TI SN74LVT125PWR

SCBS133F − MAY 1992 − REVISED OCTOBER 2003
D Supports Mixed-Mode Signal Operation
D
D
D
D
D
D
(5-V Input and Output Voltages With
3.3-V VCC )
Supports Unregulated Battery Operation
Down to 2.7 V
Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C
Ioff Supports Partial-Power-Down Mode
Operation
Bus-Hold Data Inputs Eliminate the Need
for External Pullup Resistors
Latch-Up Performance Exceeds 500 mA
Per JEDEC Standard JESD-17
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
D, DB, NS, OR PW PACKAGE
(TOP VIEW)
1OE
1A
1Y
2OE
2A
2Y
GND
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VCC
4OE
4A
4Y
3OE
3A
3Y
description/ordering information
This bus buffer is designed specifically for low-voltage (3.3-V) VCC operation, but with the capability to provide
a TTL interface to a 5-V system environment.
The SN74LVT125 features independent line drivers with 3-state outputs. Each output is in the high-impedance
state when the associated output-enable (OE) input is high.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
PACKAGE†
TA
TOP-SIDE
MARKING
Tube
SN74LVT125D
Tape and reel
SN74LVT125DR
SOP − NS
Tape and reel
SN74LVT125NSR
LVT125
SSOP − DB
Tape and reel
SN74LVT125DBR
LX125
Tube
SN74LVT125PW
Tape and reel
SN74LVT125PWR
SOIC − D
−40°C to 85°C
ORDERABLE
PART NUMBER
TSSOP − PW
LVT125
LX125
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
!"#$ % &'!!($ #% )'*+&#$ ,#$(
!,'&$% &!" $ %)(&&#$% )(! $-( $(!"% (.#% %$!'"($%
%$#,#!, /#!!#$0 !,'&$ )!&(%%1 ,(% $ (&(%%#!+0 &+',(
$(%$1 #++ )#!#"($(!%
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCBS133F − MAY 1992 − REVISED OCTOBER 2003
FUNCTION TABLE
(each buffer)
INPUTS
OE
A
OUTPUT
Y
L
H
H
L
L
L
H
X
Z
logic diagram (positive logic)
1OE
1A
2OE
2A
3OE
3A
4OE
4A
1
2
3
1Y
4
5
6
2Y
10
9
8
3Y
13
12
11
4Y
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high state or power-off state, VO (see Note 1) . . . . −0.5 V to 7 V
Current into any output in the low state, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Current into any output in the high state, IO (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 3): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and VO > VCC.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCBS133F − MAY 1992 − REVISED OCTOBER 2003
recommended operating conditions (see Note 4)
MIN
MAX
2.7
3.6
UNIT
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
Input voltage
5.5
V
IOH
IOL
High-level output current
−32
mA
∆t /∆v
Input transition rise or fall rate
High-level input voltage
2
V
0.8
Low-level output current
Outputs enabled
V
V
64
mA
10
ns / V
TA
Operating free-air temperature
−40
85
°C
NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
TEST CONDITIONS
MIN
TYP†
MAX
UNIT
−1.2
V
VCC = 2.7 V,
VCC = MIN to MAX‡,
II = −18 mA
IOH = −100 µA
VCC = 2.7 V,
VCC = 3 V
IOH = − 8 mA
IOH = − 32 mA
IOL = 100 µA
IOL = 24 mA
0.2
VCC = 2.7 V
IOL = 16 mA
IOL = 32 mA
0.4
VCC = 3 V
IOL = 64 mA
VI = 5.5 V
0.55
VCC = 0 or MAX‡,
VCC = 3.6 V
VI = VCC or GND
VI = VCC
Ioff
VCC = 0,
VI = 0
VI or VO = 0 to 4.5 V
II(hold)
VCC = 3 V
VI = 0.8 V
VI = 2 V
IOZH
IOZL
VCC = 3.6 V,
VCC = 3.6 V,
VO = 3 V
VO = 0.5 V
VOH
VOL
II
VCC−0.2
2.4
0.5
V
0.5
10
±1
Control inputs
1
Data inputs
75
Data inputs
VCC = 3.6 V,
VI = VCC or GND
IO = 0,
∆ ICC§
VCC = 3 V to 3.6 V,
One input at VCC − 0.6 V,
Ci
VI = 3 V or 0
VO = 3 V or 0
Outputs low
Outputs disabled
µA
A
−5
±100
Outputs high
ICC
V
2
µA
µA
A
−75
0.12
5
µA
−5
µA
0.19
4.5
7
0.12
0.19
Other inputs at VCC
or GND
0.2
mA
mA
4
pF
Co
8
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
pF
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCBS133F − MAY 1992 − REVISED OCTOBER 2003
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A
Y
tPZH
tPZL
OE
Y
tPHZ
tPLZ
OE
Y
PARAMETER
† All typical values are at VCC = 3.3 V, TA = 25°C.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VCC = 3.3 V
± 0.3 V
MIN TYP†
MAX
VCC = 2.7 V
MIN
UNIT
MAX
1
2.7
4
4.5
1
2.9
3.9
4.9
1
3.4
4.7
6
1.1
3.4
4.7
6.5
1.8
3.7
5.1
5.7
1.3
2.6
4.5
4
ns
ns
ns
SCBS133F − MAY 1992 − REVISED OCTOBER 2003
PARAMETER MEASUREMENT INFORMATION
6V
S1
500 Ω
From Output
Under Test
Open
GND
CL = 50 pF
(see Note A)
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
500 Ω
2.7 V
LOAD CIRCUIT FOR OUTPUTS
1.5 V
Timing Input
0V
tw
tsu
2.7 V
Input
1.5 V
th
2.7 V
1.5 V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
Input
1.5 V
0V
VOH
1.5 V
Output
1.5 V
VOL
tPLH
tPHL
VOH
Output
1.5 V
1.5 V
VOL
1.5 V
1.5 V
0V
tPZL
tPHL
tPLH
2.7 V
Output
Control
1.5 V
tPLZ
Output
Waveform 1
S1 at 6 V
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
tPZH
3V
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74LVT125D
NRND
SOIC
D
14
SN74LVT125DBLE
OBSOLETE
SSOP
DB
14
SN74LVT125DBR
NRND
SSOP
DB
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125DBRG4
NRND
SSOP
DB
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125DG4
NRND
SOIC
D
14
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125DR
NRND
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125DRG4
NRND
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125NSR
NRND
SO
NS
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125PW
NRND
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125PWG4
NRND
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125PWLE
OBSOLETE
TSSOP
PW
14
SN74LVT125PWR
NRND
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVT125PWRG4
NRND
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
50
Green (RoHS &
no Sb/Br)
TBD
50
TBD
Lead/Ball Finish
CU NIPDAU
Call TI
Call TI
MSL Peak Temp (3)
Level-1-260C-UNLIM
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2006
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated