TI SN74HC393DR

SN54HC393, SN74HC393
DUAL 4-BIT BINARY COUNTERS
SCLS143D – DECEMBER 1982 – REVISED JULY 2003
D
D
Wide Operating Voltage Range of 2 V to 6 V
Outputs Can Drive Up To 10 LSTTL Loads
Low Power Consumption, 80-µA Max ICC
Typical tpd = 13 ns
±4-mA Output Drive at 5 V
Low Input Current of 1 µA Max
Dual 4-Bit Binary Counters With Individual
Clocks
Direct Clear for Each 4-Bit Counter
Can Significantly Improve System
Densities by Reducing Counter Package
Count by 50 Percent
SN54HC393 . . . J OR W PACKAGE
SN74HC393 . . . D, DB, N, NS, OR PW PACKAGE
(TOP VIEW)
1CLK
1CLR
1QA
1QB
1QC
1QD
GND
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VCC
2CLK
2CLR
2QA
2QB
2QC
2QD
SN54HC393 . . . FK PACKAGE
(TOP VIEW)
1CLR
1CLK
NC
VCC
2CLK
D
D
D
D
D
D
D
description/ordering information
The ’HC393 devices contain eight flip-flops and
additional gating to implement two individual 4-bit
counters in a single package. These devices
comprise two independent 4-bit binary counters,
each having a clear (CLR) and a clock (CLK)
input. N-bit binary counters can be implemented
with each package, providing the capability of
divide by 256. The ’HC393 devices have parallel
outputs from each counter stage so that any
submultiple of the input count frequency is
available for system timing signals.
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
2CLR
NC
2QA
NC
2QB
1QD
GND
NC
2QD
2QC
1QA
NC
1QB
NC
1QC
NC – No internal connection
ORDERING INFORMATION
PACKAGE†
TA
PDIP – N
SOIC – D
–40°C
–40
C to 85
85°C
C
Tube of 25
SN74HC393N
Tube of 50
SN74HC393D
Reel of 2500
SN74HC393DR
TOP-SIDE
MARKING
SN74HC393N
HC393
Reel of 250
SN74HC393DT
SOP – NS
Reel of 2000
SN74HC393NSR
HC393
SSOP – DB
Reel of 2000
SN74HC393DBR
HC393
Tube of 90
SN74HC393PW
Reel of 2000
SN74HC393PWR
TSSOP – PW
–55°C
125°C
–55 C to 125
C
ORDERABLE
PART NUMBER
HC393
Reel of 250
SN74HC393PWT
CDIP – J
Tube of 25
SNJ54HC393J
SNJ54HC393J
CFP – W
Tube of 150
SNJ54HC393W
SNJ54HC393W
LCCC – FK
Tube of 55
SNJ54HC393FK
SNJ54HC393FK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54HC393, SN74HC393
DUAL 4-BIT BINARY COUNTERS
SCLS143D – DECEMBER 1982 – REVISED JULY 2003
FUNCTION TABLE COUNT SEQUENCE
(each counter)
COUNT
OUTPUTS
QD
QC
QB
0
L
L
L
QA
L
1
L
L
L
H
2
L
L
H
L
3
L
L
H
H
4
L
H
L
L
5
L
H
L
H
6
L
H
H
L
7
L
H
H
H
8
H
L
L
L
H
9
H
L
L
10
H
L
H
L
11
H
L
H
H
12
H
H
L
L
13
H
H
L
H
14
H
H
H
L
15
H
H
H
H
logic diagram, each counter (positive logic)
R
CLR
QA
CLK
T
R
QB
T
R
QC
T
R
QD
T
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54HC393, SN74HC393
DUAL 4-BIT BINARY COUNTERS
SCLS143D – DECEMBER 1982 – REVISED JULY 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input clamp current, IIK (VI < 0 or VI > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN54HC393
VCC
VIH
Supply voltage
High-level input voltage
VCC = 2 V
VCC = 4.5 V
VCC = 6 V
VCC = 2 V
VIL
VI
VO
∆t/∆v
t/ v†
Low-level input voltage
MAX
2
5
6
MIN
NOM
MAX
2
5
6
1.5
1.5
3.15
3.15
4.2
4.2
0
Output voltage
Input transition rise/fall time
NOM
VCC = 4.5 V
VCC = 6 V
Input voltage
SN74HC393
MIN
0
VCC = 2 V
VCC = 4.5 V
VCC = 6 V
0.5
1.35
1.35
1.8
1.8
0
0
V
V
0.5
VCC
VCC
UNIT
VCC
VCC
1000
1000
500
500
400
400
V
V
V
ns
TA
Operating free-air temperature
–55
125
–40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
† If this device is used in the threshold region (from VILmax = 0.5 V to VIHmin = 1.5 V), there is a potential to go into the wrong state from induced
grounding, causing double clocking. Operating with the inputs at tt = 1000 ns and VCC = 2 V does not damage the device; however, functionally,
the CLK inputs are not ensured while in the shift, count, or toggle operating modes.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54HC393, SN74HC393
DUAL 4-BIT BINARY COUNTERS
SCLS143D – DECEMBER 1982 – REVISED JULY 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
IOH = –20 µA
A
VOH
VI = VIH or VIL
IOH = –4 mA
IOH = –5.2 mA
IOL = 20 µA
A
VOL
VI = VIH or VIL
IOL = 4 mA
IOL = 5.2 mA
II
ICC
VI = VCC or 0
VI = VCC or 0,
Ci
IO = 0
MIN
TA = 25°C
TYP
MAX
SN54HC393
MIN
MAX
SN74HC393
MIN
2V
1.9
1.998
1.9
1.9
4.5 V
4.4
4.499
4.4
4.4
6V
5.9
5.999
5.9
5.9
4.5 V
3.98
4.3
3.7
3.84
6V
5.48
5.8
5.2
MAX
UNIT
V
5.34
2V
0.002
0.1
0.1
0.1
4.5 V
0.001
0.1
0.1
0.1
6V
0.001
0.1
0.1
0.1
4.5 V
0.17
0.26
0.4
0.33
6V
0.15
0.26
0.4
0.33
6V
±0.1
±100
±1000
±1000
nA
8
160
80
µA
3
10
10
10
pF
6V
2 V to 6 V
V
timing requirements over recommended operating free-air temperature range (unless otherwise
noted)
VCC
fclock
Clock frequency
CLK high or low
tw
Pulse duration
CLR high
tsu
4
Setup time, CLR inactive
POST OFFICE BOX 655303
TA = 25°C
MIN
MAX
SN54HC393
MIN
MAX
SN74HC393
MIN
MAX
2V
6
4.2
5
4.5 V
31
21
25
6V
36
25
28
2V
80
120
100
4.5 V
16
24
20
6V
14
20
18
2V
80
120
100
4.5 V
16
24
20
6V
14
20
18
2V
25
25
25
4.5 V
5
5
5
6V
5
5
5
• DALLAS, TEXAS 75265
UNIT
MHz
ns
ns
SN54HC393, SN74HC393
DUAL 4-BIT BINARY COUNTERS
SCLS143D – DECEMBER 1982 – REVISED JULY 2003
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
TA = 25°C
TYP
MAX
SN54HC393
SN74HC393
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCC
2V
6
10
4.2
5
fmax
CLK
QA
4.5 V
31
50
21
25
6V
36
60
25
28
QA
QB
tpd
CLK
QC
QD
tPHL
tt
CLR
Any
Any
MIN
MIN
MAX
MIN
MAX
UNIT
MHz
2V
50
120
180
150
4.5 V
15
24
36
30
6V
13
20
31
26
2V
72
190
285
240
4.5 V
22
38
57
47
6V
18
32
48
40
2V
91
240
360
300
4.5 V
28
48
72
60
6V
22
41
61
51
2V
100
290
430
360
4.5 V
32
58
87
72
6V
24
50
74
62
2V
45
165
250
205
4.5 V
17
33
49
41
6V
14
28
42
35
2V
28
75
110
95
4.5 V
8
15
22
19
6V
6
13
19
16
ns
ns
ns
operating characteristics, TA = 25°C
PARAMETER
Cpd
TEST CONDITIONS
Power dissipation capacitance per counter
POST OFFICE BOX 655303
No load
• DALLAS, TEXAS 75265
TYP
40
UNIT
pF
5
SN54HC393, SN74HC393
DUAL 4-BIT BINARY COUNTERS
SCLS143D – DECEMBER 1982 – REVISED JULY 2003
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
VCC
High-Level
Pulse
Test
Point
50%
50%
0V
tw
CL = 50 pF
(see Note A)
VCC
Low-Level
Pulse
50%
50%
0V
LOAD CIRCUIT
VOLTAGE WAVEFORMS
PULSE DURATIONS
Input
VCC
50%
50%
0V
tPLH
Reference
Input
VCC
50%
In-Phase
Output
0V
tsu
Data
Input 50%
10%
90%
tr
tPHL
VCC
50%
10% 0 V
90%
90%
tr
th
90%
50%
10%
tPHL
Out-of-Phase
Output
90%
VOLTAGE WAVEFORMS
SETUP AND HOLD AND INPUT RISE AND FALL TIMES
tPLH
50%
10%
tf
tf
VOH
50%
10%
VOL
tf
50%
10%
90%
VOH
VOL
tr
VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES
NOTES: A. CL includes probe and test-fixture capacitance.
B. Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators having the following
characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr = 6 ns, tf = 6 ns.
C. For clock inputs, fmax is measured when the input duty cycle is 50%.
D. The outputs are measured one at a time with one input transition per measurement.
E. tPLH and tPHL are the same as tpd.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
14-Nov-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
84100012A
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Level-NC-NC-NC
8410001CA
ACTIVE
CDIP
J
14
1
TBD
Call TI
Level-NC-NC-NC
8410001DA
ACTIVE
CFP
W
14
1
TBD
Call TI
Level-NC-NC-NC
JM38510/66309BCA
ACTIVE
CDIP
J
14
1
TBD
Call TI
Level-NC-NC-NC
SN54HC393J
ACTIVE
CDIP
J
14
1
TBD
Call TI
Level-NC-NC-NC
SN74HC393D
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393DBR
ACTIVE
SSOP
DB
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393DBRE4
ACTIVE
SSOP
DB
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393DE4
ACTIVE
SOIC
D
14
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393DR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393DRE4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393DT
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393DTE4
ACTIVE
SOIC
D
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393N
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
TBD
Call TI
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
50
SN74HC393N3
OBSOLETE
PDIP
N
14
SN74HC393NE4
ACTIVE
PDIP
N
14
SN74HC393NSR
ACTIVE
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393NSRE4
ACTIVE
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393PW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393PWE4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393PWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393PWRE4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393PWT
ACTIVE
TSSOP
PW
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74HC393PWTE4
ACTIVE
TSSOP
PW
14
250
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SNJ54HC393FK
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Level-NC-NC-NC
SNJ54HC393J
ACTIVE
CDIP
J
14
1
TBD
Call TI
Level-NC-NC-NC
SNJ54HC393W
ACTIVE
CFP
W
14
1
TBD
Call TI
Level-NC-NC-NC
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
Addendum-Page 1
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
14-Nov-2005
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated