200/202/204/206
NOTES:
DS41239B-page 24
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
5.0
I/O PORT
5.3
As with any other register, the I/O register(s) can be
written and read under program control. However, read
instructions (e.g., MOVF GPIO, W) always read the I/O
pins independent of the pin’s Input/Output modes. On
Reset, all I/O ports are defined as input (inputs are at
high-impedance) since the I/O control registers are all
set.
5.1
GPIO
GPIO is an 8-bit I/O register. Only the low-order 4 bits
are used (GP<3:0>). Bits 7 through 4 are unimplemented and read as ‘0’s. Please note that GP3 is an
input only pin. Pins GP0, GP1 and GP3 can be configured with weak pull-ups and also for wake-up on
change. The wake-up on change and weak pull-up
functions are not pin selectable. If GP3/MCLR is configured as MCLR, weak pull-up is always on and wake-up
on change for this pin is not enabled.
5.2
FIGURE 5-1:
TABLE 5-1:
PIC10F200/202/204/206
EQUIVALENT CIRCUIT
FOR A SINGLE I/O PIN
Data
Bus
D
W
Reg
Q
Data
Latch
CK
VDD VDD
Q
P
N
D
TRIS ‘f’
I/O
pin
Q
TRIS
Latch
A read of the ports reads the pins, not the
output data latches. That is, if an output
driver on a pin is enabled and driven high,
but the external system is holding it low, a
read of the port will indicate that the pin is
low.
The TRIS registers are “write-only” and are set (output
drivers disabled) upon Reset.
Priority
The equivalent circuit for an I/O port pin is shown in
Figure 5-2. All port pins, except GP3 which is input
only, may be used for both input and output operations.
For input operations, these ports are non-latching. Any
input must be present until read by an input instruction
(e.g., MOVF GPIO, W). The outputs are latched and
remain unchanged until the output latch is rewritten. To
use a port pin as output, the corresponding direction
control bit in TRIS must be cleared (= 0). For use as an
input, the corresponding TRIS bit must be set. Any I/O
pin (except GP3) can be programmed individually as
input or output.
WR
Port
TRIS Registers
The Output Driver Control register is loaded with the
contents of the W register by executing the TRIS f
instruction. A ‘1’ from a TRIS register bit puts the corresponding output driver in a High-Impedance mode. A
‘0’ puts the contents of the output data latch on the
selected pins, enabling the output buffer. The exceptions are GP3, which is input only and the GP2/T0CKI/
COUT/FOSC4 pin, which may be controlled by various
registers. See Table 5-1.
Note:
I/O Interfacing
CK
VSS
VSS
Q
Reset
(1)
RD Port
Note 1:
See Table 3-2 for buffer type.
ORDER OF PRECEDENCE
FOR PIN FUNCTIONS
GP0
GP1
GP2
GP3
1
CIN+
CIN-
FOSC4
I/MCLR
2
TRIS GPIO
TRIS GPIO
COUT
—
3
—
—
T0CKI
—
4
—
—
TRIS GPIO
—
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 25
PIC10F200/202/204/206
TABLE 5-2:
Address
N/A
SUMMARY OF PORT REGISTERS
Name
Bit 7
Bit 6
Bit 5
Bit 4
TRISGPIO
—
—
—
—
Bit 3
Bit 2
Bit 1
Bit 0
I/O Control Register
Value on
Power-On
Reset
Value on
All Other Resets
---- 1111
---- 1111
N/A
OPTION
GPWU
GPPU
T0CS
T0SE
PSA
PS2
PS1
PS0
1111 1111
1111 1111
03h
STATUS
GPWUF
CWUF
—
TO
PD
Z
DC
C
00-1 1xxx
qq-q quuu(1, 2)
06h
GPIO
—
—
—
—
GP3
GP2
GP1
GP0
---- xxxx
---- uuuu
Legend:
Note 1:
2:
5.4
5.4.1
Shaded cells are not used by Port registers, read as ‘0’, – = unimplemented, read as ‘0’, x = unknown, u = unchanged,
q = depends on condition.
If Reset was due to wake-up on pin change, then bit 7 = 1. All other Resets will cause bit 7 = 0.
If Reset was due to wake-up on comparator change, then bit 6 = 1. All other Resets will cause bit 6 = 0.
I/O Programming Considerations
EXAMPLE 5-1:
BIDIRECTIONAL I/O PORTS
Some instructions operate internally as read followed
by write operations. The BCF and BSF instructions, for
example, read the entire port into the CPU, execute the
bit operation and rewrite the result. Caution must be
used when these instructions are applied to a port
where one or more pins are used as input/outputs. For
example, a BSF operation on bit 2 of GPIO will cause
all eight bits of GPIO to be read into the CPU, bit 2 to
be set and the GPIO value to be written to the output
latches. If another bit of GPIO is used as a bidirectional
I/O pin (say bit 0) and it is defined as an input at this
time, the input signal present on the pin itself would be
read into the CPU and rewritten to the data latch of this
particular pin, overwriting the previous content. As long
as the pin stays in the Input mode, no problem occurs.
However, if bit 0 is switched into Output mode later on,
the content of the data latch may now be unknown.
Example 5-1 shows the effect of two sequential
Read-Modify-Write instructions (e.g., BCF, BSF, etc.)
on an I/O port.
A pin actively outputting a high or a low should not be
driven from external devices at the same time in order
to change the level on this pin (“wired OR”, “wired
AND”). The resulting high output currents may damage
the chip.
DS41239B-page 26
READ-MODIFY-WRITE
INSTRUCTIONS ON AN
I/O PORT
;Initial GPIO Settings
;GPIO<3:2> Inputs
;GPIO<1:0> Outputs
;
;
GPIO latch
GPIO pins
;
------------------BCF
GPIO, 1 ;---- pp01
---- pp11
BCF
GPIO, 0 ;---- pp10
---- pp11
MOVLW 007h;
TRIS
GPIO
;---- pp10
---- pp11
;
Note 1: The user may have expected the pin values
to be ---- pp00. The 2nd BCF caused GP1
to be latched as the pin value (High).
5.4.2
SUCCESSIVE OPERATIONS ON
I/O PORTS
The actual write to an I/O port happens at the end of an
instruction cycle, whereas for reading, the data must be
valid at the beginning of the instruction cycle (Figure 5-2).
Therefore, care must be exercised if a write followed by
a read operation is carried out on the same I/O port. The
sequence of instructions should allow the pin voltage to
stabilize (load dependent) before the next instruction
causes that file to be read into the CPU. Otherwise, the
previous state of that pin may be read into the CPU rather
than the new state. When in doubt, it is better to separate
these instructions with a NOP or another instruction not
accessing this I/O port.
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
FIGURE 5-2:
SUCCESSIVE I/O OPERATION (PIC10F200/202/204/206)
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PC
Instruction
Fetched
MOVWF GPIO
PC + 1
MOVF GPIO, W
Q1 Q2 Q3 Q4
PC + 2
PC + 3
This example shows a write to GPIO followed
by a read from GPIO.
NOP
NOP
Data setup time = (0.25 TCY – TPD)
where: TCY = instruction cycle.
GP<2:0>
TPD = propagation delay
Port pin
written here
Instruction
Executed
MOVWF GPIO
(Write to GPIO)
© 2005 Microchip Technology Inc.
Port pin
sampled here
MOVF GPIO,W
(Read GPIO)
Therefore, at higher clock frequencies, a
write followed by a read may be problematic.
NOP
Preliminary
DS41239B-page 27
PIC10F200/202/204/206
NOTES:
DS41239B-page 28
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
6.0
TIMER0 MODULE AND TMR0
REGISTER (PIC10F200/202)
Counter mode is selected by setting the T0CS bit
(OPTION<5>). In this mode, Timer0 will increment
either on every rising or falling edge of pin T0CKI. The
T0SE bit (OPTION<4>) determines the source edge.
Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail
in Section 6.1 “Using Timer0 with an External Clock
(PIC10F200/202)”.
The Timer0 module has the following features:
•
•
•
•
8-bit timer/counter register, TMR0
Readable and writable
8-bit software programmable prescaler
Internal or external clock select:
- Edge select for external clock
Figure 6-1 is a simplified block diagram of the Timer0
module.
Timer mode is selected by clearing the T0CS bit
(OPTION<5>). In Timer mode, the Timer0 module will
increment every instruction cycle (without prescaler). If
TMR0 register is written, the increment is inhibited for
the following two cycles (Figure 6-2 and Figure 6-3).
The user can work around this by writing an adjusted
value to the TMR0 register.
FIGURE 6-1:
The prescaler may be used by either the Timer0
module or the Watchdog Timer, but not both. The
prescaler assignment is controlled in software by the
control bit, PSA (OPTION<3>). Clearing the PSA bit
will assign the prescaler to Timer0. The prescaler is not
readable or writable. When the prescaler is assigned to
the Timer0 module, prescale values of 1:2, 1:4, 1:256
are selectable. Section 6.2 “Prescaler” details the
operation of the prescaler.
A summary of registers associated with the Timer0
module is found in Table 6-1.
TIMER0 BLOCK DIAGRAM
Data Bus
GP2/T0CKI
Pin
FOSC/4
0
PSOUT
1
1
Programmable
Prescaler(2)
0
T0SE
8
Sync with
Internal
Clocks
TMR0 Reg
PSOUT
(2 TCY delay) Sync
3
T0CS(1)
Note 1:
2:
The prescaler is shared with the Watchdog Timer (Figure 6-5).
TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PC – 1
Instruction
Fetch
Timer0
PSA(1)
Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register.
FIGURE 6-2:
PC
(Program
Counter)
PS2, PS1, PS0(1)
PC
MOVWF TMR0
T0
T0 + 1
Instruction
Executed
© 2005 Microchip Technology Inc.
PC + 1
PC + 2
PC + 3
PC + 4
PC + 5
PC + 6
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W
T0 + 2
Write TMR0
executed
NT0 + 1
NT0
Read TMR0
reads NT0
Read TMR0
reads NT0
Preliminary
Read TMR0
reads NT0
NT0 + 2
Read TMR0
Read TMR0
reads NT0 + 1 reads NT0 + 2
DS41239B-page 29
PIC10F200/202/204/206
FIGURE 6-3:
TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2
PC
(Program
Counter)
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Instruction
Fetch
MOVWF TMR0 MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W
PC – 1
T0
Timer0
PC
PC + 3
PC + 4
PC + 5
NT0
Read TMR0
reads NT0
Write TMR0
executed
TABLE 6-1:
01h
PC + 2
T0 + 1
Instruction
Executed
Address
PC + 1
PC + 6
NT0 + 1
Read TMR0
reads NT0
Read TMR0
Read TMR0
reads NT0 + 1 reads NT0 + 2
Read TMR0
reads NT0
REGISTERS ASSOCIATED WITH TIMER0
Name
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
TMR0
Timer0 – 8-bit Real-Time Clock/Counter
N/A
OPTION
GPWU
GPPU
T0CS
N/A
TRISGPIO(1)
—
—
—
T0SE
—
PSA
Bit 2
PS2
Bit 1
PS1
I/O Control Register
Bit 0
PS0
Value on
Power-On
Reset
Value on
All Other
Resets
xxxx xxxx
uuuu uuuu
1111 1111
1111 1111
---- 1111
---- 1111
Legend: Shaded cells not used by Timer0. – = unimplemented, x = unknown, u = unchanged.
Note 1: The TRIS of the T0CKI pin is overridden when T0CS = 1.
6.1
Using Timer0 with an External
Clock (PIC10F200/202)
6.1.1
When an external clock input is used for Timer0, it must
meet certain requirements. The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the actual incrementing of
Timer0 after synchronization.
EXTERNAL CLOCK
SYNCHRONIZATION
When no prescaler is used, the external clock input is
the same as the prescaler output. The synchronization
of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and
Q4 cycles of the internal phase clocks (Figure 6-4).
Therefore, it is necessary for T0CKI to be high for at
least 2 TOSC (and a small RC delay of 2 Tt0H) and low
for at least 2 TOSC (and a small RC delay of 2 Tt0H).
Refer to the electrical specification of the desired
device.
When a prescaler is used, the external clock input is
divided by the asynchronous ripple counter-type
prescaler, so that the prescaler output is symmetrical.
For the external clock to meet the sampling requirement, the ripple counter must be taken into account.
Therefore, it is necessary for T0CKI to have a period of
at least 4 TOSC (and a small RC delay of 4 Tt0H) divided
by the prescaler value. The only requirement on T0CKI
high and low time is that they do not violate the
minimum pulse width requirement of Tt0H. Refer to
parameters 40, 41 and 42 in the electrical specification
of the desired device.
DS41239B-page 30
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
6.1.2
TIMER0 INCREMENT DELAY
Since the prescaler output is synchronized with the
internal clocks, there is a small delay from the time the
external clock edge occurs to the time the Timer0
module is actually incremented. Figure 6-4 shows the
delay from the external clock edge to the timer
incrementing.
FIGURE 6-4:
TIMER0 TIMING WITH EXTERNAL CLOCK
Q1 Q2 Q3 Q4
Q1 Q2 Q3 Q4
Q1 Q2 Q3 Q4
External Clock Input or
Prescaler Output (2)
Q1 Q2 Q3 Q4
Small pulse
misses sampling
(1)
External Clock/Prescaler
Output After Sampling
(3)
Increment Timer0 (Q4)
T0
Timer0
Note 1:
6.2
T0 + 2
Delay from clock input change to Timer0 increment is 3 TOSC to 7 TOSC (Duration of Q = TOSC). Therefore, the error
in measuring the interval between two edges on Timer0 input = ±4 TOSC max.
2:
External clock if no prescaler selected; prescaler output otherwise.
3:
The arrows indicate the points in time where sampling occurs.
6.2.1
Prescaler
An 8-bit counter is available as a prescaler for the
Timer0 module or as a postscaler for the Watchdog
Timer (WDT), respectively (see Section 9.6 “Watchdog Timer (WDT)”). For simplicity, this counter is
being referred to as “prescaler” throughout this data
sheet.
Note:
T0 + 1
The prescaler may be used by either the
Timer0 module or the WDT, but not both.
Thus, a prescaler assignment for the
Timer0 module means that there is no
prescaler for the WDT and vice versa.
The PSA and PS<2:0> bits (OPTION<3:0>) determine
prescaler assignment and prescale ratio.
When assigned to the Timer0 module, all instructions
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,
BSF 1,x, etc.) will clear the prescaler. When assigned
to WDT, a CLRWDT instruction will clear the prescaler
along with the WDT. The prescaler is neither readable
nor writable. On a Reset, the prescaler contains all ‘0’s.
© 2005 Microchip Technology Inc.
SWITCHING PRESCALER
ASSIGNMENT
The prescaler assignment is fully under software
control (i.e., it can be changed “on-the-fly” during program execution). To avoid an unintended device Reset,
the following instruction sequence (Example 6-1) must
be executed when changing the prescaler assignment
from Timer0 to the WDT.
EXAMPLE 6-1:
CHANGING PRESCALER
(TIMER0 → WDT)
CLRWDT
;Clear WDT
CLRF
TMR0
;Clear TMR0 & Prescaler
MOVLW ‘00xx1111’b ;These 3 lines (5, 6, 7)
OPTION
;are required only if
;desired
CLRWDT
;PS<2:0> are 000 or 001
MOVLW ‘00xx1xxx’b ;Set Postscaler to
OPTION
;desired WDT rate
Preliminary
DS41239B-page 31
PIC10F200/202/204/206
EXAMPLE 6-2:
To change the prescaler from the WDT to the Timer0
module, use the sequence shown in Example 6-2. This
sequence must be used even if the WDT is disabled. A
CLRWDT instruction should be executed before
switching the prescaler.
CHANGING PRESCALER
(WDT→TIMER0)
CLRWDT
MOVLW
‘xxxx0xxx’
;Clear WDT and
;prescaler
;Select TMR0, new
;prescale value and
;clock source
OPTION
FIGURE 6-5:
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER
TCY (= FOSC/4)
Data Bus
0
GP2/T0CKI(2)
Pin
1
8
M
U
X
1
M
U
X
0
T0SE(1)
T0CS(1)
0
Watchdog
Timer
1
PSA(1)
8
8-to-1 MUX
WDT Enable bit
TMR0 Reg
8-bit Prescaler
M
U
X
PSA
Sync
2
Cycles
PS<2:0>(1)
(1)
1
0
MUX
PSA(1)
WDT
Time-out
Note 1:
2:
T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register.
T0CKI is shared with pin GP2 on the PIC10F200/202/204/206.
DS41239B-page 32
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
7.0
TIMER0 MODULE AND TMR0
REGISTER (PIC10F204/206)
The second Counter mode uses the output of the comparator to increment Timer0. It can be entered in two
different ways. The first way is selected by setting the
T0CS bit (OPTION<5>) and clearing the CMPT0CS bit
(CMCON<4>); (COUTEN ([CMCON<6>]) does not
affect this mode of operation. This enables an internal
connection between the comparator and the Timer0.
The Timer0 module has the following features:
•
•
•
•
8-bit timer/counter register, TMR0
Readable and writable
8-bit software programmable prescaler
Internal or external clock select:
- Edge select for external clock
- External clock from either the T0CKI pin or
from the output of the comparator
The second way is selected by setting the T0CS bit
bit
(OPTION<5>),
setting
the
CMPT0CS
(CMCON0<4>) and clearing the COUTEN bit
(CMCON0<6>). This allows the output of the comparator onto the T0CKI pin, while keeping the T0CKI input
active. Therefore, any comparator change on the
COUT pin is fed back into the T0CKI input. The T0SE
bit (OPTION<4>) determines the source edge. Clearing the T0SE bit selects the rising edge. Restrictions on
the external clock input as discussed in Section 7.1
“Using Timer0 with an External Clock (PIC10F204/
206)”
Figure 7-1 is a simplified block diagram of the Timer0
module.
Timer mode is selected by clearing the T0CS bit
(OPTION<5>). In Timer mode, the Timer0 module will
increment every instruction cycle (without prescaler). If
TMR0 register is written, the increment is inhibited for
the following two cycles (Figure 7-2 and Figure 7-3).
The user can work around this by writing an adjusted
value to the TMR0 register.
The prescaler may be used by either the Timer0
module or the Watchdog Timer, but not both. The
prescaler assignment is controlled in software by the
control bit, PSA (OPTION<3>). Clearing the PSA bit
will assign the prescaler to Timer0. The prescaler is not
readable or writable. When the prescaler is assigned to
the Timer0 module, prescale values of 1:2, 1:4,...,
1:256 are selectable. Section 7.2 “Prescaler” details
the operation of the prescaler.
There are two types of Counter mode. The first Counter
mode uses the T0CKI pin to increment Timer0. It is
selected by setting the T0CS bit (OPTION<5>), setting
the CMPT0CS bit (CMCON0<4>) and setting the
COUTEN bit (CMCON0<6>). In this mode, Timer0 will
increment either on every rising or falling edge of pin
T0CKI. The T0SE bit (OPTION<4>) determines the
source edge. Clearing the T0SE bit selects the rising
edge. Restrictions on the external clock input are
discussed in detail in Section 7.1 “Using Timer0 with
an External Clock (PIC10F204/206)”.
A summary of registers associated with the Timer0
module is found in Table 7-1.
TIMER0 BLOCK DIAGRAM (PIC10F204/206)
FIGURE 7-1:
T0CKI
Pin
Data Bus
FOSC/4
Internal
Comparator
Output
0
PSOUT
1
1
1
0
T0SE
Programmable
Prescaler(2)
(1)
0
8
Sync with
Internal
Clocks
TMR0 Reg
PSOUT
(2 TCY delay) Sync
3
CMPT0CS(3)
T0CS(1)
Note 1:
2:
3:
PS2, PS1, PS0(1)
PSA(1)
Bits T0CS, T0SE, PSA, PS2, PS1 and PS0 are located in the OPTION register.
The prescaler is shared with the Watchdog Timer (Figure 7-5).
Bit CMPT0CS is located in the CMCON0 register, CMCON0<4>.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 33
PIC10F200/202/204/206
FIGURE 7-2:
PC
(Program
Counter)
TIMER0 TIMING: INTERNAL CLOCK/NO PRESCALE
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
PC – 1
Instruction
Fetch
PC
PC + 1
MOVWF TMR0
T0
Timer0
T0 + 1
PC + 3
T0 + 2
Instruction
Executed
Write TMR0
executed
FIGURE 7-3:
PC + 2
PC + 4
PC+5
PC + 6
MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W
NT0 + 1
NT0
Read TMR0
reads NT0
Read TMR0
reads NT0
NT0 + 2
Read TMR0
Read TMR0
reads NT0 + 1 reads NT0 + 2
Read TMR0
reads NT0
TIMER0 TIMING: INTERNAL CLOCK/PRESCALE 1:2
PC
(Program
Counter)
Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Instruction
Fetch
MOVWF TMR0 MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W MOVF TMR0,W
PC – 1
PC
T0
Timer0
PC + 1
Address
Write TMR0
executed
Read TMR0
reads NT0
Name
Bit 7
Bit 6
Bit 5
Bit 4
TMR0
Timer0 – 8-bit Real-Time Clock/Counter
CMCON0
CMPOUT
COUTEN
POL
N/A
OPTION
GPWU
GPPU
T0CS
T0SE
N/A
TRISGPIO(1)
—
—
—
—
PC + 6
NT0 + 1
Read TMR0
reads NT0
Read TMR0
Read TMR0
reads NT0 + 1 reads NT0 + 2
Read TMR0
reads NT0
Bit 3
Bit 2
Bit 1
CMPT0CS CMPON CNREF CPREF
PSA
PS2
PS1
Bit 0
Value on
Power-On
Reset
xxxx xxxx
uuuu uuuu
CWU
1111 1111
uuuu uuuu
PS0
1111 1111
1111 1111
---- 1111
---- 1111
I/O Control Register
Value on
All Other
Resets
Shaded cells not used by Timer0. – = unimplemented, x = unknown, u = unchanged.
The TRIS of the T0CKI pin is overridden when T0CS = 1.
small RC delay of 2 Tt0H) and low for at least 2 TOSC
(and a small RC delay of 2 Tt0H). Refer to the electrical
specification of the desired device.
Using Timer0 with an External
Clock (PIC10F204/206)
When an external clock input is used for Timer0, it must
meet certain requirements. The external clock requirement is due to internal phase clock (TOSC) synchronization. Also, there is a delay in the actual incrementing of
Timer0 after synchronization.
7.1.1
PC + 5
REGISTERS ASSOCIATED WITH TIMER0
07h
7.1
PC + 4
NT0
01h
Legend:
Note 1:
PC + 3
T0 + 1
Instruction
Executed
TABLE 7-1:
PC + 2
EXTERNAL CLOCK
SYNCHRONIZATION
When no prescaler is used, the external clock input is
the same as the prescaler output. The synchronization
of an external clock with the internal phase clocks is
accomplished by sampling the prescaler output on the
Q2 and Q4 cycles of the internal phase clocks
(Figure 7-4). Therefore, it is necessary for T0CKI or the
comparator output to be high for at least 2 TOSC (and a
DS41239B-page 34
When a prescaler is used, the external clock input is
divided by the asynchronous ripple counter type
prescaler, so that the prescaler output is symmetrical.
For the external clock to meet the sampling requirement, the ripple counter must be taken into account.
Therefore, it is necessary for T0CKI or the comparator
output to have a period of at least 4 TOSC (and a small
RC delay of 4 Tt0H) divided by the prescaler value. The
only requirement on T0CKI or the comparator output
high and low time is that they do not violate the
minimum pulse width requirement of Tt0H. Refer to
parameters 40, 41 and 42 in the electrical specification
of the desired device.
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
7.1.2
TIMER0 INCREMENT DELAY
Since the prescaler output is synchronized with the
internal clocks, there is a small delay from the time the
external clock edge occurs to the time the Timer0
module is actually incremented. Figure 7-4 shows the
delay from the external clock edge to the timer
incrementing.
FIGURE 7-4:
TIMER0 TIMING WITH EXTERNAL CLOCK
Q1 Q2 Q3 Q4
Q1 Q2
Q3 Q4
Q1 Q2 Q3
External Clock Input or
Prescaler Output (2)
Q4
Q1 Q2 Q3 Q4
Small pulse
misses sampling
(1)
External Clock/Prescaler
Output After Sampling
(3)
Increment Timer0 (Q4)
T0
Timer0
Note 1:
7.2
T0 + 2
Delay from clock input change to Timer0 increment is 3 TOSC to 7 TOSC (Duration of Q = TOSC). Therefore, the error
in measuring the interval between two edges on Timer0 input = ±4 TOSC max.
2:
External clock if no prescaler selected; prescaler output otherwise.
3:
The arrows indicate the points in time where sampling occurs.
7.2.1
Prescaler
An 8-bit counter is available as a prescaler for the
Timer0 module or as a postscaler for the Watchdog
Timer (WDT), respectively (see Figure 9-6). For
simplicity, this counter is being referred to as
“prescaler” throughout this data sheet.
Note:
T0 + 1
The prescaler may be used by either the
Timer0 module or the WDT, but not both.
Thus, a prescaler assignment for the
Timer0 module means that there is no
prescaler for the WDT and vice versa.
The PSA and PS<2:0> bits (OPTION<3:0>) determine
prescaler assignment and prescale ratio.
When assigned to the Timer0 module, all instructions
writing to the TMR0 register (e.g., CLRF 1, MOVWF 1,
BSF 1,x, etc.) will clear the prescaler. When assigned
to WDT, a CLRWDT instruction will clear the prescaler
along with the WDT. The prescaler is neither readable
nor writable. On a Reset, the prescaler contains all ‘0’s.
© 2005 Microchip Technology Inc.
SWITCHING PRESCALER
ASSIGNMENT
The prescaler assignment is fully under software
control (i.e., it can be changed “on-the-fly” during program execution). To avoid an unintended device Reset,
the following instruction sequence (Example 7-1) must
be executed when changing the prescaler assignment
from Timer0 to the WDT.
EXAMPLE 7-1:
CHANGING PRESCALER
(TIMER0 → WDT)
CLRWDT
;Clear WDT
CLRF
TMR0
;Clear TMR0 & Prescaler
MOVLW ‘00xx1111’b ;These 3 lines (5, 6, 7)
OPTION
;are required only if
;desired
CLRWDT
;PS<2:0> are 000 or 001
MOVLW ‘00xx1xxx’b ;Set Postscaler to
OPTION
;desired WDT rate
Preliminary
DS41239B-page 35
PIC10F200/202/204/206
EXAMPLE 7-2:
To change the prescaler from the WDT to the Timer0
module, use the sequence shown in Example 7.2. This
sequence must be used even if the WDT is disabled. A
CLRWDT instruction should be executed before
switching the prescaler.
CHANGING PRESCALER
(WDT→TIMER0)
CLRWDT
MOVLW
‘xxxx0xxx’
;Clear WDT and
;prescaler
;Select TMR0, new
;prescale value and
;clock source
OPTION
FIGURE 7-5:
GP2/T0CKI
Pin
BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER
(2)
TCY (= FOSC/4)
Data Bus
0
1
Comparator
Output
1
8
M
U
X
1
M
U
X
0
0
T0SE(1)
T0CS(1)
Sync
2
Cycles
TMR0 Reg
PSA(1)
CMPT0CS(3)
0
Watchdog
Timer
8-bit Prescaler
M
U
X
1
8
8-to-1 MUX
PSA
WDT Enable bit
PS<2:0>(1)
(1)
1
0
MUX
PSA(1)
WDT
Time-out
Note 1:
T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register.
2:
T0CKI is shared with pin GP2.
3:
Bit CMPT0CS is located in the CMCON0 register.
DS41239B-page 36
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
8.0
COMPARATOR MODULE
The Comparator module contains one analog
comparator. The inputs to the comparator are
multiplexed with GP0 and GP1 pins. The output of the
comparator can be placed on GP2.
The CMCON0 register, shown in Register 8-1, controls
the comparator operation. A block diagram of the
comparator is shown in Figure 8-1.
REGISTER 8-1:
CMCON0 REGISTER (ADDRESS: 07h)
R-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
R/W-1
CMPOUT
COUTEN
POL
CMPT0CS
CMPON
CNREF
CPREF
CWU
bit 7
bit 0
bit 7
CMPOUT: Comparator Output bit
1 = VIN+ > VIN0 = VIN+ < VIN-
bit 6
COUTEN: Comparator Output Enable bit(1, 2)
1 = Output of comparator is NOT placed on the COUT pin
0 = Output of comparator is placed in the COUT pin
bit 5
POL: Comparator Output Polarity bit(2)
1 = Output of comparator not inverted
0 = Output of comparator inverted
bit 4
CMPT0CS: Comparator TMR0 Clock Source bit(2)
1 = TMR0 clock source selected by T0CS control bit
0 = Comparator output used as TMR0 clock source
bit 3
CMPON: Comparator Enable bit
1 = Comparator is on
0 = Comparator is off
bit 2
CNREF: Comparator Negative Reference Select bit(2)
1 = CIN- pin(3)
0 = Internal voltage reference
bit 1
CPREF: Comparator Positive Reference Select bit(2)
1 = CIN+ pin(3)
0 = CIN- pin(3)
bit 0
CWU: Comparator Wake-up on Change Enable bit(2)
1 = Wake-up on comparator change is disabled
0 = Wake-up on comparator change is enabled.
Note 1:
2:
3:
Overrides T0CS bit for TRIS control of GP2.
When the comparator is turned on, these control bits assert themselves. When the
comparator is off, these bits have no effect on the device operation and the other
control registers have precedence.
PIC10F204/206 only.
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = Bit is set
‘0’ = Bit is cleared
© 2005 Microchip Technology Inc.
Preliminary
x = Bit is unknown
DS41239B-page 37
PIC10F200/202/204/206
8.1
Comparator Configuration
The on-board comparator inputs, (GP0/CIN+, GP1/
CIN-), as well as the comparator output (GP2/COUT)
are steerable. The CMCON0, OPTION, and TRIS
registers are used to steer these pins (see Figure 8-1).
If the Comparator mode is changed, the comparator
output level may not be valid for the specified mode
change delay shown in Table 12-1.
FIGURE 8-1:
Note:
The comparator can have an inverted
output (see Figure 8-1).
BLOCK DIAGRAM OF THE COMPARATOR
T0CKI/GP2/COUT
CPREF
C+
COUTEN
+
C-
COUT(Register)
OSCCAL
Band Gap Buffer
(0.6V)
-
CNREF
POL
CMPON
T0CKI
T0CKI Pin
T0CKSEL
CWU
Q
D
S
CWUF
TABLE 8-1:
READ
CMCON
TMR0 CLOCK SOURCE
FUNCTION MUXING
T0CS
CMPT0CS
COUTEN
Source
0
x
x
Internal Instruction
Cycle
1
0
0
CMPOUT
1
0
1
CMPOUT
1
1
0
CMPOUT
1
1
1
T0CKI
DS41239B-page 38
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
8.2
Comparator Operation
8.5
A single comparator is shown in Figure 8-2 along with
the relationship between the analog input levels and
the digital output. When the analog input at VIN+ is less
than the analog input VIN-, the output of the comparator
is a digital low level. When the analog input at VIN+ is
greater than the analog input VIN-, the output of the
comparator is a digital high level. The shaded areas of
the output of the comparator in Figure 8-2 represent
the uncertainty due to input offsets and response time.
See Table 12-1 for Common Mode Voltage.
FIGURE 8-2:
SINGLE COMPARATOR
Vin+
+
Vin-
–
Result
Comparator Output
The comparator output is read through CMCON0
register. This bit is read-only. The comparator output
may also be used internally, see Figure 8-1.
Note:
8.6
Analog levels on any pin that is defined as
a digital input may cause the input buffer to
consume more current than is specified.
Comparator Wake-up Flag
The comparator wake-up flag is set whenever all of the
following conditions are met:
• CWU = 0 (CMCON0<0>)
• CMCON0 has been read to latch the last known
state of the CMPOUT bit (MOVF CMCON0, W)
• Device is in Sleep
• The output of the comparator has changed state
The wake-up flag may be cleared in software or by
another device Reset.
VIN-
8.7
VIN+
When the comparator is active and the device is placed
in Sleep mode, the comparator remains active. While
the comparator is powered-up, higher Sleep currents
than shown in the power-down current specification will
occur. To minimize power consumption while in Sleep
mode, turn off the comparator before entering Sleep.
Result
8.3
Comparator Reference
8.8
An internal reference signal may be used depending on
the comparator operating mode. The analog signal that
is present at VIN- is compared to the signal at VIN+ and
the digital output of the comparator is adjusted
accordingly (Figure 8-2). Please see Table 12-1 for
internal reference specifications.
8.4
Comparator Operation During
Sleep
Comparator Response Time
Response time is the minimum time, after selecting a
new reference voltage or input source, before the
comparator output is to have a valid level. If the comparator inputs are changed, a delay must be used to
allow the comparator to settle to its new state. Please
see Table 12-1 for comparator response time
specifications.
© 2005 Microchip Technology Inc.
Effects of a Reset
A Power-on Reset (POR) forces the CMCON0 register
to its Reset state. This forces the Comparator module
to be in the comparator Reset mode. This ensures that
all potential inputs are analog inputs. Device current is
minimized when analog inputs are present at Reset
time. The comparator will be powered-down during the
Reset interval.
8.9
Analog Input Connection
Considerations
A simplified circuit for an analog input is shown in
Figure 8-3. Since the analog pins are connected to a
digital output, they have reverse biased diodes to VDD
and VSS. The analog input therefore, must be between
VSS and VDD. If the input voltage deviates from this
range by more than 0.6V in either direction, one of the
diodes is forward biased and a latch-up may occur. A
maximum
source
impedance
of
10 kΩ
is
recommended for the analog sources. Any external
component connected to an analog input pin, such as
a capacitor or a Zener diode, should have very little
leakage current.
Preliminary
DS41239B-page 39
PIC10F200/202/204/206
FIGURE 8-3:
ANALOG INPUT MODE
VDD
VT = 0.6V
RS < 10 K
RIC
AIN
CPIN
5 pF
VA
ILEAKAGE
±500 nA
VT = 0.6V
VSS
Legend: CPIN
= Input Capacitance
VT
= Threshold Voltage
ILEAKAGE = Leakage Current at the Pin
= Interconnect Resistance
RIC
RS
= Source Impedance
VA
= Analog Voltage
TABLE 8-2:
Address
REGISTERS ASSOCIATED WITH COMPARATOR MODULE
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
STATUS
GPWUF
CWUF
—
TO
PD
Z
DC
C
07h
CMCON0
CMPOUT COUTEN
N/A
TRISGPIO
03h
Legend:
Name
—
—
POL
—
CMPT0CS CMPON CNREF CPREF CWU
—
I/O Control Register
Value on
POR
Value on
All Other
Resets
00-1 1xxx qq0q quuu
1111 1111 uuuu uuuu
---- 1111 ---- 1111
x = Unknown, u = Unchanged, – = Unimplemented, read as ‘0’, q = Depends on condition.
DS41239B-page 40
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
9.0
SPECIAL FEATURES OF THE
CPU
The PIC10F200/202/204/206 devices have a Watchdog Timer, which can be shut off only through configuration bit WDTE. It runs off of its own RC oscillator for
added reliability. When using INTRC, there is an 18 ms
delay only on VDD power-up. With this timer on-chip,
most applications need no external Reset circuitry.
What sets a microcontroller apart from other processors are special circuits that deal with the needs of realtime applications. The PIC10F200/202/204/206
microcontrollers have a host of such features intended
to maximize system reliability, minimize cost through
elimination of external components, provide powersaving operating modes and offer code protection.
These features are:
The Sleep mode is designed to offer a very low-current
Power-down mode. The user can wake-up from Sleep
through a change on input pins, wake-up from
comparator change, or through a Watchdog Timer
time-out.
• Reset:
- Power-on Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT)
- Wake-up from Sleep on pin change
- Wake-up from Sleep on comparator change
• Sleep
• Code Protection
• ID Locations
• In-Circuit Serial Programming™
• Clock Out
Configuration Bits
The PIC10F200/202/204/206 Configuration Words
consist of 12 bits. Configuration bits can be
programmed to select various device configurations.
One bit is the Watchdog Timer enable bit, one bit is the
MCLR enable bit and one bit is for code protection (see
Register 9-1).
CONFIGURATION WORD FOR PIC10F200/202/204/206(1, 2)
REGISTER 9-1:
—
9.1
—
—
—
—
—
—
MCLRE
CP
WDTE
—
bit 11
—
bit 0
bit 11-5
Unimplemented: Read as ‘0’
bit 4
MCLRE: GP3/MCLR Pin Function Select bit
1 = GP3/MCLR pin function is MCLR
0 = GP3/MCLR pin function is digital I/O, MCLR internally tied to VDD
bit 3
CP: Code Protection bit
1 = Code protection off
0 = Code protection on
bit 2
WDTE: Watchdog Timer Enable bit
1 = WDT enabled
0 = WDT disabled
bit 1-0
Reserved: Read as ‘0’
Note 1: Refer to the “PIC10F200/202/204/206 Memory Programming Specifications” (DS41228) to
determine how to access the Configuration Word. The Configuration Word is not user
addressable during device operation.
2: INTRC is the only oscillator mode offered on the PIC10F200/202/204/206.
Legend:
R = Readable bit
W = Writable bit
U = Unimplemented bit, read as ‘0’
-n = Value at POR
‘1’ = bit is set
‘0’ = bit is cleared
© 2005 Microchip Technology Inc.
Preliminary
x = bit is unknown
DS41239B-page 41
PIC10F200/202/204/206
9.2
Oscillator Configurations
9.2.1
9.3
OSCILLATOR TYPES
The PIC10F200/202/204/206 devices are offered with
Internal Oscillator mode only.
• INTOSC: Internal 4 MHz Oscillator
9.2.2
INTERNAL 4 MHz OSCILLATOR
The internal oscillator provides a 4 MHz (nominal) system
clock (see Section 12.0 “Electrical Characteristics” for
information on variation over voltage and temperature).
In addition, a calibration instruction is programmed into
the last address of memory, which contains the calibration value for the internal oscillator. This location is
always uncode protected, regardless of the code-protect settings. This value is programmed as a MOVLW xx
instruction where xx is the calibration value and is
placed at the Reset vector. This will load the W register
with the calibration value upon Reset and the PC will
then roll over to the users program at address 0x000.
The user then has the option of writing the value to the
OSCCAL Register (05h) or ignoring it.
OSCCAL, when written to with the calibration value, will
“trim” the internal oscillator to remove process variation
from the oscillator frequency.
Note:
Reset
The device differentiates between various kinds of
Reset:
•
•
•
•
•
•
•
Power-on Reset (POR)
MCLR Reset during normal operation
MCLR Reset during Sleep
WDT time-out Reset during normal operation
WDT time-out Reset during Sleep
Wake-up from Sleep on pin change
Wake-up from Sleep on comparator change
Some registers are not reset in any way, they are
unknown on POR and unchanged in any other Reset.
Most other registers are reset to “Reset state” on
Power-on Reset (POR), MCLR, WDT or Wake-up on
pin change Reset during normal operation. They are
not affected by a WDT Reset during Sleep or MCLR
Reset during Sleep, since these Resets are viewed as
resumption of normal operation. The exceptions to this
are TO, PD, GPWUF and CWUF bits. They are set or
cleared differently in different Reset situations. These
bits are used in software to determine the nature of
Reset. See Table 9-1 for a full description of Reset
states of all registers.
Erasing the device will also erase the preprogrammed internal calibration value for
the internal oscillator. The calibration
value must be read prior to erasing the
part so it can be reprogrammed correctly
later.
TABLE 9-1:
Register
W
RESET CONDITIONS FOR REGISTERS – PIC10F200/202/204/206
Address
—
Power-on Reset
MCLR Reset, WDT Time-out,
Wake-up On Pin Change, Wake on
Comparator Change
qqqq qqqu(1)
qqqq qqqu(1)
INDF
00h
xxxx xxxx
uuuu uuuu
TMR0
01h
xxxx xxxx
uuuu uuuu
PCL
02h
1111 1111
1111 1111
STATUS
03h
00-1 1xxx
q00q quuu(2)
STATUS(3)
03h
00-1 1xxx
qq0q quuu(2)
FSR
04h
111x xxxx
111u uuuu
OSCCAL
05h
1111 1110
uuuu uuuu
GPIO
06h
---- xxxx
---- uuuu
CMCON(3)
07h
1111 1111
uuuu uuuu
OPTION
—
1111 1111
1111 1111
TRISGPIO
—
---- 1111
---- 1111
Legend:
Note 1:
2:
3:
u = unchanged, x = unknown, – = unimplemented bit, read as ‘0’, q = value depends on condition.
Bits <7:2> of W register contain oscillator calibration values due to MOVLW XX instruction at top of memory.
See Table 9-2 for Reset value for specific conditions.
PIC10F204/206 only.
DS41239B-page 42
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
TABLE 9-2:
RESET CONDITION FOR SPECIAL REGISTERS
STATUS Addr: 03h
PCL Addr: 02h
Power-on Reset
00-1 1xxx
1111 1111
MCLR Reset during normal operation
000u uuuu
1111 1111
MCLR Reset during Sleep
0001 0uuu
1111 1111
WDT Reset during Sleep
0000 0uuu
1111 1111
WDT Reset normal operation
0000 uuuu
1111 1111
Wake-up from Sleep on pin change
1001 0uuu
1111 1111
Wake-up from Sleep on comparator change
0101 0uuu
1111 1111
Legend: u = unchanged, x = unknown, – = unimplemented bit, read as ‘0’.
9.3.1
MCLR ENABLE
This configuration bit, when unprogrammed (left in the
‘1’ state), enables the external MCLR function. When
programmed, the MCLR function is tied to the internal
VDD and the pin is assigned to be a I/O. See Figure 9-1.
FIGURE 9-1:
MCLR SELECT
GPWU
GP3/MCLR/VPP
Internal MCLR
MCLRE
9.4
Power-on Reset (POR)
The PIC10F200/202/204/206 devices incorporate an
on-chip Power-on Reset (POR) circuitry, which
provides an internal chip Reset for most power-up
situations.
The on-chip POR circuit holds the chip in Reset until
VDD has reached a high enough level for proper operation. To take advantage of the internal POR, program
the GP3/MCLR/VPP pin as MCLR and tie through a
resistor to VDD, or program the pin as GP3. An internal
weak pull-up resistor is implemented using a transistor
(refer to Table 12-3 for the pull-up resistor ranges).
This will eliminate external RC components usually
needed to create a Power-on Reset. A maximum rise
time for VDD is specified. See Section 12.0 “Electrical
Characteristics” for details.
When the devices start normal operation (exit the
Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure
operation. If these conditions are not met, the devices
must be held in Reset until the operating parameters
are met.
© 2005 Microchip Technology Inc.
A simplified block diagram of the on-chip Power-on
Reset circuit is shown in Figure 9-2.
The Power-on Reset circuit and the Device Reset
Timer (see Section 9.5 “Device Reset Timer (DRT)”)
circuit are closely related. On power-up, the Reset latch
is set and the DRT is reset. The DRT timer begins
counting once it detects MCLR to be high. After the
time-out period, which is typically 18 ms, it will reset the
Reset latch and thus end the on-chip Reset signal.
A power-up example where MCLR is held low is shown
in Figure 9-3. VDD is allowed to rise and stabilize before
bringing MCLR high. The chip will actually come out of
Reset TDRT msec after MCLR goes high.
In Figure 9-4, the on-chip Power-on Reset feature is
being used (MCLR and VDD are tied together or the pin
is programmed to be GP3). The VDD is stable before
the Start-up timer times out and there is no problem in
getting a proper Reset. However, Figure 9-5 depicts a
problem situation where VDD rises too slowly. The time
between when the DRT senses that MCLR is high and
when MCLR and VDD actually reach their full value, is
too long. In this situation, when the start-up timer times
out, VDD has not reached the VDD (min) value and the
chip may not function correctly. For such situations, we
recommend that external RC circuits be used to
achieve longer POR delay times (Figure 9-4).
Note:
When the devices start normal operation
(exit the Reset condition), device operating parameters (voltage, frequency,
temperature, etc.) must be met to ensure
operation. If these conditions are not met,
the device must be held in Reset until the
operating conditions are met.
For additional information, refer to Application Notes
AN522 “Power-Up Considerations”, (DS00522) and
AN607 “Power-up Trouble Shooting”, (DS00607).
Preliminary
DS41239B-page 43
PIC10F200/202/204/206
FIGURE 9-2:
SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT
VDD
Power-up
Detect
POR (Power-on Reset)
GP3/MCLR/VPP
MCLR Reset
MCLRE
WDT Reset
WDT Time-out
S
Q
R
Q
Start-up Timer
CHIP Reset
(10 μs or 18 ms)
Pin Change
Sleep
Wake-up on pin change Reset
FIGURE 9-3:
TIME-OUT SEQUENCE ON POWER-UP (MCLR PULLED LOW)
VDD
MCLR
Internal POR
TDRT
DRT Time-out
Internal Reset
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE
TIME
FIGURE 9-4:
VDD
MCLR
Internal POR
TDRT
DRT Time-out
Internal Reset
DS41239B-page 44
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
FIGURE 9-5:
TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE
TIME
V1
VDD
MCLR
Internal POR
TDRT
DRT Time-out
Internal Reset
Note:
When VDD rises slowly, the TDRT time-out expires long before VDD has reached its final
value. In this example, the chip will reset properly if, and only if, V1 ≥ VDD min.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 45
PIC10F200/202/204/206
9.5
9.6.1
Device Reset Timer (DRT)
On the PIC10F200/202/204/206 devices, the DRT runs
any time the device is powered up.
The DRT operates on an internal oscillator. The
processor is kept in Reset as long as the DRT is active.
The DRT delay allows VDD to rise above VDD min. and
for the oscillator to stabilize.
The on-chip DRT keeps the devices in a Reset
condition for approximately 18 ms after MCLR has
reached a logic high (VIH MCLR) level. Programming
GP3/MCLR/VPP as MCLR and using an external RC
network connected to the MCLR input is not required in
most cases. This allows savings in cost-sensitive and/
or space restricted applications, as well as allowing the
use of the GP3/MCLR/VPP pin as a general purpose
input.
The Device Reset Time delays will vary from chip-tochip due to VDD, temperature and process variation.
See AC parameters for details.
Reset sources are POR, MCLR, WDT time-out and
wake-up on pin change. See Section 9.9.2 “Wake-up
from Sleep”, Notes 1, 2 and 3.
TABLE 9-3:
Oscillator
INTOSC
9.6
WDT PERIOD
The WDT has a nominal time-out period of 18 ms, (with
no prescaler). If a longer time-out period is desired, a
prescaler with a division ratio of up to 1:128 can be
assigned to the WDT (under software control) by
writing to the OPTION register. Thus, a time-out period
of a nominal 2.3 seconds can be realized. These periods vary with temperature, VDD and part-to-part process variations (see DC specs).
Under worst case conditions (VDD = Min., Temperature
= Max., max. WDT prescaler), it may take several
seconds before a WDT time-out occurs.
9.6.2
WDT PROGRAMMING
CONSIDERATIONS
The CLRWDT instruction clears the WDT and the
postscaler, if assigned to the WDT, and prevents it from
timing out and generating a device Reset.
The SLEEP instruction resets the WDT and the
postscaler, if assigned to the WDT. This gives the
maximum Sleep time before a WDT wake-up Reset.
DRT (DEVICE RESET TIMER
PERIOD)
POR Reset
Subsequent
Resets
18 ms (typical)
10 μs (typical)
Watchdog Timer (WDT)
The Watchdog Timer (WDT) is a free running on-chip
RC oscillator, which does not require any external
components. This RC oscillator is separate from the
internal 4 MHz oscillator. This means that the WDT will
run even if the main processor clock has been stopped,
for example, by execution of a SLEEP instruction.
During normal operation or Sleep, a WDT Reset or
wake-up Reset, generates a device Reset.
The TO bit (STATUS<4>) will be cleared upon a
Watchdog Timer Reset.
The WDT can be permanently disabled by programming the configuration WDTE as a ‘0’ (see Section 9.1
“Configuration Bits”). Refer to the PIC10F200/202/
204/206 Programming Specifications to determine how
to access the Configuration Word.
DS41239B-page 46
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
FIGURE 9-6:
WATCHDOG TIMER BLOCK DIAGRAM
From Timer0 Clock Source
(Figure 6-5)
0
1
Watchdog
Time
M
U
X
Postscaler
8-to-1 MUX
PS<2:0>
PSA
WDT Enable
Configuration
Bit
To Timer0 (Figure 6-4)
0
1
MUX
PSA
WDT Time-out
Note 1:
TABLE 9-4:
Address
N/A
T0CS, T0SE, PSA, PS<2:0> are bits in the OPTION register.
SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER
Name
OPTION
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1 Bit 0
GPWU
GPPU
T0CS
T0SE
PSA
PS2
PS1
PS0
Value on
Power-On
Reset
Value on
All Other
Resets
1111 1111
1111 1111
Legend: Shaded boxes = Not used by Watchdog Timer, – = unimplemented, read as ‘0’, u = unchanged.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 47
PIC10F200/202/204/206
9.7
Time-out Sequence, Power-down
and Wake-up from Sleep Status
Bits (TO, PD, GPWUF, CWUF)
The TO, PD, GPWUF and CWUF bits in the Status
register can be tested to determine if a Reset condition
has been caused by a Power-up condition, a MCLR,
Watchdog Timer (WDT) Reset, wake-up on comparator
change or wake-up on pin change.
TABLE 9-5:
TO, PD, GPWUF, CWUF STATUS AFTER RESET
CWUF
GPWUF
TO
PD
Reset Caused By
0
0
0
0
WDT wake-up from Sleep
0
0
0
u
WDT time-out (not from Sleep)
0
0
1
0
MCLR wake-up from Sleep
0
0
1
1
Power-up
0
0
u
u
MCLR not during Sleep
0
1
1
0
Wake-up from Sleep on pin change
1
0
1
0
Wake-up from Sleep on comparator change
Legend: u = unchanged, x = unknown, – = unimplemented bit, read as ‘0’, q = value depends on condition.
Note 1: The TO, PD, GPWUF and CWUF bits maintain their status (u) until a Reset occurs. A low-pulse on the
MCLR input does not change the TO, PD, GPWUF or CWUF Status bits.
9.8
Reset on Brown-out
FIGURE 9-8:
A brown-out is a condition where device power (VDD)
dips below its minimum value, but not to zero, and then
recovers. The device should be reset in the event of a
brown-out.
VDD
VDD
To reset PIC10F200/202/204/206 devices when a
brown-out occurs, external brown-out protection
circuits may be built, as shown in Figure 9-7 and
Figure 9-8.
FIGURE 9-7:
R1
Q1 MCLR(2)
R2
Note 1:
VDD
33k
10k
Q1
MCLR(2)
PIC10F20X
2:
40k(1)
2:
PIC10F20X
40k(1)
BROWN-OUT
PROTECTION CIRCUIT 1
VDD
Note 1:
BROWN-OUT
PROTECTION CIRCUIT 2
This brown-out circuit is less expensive,
although less accurate. Transistor Q1 turns
off when VDD is below a certain level such
that:
R1
= 0.7V
VDD •
R1 + R2
Pin must be confirmed as MCLR.
This circuit will activate Reset when VDD goes
below Vz + 0.7V (where Vz = Zener voltage).
Pin must be confirmed as MCLR.
DS41239B-page 48
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
FIGURE 9-9:
BROWN-OUT
PROTECTION CIRCUIT 3
VDD
MCP809
VSS
Bypass
Capacitor
An external Reset input on GP3/MCLR/VPP pin,
when configured as MCLR.
A Watchdog Timer time-out Reset (if WDT was
enabled).
A change on input pin GP0, GP1 or GP3 when
wake-up on change is enabled.
A comparator output change has occurred when
wake-up on comparator change is enabled.
2.
MCLR
3.
PIC10F20X
4.
Note:
9.9
This brown-out protection circuit employs
Microchip Technology’s MCP809 microcontroller supervisor. There are 7 different
trip point selections to accommodate 5V to
3V systems.
Power-Down Mode (Sleep)
A device may be powered down (Sleep) and later
powered up (wake-up from Sleep).
9.9.1
SLEEP
These events cause a device Reset. The TO, PD
GPWUF and CWUF bits can be used to determine the
cause of device Reset. The TO bit is cleared if a WDT
time-out occurred (and caused wake-up). The PD bit,
which is set on power-up, is cleared when SLEEP is
invoked. The GPWUF bit indicates a change in state
while in Sleep at pins GP0, GP1 or GP3 (since the last
file or bit operation on GP port). The CWUF bit
indicates a change in the state while in Sleep of the
comparator output.
Note:
Caution: Right before entering Sleep,
read the input pins. When in Sleep, wakeup occurs when the values at the pins
change from the state they were in at the
last reading. If a wake-up on change
occurs and the pins are not read before reentering Sleep, a wake-up will occur
immediately even if no pins change while
in Sleep mode.
Note:
The WDT is cleared when the device
wakes from Sleep, regardless of the wakeup source.
The Power-down mode is entered by executing a
SLEEP instruction.
If enabled, the Watchdog Timer will be cleared but
keeps running, the TO bit (STATUS<4>) is set, the PD
bit (STATUS<3>) is cleared and the oscillator driver is
turned off. The I/O ports maintain the status they had
before the SLEEP instruction was executed (driving
high, driving low or high-impedance).
Note:
A Reset generated by a WDT time-out
does not drive the MCLR pin low.
For lowest current consumption while powered down,
the T0CKI input should be at VDD or VSS and the GP3/
MCLR/VPP pin must be at a logic high level if MCLR is
enabled.
© 2005 Microchip Technology Inc.
WAKE-UP FROM SLEEP
The device can wake-up from Sleep through one of
the following events:
1.
VDD
VDD
RST
9.9.2
Preliminary
DS41239B-page 49
PIC10F200/202/204/206
9.10
FIGURE 9-10:
Program Verification/Code
Protection
If the code protection bit has not been programmed, the
on-chip program memory can be read out for
verification purposes.
The first 64 locations and the last location (Reset
vector) can be read, regardless of the code protection
bit setting.
9.11
External
Connector
Signals
ID Locations
Four memory locations are designated as ID locations
where the user can store checksum or other code
identification numbers. These locations are not
accessible during normal execution, but are readable
and writable during Program/Verify.
TYPICAL IN-CIRCUIT
SERIAL PROGRAMMING
CONNECTION
To Normal
Connections
PIC10F20X
+5V
VDD
0V
VSS
VPP
MCLR/VPP
CLK
GP1
Data I/O
GP0
VDD
Use only the lower 4 bits of the ID locations and always
program the upper 8 bits as ‘0’s.
9.12
In-Circuit Serial Programming™
To Normal
Connections
The PIC10F200/202/204/206 microcontrollers can be
serially programmed while in the end application circuit.
This is simply done with two lines for clock and data,
and three other lines for power, ground and the
programming voltage. This allows customers to manufacture boards with unprogrammed devices and then
program the microcontroller just before shipping the
product. This also allows the most recent firmware or a
custom firmware, to be programmed.
The devices are placed into a Program/Verify mode by
holding the GP1 and GP0 pins low while raising the
MCLR (VPP) pin from VIL to VIHH (see programming
specification). GP1 becomes the programming clock
and GP0 becomes the programming data. Both GP1
and GP0 are Schmitt Trigger inputs in this mode.
After Reset, a 6-bit command is then supplied to the
device. Depending on the command, 16 bits of program
data are then supplied to or from the device, depending
if the command was a Load or a Read. For complete
details of serial programming, please refer to the
PIC10F200/202/204/206 Programming Specifications.
A typical In-Circuit Serial Programming connection is
shown in Figure 9-10.
DS41239B-page 50
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
10.0
INSTRUCTION SET SUMMARY
The PIC16 instruction set is highly orthogonal and is
comprised of three basic categories.
• Byte-oriented operations
• Bit-oriented operations
• Literal and control operations
Each PIC16 instruction is a 12-bit word divided into an
opcode, which specifies the instruction type and one or
more operands which further specify the operation of
the instruction. The formats for each of the categories
is presented in Figure 10-1, while the various opcode
fields are summarized in Table 10-1.
For byte-oriented instructions, ‘f’ represents a file
register designator and ‘d’ represents a destination
designator. The file register designator specifies which
file register is to be used by the instruction.
The destination designator specifies where the result of
the operation is to be placed. If ‘d’ is ‘0’, the result is
placed in the W register. If ‘d’ is ‘1’, the result is placed
in the file register specified in the instruction.
For bit-oriented instructions, ‘b’ represents a bit field
designator which selects the number of the bit affected
by the operation, while ‘f’ represents the number of the
file in which the bit is located.
All instructions are executed within a single instruction
cycle, unless a conditional test is true or the program
counter is changed as a result of an instruction. In this
case, the execution takes two instruction cycles. One
instruction cycle consists of four oscillator periods.
Thus, for an oscillator frequency of 4 MHz, the normal
instruction execution time is 1 μs. If a conditional test is
true or the program counter is changed as a result of an
instruction, the instruction execution time is 2 μs.
Figure 10-1 shows the three general formats that the
instructions can have. All examples in the figure use
the following format to represent a hexadecimal
number:
0xhhh
where ‘h’ signifies a hexadecimal digit.
FIGURE 10-1:
Byte-oriented file register operations
11
Bit-oriented file register operations
11
OPCODE
11
Register file address (0x00 to 0x7F)
W
Working register (accumulator)
b
Bit address within an 8-bit file register
k
Literal field, constant data or label
x
Don’t care location (= 0 or 1)
The assembler will generate code with x = 0. It is
the recommended form of use for compatibility with
all Microchip software tools.
Label name
Top-of-Stack
PC
WDT
PD
Power-down bit
0
k (literal)
Literal and control operations – GOTO instruction
11
9
8
OPCODE
0
k (literal)
k = 9-bit immediate value
Destination, either the W register or the specified
register file location
[
]
Options
(
)
Contents
italics
7
k = 8-bit immediate value
dest
∈
8
Watchdog Timer counter
Time-out bit
< >
0
f (FILE #)
Program Counter
TO
→
8 7
5 4
b (BIT #)
OPCODE
Destination select;
d = 0 (store result in W)
d = 1 (store result in file register ‘f’)
Default is d = 1
TOS
0
f (FILE #)
Literal and control operations (except GOTO)
Description
label
4
b = 3-bit address
f = 5-bit file register address
f
d
5
d
d = 0 for destination W
d = 1 for destination f
f = 5-bit file register address
OPCODE FIELD
DESCRIPTIONS
Field
6
OPCODE
For literal and control operations, ‘k’ represents an
8 or 9-bit constant or literal value.
TABLE 10-1:
GENERAL FORMAT FOR
INSTRUCTIONS
Assigned to
Register bit field
In the set of
User defined term (font is courier)
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 51
PIC10F200/202/204/206
TABLE 10-2:
Mnemonic,
Operands
ADDWF
ANDWF
CLRF
CLRW
COMF
DECF
DECFSZ
INCF
INCFSZ
IORWF
MOVF
MOVWF
NOP
RLF
RRF
SUBWF
SWAPF
XORWF
INSTRUCTION SET SUMMARY
12-Bit Opcode
Description
Cycles
MSb
LSb
Status
Notes
Affected
f, d
f, d
f
—
f, d
f, d
f, d
f, d
f, d
f, d
f, d
f
—
f, d
f, d
f, d
f, d
f, d
0001 11df ffff C, DC, Z 1, 2, 4
Add W and f
1
0001 01df ffff
AND W with f
1
Z
2, 4
0000 011f ffff
Clear f
1
Z
4
0000 0100 0000
Clear W
1
Z
0010 01df ffff
Complement f
1
Z
0000 11df ffff
Decrement f
1
Z
2, 4
0010 11df ffff
Decrement f, Skip if 0
1(2)
None
2, 4
1
0010 10df ffff
Increment f
Z
2, 4
1(2)
0011 11df ffff
Increment f, Skip if 0
None
2, 4
1
0001 00df ffff
Inclusive OR W with f
Z
2, 4
1
0010 00df ffff
Move f
Z
2, 4
1
0000 001f ffff
Move W to f
None
1, 4
1
0000 0000 0000
No Operation
None
1
0011 01df ffff
Rotate left f through Carry
C
2, 4
1
0011 00df ffff
Rotate right f through Carry
C
2, 4
1
0000 10df ffff C, DC, Z 1, 2, 4
Subtract W from f
1
0011 10df ffff
Swap f
None
2, 4
1
0001 10df ffff
Exclusive OR W with f
Z
2, 4
BIT-ORIENTED FILE REGISTER OPERATIONS
0100 bbbf ffff
None
2, 4
1
Bit Clear f
BCF
f, b
0101 bbbf ffff
None
2, 4
1
Bit Set f
BSF
f, b
0110 bbbf ffff
None
Bit Test f, Skip if Clear
1(2)
BTFSC
f, b
1(2)
0111 bbbf ffff
None
f, b
Bit Test f, Skip if Set
BTFSS
LITERAL AND CONTROL OPERATIONS
ANDLW
k
AND literal with W
1
1110 kkkk kkkk
Z
CALL
1
k
Call Subroutine
2
1001 kkkk kkkk
None
CLRWDT
Clear Watchdog Timer
1
0000 0000 0100 TO, PD
None
GOTO
k
Unconditional branch
2
101k kkkk kkkk
Z
IORLW
k
Inclusive OR literal with W
1
1101 kkkk kkkk
None
MOVLW
k
Move literal to W
1
1100 kkkk kkkk
None
OPTION
—
Load OPTION register
1
0000 0000 0010
None
RETLW
k
Return, place Literal in W
2
1000 kkkk kkkk
SLEEP
—
Go into Standby mode
1
0000 0000 0011 TO, PD
None
3
TRIS
f
Load TRIS register
1
0000 0000 0fff
Z
XORLW
k
Exclusive OR literal to W
1
1111 kkkk kkkk
Note 1: The 9th bit of the program counter will be forced to a ‘0’ by any instruction that writes to the PC except for
GOTO. See Section 4.7 “Program Counter”.
2: When an I/O register is modified as a function of itself (e.g. MOVF PORTB, 1), the value used will be that
value present on the pins themselves. For example, if the data latch is ‘1’ for a pin configured as input and
is driven low by an external device, the data will be written back with a ‘0’.
3: The instruction TRIS f, where f = 6, causes the contents of the W register to be written to the tri-state
latches of PORTB. A ‘1’ forces the pin to a high-impedance state and disables the output buffers.
4: If this instruction is executed on the TMR0 register (and where applicable, d = 1), the prescaler will be
cleared (if assigned to TMR0).
DS41239B-page 52
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
ADDWF
Add W and f
BCF
Syntax:
[ label ] ADDWF
Syntax:
[ label ] BCF
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
0 ≤ f ≤ 31
0≤b≤7
Operation:
(W) + (f) → (dest)
Operation:
0 → (f<b>)
Status Affected: C, DC, Z
Status Affected:
None
Description:
Description:
Bit ‘b’ in register ‘f’ is cleared.
BSF
Bit Set f
Syntax:
[ label ] BSF
Operands:
0 ≤ f ≤ 31
0≤b≤7
Status Affected: Z
Operation:
1 → (f<b>)
Description:
The contents of the W register are
AND’ed with the eight-bit literal ‘k’.
The result is placed in the W
register.
Status Affected:
None
ANDWF
AND W with f
BTFSC
Syntax:
[ label ] ANDWF
Operands:
Operation:
ANDLW
Syntax:
f,d
Bit Clear f
Add the contents of the W register
and register ‘f’. If ‘d’ is ‘0’, the result
is stored in the W register. If ‘d’ is
‘1’, the result is stored back in
register ‘f’.
AND literal with W
[ label ] ANDLW
k
Operands:
0 ≤ k ≤ 255
Operation:
(W).AND. (k) → (W)
f,b
f,b
Description: Bit ‘b’ in register ‘f’ is set.
Bit Test f, Skip if Clear
Syntax:
[ label ] BTFSC f,b
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
0 ≤ f ≤ 31
0≤b≤7
(W) .AND. (f) → (dest)
Operation:
skip if (f<b>) = 0
Status Affected: Z
Status Affected:
None
Description:
Description:
If bit ‘b’ in register ‘f’ is ‘0’, then the
next instruction is skipped.
If bit ‘b’ is ‘0’, then the next instruction fetched during the current
instruction execution is discarded,
and a NOP is executed instead,
making this a two-cycle instruction.
f,d
The contents of the W register are
AND’ed with register ‘f’. If ‘d’ is ‘0’,
the result is stored in the W register.
If ‘d’ is ‘1’, the result is stored back
in register ‘f’.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 53
PIC10F200/202/204/206
BTFSS
Bit Test f, Skip if Set
CLRW
Syntax:
[ label ] BTFSS f,b
Syntax:
[ label ] CLRW
0 ≤ f ≤ 31
0≤b<7
Operands:
None
Operation:
00h → (W);
1→Z
Operands:
Clear W
Operation:
skip if (f<b>) = 1
Status Affected:
None
Status Affected:
Z
Description:
If bit ‘b’ in register ‘f’ is ‘1’, then the
next instruction is skipped.
If bit ‘b’ is ‘1’, then the next instruction fetched during the current
instruction execution, is discarded
and a NOP is executed instead,
making this a two-cycle instruction.
Description:
The W register is cleared. Zero bit
(Z) is set.
CALL
Subroutine Call
CLRWDT
Clear Watchdog Timer
Syntax:
[ label ] CALL k
Syntax:
[ label ] CLRWDT
Operands:
0 ≤ k ≤ 255
Operands:
None
Operation:
(PC) + 1→ Top-of-Stack;
k → PC<7:0>;
(STATUS<6:5>) → PC<10:9>;
0 → PC<8>
Operation:
00h → WDT;
0 → WDT prescaler (if assigned);
1 → TO;
1 → PD
Status Affected:
None
Status Affected:
TO, PD
Description:
Subroutine call. First, return
address (PC + 1) is PUSHed onto
the stack. The eight-bit immediate
address is loaded into PC
bits <7:0>. The upper bits
PC<10:9> are loaded from
STATUS<6:5>, PC<8> is cleared.
CALL is a two-cycle instruction.
Description:
The CLRWDT instruction resets the
WDT. It also resets the prescaler, if
the prescaler is assigned to the
WDT and not Timer0. Status bits
TO and PD are set.
CLRF
Clear f
COMF
Complement f
Syntax:
[ label ] CLRF
Syntax:
[ label ] COMF
Operands:
0 ≤ f ≤ 31
Operands:
Operation:
00h → (f);
1→Z
0 ≤ f ≤ 31
d ∈ [0,1]
Operation:
(f) → (dest)
Status Affected:
Z
Status Affected:
Z
Description:
The contents of register ‘f’ are
cleared and the Z bit is set.
Description:
The contents of register ‘f’ are
complemented. If ‘d’ is ‘0’, the
result is stored in the W register. If
‘d’ is ‘1’, the result is stored back in
register ‘f’.
DS41239B-page 54
f
Preliminary
f,d
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
DECF
Decrement f
INCF
Syntax:
[ label ] DECF f,d
Syntax:
[ label ]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operation:
(f) – 1 → (dest)
Operation:
(f) + 1 → (dest)
Status Affected:
Z
Status Affected:
Z
Description:
Decrement register ‘f’. If ‘d’ is ‘0’,
the result is stored in the W
register. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
Description:
The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result
is placed in the W register. If ‘d’ is
‘1’, the result is placed back in
register ‘f’.
DECFSZ
Decrement f, Skip if 0
INCFSZ
Increment f, Skip if 0
Syntax:
[ label ] DECFSZ f,d
Syntax:
[ label ]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operation:
(f) – 1 → d;
Operation:
(f) + 1 → (dest), skip if result = 0
Status Affected:
None
Status Affected:
None
Description:
The contents of register ‘f’ are
decremented. If ‘d’ is ‘0’, the result
is placed in the W register. If ‘d’ is
‘1’, the result is placed back in
register ‘f’.
If the result is ‘0’, the next instruction, which is already fetched, is
discarded and a NOP is executed
instead making it a two-cycle
instruction.
Description:
The contents of register ‘f’ are
incremented. If ‘d’ is ‘0’, the result
is placed in the W register. If ‘d’ is
‘1’, the result is placed back in
register ‘f’.
If the result is ‘0’, then the next
instruction, which is already
fetched, is discarded and a NOP is
executed instead making it a
two-cycle instruction.
GOTO
Unconditional Branch
IORLW
Inclusive OR literal with W
Syntax:
[ label ]
Syntax:
[ label ]
Operands:
0 ≤ k ≤ 511
Operands:
0 ≤ k ≤ 255
Operation:
k → PC<8:0>;
STATUS<6:5> → PC<10:9>
Operation:
(W) .OR. (k) → (W)
Status Affected:
Z
Status Affected:
None
Description:
Description:
GOTO is an unconditional branch.
The 9-bit immediate value is
loaded into PC bits <8:0>. The
upper bits of PC are loaded from
STATUS<6:5>. GOTO is a twocycle instruction.
The contents of the W register are
OR’ed with the eight-bit literal ‘k’.
The result is placed in the W
register.
skip if result = 0
GOTO k
© 2005 Microchip Technology Inc.
Preliminary
Increment f
INCF f,d
INCFSZ f,d
IORLW k
DS41239B-page 55
PIC10F200/202/204/206
IORWF
Inclusive OR W with f
MOVWF
Syntax:
[ label ]
Syntax:
[ label ]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
0 ≤ f ≤ 31
Operation:
(W).OR. (f) → (dest)
(W) → (f)
Operation:
Status Affected:
None
Status Affected:
Z
Description:
Description:
Inclusive OR the W register with
register ‘f’. If ‘d’ is ‘0’, the result is
placed in the W register. If ‘d’ is ‘1’,
the result is placed back in register
‘f’.
Move data from the W register to
register ‘f’.
MOVF
Move f
NOP
No Operation
Syntax:
[ label ]
Syntax:
[ label ]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
None
Operation:
No operation
IORWF
f,d
MOVF f,d
Move W to f
MOVWF
f
NOP
Operation:
(f) → (dest)
Status Affected:
None
Status Affected:
Z
Description:
No operation.
Description:
The contents of register ‘f’ are
moved to destination ‘d’. If ‘d’ is ‘0’,
destination is the W register. If ‘d’
is ‘1’, the destination is file
register ‘f’. ‘d’ = 1 is useful as a
test of a file register, since status
flag Z is affected.
MOVLW
Move literal to W
OPTION
Load OPTION Register
Syntax:
[ label ]
Syntax:
[ label ]
Operands:
0 ≤ k ≤ 255
Operands:
None
Operation:
k → (W)
Operation:
(W) → Option
Status Affected:
None
Status Affected:
None
Description:
The content of the W register is
loaded into the OPTION register.
Description:
DS41239B-page 56
MOVLW k
The eight-bit literal ‘k’ is loaded
into the W register. The “don’t
cares” will assembled as ‘0’s.
Preliminary
OPTION
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
RETLW
Return with literal in W
SLEEP
Enter SLEEP Mode
Syntax:
[ label ]
Syntax:
[ label ] SLEEP
Operands:
0 ≤ k ≤ 255
Operands:
None
Operation:
k → (W);
TOS → PC
Operation:
00h → WDT;
0 → WDT prescaler;
1 → TO;
0 → PD
RETLW k
Status Affected:
None
Description:
The W register is loaded with the
eight-bit literal ‘k’. The program
counter is loaded from the top of
the stack (the return address). This
is a two-cycle instruction.
Status Affected:
TO, PD, RBWUF
Description:
Time-out Status bit (TO) is set. The
Power-down Status bit (PD) is
cleared.
RBWUF is unaffected.
The WDT and its prescaler are
cleared.
The processor is put into Sleep
mode with the oscillator stopped.
See Section 9.9 “Power-Down
Mode (Sleep)” for more details.
RLF
Rotate Left f through Carry
SUBWF
Subtract W from f
Syntax:
[ label ]
Syntax:
[ label ] SUBWF f,d
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operation:
See description below
Operation:
(f) – (W) → (dest)
Status Affected:
C
Status Affected:
C, DC, Z
Description:
The contents of register ‘f’ are
rotated one bit to the left through
the Carry flag. If ‘d’ is ‘0’, the result
is placed in the W register. If ‘d’ is
‘1’, the result is stored back in
register ‘f’.
Description:
Subtract (2’s complement method)
the W register from register ‘f’. If ‘d’
is ‘0’, the result is stored in the W
register. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
RLF
f,d
register ‘f’
C
RRF
Rotate Right f through Carry
SWAPF
Swap Nibbles in f
Syntax:
[ label ]
Syntax:
[ label ] SWAPF f,d
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operands:
0 ≤ f ≤ 31
d ∈ [0,1]
Operation:
See description below
Operation:
Status Affected:
C
(f<3:0>) → (dest<7:4>);
(f<7:4>) → (dest<3:0>)
Description:
The contents of register ‘f’ are
rotated one bit to the right through
the Carry flag. If ‘d’ is ‘0’, the result
is placed in the W register. If ‘d’ is
‘1’, the result is placed back in
register ‘f’.
Status Affected:
None
Description:
The upper and lower nibbles of
register ‘f’ are exchanged. If ‘d’ is
‘0’, the result is placed in W
register. If ‘d’ is ‘1’, the result is
placed in register ‘f’.
RRF f,d
C
© 2005 Microchip Technology Inc.
register ‘f’
Preliminary
DS41239B-page 57
PIC10F200/202/204/206
TRIS
Load TRIS Register
XORWF
Syntax:
[ label ] TRIS
Syntax:
[ label ] XORWF
Operands:
f=6
Operands:
Operation:
(W) → TRIS register f
0 ≤ f ≤ 31
d ∈ [0,1]
f
Exclusive OR W with f
f,d
Status Affected:
None
Operation:
(W) .XOR. (f) → (dest)
Description:
TRIS register ‘f’ (f = 6 or 7) is
loaded with the contents of the W
register
Status Affected:
Z
Description:
Exclusive OR the contents of the
W register with register ‘f’. If ‘d’ is
‘0’, the result is stored in the W
register. If ‘d’ is ‘1’, the result is
stored back in register ‘f’.
XORLW
Exclusive OR literal with W
Syntax:
[ label ] XORLW k
Operands:
0 ≤ k ≤ 255
Operation:
(W) .XOR. k → (W)
Status Affected:
Z
Description:
The contents of the W register are
XOR’ed with the eight-bit literal ‘k’.
The result is placed in the W
register.
DS41239B-page 58
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
11.0
DEVELOPMENT SUPPORT
11.1
The PICmicro® microcontrollers are supported with a
full range of hardware and software development tools:
• Integrated Development Environment
- MPLAB® IDE Software
• Assemblers/Compilers/Linkers
- MPASMTM Assembler
- MPLAB C18 and MPLAB C30 C Compilers
- MPLINKTM Object Linker/
MPLIBTM Object Librarian
- MPLAB ASM30 Assembler/Linker/Library
• Simulators
- MPLAB SIM Software Simulator
• Emulators
- MPLAB ICE 2000 In-Circuit Emulator
- MPLAB ICE 4000 In-Circuit Emulator
• In-Circuit Debugger
- MPLAB ICD 2
• Device Programmers
- PICSTART® Plus Development Programmer
- MPLAB PM3 Device Programmer
• Low-Cost Demonstration and Development
Boards and Evaluation Kits
MPLAB Integrated Development
Environment Software
The MPLAB IDE software brings an ease of software
development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows®
operating system-based application that contains:
• A single graphical interface to all debugging tools
- Simulator
- Programmer (sold separately)
- Emulator (sold separately)
- In-Circuit Debugger (sold separately)
• A full-featured editor with color-coded context
• A multiple project manager
• Customizable data windows with direct edit of
contents
• High-level source code debugging
• Visual device initializer for easy register
initialization
• Mouse over variable inspection
• Drag and drop variables from source to watch
windows
• Extensive on-line help
• Integration of select third party tools, such as
HI-TECH Software C Compilers and IAR
C Compilers
The MPLAB IDE allows you to:
• Edit your source files (either assembly or C)
• One touch assemble (or compile) and download
to PICmicro MCU emulator and simulator tools
(automatically updates all project information)
• Debug using:
- Source files (assembly or C)
- Mixed assembly and C
- Machine code
MPLAB IDE supports multiple debugging tools in a
single development paradigm, from the cost-effective
simulators, through low-cost in-circuit debuggers, to
full-featured emulators. This eliminates the learning
curve when upgrading to tools with increased flexibility
and power.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 59
PIC10F200/202/204/206
11.2
MPASM Assembler
11.5
The MPASM Assembler is a full-featured, universal
macro assembler for all PICmicro MCUs.
The MPASM Assembler generates relocatable object
files for the MPLINK Object Linker, Intel® standard HEX
files, MAP files to detail memory usage and symbol
reference, absolute LST files that contain source lines
and generated machine code and COFF files for
debugging.
The MPASM Assembler features include:
MPLAB ASM30 Assembler produces relocatable
machine code from symbolic assembly language for
dsPIC30F devices. MPLAB C30 C Compiler uses the
assembler to produce its object file. The assembler
generates relocatable object files that can then be
archived or linked with other relocatable object files and
archives to create an executable file. Notable features
of the assembler include:
•
•
•
•
•
•
• Integration into MPLAB IDE projects
• User-defined macros to streamline
assembly code
• Conditional assembly for multi-purpose
source files
• Directives that allow complete control over the
assembly process
Support for the entire dsPIC30F instruction set
Support for fixed-point and floating-point data
Command line interface
Rich directive set
Flexible macro language
MPLAB IDE compatibility
11.6
11.3
MPLAB C18 and MPLAB C30
C Compilers
The MPLAB C18 and MPLAB C30 Code Development
Systems are complete ANSI C compilers for
Microchip’s PIC18 family of microcontrollers and
dsPIC30F family of digital signal controllers. These
compilers provide powerful integration capabilities,
superior code optimization and ease of use not found
with other compilers.
For easy source level debugging, the compilers provide
symbol information that is optimized to the MPLAB IDE
debugger.
11.4
MPLINK Object Linker/
MPLIB Object Librarian
The MPLINK Object Linker combines relocatable
objects created by the MPASM Assembler and the
MPLAB C18 C Compiler. It can link relocatable objects
from precompiled libraries, using directives from a
linker script.
MPLAB ASM30 Assembler, Linker
and Librarian
MPLAB SIM Software Simulator
The MPLAB SIM Software Simulator allows code
development in a PC-hosted environment by simulating the PICmicro MCUs and dsPIC® DSCs on an
instruction level. On any given instruction, the data
areas can be examined or modified and stimuli can be
applied from a comprehensive stimulus controller.
Registers can be logged to files for further run-time
analysis. The trace buffer and logic analyzer display
extend the power of the simulator to record and track
program execution, actions on I/O, as well as internal
registers.
The MPLAB SIM Software Simulator fully supports
symbolic debugging using the MPLAB C18 and
MPLAB C30 C Compilers, and the MPASM and
MPLAB ASM30 Assemblers. The software simulator
offers the flexibility to develop and debug code outside
of the laboratory environment, making it an excellent,
economical software development tool.
The MPLIB Object Librarian manages the creation and
modification of library files of precompiled code. When
a routine from a library is called from a source file, only
the modules that contain that routine will be linked in
with the application. This allows large libraries to be
used efficiently in many different applications.
The object linker/library features include:
• Efficient linking of single libraries instead of many
smaller files
• Enhanced code maintainability by grouping
related modules together
• Flexible creation of libraries with easy module
listing, replacement, deletion and extraction
DS41239B-page 60
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
11.7
MPLAB ICE 2000
High-Performance
In-Circuit Emulator
11.9
The MPLAB ICE 2000 In-Circuit Emulator is intended
to provide the product development engineer with a
complete microcontroller design tool set for PICmicro
microcontrollers. Software control of the MPLAB ICE
2000 In-Circuit Emulator is advanced by the MPLAB
Integrated Development Environment, which allows
editing, building, downloading and source debugging
from a single environment.
The MPLAB ICE 2000 is a full-featured emulator
system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow
the system to be easily reconfigured for emulation of
different processors. The architecture of the MPLAB
ICE 2000 In-Circuit Emulator allows expansion to
support new PICmicro microcontrollers.
The MPLAB ICE 2000 In-Circuit Emulator system has
been designed as a real-time emulation system with
advanced features that are typically found on more
expensive development tools. The PC platform and
Microsoft® Windows® 32-bit operating system were
chosen to best make these features available in a
simple, unified application.
11.8
MPLAB ICE 4000
High-Performance
In-Circuit Emulator
The MPLAB ICE 4000 In-Circuit Emulator is intended to
provide the product development engineer with a
complete microcontroller design tool set for high-end
PICmicro MCUs and dsPIC DSCs. Software control of
the MPLAB ICE 4000 In-Circuit Emulator is provided by
the MPLAB Integrated Development Environment,
which allows editing, building, downloading and source
debugging from a single environment.
MPLAB ICD 2 In-Circuit Debugger
Microchip’s In-Circuit Debugger, MPLAB ICD 2, is a
powerful, low-cost, run-time development tool,
connecting to the host PC via an RS-232 or high-speed
USB interface. This tool is based on the Flash PICmicro
MCUs and can be used to develop for these and other
PICmicro MCUs and dsPIC DSCs. The MPLAB ICD 2
utilizes the in-circuit debugging capability built into
the Flash devices. This feature, along with Microchip’s
In-Circuit Serial ProgrammingTM (ICSPTM) protocol,
offers cost-effective, in-circuit Flash debugging from the
graphical user interface of the MPLAB Integrated
Development Environment. This enables a designer to
develop and debug source code by setting breakpoints,
single stepping and watching variables, and CPU
status and peripheral registers. Running at full speed
enables testing hardware and applications in real
time. MPLAB ICD 2 also serves as a development
programmer for selected PICmicro devices.
11.10 MPLAB PM3 Device Programmer
The MPLAB PM3 Device Programmer is a universal,
CE compliant device programmer with programmable
voltage verification at VDDMIN and VDDMAX for
maximum reliability. It features a large LCD display
(128 x 64) for menus and error messages and a modular, detachable socket assembly to support various
package types. The ICSP™ cable assembly is included
as a standard item. In Stand-Alone mode, the MPLAB
PM3 Device Programmer can read, verify and program
PICmicro devices without a PC connection. It can also
set code protection in this mode. The MPLAB PM3
connects to the host PC via an RS-232 or USB cable.
The MPLAB PM3 has high-speed communications and
optimized algorithms for quick programming of large
memory devices and incorporates an SD/MMC card for
file storage and secure data applications.
The MPLAB ICE 4000 is a premium emulator system,
providing the features of MPLAB ICE 2000, but with
increased emulation memory and high-speed performance for dsPIC30F and PIC18XXXX devices. Its
advanced emulator features include complex triggering
and timing, and up to 2 Mb of emulation memory.
The MPLAB ICE 4000 In-Circuit Emulator system has
been designed as a real-time emulation system with
advanced features that are typically found on more
expensive development tools. The PC platform and
Microsoft Windows 32-bit operating system were
chosen to best make these features available in a
simple, unified application.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 61
PIC10F200/202/204/206
11.11 PICSTART Plus Development
Programmer
11.12 Demonstration, Development and
Evaluation Boards
The PICSTART Plus Development Programmer is an
easy-to-use, low-cost, prototype programmer. It
connects to the PC via a COM (RS-232) port. MPLAB
Integrated Development Environment software makes
using the programmer simple and efficient. The
PICSTART Plus Development Programmer supports
most PICmicro devices in DIP packages up to 40 pins.
Larger pin count devices, such as the PIC16C92X and
PIC17C76X, may be supported with an adapter socket.
The PICSTART Plus Development Programmer is CE
compliant.
A wide variety of demonstration, development and
evaluation boards for various PICmicro MCUs and dsPIC
DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for
adding custom circuitry and provide application firmware
and source code for examination and modification.
The boards support a variety of features, including LEDs,
temperature sensors, switches, speakers, RS-232
interfaces, LCD displays, potentiometers and additional
EEPROM memory.
The demonstration and development boards can be
used in teaching environments, for prototyping custom
circuits and for learning about various microcontroller
applications.
In addition to the PICDEM™ and dsPICDEM™ demonstration/development board series of circuits, Microchip
has a line of evaluation kits and demonstration software
for analog filter design, KEELOQ® security ICs, CAN,
IrDA®, PowerSmart® battery management, SEEVAL®
evaluation system, Sigma-Delta ADC, flow rate
sensing, plus many more.
Check the Microchip web page (www.microchip.com)
and the latest “Product Selector Guide” (DS00148) for
the complete list of demonstration, development and
evaluation kits.
DS41239B-page 62
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
12.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings(†)
Ambient temperature under bias.......................................................................................................... -40°C to +125°C
Storage temperature ............................................................................................................................ -65°C to +150°C
Voltage on VDD with respect to VSS ............................................................................................................... 0 to +6.5V
Voltage on MCLR with respect to VSS..........................................................................................................0 to +13.5V
Voltage on all other pins with respect to VSS ............................................................................... -0.3V to (VDD + 0.3V)
Total power dissipation(1) .................................................................................................................................. 800 mW
Max. current out of VSS pin .................................................................................................................................. 80 mA
Max. current into VDD pin ..................................................................................................................................... 80 mA
Input clamp current, IIK (VI < 0 or VI > VDD)...................................................................................................................±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD) ...........................................................................................................±20 mA
Max. output current sunk by any I/O pin .............................................................................................................. 25 mA
Max. output current sourced by any I/O pin ......................................................................................................... 25 mA
Max. output current sourced by I/O port .............................................................................................................. 75 mA
Max. output current sunk by I/O port ................................................................................................................... 75 mA
Note 1: Power dissipation is calculated as follows: PDIS = VDD x {IDD – ∑ IOH} + ∑ {(VDD – VOH) x IOH} + ∑(VOL x IOL)
†NOTICE:
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at those or any other conditions above
those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions
for extended periods may affect device reliability.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 63
PIC10F200/202/204/206
PIC10F200/202/204/206 VOLTAGE-FREQUENCY GRAPH, -40°C ≤ TA ≤ +125°C
FIGURE 12-1:
6.0
5.5
5.0
VDD
(Volts)
4.5
4.0
3.5
3.0
2.5
2.0
0
4
10
20
25
Frequency (MHz)
DS41239B-page 64
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
12.1
DC Characteristics: PIC10F200/202/204/206 (Industrial)
Standard Operating Conditions (unless otherwise specified)
Operating Temperature -40°C ≤ TA ≤ +85°C (industrial)
DC CHARACTERISTICS
Param
No.
Sym
Characteristic
Min
Typ(1)
Max
Units
Conditions
D001
VDD
Supply Voltage
2.0
5.5
V
See Figure 12-1
D002
VDR
RAM Data Retention Voltage(2)
—
1.5*
—
V
Device in Sleep mode
D003
VPOR
VDD Start Voltage to ensure
Power-on Reset
—
Vss
—
V
See Section 9.4 “DC Characteristics” for details
D004
SVDD
VDD Rise Rate to ensure
Power-on Reset
0.05*
—
—
V/ms
See Section 9.4 “DC Characteristics” for details
D010
IDD
Supply Current(3)
—
—
170
350
TBD
TBD
μA
μA
FOSC = 4 MHz, VDD = 2.0V
FOSC = 4 MHz, VDD = 5.0V
D020
IPD
Power-down Current(4)
—
0.1
TBD
μA
VDD = 2.0V
—
1.0
TBD
μA
VDD = 2.0V
D022
ΔIWDT
WDT
Current(4)
Current(4)
D023
ΔICMP
D024
ΔIVREF Internal Reference Current(4)
Comparator
—
15
TBD
μA
VDD = 2.0V
—
TBD
TBD
μA
VDD = 2.0V
Legend: TBD = To Be Determined.
* These parameters are characterized but not tested.
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design
guidance only and is not tested.
2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus
loading, bus rate, internal code execution pattern and temperature also have an impact on the current
consumption.
a) The test conditions for all IDD measurements in active operation mode are:
All I/O pins tri-stated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
b) For standby current measurements, the conditions are the same, except that the device is in Sleep
mode.
4: Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state
and tied to VDD or VSS.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 65
PIC10F200/202/204/206
12.2
DC Characteristics: PIC10F200/202/204/206 (Extended)
Standard Operating Conditions (unless otherwise specified)
Operating Temperature -40°C ≤ TA ≤ +125°C (extended)
DC CHARACTERISTICS
Param
No.
Sym
Characteristic
Min
Typ(1)
Max
Units
Conditions
D001
VDD
Supply Voltage
2.0
5.5
V
See Figure 12-1
D002
VDR
RAM Data Retention Voltage(2)
—
1.5*
—
V
Device in Sleep mode
D003
VPOR
VDD Start Voltage to ensure
Power-on Reset
—
Vss
—
V
See Section 9.4 “DC Characteristics” for details
D004
SVDD
VDD Rise Rate to ensure
Power-on Reset
0.05*
—
—
V/ms
See Section 9.4 “DC Characteristics” for details
D010
IDD
Supply Current(3)
—
—
170
350
TBD
TBD
μA
μA
FOSC = 4 MHz, VDD = 2.0V
FOSC = 4 MHz, VDD = 5.0V
D020
IPD
Power-down Current(4)
—
0.1
TBD
μA
VDD = 2.0V
—
1.0
TBD
μA
VDD = 2.0V
—
15
TBD
μA
VDD = 2.0V
—
TBD
TBD
μA
VDD = 2.0V
D022
ΔIWDT
WDT
Current(4)
Current(4)
D023
ΔICMP
D024
ΔIVREF Internal Reference Current(4)
Comparator
Legend: TBD = To Be Determined.
* These parameters are characterized but not tested.
Note 1: Data in the Typical (“Typ”) column is based on characterization results at 25°C. This data is for design
guidance only and is not tested.
2: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.
3: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus
loading, bus rate, internal code execution pattern and temperature also have an impact on the current
consumption.
a) The test conditions for all IDD measurements in active operation mode are:
All I/O pins tri-stated, pulled to VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.
b) For standby current measurements, the conditions are the same, except that the device is in Sleep
mode.
4: Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state
and tied to VDD or VSS.
DS41239B-page 66
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
TABLE 12-1:
DC CHARACTERISTICS: PIC10F200/202/204/206 (Industrial, Extended)
Standard Operating Conditions (unless otherwise specified)
Operating temperature
-40°C ≤ TA ≤ +85°C (industrial)
-40°C ≤ TA ≤ +125°C (extended)
Operating voltage VDD range as described in DC specification
DC CHARACTERISTICS
Param
No.
Sym
VIL
Characteristic
Min
Typ†
Max
Units
Conditions
Input Low Voltage
I/O ports:
D030
with TTL buffer
D030A
D031
with Schmitt Trigger
buffer
MCLR, T0CKI
D032
VIH
Vss
—
0.8V
V
For all 4.5 ≤ VDD ≤ 5.5V
Vss
—
0.15 VDD
V
Otherwise
Vss
—
0.15 VDD
V
Vss
—
0.15 VDD
V
Input High Voltage
I/O ports:
D040
—
with TTL buffer
D040A
D041
with Schmitt Trigger
buffer
D042
MCLR, T0CKI
D070
IPUR
GPIO weak pull-up current
IIL
Input Leakage Current(1, 2)
(3)
2.0
—
VDD
V
4.5 ≤ VDD ≤ 5.5V
0.25 VDD
+ 0.8 VDD
—
VDD
V
Otherwise
0.85 VDD
—
VDD
V
For entire VDD range
0.85 VDD
—
VDD
V
TBD
250
TBD
μA
VDD = 5V, VPIN = VSS
D060
I/O ports
—
—
±1
μA
Vss ≤ VPIN ≤ VDD, Pin at high-impedance
D061
GP3/MCLR(4)
—
—
± 30
μA
Vss ≤ VPIN ≤ VDD
D061A
GP3/MCLR(5)
—
—
±5
μA
Vss ≤ VPIN ≤ VDD
—
—
0.6
V
IOL = 8.5 mA, VDD = 4.5V,
-40°C to +85°C
—
—
0.6
V
IOL = 7.0 mA, VDD = 4.5V,
-40°C to +125°C
VDD – 0.7
—
—
V
IOH = -3.0 mA, VDD = 4.5V,
-40°C to +85°C
VDD – 0.7
—
—
V
IOH = -2.5 mA, VDD = 4.5V,
-40°C to +125°C
—
—
50*
pF
Output Low Voltage
D080
I/O ports
D080A
Output High Voltage
I/O ports(2)
D090
D090A
Capacitive Loading Specs
on Output Pins
D101
All I/O pins
Legend:
†
*
Note 1:
2:
3:
4:
5:
TBD = To Be Determined.
Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are
not tested.
These parameters are for design guidance only and are not tested.
The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent
normal operating conditions. Higher leakage current may be measured at different input voltages.
Negative current is defined as coming out of the pin.
Does not include GP3. For GP3 see parameters D061 and D061A.
This specification applies to GP3/MCLR configured as external MCLR and GP3/MCLR configured as input with internal
pull-up enabled.
This specification applies when GP3/MCLR is configured as an input with pull-up disabled. The leakage current of the
MCLR circuit is higher than the standard I/O logic.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 67
PIC10F200/202/204/206
TABLE 12-2:
COMPARATOR SPECIFICATIONS
Operating Conditions: 2.0V < VDD <5.5V, -40°C < TA < +125°C, unless otherwise stated.
Param
No.
Sym
Characteristics
Min
Typ
Max
Units
D300
VIOFF
Input Offset Voltage
—
±5.0
TBD
mV
D301
VICM
Input Common Mode Voltage
0
—
VDD – 1.5*
V
D302
CMRR
Common Mode Rejection
Ratio
55*
—
—
db
D303
TRESP
Response Time(1)
—
300
TBD
ns
D304
TMC2OV Comparator Mode Change to
Output Valid
—
300
TBD
ns
D305
VIVRF
TBD
0.6
TBD
V
Legend:
*
Note 1:
Internal Reference Voltage
Comments
VDD = 3.0V to 5.5V, -40° to +85°C
TBD
TBD = To Be Determined.
These parameters are characterized but not tested.
Response time measured with one comparator input at (VDD – 1.5)/2 while the other input transitions from VSS
to VDD.
TABLE 12-3:
VDD (Volts)
PULL-UP RESISTOR RANGES – PIC10F200/202/204/206
Temperature (°C)
Min
Typ
Max
Units
-40
TBD
TBD
TBD
Ω
25
TBD
TBD
TBD
Ω
85
TBD
TBD
TBD
Ω
GP0/GP1
2.0
5.5
125
TBD
TBD
TBD
Ω
-40
TBD
TBD
TBD
Ω
25
TBD
TBD
TBD
Ω
85
TBD
TBD
TBD
Ω
125
TBD
TBD
TBD
Ω
GP3
2.0
5.5
-40
TBD
TBD
TBD
Ω
25
TBD
TBD
TBD
Ω
85
TBD
TBD
TBD
Ω
125
TBD
TBD
TBD
Ω
-40
TBD
TBD
TBD
Ω
25
TBD
TBD
TBD
Ω
85
TBD
TBD
TBD
Ω
125
TBD
TBD
TBD
Ω
Legend: TBD = To Be determined.
* These parameters are characterized but not tested.
DS41239B-page 68
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
12.3
Timing Parameter Symbology and Load Conditions – PIC10F200/202/204/206
The timing parameter symbols have been created following one of the following formats:
1. TppS2ppS
2. TppS
T
F Frequency
T Time
Lowercase subscripts (pp) and their meanings:
pp
2
to
mc
MCLR
ck
CLKOUT
osc
Oscillator
cy
Cycle time
os
OSC1
drt
Device Reset Timer
t0
T0CKI
io
I/O port
wdt
Watchdog Timer
Uppercase letters and their meanings:
S
F
Fall
P
Period
H
High
R
Rise
I
Invalid (high-impedance)
V
Valid
L
Low
Z
High-impedance
FIGURE 12-2:
LOAD CONDITIONS – PIC10F200/202/204/206
pin
CL
Legend:
CL = 50 pF for all pins
VSS
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 69
PIC10F200/202/204/206
TABLE 12-4:
CALIBRATED INTERNAL RC FREQUENCIES – PIC10F200/202/204/206
AC CHARACTERISTICS
Standard Operating Conditions (unless otherwise specified)
Operating Temperature -40°C ≤ TA ≤ +85°C (industrial),
-40°C ≤ TA ≤ +125°C (extended)
Operating Voltage VDD range is described in
Section 12.1 “DC Characteristics”.
Param
No.
Freq
Min
Tolerance
F10
Sym
FOSC
Characteristic
Internal Calibrated
INTOSC Frequency(1)
Typ†
Max
Units
Conditions
± 1%
7.92
4.00
8.08
MHz VDD and Temperature TBD
± 2%
7.84
4.00
8.16
MHz 2.5V ≤ VDD ≤ 5.5V
Temperature TBD
± 5%
7.60
4.00
8.40
MHz 2.0V ≤ VDD ≤ 5.5V
-40°C ≤ TA ≤ +85°C (industrial)
-40°C ≤ TA ≤ +125°C (extended)
Legend: TBD = To Be Determined.
* These parameters are characterized but not tested.
† Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design
guidance only and are not tested.
Note 1: To ensure these oscillator frequency tolerances, VDD and VSS must be capacitively decoupled as close to
the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.
FIGURE 12-3:
RESET, WATCHDOG TIMER AND DEVICE RESET TIMER TIMING –
PIC10F200/202/204/206
VDD
MCLR
30
Internal
POR
32
32
32
DRT
Timeout(2)
Internal
Reset
Watchdog
Timer
Reset
31
34
34
I/O pin(1)
Note 1:
2:
I/O pins must be taken out of High-Impedance mode by enabling the output drivers in software.
Runs on POR only.
DS41239B-page 70
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
TABLE 12-5:
RESET, WATCHDOG TIMER AND DEVICE RESET TIMER – PIC10F200/202/204/206
Standard Operating Conditions (unless otherwise specified)
Operating Temperature -40°C ≤ TA ≤ +85°C (industrial)
-40°C ≤ TA ≤ +125°C (extended)
Operating Voltage VDD range is described in Section 12.1 “DC
Characteristics”
AC CHARACTERISTICS
Param
No.
Max
Units
Conditions
Characteristic
30
TMCL
MCLR Pulse Width (low)
2000*
—
—
ns
VDD = 5.0V
31
TWDT
Watchdog Timer Time-out Period
(no prescaler)
9*
9*
18*
18*
30*
40*
ms
ms
VDD = 5.0V (Industrial)
VDD = 5.0V (Extended)
32
TDRT
Device Reset Timer Period(2)
9*
9*
18*
18*
30*
40*
ms
ms
VDD = 5.0V (Industrial)
VDD = 5.0V (Extended)
34
TIOZ
I/O High-impedance from MCLR
low
—
—
2000*
ns
*
Note 1:
Min
Typ(1)
Sym
These parameters are characterized but not tested.
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design
guidance only and are not tested.
FIGURE 12-4:
TIMER0 CLOCK TIMINGS – PIC10F200/202/204/206
T0CKI
40
41
42
TABLE 12-6:
TIMER0 CLOCK REQUIREMENTS – PIC10F200/202/204/206
Standard Operating Conditions (unless otherwise specified)
Operating Temperature -40°C ≤ TA ≤ +85°C (industrial)
-40°C ≤ TA ≤ +125°C (extended)
Operating Voltage VDD range is described in
Section 12.1 “DC Characteristics”.
AC CHARACTERISTICS
Param
Sym
No.
Characteristic
Min
40
Tt0H T0CKI High Pulse
Width
With Prescaler
41
Tt0L
No Prescaler
42
Tt0P T0CKI Period
*
Note 1:
T0CKI Low Pulse
Width
No Prescaler
With Prescaler
0.5 TCY + 20*
Typ(1) Max Units
—
—
Conditions
ns
10*
—
—
ns
0.5 TCY + 20*
—
—
ns
10*
—
—
ns
20 or TCY + 40* N
—
—
ns
Whichever is greater.
N = Prescale Value
(1, 2, 4,..., 256)
These parameters are characterized but not tested.
Data in the Typical (“Typ”) column is at 5V, 25°C unless otherwise stated. These parameters are for design
guidance only and are not tested.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 71
PIC10F200/202/204/206
NOTES:
DS41239B-page 72
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
13.0
DC AND AC
CHARACTERISTICS GRAPHS
AND CHARTS
Graphs and charts are not available at this time.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 73
PIC10F200/202/204/206
NOTES:
DS41239B-page 74
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
14.0
PACKAGING INFORMATION
14.1
Package Marking Information
6-Lead SOT-23
Example
CH17
XXNN
8-Lead PDIP (300 mil)
Example
10F206-I
/P017
0432
XXXXXXXX
XXXXXNNN
YYWW
Legend:
XX...X
Y
YY
WW
NNN
e3
*
Note:
*
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line thus limiting the number of available characters
for customer specific information.
Standard PICmicro device marking consists of Microchip part number, year code, week code, and
traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check
with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP
price.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 75
PIC10F200/202/204/206
6-Lead Plastic Small Outline Transistor (OT) (SOT-23)
E
E1
B
p1
n
D
1
α
c
A
A2
φ
L
β
Units
Dimension Limits
n
p
MIN
A1
INCHES*
NOM
6
.038
.075
.046
.043
.003
.110
.064
.116
.018
5
.006
.017
5
5
MAX
MILLIMETERS
NOM
6
0.95
1.90
0.90
1.18
0.90
1.10
0.00
0.08
2.60
2.80
1.50
1.63
2.80
2.95
0.35
0.45
0
5
0.09
0.15
0.35
0.43
0
5
0
5
MIN
Number of Pins
Pitch
p1
Outside lead pitch (basic)
Overall Height
A
.035
.057
Molded Package Thickness
.035
.051
A2
Standoff
.000
.006
A1
Overall Width
E
.102
.118
Molded Package Width
.059
.069
E1
Overall Length
D
.110
.122
Foot Length
L
.014
.022
φ
Foot Angle
0
10
c
Lead Thickness
.004
.008
Lead Width
B
.014
.020
α
Mold Draft Angle Top
0
10
β
Mold Draft Angle Bottom
0
10
*Controlling Parameter
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not
exceed .005" (0.127mm) per side.
MAX
1.45
1.30
0.15
3.00
1.75
3.10
0.55
10
0.20
0.50
10
10
JEITA (formerly EIAJ) equivalent: SC-74A
Drawing No. C04-120
DS41239B-page 76
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)
E1
D
2
n
1
α
E
A2
A
L
c
A1
β
B1
p
eB
B
Units
Dimension Limits
n
p
Number of Pins
Pitch
Top to Seating Plane
Molded Package Thickness
Base to Seating Plane
Shoulder to Shoulder Width
Molded Package Width
Overall Length
Tip to Seating Plane
Lead Thickness
Upper Lead Width
Lower Lead Width
Overall Row Spacing
Mold Draft Angle Top
Mold Draft Angle Bottom
* Controlling Parameter
§ Significant Characteristic
A
A2
A1
E
E1
D
L
c
§
B1
B
eB
α
β
MIN
.140
.115
.015
.300
.240
.360
.125
.008
.045
.014
.310
5
5
INCHES*
NOM
8
.100
.155
.130
.313
.250
.373
.130
.012
.058
.018
.370
10
10
MAX
.170
.145
.325
.260
.385
.135
.015
.070
.022
.430
15
15
MILLIMETERS
NOM
8
2.54
3.56
3.94
2.92
3.30
0.38
7.62
7.94
6.10
6.35
9.14
9.46
3.18
3.30
0.20
0.29
1.14
1.46
0.36
0.46
7.87
9.40
5
10
5
10
MIN
MAX
4.32
3.68
8.26
6.60
9.78
3.43
0.38
1.78
0.56
10.92
15
15
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010” (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-018
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 77
PIC10F200/202/204/206
NOTES:
DS41239B-page 78
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
INDEX
A
M
ALU ....................................................................................... 9
Assembler
MPASM Assembler..................................................... 60
Memory Organization ......................................................... 15
Data Memory .............................................................. 16
Program Memory (PIC10F200/204) ........................... 15
Program Memory (PIC10F202/206) ........................... 16
Microchip Internet Web Site................................................ 81
MPLAB ASM30 Assembler, Linker, Librarian ..................... 60
MPLAB ICD 2 In-Circuit Debugger ..................................... 61
MPLAB ICE 2000 High-Performance Universal
In-Circuit Emulator...................................................... 61
MPLAB ICE 4000 High-Performance Universal
In-Circuit Emulator...................................................... 61
MPLAB Integrated Development Environment Software.... 59
MPLAB PM3 Device Programmer ...................................... 61
MPLINK Object Linker/MPLIB Object Librarian .................. 60
B
Block Diagram
On-Chip Reset Circuit ................................................. 44
Timer0................................................................... 29, 33
TMR0/WDT Prescaler..................................... 32, 36, 38
Watchdog Timer.......................................................... 47
Brown-Out Protection Circuit .............................................. 48
C
C Compilers
MPLAB C18 ................................................................ 60
MPLAB C30 ................................................................ 60
Carry ..................................................................................... 9
Clocking Scheme ................................................................ 13
Code Protection ............................................................ 41, 50
Comparator
Comparator Module .................................................... 37
Configuration............................................................... 38
Interrupts..................................................................... 39
Operation .................................................................... 39
Reference ................................................................... 39
Configuration Bits................................................................ 41
Customer Change Notification Service ............................... 81
Customer Notification Service............................................. 81
Customer Support ............................................................... 81
O
OPTION Register................................................................ 20
OSCCAL Register............................................................... 21
Oscillator Configurations..................................................... 42
Oscillator Types
HS............................................................................... 42
LP ............................................................................... 42
P
DC and AC Characteristics ................................................. 73
Development Support ......................................................... 59
Digit Carry ............................................................................. 9
PIC10F200/202/204/206 Device Varieties............................ 7
PICSTART Plus Development Programmer....................... 62
POR
Device Reset Timer (DRT) ................................... 41, 46
PD............................................................................... 48
Power-on Reset (POR)............................................... 41
TO............................................................................... 48
Power-down Mode.............................................................. 49
Prescaler ...................................................................... 31, 35
Program Counter ................................................................ 22
E
Q
Errata .................................................................................... 3
Q cycles .............................................................................. 13
F
R
Family of Devices
PIC10F200/202/204/206............................................... 5
Reader Response............................................................... 82
Read-Modify-Write.............................................................. 26
Register File Map
PIC10F200/204 .......................................................... 17
PIC10F202/206 .......................................................... 17
Registers
Special Function ......................................................... 18
Reset .................................................................................. 41
Reset on Brown-Out ........................................................... 48
D
G
GPIO ................................................................................... 25
I
I/O Interfacing ..................................................................... 25
I/O Ports .............................................................................. 25
I/O Programming Considerations........................................ 26
ID Locations .................................................................. 41, 50
INDF.................................................................................... 23
Indirect Data Addressing..................................................... 23
Instruction Cycle ................................................................. 13
Instruction Flow/Pipelining .................................................. 13
Instruction Set Summary..................................................... 52
Internet Address.................................................................. 81
S
Sleep ............................................................................ 41, 49
Software Simulator (MPLAB SIM) ...................................... 60
Special Features of the CPU .............................................. 41
Special Function Registers ................................................. 18
Stack................................................................................... 22
Status Register ............................................................... 9, 19
L
T
Loading of PC ..................................................................... 22
Timer0
Timer0 .................................................................. 29, 33
Timer0 (TMR0) Module ........................................ 29, 33
TMR0 with External Clock .................................... 30, 34
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 79
PIC10F200/202/204/206
Timing Parameter Symbology and Load Conditions........... 69
TRIS Registers.................................................................... 25
W
Wake-up from Sleep ........................................................... 49
Watchdog Timer (WDT) ................................................ 41, 46
Period.......................................................................... 46
Programming Considerations ..................................... 46
WWW Address.................................................................... 81
WWW, On-Line Support........................................................ 3
Z
Zero bit .................................................................................. 9
DS41239B-page 80
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
THE MICROCHIP WEB SITE
CUSTOMER SUPPORT
Microchip provides online support via our WWW site at
www.microchip.com. This web site is used as a means
to make files and information easily available to
customers. Accessible by using your favorite Internet
browser, the web site contains the following
information:
Users of Microchip products can receive assistance
through several channels:
• Product Support – Data sheets and errata,
application notes and sample programs, design
resources, user’s guides and hardware support
documents, latest software releases and archived
software
• General Technical Support – Frequently Asked
Questions (FAQ), technical support requests,
online discussion groups, Microchip consultant
program member listing
• Business of Microchip – Product selector and
ordering guides, latest Microchip press releases,
listing of seminars and events, listings of
Microchip sales offices, distributors and factory
representatives
CUSTOMER CHANGE NOTIFICATION
SERVICE
Microchip’s customer notification service helps keep
customers current on Microchip products. Subscribers
will receive e-mail notification whenever there are
changes, updates, revisions or errata related to a
specified product family or development tool of interest.
•
•
•
•
•
Distributor or Representative
Local Sales Office
Field Application Engineer (FAE)
Technical Support
Development Systems Information Line
Customers
should
contact
their
distributor,
representative or field application engineer (FAE) for
support. Local sales offices are also available to help
customers. A listing of sales offices and locations is
included in the back of this document.
Technical support is available through the web site
at: http://support.microchip.com
In addition, there is a Development Systems
Information Line which lists the latest versions of
Microchip’s development systems software products.
This line also provides information on how customers
can receive currently available upgrade kits.
The Development
numbers are:
Systems
Information
Line
1-800-755-2345 – United States and most of Canada
1-480-792-7302 – Other International Locations
To register, access the Microchip web site at
www.microchip.com, click on Customer Change
Notification and follow the registration instructions.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 81
PIC10F200/202/204/206
READER RESPONSE
It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation
can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.
Please list the following information, and use this outline to provide us with your comments about this document.
To:
Technical Publications Manager
RE:
Reader Response
Total Pages Sent ________
From: Name
Company
Address
City / State / ZIP / Country
Telephone: (_______) _________ - _________
FAX: (______) _________ - _________
Application (optional):
Would you like a reply?
Y
Device: PIC10F200/202/204/206
N
Literature Number: DS41239B
Questions:
1. What are the best features of this document?
2. How does this document meet your hardware and software development needs?
3. Do you find the organization of this document easy to follow? If not, why?
4. What additions to the document do you think would enhance the structure and subject?
5. What deletions from the document could be made without affecting the overall usefulness?
6. Is there any incorrect or misleading information (what and where)?
7. How would you improve this document?
DS41239B-page 82
Preliminary
© 2005 Microchip Technology Inc.
PIC10F200/202/204/206
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
X
/XX
XXX
Device
Temperature
Range
Package
Pattern
Examples:
a)
b)
Device:
PIC10F200
PIC10F202
PIC10F204
PIC10F206
PIC10F200T (Tape & Reel)
PIC10F202T (Tape & Reel)
PIC10F204T (Tape & Reel)
PIC10F206T (Tape & Reel)
Temperature
Range:
I
E
Package:
P
OT
Pattern:
Special Requirements
Note:
=
=
PIC10F200-I/P = Industrial temp., PDIP
package (Pb-free)
PIC10F202T-E/OT = Extended temp.,
SOT-23 package (Pb-free), Tape and Reel
-40°C to +85°C (Industrial)
-40°C to +125°C (Extended)
=
=
300 mil PDIP (Pb-free)
SOT-23, 6-LD (Pb-free)
Tape and Reel available only for the following packages: SOT-23.
© 2005 Microchip Technology Inc.
Preliminary
DS41239B-page 83
WORLDWIDE SALES AND SERVICE
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
India - Bangalore
Tel: 91-80-2229-0061
Fax: 91-80-2229-0062
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
India - New Delhi
Tel: 91-11-5160-8631
Fax: 91-11-5160-8632
Austria - Weis
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393
Denmark - Ballerup
Tel: 45-4450-2828
Fax: 45-4485-2829
China - Chengdu
Tel: 86-28-8676-6200
Fax: 86-28-8676-6599
Japan - Kanagawa
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
France - Massy
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Germany - Ismaning
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Atlanta
Alpharetta, GA
Tel: 770-640-0034
Fax: 770-640-0307
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Philippines - Manila
Tel: 011-632-634-9065
Fax: 011-632-634-9069
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Qingdao
Tel: 86-532-502-7355
Fax: 86-532-502-7205
Malaysia - Penang
Tel:011-604-646-8870
Fax:011-604-646-5086
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
England - Berkshire
Tel: 44-118-921-5869
Fax: 44-118-921-5820
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Taiwan - Hsinchu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
San Jose
Mountain View, CA
Tel: 650-215-1444
Fax: 650-961-0286
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
04/20/05
DS41239B-page 84
Preliminary
© 2005 Microchip Technology Inc.