TI LMV931IDCKR

 SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
D 1.8-V, 2.7-V, and 5-V Specifications
D Rail-to-Rail Output Swing
D
D
D
D
D
D
− 600-Ω Load . . . 80 mV From Rail
− 2-kΩ Load . . . 30 mV From Rail
VICR . . . 200 mV Beyond Rails
Gain Bandwidth . . . 1.4 MHz
Supply Current . . . 100 µA/Amplifier
Max VIO . . . 4 mV
Space-Saving Packages
− LMV931: SOT-23 and SC-70
− LMV932: MSOP and SOIC
− LMV934: SOIC and TSSOP
Applications
− Industrial (Utility/Energy Metering)
− Automotive
− Communications (Optical Telecom,
Data/Voice Cable Modems)
− Consumer Electronics (PDAs, PCs,
CDR/W, Portable Audio)
− Supply-Current Monitoring
− Battery Monitoring
LMV931 . . . DBV (SOT23-5) OR DCK (SC-70) PACKAGE
(TOP VIEW)
IN+
VCC−
IN−
1
5
VCC+
4
OUTPUT
2
3
LMV932 . . . D (SOIC) OR
DGK (VSSOP/MSOP) PACKAGE
(TOP VIEW)
1OUT
1IN−
1IN+
VCC−
1
8
2
7
3
6
4
5
VCC+
2OUT
2IN−
2IN+
LMV934 . . . D (SOIC) OR PW (TSSOP) PACKAGE
(TOP VIEW)
1OUT
1IN−
1IN+
VCC+
2IN+
2IN−
2OUT
description/ordering information
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN−
4IN+
VCC−
3IN+
3IN−
3OUT
ORDERING INFORMATION
SOT-23 (DBV)
Single
SC-70 (DCK)
MSOP/VSSOP (DGK)
−40°C to 125°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
Dual
SOIC (D)
SOIC (D)
Quad
TSSOP (PW)
Reel of 3000
LMV931IDBVR
Reel of 250
LMV931IDBVT
Reel of 3000
LMV931IDCKR
Reel of 250
LMV931IDCKT
Reel of 2500
LMV932IDGKR
Reel of 250
LMV932IDGKT
Tube of 75
LMV932ID
Reel of 2500
LMV932IDR
Tube of 50
LMV934ID
Reel of 2500
LMV934IDR
Tube of 90
LMV934IPW
Reel of 2000
LMV934IPWR
TOP-SIDE
MARKING‡
RBB_
PREVIEW
RB_
PREVIEW
PREVIEW
PREVIEW
PREVIEW
PREVIEW
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
‡ DBV/DCK/DGK: The actual top-side marking has one additional character that designates the assembly/test site.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2005, Texas Instruments Incorporated
!"#$%&" ' ()##*& %' "! +),-(%&" .%&*
#".)(&' ("!"#$ &" '+*(!(%&"' +*# &/* &*#$' "! *0%' '&#)$*&'
'&%.%#. 1%##%&2 #".)(&" +#"(*''3 ."*' "& *(*''%#-2 (-).*
&*'&3 "! %-- +%#%$*&*#'
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
description/ordering information (continued)
The LMV93x devices are low-voltage, low-power, operational amplifiers that are well suited for today’s
low-voltage and/or portable applications. Specified for operation of 1.8 V to 5 V, they can be used in portable
applications that are powered from a single-cell Li-ion or two-cell batteries. They have rail-to-rail input and output
capability for maximum signal swings in low-voltage applications. The LMV93x input common-mode voltage
extends 200 mV beyond the rails for increased flexibility. The output can swing rail-to-rail unloaded and typically
can reach 80 mV from the rails, while driving a 600-Ω load (at 1.8-V operation).
During 1.8-V operation, the devices typically consume a quiescent current of 103 mA per channel, and yet they
are able to achieve excellent electrical specifications, such as 101-dB open-loop DC gain and 1.4-MHz gain
bandwidth. Furthermore, the amplifiers offer good output drive characteristics, with the ability to drive a 600-Ω
load and 1000-pF capacitance with minimal ringing.
The LMV93x devices are offered in the latest packaging technology to meet the most demanding
space-constraint applications. The LMV931 is offered in standard SOT-23 and SC-70 packages. The LMV932
is available in the traditional MSOP and SOIC packages. The LMV934 is available in the traditional SOIC and
TSSOP packages.
The LMV93x devices are characterized for operation from −40°C to 125°C, making the part universally suited
for commercial, industrial, and automotive applications.
simplified schematic
VCC+
VBIAS1
IP
I1
I2
M5
M1
Q1
IN−
M6
M2
Class AB
Control
Q4
OUT
Q2
IN+
Q3
M3
IN
VBIAS2
I3
M4
M7
M8
I4
VCC−
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
absolute maximum ratings over free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ − VCC− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supply voltage
Input voltage range, VI (either input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC− − 0.2 V to VCC+ + 0.2 V
Duration of output short circuit (one amplifier) to VCC± (see Notes 3 and 4) . . . . . . . . . . . . . . . . . . . . Unlimited
Package thermal impedance, θJA (see Notes 4 and 5): D package (8 pin) . . . . . . . . . . . . . . . . . . . . . . 97°C/W
D package (14 pin) . . . . . . . . . . . . . . . . . . . . . 86°C/W
DBV package . . . . . . . . . . . . . . . . . . . . . . . . 206°C/W
DCK package . . . . . . . . . . . . . . . . . . . . . . . . 252°C/W
DGK package . . . . . . . . . . . . . . . . . . . . . . . . 172°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65 to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND.
2. Differential voltages are at IN+ with respect to IN−.
3. Applies to both single-supply and split-supply operation. Continuous short-circuit operation at elevated ambient temperature can
result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45 mA over long term may
adversely affect reliability.
4. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
5. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions
MIN
VCC
TA
MAX
UNIT
Supply voltage (VCC+ − VCC−)
1.8
5
V
Operating free-air temperature
−40
125
°C
TYP
UNIT
2000
V
200
V
ESD protection
TEST CONDITIONS
Human-Body Model
Machine Model
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
electrical characteristics at TA = 25°C, VCC+ = 1.8 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and
RL > 1 MΩ (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
25°C
LMV931 (single)
VIO
IIB
Input bias current
ICC
Supply current
(per channel)
Common-mode
rejection ratio
25°C
5.5
25°C
15
Supply-voltage
rejection ratio
VICR
Common-mode
input voltage range
1.8 V ≤ VCC+ ≤ 5 V,
VIC = 0.5 V
65
75
LMV931
AV
4
Largesignal
voltage
gain
RL = 600 Ω to 0.9 V,
VO = 0.2 V to 1.6 V, VIC = 0.5 V
RL = 2 kΩ to 0.9 V,
VO = 0.2 V to 1.6 V, VIC = 0.5 V
LMV932
,
LMV934
13
103
RL = 600 Ω to 0.9 V,
VO = 0.2 V to 1.6 V, VIC = 0.5 V
RL = 2 kΩ to 0.9 V,
VO = 0.2 V to 1.6 V, VIC = 0.5 V
POST OFFICE BOX 655303
60
55
−40°C to
125°C
55
25°C
50
72
25°C
75
100
Full range
70
−40°C to 85°C
VCC− − 0.2
VCC−
−40°C to
125°C
VCC− + 0.2
25°C
77
Full range
73
25°C
80
Full range
75
25°C
75
Full range
72
25°C
78
Full range
75
• DALLAS, TEXAS 75265
185
205
25°C
nA
25
40
−40°C to 85°C
25°C
CMRR ≥ 50 dB
35
Full range
Full range
0.2 V ≤ VIC ≤ 0.6 V,
1.4 V ≤ VIC ≤ 1.6 V
mV
mV/°C
25°C
25°C
−0.2 V ≤ VIC ≤ 0 V, 1.8 V ≤ VIC ≤ 2
V
kSVR
5.5
Full range
0 ≤ VIC ≤ 0.6 V, 1.4 V ≤ VIC ≤ 1.8 V
CMRR
1
UNIT
7.5
25°C
Input offset current
4
Full range
VIC = VCC+ − 0.8 V
IIO
MAX
1
6
25°C
LMV932 (dual), LMV934 (quad)
Average
temperature
coefficient of input
offset voltage
TYP
Full range
Input offset voltage
αV
IO
MIN
nA
mA
A
78
dB
dB
−0.2 to 2.1
VCC+ + 0.2
VCC+
V
VCC+ − 0.2
101
105
90
100
dB
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
electrical characteristics at TA = 25°C, VCC+ = 1.8 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and
RL > 1 MΩ (unless otherwise noted)(continued)
PARAMETER
TEST CONDITIONS
High
level
RL = 600 Ω to 0.9 V,
VID = ±100 mV
VO
Low level
High
level
RL = 2 kΩ to 0.9 V,
VID = ±100 mV
IOS
GBW
Gain bandwidth product
SR
Slew rate
Fm
MIN
TYP
1.65
1.72
Full range
1.63
25°C
Output swing
Output short-circuit
current
TA
25°C
0.077
Full range
25°C
1.75
Full range
1.74
VO = 0 V,
VID = 100 mV
Sourcing
VO = 1.8 V,
VID = −100 mV
Sinking
Full range
0.105
V
1.77
0.024
Full range
25°C
UNIT
0.120
25°C
Low level
MAX
0.035
0.04
4
8
3.3
25°C
7
Full range
5
9
mA
25°C
1.4
MHz
25°C
0.35
V/mS
Phase margin
25°C
67
°
Gain margin
25°C
7
dB
See Note 6
Vn
Equivalent input noise
voltage
f = 1 kHz, VIC = 0.5 V
25°C
60
nV/√Hz
In
Equivalent input noise
current
f = 1 kHz
25°C
0.06
pA/√Hz
THD
Total harmonic distortion
f = 1 kHz, AV = 1, RL = 600 Ω,
VID = 1 Vp-p
25°C
0.023
%
Amp-to-amp isolation
See Note 7
25°C
123
dB
NOTES: 6. Number specified is the slower of the positive and negative slew rates.
7. Input referred, VCC+ = 5 V and RL = 100 kΩ connected to 2.5 V. Each amp is excited, in turn, with a 1-kHz signal to produce
VO = 3 Vp-p.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
electrical characteristics at TA = 25°C, VCC+ = 2.7 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and
RL > 1 MΩ (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
25°C
LMV931 (single)
VIO
IIB
Input bias current
ICC
Supply current
(per channel)
Common-mode
rejection ratio
kSVR
Supply-voltage
rejection ratio
VICR
Common-mode
input voltage range
25°C
5.5
25°C
15
65
75
AV
6
Largesignal
voltage
gain
105
60
55
0.2 ≤ VIC ≤ 1.5 V,
2.3 V ≤ VIC ≤ 2.5 V
−40°C to
125°C
55
−0.2 V ≤ VIC ≤ 0 V,
2.7 V ≤ VIC ≤ 2.9 V
25°C
50
74
25°C
75
100
Full range
70
RL = 600 Ω to 1.35 V,
VO = 0.2 V to 2.5 V
RL = 600 Ω to 1.35 V,
VO = 0.2 V to 2.5 V
RL = 2 kΩ to 1.35 V,
VO = 0.2 V to 2.5 V
POST OFFICE BOX 655303
−40°C to 85°C
VCC− − 0.2
VCC−
−40°C to
125°C
VCC− + 0.2
25°C
87
Full range
86
25°C
92
Full range
91
25°C
78
Full range
75
25°C
81
Full range
78
• DALLAS, TEXAS 75265
190
210
25°C
nA
25
40
−40°C to 85°C
RL = 2 kΩ to 1.35 V,
VO = 0.2 V to 2.5 V
LMV932,
LMV934
8
Full range
CMRR ≥ 50 dB
35
Full range
25°C
1.8 V ≤ VCC+ ≤ 5 V,
VIC = 0.5 V
mV
mV/°C
25°C
25°C
LMV931
5.5
Full range
0 ≤ VIC ≤ 1.5 V, 2.3 V ≤ VIC ≤ 2.7 V
CMRR
1
UNIT
7.5
25°C
Input offset current
4
Full range
VIC = VCC+ − 0.8 V
IIO
MAX
1
6
25°C
LMV932 (dual), LMV934 (quad)
Average
temperature
coefficient of input
offset voltage
TYP
Full range
Input offset voltage
αV
IO
MIN
nA
mA
A
81
dB
dB
−0.2 to 3.0
VCC+ + 0.2
VCC+
V
VCC+ − 0.2
104
110
90
100
dB
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
electrical characteristics at TA = 25°C, VCC+ = 2.7 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and
RL > 1 MΩ (unless otherwise noted) (continued)
PARAMETER
TEST CONDITIONS
High
level
RL = 600 Ω to 1.35 V,
VID = ±100 mV
VO
Low level
High
level
RL = 2 kΩ to 1.35 V,
VID = ±100 mV
IOS
GBW
Gain bandwidth product
SR
Slew rate
Fm
MIN
TYP
2.55
2.62
Full range
2.53
25°C
Output swing
Output short-circuit
current
TA
25°C
0.083
Full range
VO = 0 V,
VID = 100 mV
Sourcing
VO = 2.7 V,
VID = −100 mV
Sinking
UNIT
0.11
0.13
25°C
2.65
Full range
2.64
25°C
Low level
MAX
V
2.675
0.025
Full range
0.04
0.045
25°C
20
Full range
15
25°C
18
Full range
12
30
25
mA
25°C
1.4
MHz
25°C
0.4
V/mS
Phase margin
25°C
70
°
Gain margin
25°C
7.5
dB
See Note 6
Vn
Equivalent input noise
voltage
f = 1 kHz, VIC = 0.5 V
25°C
57
nV/√Hz
In
Equivalent input noise
current
f = 1 kHz
25°C
0.082
pA/√Hz
THD
Total harmonic
distortion
f = 1 kHz, AV = 1, RL = 600 Ω,
VID = 1 Vp-p
25°C
0.022
%
Amp-to-amp isolation
See Note 7
25°C
123
dB
NOTES: 6. Number specified is the slower of the positive and negative slew rates.
7. Input referred, VCC+ = 5 V and RL = 100 kΩ connected to 2.5 V. Each amp is excited, in turn, with a 1-kHz signal to produce
VO = 3 Vp-p.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
electrical characteristics at TA = 25°C, VCC+ = 5 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and
RL > 1 MΩ (unless otherwise noted)
PARAMETER
TEST CONDITIONS
LMV931 (single)
VIO
αV
IO
Input offset voltage
LMV932 (dual),
LMV934 (quad)
Average temperature
coefficient of input offset
voltage
VIC = VCC+ − 0.8 V
IIB
Input bias current
TA
25°C
MIN
Input offset current
ICC
Supply current
(per channel)
kSVR
Common-mode rejection
ratio
Supply-voltage rejection
ratio
Common-mode input
voltage range
LMV931
AV
8
Largesignal
voltage
gain
LMV932,
LMV934
1
5.5
Full range
25°C
5.5
25°C
15
65
75
9
116
55
0.3 ≤ VIC ≤ 3.8 V,
4.6 V ≤ VIC ≤ 4.7 V
−40°C to
125°C
55
−0.2 V ≤ VIC ≤ 0 V,
5 V ≤ VIC ≤ 5.2 V
25°C
50
78
25°C
75
100
Full range
70
−40°C to 85°C
VCC− − 0.2
VCC−
−40°C to
125°C
VCC− + 0.3
RL = 600 Ω to 2.5 V,
VO = 0.2 V to 4.8 V
25°C
88
Full range
87
RL = 2 kΩ to 2.5 V,
VO = 0.2 V to 4.8 V
25°C
94
Full range
93
25°C
81
Full range
78
25°C
85
Full range
82
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
210
230
60
nA
25
40
25°C
RL = 2 kΩ to 2.5 V,
VO = 0.2 V to 4.8 V
35
25°C
−40°C to 85°C
RL = 600 Ω to 2.5 V,
VO = 0.2 V to 4.8 V
mV/°C
Full range
25°C
CMRR ≥ 50 dB
mV
7.5
Full range
1.8 V ≤ VCC+ ≤ 5 V,
VIC = 0.5 V
UNIT
6
25°C
25°C
VICR
4
Full range
0 ≤ VIC ≤ 3.8 V,
4.6 V ≤ VIC ≤ 5 V
CMRR
MAX
1
Full range
25°C
IIO
TYP
nA
mA
A
86
dB
dB
−0.2 to 5.3
VCC+ + 0.2
VCC+
V
VCC+ − 0.3
102
113
90
100
dB
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
electrical characteristics at TA= 25°C, VCC+ = 5 V, VCC− = 0 V, VIC = VCC+/2, VO = VCC+/2, and
RL > 1 MΩ (unless otherwise noted) (continued)
PARAMETER
TEST CONDITIONS
High
level
RL = 600 Ω to 2.5 V,
VID = ±100 mV
VO
Low level
Output swing
Output short-circuit
current
GBW
Gain bandwidth product
SR
Slew rate
Fm
MIN
TYP
4.855
4.89
Full range
4.835
25°C
High
level
RL = 2 kΩ to 2.5 V,
VID = ±100 mV
IOS
TA
25°C
0.12
Full range
VO = 0 V, VID = 100 mV
Sourcing
VO = 5 V,
VID = −100 mV
Sinking
UNIT
0.16
0.18
25°C
4.945
Full range
4.935
25°C
Low level
MAX
V
4.967
0.037
Full range
0.065
0.075
25°C
80
Full range
68
25°C
58
Full range
45
100
65
mA
25°C
1.5
MHz
25°C
0.42
V/mS
Phase margin
25°C
71
°
Gain margin
25°C
8
dB
See Note 6
Vn
Equivalent input noise
voltage
f = 1 kHz, VIC = 1 V
25°C
50
nV/√Hz
In
Equivalent input noise
current
f = 1 kHz
25°C
0.07
pA/√Hz
THD
Total harmonic distortion
f = 1 kHz, AV = 1, RL = 600 Ω,
VID = 1 Vp-p
25°C
0.022
%
Amp-to-amp isolation
See Note 7
25°C
123
dB
NOTES: 6. Number specified is the slower of the positive and negative slew rates.
7. Input referred, VCC+ = 5 V and RL = 100 kΩ connected to 2.5 V. Each amp is excited, in turn, with a 1-kHz signal to produce
VO = 3 Vp-p.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
SLEW RATE
vs
SUPPLY VOLTAGE
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
0.6
0.17
RL = 2 kΩ
AV = 1
VI = 1 Vpp
125°C
85°C
0.55
25°C
0.5
Falling Edge
0.13
0.11
Slew Rate − V/µs
Supply Current − mA
0.15
−40°C
0.09
0.07
0.05
0.4
0.35
0.03
0.01
−0.01
Rising Edge
0.45
0.3
0
1
2
3
4
5
0.25
Supply Voltage − V
0
1
2
3
4
5
Figure 1
Figure 2
SINK CURRENT
vs
OUTPUT VOLTAGE
SOURCE CURRENT
vs
OUTPUT VOLTAGE
1000
1000
5-V Sink
5-V Source
100
2.7-V Source
10
1.8-V Source
1
Sink Current − mA
Source Current − mA
100
2.7-V Sink
10
1
0.01
0.1
1
Output Voltage Referenced to V+ (V)
10
0.01
0.001
0.01
0.1
Figure 4
POST OFFICE BOX 655303
1
Output Voltage Referenced to V− (V)
Figure 3
10
1.8-V Sink
0.1
0.1
0.01
0.001
6
Supply Voltage − V
• DALLAS, TEXAS 75265
10
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
OUTPUT VOLTAGE SWING
vs
SUPPLY VOLTAGE
45
RL = 600 Ω
Voltage From Supply Voltage − mV Absolute
Voltage From Supply Voltage − mV Absolute
140
120
100
Negative Swing
80
60
Positive Swing
40
20
0
0
1
2
3
4
5
6
RL = 2 kΩ
40
35
Negative Swing
30
25
20
15
Positive Swing
10
5
0
0
1
2
Supply Voltage − V
3
4
5
6
Supply Voltage − V
Figure 6
Figure 5
SHORT-CIRCUIT CURRENT (SINK)
vs
TEMPERATURE
SHORT-CIRCUIT CURRENT (SOURCE)
vs
TEMPERATURE
160
160
5-V Source
140
5-V Sink
Short-Circuit Current (Source) − mA
Short-Circuit Current (Sink) − mA
140
120
100
80
60
2.7-V Sink
40
20
0
−40
1.8-V Sink
−20
120
100
80
60
2.7-V Source
40
20
0
20
40
60
80
100
120
1.8-V Source
0
−40
−20
0
20
40
60
80
100
120
Temperature − °C
Temperature − °C
Figure 7
Figure 8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
1.8-V FREQUENCY RESPONSE
vs
CL
Phase
Gain − dB
110
VS = 1.8 V
RL = 600 Ω
50
90
40
70
50
Gain
30
20
30
10
10
−10
CL = 0 pF
CL = 300 pF
CL = 1000 pF
0
−10
10k
Phase Margin − Deg
60
100k
1M
−30
10M
Frequency − Hz
Figure 9
Phase
50
Gain − dB
90
Gain
50
20
30
10
10
0
−10
10k
CL = 0 pF
CL = 300 pF
CL = 1000 pF
−10
1M
100k
Frequency − Hz
Figure 10
12
110
70
40
30
VS = 5 V
RL = 600 Ω
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
−30
10M
Phase Margin − Deg
60
5-V FREQUENCY RESPONSE
vs
CL
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
1.8-V FREQUENCY RESPONSE
vs
TEMPERATURE
60
110
Phase
50
Gain − dB
40
90
70
30
25°C
Gain
−40°C
20
25°C
85°C
85°C
125°C
10
50
30
Phase Margin − Deg
VS = 1.8 V
RL = 600 Ω
CL = 150 pF
10
125°C
0
−10
−40°C
−10
10k
100k
−30
10M
1M
Frequency − Hz
Figure 11
5-V FREQUENCY RESPONSE
vs
TEMPERATURE
110
VS = 5 V
RL = 600 Ω
CL = 150 pF
Phase
50
Gain − dB
40
90
70
30
25°C
Gain
20
85°C
125°C
85°C
125°C
10
−40°C
0
−10
10k
50
25°C
−40°C
100k
1M
30
Phase Margin − Deg
60
10
−10
−30
10M
Frequency − Hz
Figure 12
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
PSRR
vs
FREQUENCY
CMRR
vs
FREQUENCY
100
100
1.8 V
2.7 V
5V
90
90
+PSRR
80
CMRR − dB
−PSRR
Gain − dB
80
70
70
60
50
60
40
30
50
10
100
1k
10k
100k
10
100
10k
Frequency − Hz
Frequency − Hz
Figure 13
Figure 14
THD
vs
FREQUENCY
10
THD
vs
FREQUENCY
10
RL = 600 Ω
AV = 10
RL = 600 Ω
AV = 1
1
THD − %
1
THD − %
1k
0.1
0.01
0.1
0.01
1.8 V
2.7 V
5V
1.8 V
2.7 V
5V
0.001
10
100
1k
Frequency − Hz
10k
100k
0.001
10
Figure 15
14
100
1k
Frequency − Hz
Figure 16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10k
100k
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
SMALL-SIGNAL NONINVERTING RESPONSE
0.25
SMALL-SIGNAL NONINVERTING RESPONSE
0.1
VS = 1.8 V
RL = 2 kΩ
0.25
0.05
0.2
0.1
VS = 2.7 V
RL = 2 kΩ
Input
Input
0.2
−0.1
−0.15
0
Output
0.05
−0.1
−0.15
0
−0.2
−0.05
−0.05
−0.25
−0.1
−0.2
−0.25
−0.1
0.25 µs/div"
0.25 µs/div"
Figure 17
Figure 18
SMALL-SIGNAL NONINVERTING RESPONSE
VS = 5 V
RL = 2 kΩ
LARGE-SIGNAL NONINVERTING RESPONSE
0.1
4.5
0.05
3.6
0
2.7
0
1.8
−0.9
0.15
−0.05
0.1
Output
0.05
−0.1
−0.15
0
−0.2
−0.05
−0.25
−0.1
0.25 µs/div"
Output Voltage − V
Input
0.2
Input Voltage − V
0.25
1.8
VS = 1.8 V
RL = 2 kΩ
AV = 1
Input
0.9
Output
0.9
−1.8
0
−2.7
−0.9
−3.6
Input Voltage − V
0.05
−0.05
0.1
Input Voltage − V
Output
0
0.15
Output Voltage − V
Output Voltage − V
−0.05
0.1
Input Voltage − V
0
0.15
Output Voltage − V
0.05
−4.5
−1.8
10 µs/div"
Figure 19
Figure 20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
LARGE-SIGNAL NONINVERTING RESPONSE
VS = 2.7 V
RL = 2 kΩ
AV = 1
Input
1.35
10
0
7.5
−1.35
2.7
Output
1.35
−2.7
0
Output Voltage − V
4.05
Output Voltage − V
12.5
Input Voltage − V
5.4
LARGE-SIGNAL NONINVERTING RESPONSE
2.7
0
−2.5
Output
−7.5
0
−10
−5
Figure 21
Figure 22
OFFSET VOLTAGE
vs
COMMON-MODE RANGE
1
1
VS = 1.8 V
VS = 2.7 V
0.5
0
0
−0.5
−0.5
VIO − mV
0.5
VIO − mV
−12.5
10 µs/div"
OFFSET VOLTAGE
vs
COMMON-MODE RANGE
−1
−2
−2
125°C
85°C
25°C
−40°C
−2.5
−3
−0.4
−1
−1.5
−1.5
0
0.4
125°C
85°C
25°C
−40°C
−2.5
0.8
1.2
1.6
2
2.4
−3
−0.4
0.1
VIC − V
0.6
1.1
1.6
VIC − V
Figure 24
Figure 23
16
−5
2.5
−6.75
10 µs/div"
2.5
−2.5
−5.4
−2.7
Input
5
−4.05
−1.35
5
VS = 5 V
RL = 2 kΩ
AV = 1
Input Voltage − V
6.75
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2.1
2.6
3.1
SLOS441F − AUGUST 2004 − REVISED FEBRUARY 2005
TYPICAL PERFORMANCE CHARACTERISTICS
Unless Otherwise Specified, VCC+ = 5 V, Single Supply, TA = 255C
OFFSET VOLTAGE
vs
COMMON-MODE RANGE
1
VS = 5 V
0.5
VIO − mV
0
−0.5
−1
−1.5
−2
−2.5
−3
−0.4
125°C
85°C
25°C
−40°C
0.6
1.6
2.6
3.6
4.6
5.6
VIC − V
Figure 25
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
PACKAGE OPTION ADDENDUM
www.ti.com
5-Dec-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
LMV931IDBVR
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV931IDBVRE4
ACTIVE
SOT-23
DBV
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV931IDCKR
ACTIVE
SC70
DCK
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV931IDCKRE4
ACTIVE
SC70
DCK
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV931IDCKRG4
ACTIVE
SC70
DCK
5
3000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV932ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV932IDE4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV932IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV932IDGKR
ACTIVE
MSOP
DGK
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV932IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV932IDRE4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV932IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934ID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934IDE4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934IDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934IDRE4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934IPW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934IPWE4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934IPWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
LMV934IPWRE4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Lead/Ball Finish
MSL Peak Temp (3)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS &
http://www.ti.com/productcontent for the latest availability information and additional product content details.
Addendum-Page 1
no
Sb/Br)
-
please
check
PACKAGE OPTION ADDENDUM
www.ti.com
5-Dec-2005
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated