MC68HC908LD60 Technical Data M68HC08 Microcontrollers Rev. 1.1 MC68HC908LD60/D August 16, 2005 freescale.com MC68HC908LD60 Technical Data Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale was negligent regarding the design or manufacture of the part. Freescale, Inc. is an Equal Opportunity/Affirmative Action Employer. © Freescale, Inc., 2001 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Technical Data 3 Technical Data Technical Data 4 MC68HC908LD60 — Rev. 1.1 Technical Data Freescale Semiconductor Technical Data — MC68HC908LD60 List of Sections Section 1. General Description . . . . . . . . . . . . . . . . . . . . 31 Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Section 3. Random-Access Memory (RAM) . . . . . . . . . . 53 Section 4. FLASH Memory . . . . . . . . . . . . . . . . . . . . . . . . 55 Section 5. Configuration Register (CONFIG) . . . . . . . . . 67 Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 69 Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . . 89 Section 8. Clock Generator Module (CGM) . . . . . . . . . . . 93 Section 9. System Integration Module (SIM) . . . . . . . . 107 Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 131 Section 11. Timer Interface Module (TIM) . . . . . . . . . . . 143 Section 12. Pulse Width Modulator (PWM) . . . . . . . . . . 165 Section 13. Analog-to-Digital Converter (ADC) . . . . . . 171 Section 14. Multi-Master IIC Interface (MMIIC) . . . . . . . 181 Section 15. DDC12AB Interface . . . . . . . . . . . . . . . . . . . 195 Section 16. Sync Processor . . . . . . . . . . . . . . . . . . . . . . 211 Section 17. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 231 Section 18. External Interrupt (IRQ) . . . . . . . . . . . . . . . 251 Section 19. Keyboard Interrupt Module (KBI). . . . . . . . 257 Section 20. Computer Operating Properly (COP) . . . . 265 Section 21. Break Module (BRK) . . . . . . . . . . . . . . . . . . 271 Section 22. Electrical Specifications. . . . . . . . . . . . . . . 279 Section 23. Mechanical Specifications . . . . . . . . . . . . . 287 Section 24. Ordering Information . . . . . . . . . . . . . . . . . 289 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data List of Sections 5 List of Sections Technical Data 6 MC68HC908LD60 — Rev. 1.1 List of Sections Freescale Semiconductor Technical Data — MC68HC908LD60 Table of Contents Section 1. General Description 1.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Section 2. Memory Map 2.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 39 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Section 3. Random-Access Memory (RAM) 3.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 Section 4. FLASH Memory 4.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Table of Contents 7 Table of Contents 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.4 FLASH Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.1 13k-Byte FLASH Even Byte Write Buffer (13KEBUF) . . . . . 59 4.5 FLASH Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .61 4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.8.1 FLASH Block Protect Registers . . . . . . . . . . . . . . . . . . . . . . 64 Section 5. Configuration Register (CONFIG) 5.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 5.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 Section 6. Central Processor Unit (CPU) 6.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Technical Data 8 MC68HC908LD60 — Rev. 1.1 Table of Contents Freescale Semiconductor Table of Contents 6.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 Section 7. Oscillator (OSC) 7.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . . .90 7.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . 91 7.4.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . 91 7.4.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . 91 7.4.4 External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . . . 91 7.4.5 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.6 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 92 Section 8. Clock Generator Module (CGM) 8.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 8.4.1 Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 8.5 CGM I/O Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.5.1 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 97 8.5.2 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 97 8.5.3 PLL Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . . 97 8.5.4 Crystal Output Frequency Signal (OSCXCLK). . . . . . . . . . . 98 8.5.5 Crystal Reference Frequency Signal (OSCRCLK). . . . . . . . 98 8.5.6 CGM Base Clock Output (DCLK1) . . . . . . . . . . . . . . . . . . . . 98 8.5.7 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . . 98 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Table of Contents 9 Table of Contents 8.6 CGM I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.6.1 PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . 99 8.6.2 PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . . 100 8.6.3 PLL Programming Register (PPG) . . . . . . . . . . . . . . . . . . . 102 8.6.4 H & V Sync Output Control Register (HVOCR) . . . . . . . . . 104 8.7 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 8.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 8.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 8.9 CGM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 106 Section 9. System Integration Module (SIM) 9.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 111 9.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.3.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 111 9.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 112 9.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 113 9.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 9.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 115 9.4.2.3 Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . .115 9.4.2.4 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9.4.2.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .116 9.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 116 9.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 116 9.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 117 9.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 9.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Technical Data 10 MC68HC908LD60 — Rev. 1.1 Table of Contents Freescale Semiconductor Table of Contents 9.6.1.2 9.6.2 9.6.2.1 9.6.2.2 9.6.3 9.6.4 9.6.5 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . 121 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 123 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 123 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 124 9.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 9.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 9.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.8.1 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . 128 9.8.2 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . 129 9.8.3 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . 130 Section 10. Monitor ROM (MON) 10.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 Section 11. Timer Interface Module (TIM) 11.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Table of Contents 11 Table of Contents 11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 148 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .149 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 149 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 150 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 151 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . 155 11.10.2 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . 157 11.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . . 158 11.10.4 TIM Channel Status and Control Registers (TSC0:TSC1) . 159 11.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . . 162 Section 12. Pulse Width Modulator (PWM) 12.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 12.4 PWM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.1 PWM Data Registers 0 to 7 (0PWM–7PWM). . . . . . . . . . . 167 12.4.2 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . . 168 Technical Data 12 MC68HC908LD60 — Rev. 1.1 Table of Contents Freescale Semiconductor Table of Contents Section 13. Analog-to-Digital Converter (ADC) 13.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .171 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 13.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 13.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.7.1 ADC Analog Power Pin (VDDA). . . . . . . . . . . . . . . . . . . . . 176 13.7.2 ADC Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . .176 13.7.3 ADC Voltage Reference High Pin (VRH) . . . . . . . . . . . . . . 176 13.7.4 ADC Voltage Reference Low Pin (VRL). . . . . . . . . . . . . . . 176 13.7.5 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .177 13.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 13.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 179 Section 14. Multi-Master IIC Interface (MMIIC) 14.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14.5 Multi-Master IIC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Table of Contents 13 Table of Contents 14.5.1 14.5.2 14.5.3 14.5.4 14.5.5 14.5.6 14.6 Multi-Master IIC Address Register (MMADR) . . . . . . . . . . 184 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . . 185 Multi-Master IIC Master Control Register (MIMCR) . . . . . . 186 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . 188 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . 190 Multi-Master IIC Data Receive Register (MMDRR) . . . . . . 191 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 192 Section 15. DDC12AB Interface 15.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.5 DDC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.6 DDC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.6.1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . . 198 15.6.2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . . 199 15.6.3 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . . 200 15.6.4 DDC Master Control Register (DMCR) . . . . . . . . . . . . . . . 201 15.6.5 DDC Status Register (DSR) . . . . . . . . . . . . . . . . . . . . . . . . 204 15.6.6 DDC Data Transmit Register (DDTR) . . . . . . . . . . . . . . . . 206 15.6.7 DDC Data Receive Register (DDRR) . . . . . . . . . . . . . . . . . 207 15.7 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 208 Section 16. Sync Processor 16.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 16.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 16.5 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 16.5.1 Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Technical Data 14 MC68HC908LD60 — Rev. 1.1 Table of Contents Freescale Semiconductor Table of Contents 16.5.1.1 16.5.1.2 16.5.1.3 16.5.2 16.5.3 16.5.4 16.5.5 Hsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 216 Vsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 216 Composite Sync Polarity Detection . . . . . . . . . . . . . . . . 216 Sync Signal Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Polarity Controlled HOUT and VOUT Outputs . . . . . . . . . . 217 Clamp Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Low Vertical Frequency Detect . . . . . . . . . . . . . . . . . . . . . 219 16.6 Sync Processor I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . 219 16.6.1 Sync Processor Control & Status Register (SPCSR). . . . . 219 16.6.2 Sync Processor Input/Output Control Register (SPIOCR) . 221 16.6.3 Vertical Frequency Registers (VFRs). . . . . . . . . . . . . . . . . 223 16.6.4 Hsync Frequency Registers (HFRs). . . . . . . . . . . . . . . . . . 225 16.6.5 Sync Processor Control Register 1 (SPCR1). . . . . . . . . . . 227 16.6.6 H & V Sync Output Control Register (HVOCR) . . . . . . . . . 228 16.7 System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 Section 17. Input/Output (I/O) Ports 17.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . 236 17.3.3 Port A Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 17.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 17.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 239 17.4.3 Port B Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 17.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 17.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . 242 17.5.3 Port C Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 17.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 17.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 245 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Table of Contents 15 Table of Contents 17.6.3 Port D Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 17.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . 249 Section 18. External Interrupt (IRQ) 18.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .251 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 18.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 18.5 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 255 18.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 256 Section 19. Keyboard Interrupt Module (KBI) 19.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .257 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 19.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 19.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 19.6 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 19.7 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 19.7.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 262 19.7.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 263 19.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 19.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263 19.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263 19.9 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 264 Technical Data 16 MC68HC908LD60 — Rev. 1.1 Table of Contents Freescale Semiconductor Table of Contents Section 20. Computer Operating Properly (COP) 20.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 20.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 20.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 20.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 20.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 20.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 20.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 20.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 20.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 20.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 20.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 268 20.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 20.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 20.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 20.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 20.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 20.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 20.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 270 Section 21. Break Module (BRK) 21.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 21.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 274 21.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .274 21.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 274 21.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 274 21.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Table of Contents 17 Table of Contents 21.5.1 21.5.2 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 21.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 21.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 275 21.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 276 21.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 276 21.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 278 Section 22. Electrical Specifications 22.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .279 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 22.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 280 22.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 281 22.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 22.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 282 22.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 22.8 TImer Interface Module Characteristics . . . . . . . . . . . . . . . . . 283 22.9 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 22.10 ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 284 22.11 Sync Processor Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 22.12 DDC12AB/MMIIC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 22.12.1 DDC12AB/MMIIC Interface Input Signal Timing . . . . . . . . 285 22.12.2 DDC12AB/MMIIC Interface Output Signal Timing . . . . . . . 285 22.13 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 286 Section 23. Mechanical Specifications 23.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .287 23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 23.3 64-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 288 Technical Data 18 MC68HC908LD60 — Rev. 1.1 Table of Contents Freescale Semiconductor Table of Contents Section 24. Ordering Information 24.1 Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289 24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 24.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Table of Contents 19 Table of Contents Technical Data 20 MC68HC908LD60 — Rev. 1.1 Table of Contents Freescale Semiconductor Technical Data — MC68HC908LD60 List of Figures Figure Title 1-1 1-2 MC68HC908LD60 MCU Block Diagram. . . . . . . . . . . . . . . . . . 34 64-Pin QFP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2-1 2-2 Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .43 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 56 47,616-byte FLASH Control Register (FLCR) . . . . . . . . . . . . . 57 13k-byte FLASH Control Register (FLCR1) . . . . . . . . . . . . . . . 57 13k-Byte FLASH Even Byte Write Buffer (13KEBUF) . . . . . . . 59 FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 63 47,616-byte FLASH Block Protect Register (FLBPR). . . . . . . . 64 13k-byte FLASH Block Protect Register 1 (FLBPR1). . . . . . . . 64 FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .65 5-1 Configuration Register (CONFIG). . . . . . . . . . . . . . . . . . . . . . . 68 6-1 6-2 6-3 6-4 6-5 6-6 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73 Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 74 7-1 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . . .90 8-1 8-2 8-3 8-4 CGM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 CGM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . 96 PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . . . . 101 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Page Technical Data List of Figures 21 List of Figures Figure Title 8-5 8-6 PLL Programming Register (PPG) . . . . . . . . . . . . . . . . . . . . . 102 H&V Sync Output Control Register (HVOCR) . . . . . . . . . . . . 104 9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18 9-19 9-20 9-21 SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .110 OSC Clock Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113 Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Interrupt Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Interrupt Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 120 Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . 123 Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . 123 Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 126 Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 126 Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 127 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 128 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 129 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 130 10-1 10-2 10-3 10-4 10-5 Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Sample Monitor Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . 137 Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137 Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 11-1 11-2 11-3 11-4 11-5 TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 150 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 155 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . . . 157 TIM Counter Modulo Registers (TMODH:TMODL). . . . . . . . . 158 Technical Data 22 Page MC68HC908LD60 — Rev. 1.1 List of Figures Freescale Semiconductor List of Figures Figure Title Page 11-6 TIM Channel Status and Control Registers (TSC0:TSC1) . . . 159 11-7 CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162 11-8 TIM Channel Registers (TCH0H/L:TCH1H/L). . . . . . . . . . . . . 163 12-1 12-2 12-3 12-4 PWM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 166 PWM Data Registers 0 to 7 (0PWM–7PWM) . . . . . . . . . . . . . 167 PWM Control Register (PWMCR). . . . . . . . . . . . . . . . . . . . . . 168 8-Bit PWM Output Waveforms . . . . . . . . . . . . . . . . . . . . . . . . 169 13-1 13-2 13-3 13-4 13-5 ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 172 ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 177 ADC Data Register (ADR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 ADC Input Clock Register (ADICLK) . . . . . . . . . . . . . . . . . . . 179 14-1 14-2 14-3 14-4 14-5 14-6 14-7 14-8 MMIIC I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . 183 Multi-Master IIC Address Register (MMADR). . . . . . . . . . . . . 184 Multi-Master IIC Control Register (MMCR). . . . . . . . . . . . . . . 185 Multi-Master IIC Master Control Register (MIMCR) . . . . . . . . 186 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . . . 188 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . . . 190 Multi-Master IIC Data Receive Register (MMDRR) . . . . . . . . 191 Data Transfer Sequences for Master/Slave Transmit/Receive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 193 15-1 15-2 15-3 15-4 15-5 15-6 15-7 15-8 15-9 DDC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 197 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . . . .198 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . . . . 199 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . . . . 200 DDC Master Control Register (DMCR). . . . . . . . . . . . . . . . . . 201 DDC Status Register (DSR) . . . . . . . . . . . . . . . . . . . . . . . . . . 204 DDC Data Transmit Register (DDTR). . . . . . . . . . . . . . . . . . . 206 DDC Data Receive Register (DDRR) . . . . . . . . . . . . . . . . . . . 207 Data Transfer Sequences for Master/Slave Transmit/Receive Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 209 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data List of Figures 23 List of Figures Figure Title Page 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 16-10 16-11 Sync Processor I/O Register Summary . . . . . . . . . . . . . . . . . 214 Sync Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . .215 Clamp Pulse Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 218 Sync Processor Control & Status Register (SPCSR) . . . . . . . 219 Sync Processor Input/Output Control Register (SPIOCR) . . . 221 Vertical Frequency High Register . . . . . . . . . . . . . . . . . . . . . . 223 Vertical Frequency Low Register . . . . . . . . . . . . . . . . . . . . . . 223 Hsync Frequency High Register . . . . . . . . . . . . . . . . . . . . . . . 225 Hsync Frequency Low Register . . . . . . . . . . . . . . . . . . . . . . .225 Sync Processor Control Register 1 (SPCR1) . . . . . . . . . . . . . 227 H&V Sync Output Control Register (HVOCR) . . . . . . . . . . . . 228 17-1 17-2 17-3 17-4 17-5 17-6 17-7 17-8 17-9 17-10 17-11 17-12 17-13 17-14 17-15 17-16 17-17 17-18 17-19 Port I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .232 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 235 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 236 Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 Keyboard Interrupt Enable Register (KIER) . . . . . . . . . . . . . . 237 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 238 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 239 Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 PWM Control Register (PWMCR). . . . . . . . . . . . . . . . . . . . . . 240 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 241 Data Direction Register C (DDRC) . . . . . . . . . . . . . . . . . . . . . 242 Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 244 Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 245 Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Port D Control Register (PDCR) . . . . . . . . . . . . . . . . . . . . . . . 247 Port E Data Register (PTE) . . . . . . . . . . . . . . . . . . . . . . . . . . 249 Data Direction Register E (DDRE) . . . . . . . . . . . . . . . . . . . . . 249 Port E I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 18-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 253 18-2 IRQ I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .253 18-3 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 255 Technical Data 24 MC68HC908LD60 — Rev. 1.1 List of Figures Freescale Semiconductor List of Figures Figure 19-1 19-2 19-3 19-4 Title Page KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .258 Keyboard Interrupt Module Block Diagram. . . . . . . . . . . . . . . 259 Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 262 Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 263 20-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 20-2 Configuration Register (CONFIG). . . . . . . . . . . . . . . . . . . . . . 268 20-3 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 269 21-1 21-2 21-3 21-4 21-5 21-6 21-7 Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 273 Break Module I/O Register Summary . . . . . . . . . . . . . . . . . . . 273 Break Status and Control Register (BRKSCR). . . . . . . . . . . . 275 Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 276 Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 276 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 277 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 278 22-1 MMIIC Signal Timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 23-1 64-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 288 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data List of Figures 25 List of Figures Technical Data 26 MC68HC908LD60 — Rev. 1.1 List of Figures Freescale Semiconductor Technical Data — MC68HC908LD60 List of Tables Table Title Page 1-1 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 2-1 Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52 4-1 FLASH Memory Array Summary . . . . . . . . . . . . . . . . . . . . . . . 56 6-1 6-2 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 8-1 8-2 Free-Running HSOUT, VSOUT, DE, and DCLK Settings . . . . 96 VCO Frequency Multiplier (N) Selection. . . . . . . . . . . . . . . . . 103 9-1 9-2 9-3 9-4 Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 SIM Registers Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 Monitor Mode Signal Requirements and Options . . . . . . . . . . 135 Mode Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 138 WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 139 IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 139 IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 140 READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 140 RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 141 Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 141 11-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 11-3 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 161 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data List of Tables 27 List of Tables Table Title Page 12-1 PWM Channels and Port I/O pins. . . . . . . . . . . . . . . . . . . . . . 168 13-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 13-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 14-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14-2 Baud Rate Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 15-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15-2 Baud Rate Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 16-1 16-2 16-3 16-4 16-5 16-6 16-7 16-8 16-9 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 Sync Output Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 Sync Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 ATPOL, VINVO, and HINVO setting. . . . . . . . . . . . . . . . . . . .221 Sample Vertical Frame Frequencies . . . . . . . . . . . . . . . . . . . 224 Clamp Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 HSYNC Polarity Detection Pulse Width . . . . . . . . . . . . . . . . . 227 ATPOL, VINVO, and HINVO setting. . . . . . . . . . . . . . . . . . . .228 Free-Running HSOUT, VSOUT, DE, and DCLK Settings . . . 229 17-1 17-2 17-3 17-4 17-5 17-6 Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .234 Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246 Port E Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 19-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 22-1 22-2 22-3 22-4 22-5 22-6 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 280 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 282 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 TIM Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 Technical Data 28 MC68HC908LD60 — Rev. 1.1 List of Tables Freescale Semiconductor List of Tables Table 22-7 22-8 22-9 22-10 22-11 22-12 Title Page Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 284 Sync Processor Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 DDC12AB/MMIIC Interface Input Signal Timing. . . . . . . . . . . 285 DDC12AB/MMIIC Interface Output Signal Timing . . . . . . . . . 285 FLASH Memory Electrical Characteristics . . . . . . . . . . . . . . . 286 24-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data List of Tables 29 List of Tables Technical Data 30 MC68HC908LD60 — Rev. 1.1 List of Tables Freescale Semiconductor Technical Data — MC68HC908LD60 Section 1. General Description 1.1 Contents 1.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 1.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4 MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 1.5 Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1.6 Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 1.2 Introduction The MC68HC908LD60 is a member of the low-cost, high-performance M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08 Family is based on the customer-specified integrated circuit (CSIC) design strategy. All MCUs in the family use the enhanced M68HC08 central processor unit (CPU08) and are available with a variety of modules, memory sizes and types, and package types. With special modules such as the sync processor, analog-to-digital converter, pulse modulator module, DDC12AB interface, and multimaster IIC interface, the MC68HC908LD60 is designed specifically for use in digital monitor systems. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data General Description 31 General Description 1.3 Features Features of the MC68HC908LD60 MCU include the following: • High-performance M68HC08 architecture • Fully upward-compatible object code with M6805, M146805, and M68HC05 families • Low-power design; fully static with stop and wait modes • 3.3V operating voltage • 6MHz internal bus frequency; with 24MHz external crystal • 60,928 bytes of on-chip FLASH memory with security1 feature • 1,024 bytes of on-chip random access memory (RAM) • 39 general-purpose input/output (I/O) pins, including: – 9 dedicated I/O pins – 30 shared-function I/O pins – 8-bit keyboard interrupt port • 2-channel, 16-bit timer interface module (TIM) with selectable input capture, output compare, and PWM capability on one channel • 6-channel, 8-bit analog-to-digital converter (ADC) • 8-channel, 8-bit pulse width modulator (PWM) • Sync signal processor with the following features: – Horizontal and vertical frequency counters – Low vertical frequency indicator (40.7Hz) – Polarity controlled Hsync and Vsync outputs from separate sync or composite sync inputs – Internal generated free-running Hsync, Vsync, DE, and DCLK – CLAMP pulse output to the external pre-amp chip 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 32 MC68HC908LD60 — Rev. 1.1 General Description Freescale Semiconductor General Description Features • DDC12AB1 module with the following: – DDC1 hardware – Multi-master IIC2 hardware for DDC2AB; with dual address • Additional multi-master IIC module • In-system programming capability using DDC12AB communication, or standard serial link on PTA0 pin • System protection features: – Optional computer operating properly (COP) reset – Illegal opcode detection with reset – Illegal address detection with reset • Master reset pin (with internal pull-up) and power-on reset • IRQ interrupt pin with internal pull-up and schmitt-trigger input • 64-pin quad flat pack (QFP) package Features of the CPU08 include the following: • Enhanced HC05 programming model • Extensive loop control functions • 16 addressing modes (eight more than the HC05) • 16-bit index register and stack pointer • Memory-to-memory data transfers • Fast 8 × 8 multiply instruction • Fast 16/8 divide instruction • Binary-coded decimal (BCD) instructions • Optimization for controller applications • Third party C language support 1. DDC is a VESA bus standard. 2. IIC is a proprietary Philips interface bus. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data General Description 33 General Description 1.4 MCU Block Diagram Figure 1-1 shows the structure of the MC68HC908LD60. INTERNAL BUS CONTROL AND STATUS REGISTERS — 80 BYTES DDRA KEYBOARD INTERRUPT MODULE DDRB MONITOR MODULE USER FLASH VECTOR SPACE — 32 BYTES CLOCK GENERATOR MODULE OSC1 OSC2 CGMXFC PTB7/PWM7 : PTB0/PWM0 PTC6 PTC5/ADC5 : PTC0/ADC0 8-BIT ANALOG-TO-DIGITAL CONVERTER MODULE DDRC MONITOR ROM — 1,024+464 BYTES PTA7/KBI7 : PTA0/KBI0 PULSE WIDTH MODULATOR MODULE USER FLASH — 60,928 BYTES USER RAM — 1,024 BYTES PORTA ARITHMETIC/LOGIC UNIT (ALU) PORTB CPU REGISTERS PORTC M68HC08 CPU FREE-RUN PANEL TIMING MODULE 24-MHz OSCILLATOR PHASE-LOCKED LOOP SYNC PROCESSOR MODULE HSYNC†† VSYNC†† CLAMP/TCH0 EXTERNAL IRQ MODULE MULTI-MASTER IIC INTERFACE MODULE COMPUTER OPERATING PROPERLY MODULE DDC12AB INTERFACE MODULE VDD1 VSS1 VDD2 VSS2 VDDA VSSA POWER VRH VRL ADC REFERENCE PTD7/IICSDA† PTD6/IICSCL† PTD5/DDCSDA† PTD4/DDCSCL† PTD3/HOUT PTD2/VOUT PTD1/DE PTD0/DCLK PTE7 : PTE0 MONITOR MODE ENTRY MODULE DDRE POWER-ON RESET MODULE PORTD IRQ DDRD SYSTEM INTEGRATION MODULE PORTE 2-CHANNEL TIMER INTERFACE MODULE RST SECURITY MODULE † Pin is +5V open-drain †† Pin is +5V input Figure 1-1. MC68HC908LD60 MCU Block Diagram Technical Data 34 MC68HC908LD60 — Rev. 1.1 General Description Freescale Semiconductor General Description Pin Assignments VRL PTC0/ADC0 PTC1/ADC1 PTC2/ADC2 PTC3/ADC3 PTC4/ADC4 VSS2 PTC5/ADC5 PTC6 PTA7/KBI7 PTA6/KBI6 PTA5/KBI5 61 60 59 58 57 56 55 54 53 52 51 50 PTA4/KBI4 VRH 62 VDDA 49 RST 63 64 IRQ 1.5 Pin Assignments 1 48 PTA3/KBI3 41 PTB5/PWM5 PTE1 9 40 PTB4/PWM4 PTE2 10 39 PTB3/PWM3 PTE3 11 38 PTB2/PWM2 PTE4 12 37 PTB1/PWM1 PTE5 13 36 PTB0/PWM0 PTE6 14 35 PTD7IICSDA PTE7 15 34 PTD6/IICSCL 33 PTD5/DDCSDA PTD4/DDCSCL 32 CLAMP/TCH0 VSS1 17 18 CGMXFC 16 31 8 PTD3/HOUT PTE0 30 PTB6/PWM6 PTD2/VOUT 42 29 7 PTD1/DE RESERVED 28 PTB7/PWM7 PTD0/DCLK 43 27 6 RESERVED RESERVED 26 VDD2 RESERVED 44 25 5 RESERVED VDD1 24 PTA0/KBI0 RESERVED 45 23 4 RESERVED VSSA 22 PTA1/KBI1 RESERVED 46 21 3 RESERVED OSC2 20 PTA2/KBI2 HSYNC 47 19 2 VSYNC OSC1 RESERVED pins should not be connected. Figure 1-2. 64-Pin QFP Pin Assignment MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data General Description 35 General Description 1.6 Pin Functions Description of the pin functions are provided in Table 1-1. Table 1-1. Pin Functions PIN NAME PIN DESCRIPTION VDD1, VDD2 Power supply input to the MCU. VSS1, VSS2 Power supply ground. VDDA Power supply input for analog circuits. VSSA Power supply ground for analog circuits. OSC1, OSC2 Connections to the on-chip oscillator. An external clock can be connected directly to OSC1; with OSC2 floating. See Section 7. Oscillator (OSC). RST External reset pin; active low; with internal pull-up and schmitt trigger input. It is driven low when any internal reset source is asserted. See Section 9. System Integration Module (SIM). IRQ External IRQ pin; with schmitt trigger input and internal pull-up. This pin is also used for mode entry selection. See Section 18. External Interrupt (IRQ) and Section 9. System Integration Module (SIM). CGMXFC External filter capacitor connection for the CGM module. See Section 8. Clock Generator Module (CGM). VSYNC Vsync input to the sync processor. This pin is rated at +5V. See Section 16. Sync Processor. HSYNC Hsync input to the sync processor. This pin is rated at +5V. See Section 16. Sync Processor. PTA7/KBI7–PTA0/KBI0 These are shared function, bidirectional I/O port pins. Each pin contains a pullup device to VDD when it is configured as an external keyboard interrupt pin. See Section 17. Input/Output (I/O) Ports and Section 19. Keyboard Interrupt Module (KBI). Technical Data 36 MC68HC908LD60 — Rev. 1.1 General Description Freescale Semiconductor General Description Pin Functions Table 1-1. Pin Functions (Continued) PIN NAME PIN DESCRIPTION PTB7/PWM7–PTB0/PWM0 These are shared-function, bidirectional I/O port pins. Each pin can be configured as a standard I/O pin or a PWM output channel. See Section 17. Input/Output (I/O) Ports and Section 12. Pulse Width Modulator (PWM). VRH High voltage reference input to ADC module. VRL Low voltage reference input to ADC module. PTC6 This pin is a standard bidirectional I/O pin. See Section 17. Input/Output (I/O) Ports. PTC5/ADC5–PTC0/ADC0 These are shared-function, bidirectional I/O port pins. Each pin can be configured as a standard I/O pin or an ADC input channel. See Section 17. Input/Output (I/O) Ports and Section 13. Analog-to-Digital Converter (ADC). PTD7/IICSDA This is a shared-function pin. It can be configured as a standard I/O pin or the data line of the multimaster IIC module. This pin is +5V open-drain when configured as output. See Section 17. Input/Output (I/O) Ports and Section 14. Multi-Master IIC Interface (MMIIC). PTD6/IICSCL This is a shared function pin. It can be configured as a standard I/O pin or the clock line of the multimaster IIC module. This pin is +5V open-drain when configured as output. See Section 17. Input/Output (I/O) Ports and Section 14. Multi-Master IIC Interface (MMIIC). PTD5/DDCSDA This is a shared function pin. It can be configured as a standard I/O pin or the data line of the DDC12AB module. This pin is +5V open-drain when configured as output. See Section 17. Input/Output (I/O) Ports and Section 15. DDC12AB Interface. PTD4/DDCSCL This is a shared function pin. It can be configured as a standard I/O pin or the clock line of the DDC12AB module. This pin is +5V open-drain when configured as output. See Section 17. Input/Output (I/O) Ports and Section 15. DDC12AB Interface. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data General Description 37 General Description Table 1-1. Pin Functions (Continued) PIN NAME PTD3/HOUT PTD2/VOUT PTD1/DE PTD0/DCLK These are shared function, bidirectional I/O port pins. These pins can be configured as standard I/O pins or free-run timing output signals. See Section 17. Input/Output (I/O) Ports and Section 16. Sync Processor. CLAMP/TCH0 This is shared function pins. This TIM channel 0 I/O pin can be configured as the Sync processor CLAMP output pin. See Section 11. Timer Interface Module (TIM) and Section 16. Sync Processor. PTE7–PTE0 NOTE: PIN DESCRIPTION These are bidirectional I/O port pins. See Section 17. Input/Output (I/O) Ports. Any unused inputs and I/O ports should be tied to an appropriate logic level (either VDD or VSS). Although the I/O ports of the MC68HC908LD60 do not require termination, termination is recommended to reduce the possibility of static damage. Technical Data 38 MC68HC908LD60 — Rev. 1.1 General Description Freescale Semiconductor Technical Data — MC68HC908LD60 Section 2. Memory Map 2.1 Contents 2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.3 Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 39 2.4 Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.5 Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2 Introduction The CPU08 can address 64k-bytes of memory space. The memory map, shown in Figure 2-1, includes: • 60,928 bytes of FLASH memory • 1,024 bytes of random-access memory (RAM) • 32 bytes of user-defined vectors • 1024 + 464 bytes of monitor ROM 2.3 Unimplemented Memory Locations Accessing an unimplemented location can cause an illegal address reset if illegal address resets are enabled. In the memory map (Figure 2-1) and in register figures in this document, unimplemented locations are shaded. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Memory Map 39 Memory Map 2.4 Reserved Memory Locations Accessing a reserved location can have unpredictable effects on MCU operation. In the Figure 2-1 and in register figures in this document, reserved locations are marked with the word Reserved or with the letter R. 2.5 Input/Output (I/O) Section Most of the control, status, and data registers are in the zero page area of $0000–$007F. Additional I/O registers have these addresses: • $FE00; SIM break status register, SBSR • $FE01; SIM reset status register, SRSR • $FE02; Reserved • $FE03; SIM break flag control register, SBFCR • $FE04; Interrupt status register 1, INT1 • $FE05; Interrupt status register 2, INT2 • $FE06; Reserved • $FE07; 47,616 bytes FLASH control register, FLCR • $FE08; 47,616 bytes FLASH block protect register, FLBPR • $FE09; Reserved • $FE0A; 13k-bytes FLASH control register, FLCR1 • $FE0B; 13k-bytes FLASH block protect register, FLBPR1 • $FE0C; Break address register high, BRKH • $FE0D; Break address register low, BRKL • $FE0E; Break status and control register, BRKSCR • $FE0F; Reserved • $FFFF; COP control register, COPCTL Data registers are shown in Figure 2-2. Table 2-1 is a list of vector locations. Technical Data 40 MC68HC908LD60 — Rev. 1.1 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section $0000 I/O Registers 128 Bytes ↓ $007F $0080 RAM 1,024 Bytes ↓ $047F $0480 Unimplemented 896 Bytes ↓ $07FF $0800 Reserved 1,024 Bytes ↓ $0BFF $0C00 ↓ $0FFF $1000 ↓ $3FFF $4000 ↓ $F9FF FLASH Memory 1,024 Bytes (8 × 128-Byte Blocks) FLASH Memory 12,288 Bytes (24 × 512-Byte Blocks) FLASH Memory 47,616 Bytes (93 × 512-Byte Blocks) $FA00 Monitor ROM 1,024 Bytes ↓ $FDFF $FE00 SIM Break Status Register (SBSR) $FE01 SIM Reset Status Register (SRSR) $FE02 Reserved $FE03 SIM Break Flag Control Register (SBFCR) $FE04 Interrupt Status Register 1 (INT1) Figure 2-1. Memory Map MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Memory Map 41 Memory Map $FE05 Interrupt Status Register 2 (INT2) $FE06 Reserved $FE07 47,616 bytes FLASH Control Register (FLCR) $FE08 47,616 bytes FLASH Block Protect Register (FLBPR) $FE09 Reserved $FE0A 13k-bytes FLASH Control Register (FLCR1) $FE0B 13k-bytes FLASH Protect Register (FLBPR1) $FE0C Break Address Register High (BRKH) $FE0D Break Address Register Low (BRKL) $FE0E Break Status and Control Register (BRKSCR) $FE0F Reserved $FE10 ↓ Monitor ROM 464 Bytes $FFDF $FFE0 ↓ FLASH Vectors 32 Bytes $FFFF Figure 2-1. Memory Map (Continued) Technical Data 42 MC68HC908LD60 — Rev. 1.1 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. Register Name $0000 Read: Port A Data Register Write: (PTA) Reset: $0001 $0002 $0003 Read: Port B Data Register Write: (PTB) Reset: Read: Port C Data Register Write: (PTC) Reset: Read: Port D Data Register Write: (PTD) Reset: Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 0 PTD7 0 0 PTE7 PTC6 PTC5 PTC4 PTC3 PTD6 PTD5 PTD4 PTD3 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 PTE6 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 Unaffected by reset Read: DDRE7 Data Direction Register E Write: $0009 (DDRE) Reset: 0 U = Unaffected PTB3 Unaffected by reset Read: DDRD7 Data Direction Register D Write: $0007 (DDRD) Reset: 0 $0008 PTB4 Unaffected by reset Read: DDRB7 Data Direction Register B $0005 Write: (DDRB) Reset: 0 Read: Port E Data Register Write: (PTE) Reset: PTB5 Unaffected by reset Read: DDRA7 Data Direction Register A $0004 Write: (DDRA) Reset: 0 Read: Data Direction Register C $0006 Write: (DDRC) Reset: PTB6 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 = Unimplemented R = Reserved X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 9) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Memory Map 43 Memory Map Addr. 6 5 TOIE TSTOP 0 0 1 0 0 0 0 Read: TIM Counter Register High $000C Write: (TCNTH) Reset: Bit15 Bit14 0 Read: TIM Counter Register Low $000D Write: (TCNTL) Reset: $000A Register Name Bit 7 Read: TIM Status and Control Register Write: (TSC) Reset: 2 1 Bit 0 PS2 PS1 PS0 0 0 0 0 0 0 0 0 0 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 TOF 0 4 3 0 0 TRST Read: $000B Unimplemented Write: Reset: $000E $000F $0010 TIM Counter Modulo Read: Register High Write: (TMODH) Reset: TIM Counter Modulo Read: Register Low Write: (TMODL) Reset: TIM Channel 0 Read: Status and Control Write: Register (TSC0) Reset: Read: TIM Channel 0 Register High Write: (TCH0H) Reset: $0011 TIM Channel 0 Read: Register Low Write: (TCH0L) Reset: $0012 $0013 TIM Channel 1 Read: Status and Control Write: Register (TSC1) Reset: U = Unaffected CH0F 0 Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset CH1F 0 0 CH1IE 0 0 0 X = Indeterminate MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 9) Technical Data 44 MC68HC908LD60 — Rev. 1.1 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. $0014 $0015 $0016 $0017 $0018 $0019 $001A $001B $001C Register Name Read: TIM Channel 1 Register High Write: (TCH1H) Reset: Read: TIM Channel 1 Register Low Write: (TCH1L) Reset: Read: DDC Master Control Register Write: (DMCR) Reset: Read: DDC Address Register Write: (DADR) Reset: Read: DDC Control Register Write: (DCR) Reset: Read: DDC Status Register Write: (DSR) Reset: DDC Data Transmit Read: Register Write: (DDTR) Reset: DDC Data Receive Read: Register Write: (DDRR) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset ALIF NAKIF BB MAST MRW BR2 BR1 BR0 0 0 0 0 0 0 0 0 DAD7 DAD6 DAD5 DAD4 DAD3 DAD2 DAD1 EXTAD 1 0 1 0 0 0 0 0 DEN DIEN 0 0 TXAK SCLIEN DDC1EN 0 0 0 0 0 0 0 0 RXIF TXIF MATCH SRW RXAK SCLIF TXBE RXBF 0 0 0 0 0 0 1 0 1 0 DTD7 DTD6 DTD5 DTD4 DTD3 DTD2 DTD1 DTD0 1 1 1 1 1 1 1 1 DRD7 DRD6 DRD5 DRD4 DRD3 DRD2 DRD1 DRD0 0 0 0 0 0 0 0 0 D2AD6 D2AD5 D2AD4 D2AD3 D2AD2 D2AD1 0 0 0 0 0 0 = Unimplemented R = Reserved Read: D2AD7 DDC2 Address Register Write: (D2ADR) Reset: 0 0 0 0 0 Read: $001D Unimplemented Write: Reset: U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 9) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Memory Map 45 Memory Map Addr. $001E $001F Register Name Bit 7 6 5 4 3 2 Read: IRQ Status and Control Register Write: (INTSCR) Reset: 0 0 0 0 IRQF 0 0 0 0 0 Read: Configuration Register Write: (CONFIG)† Reset: 0 0 0 0 0 0 0 R R ACK 1 Bit 0 IMASK MODE 0 0 0 0 SSREC COPRS STOP COPD 0 0 0 0 0 R R R R R R PLLON BCS 1 1 1 1 1 0 1 1 1 1 ACQ XLD 0 0 0 0 † One-time writable register after each reset. Read: $0020 ↓ $0037 Reserved Write: $0038 Read: PLL Control Register Write: (PCTL) Reset: $0039 $003A $003B $003C Reset: Read: PLL Bandwidth Control Register Write: (PBWC) Reset: Read: PLL Programming Register Write: (PPG) Reset: Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Data Register Write: (ADR) Reset: Read: ADC Input Clock Register $003D Write: (ADICLK) Reset: PLLIE 0 AUTO PLLF 0 LOCK 0 0 0 0 0 0 0 0 MUL7 MUL6 MUL5 MUL4 VRS7 VRS6 VRS5 VRS4 0 1 1 0 0 1 1 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 COCO Unaffected after Reset ADIV2 ADIV1 ADIV0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved Read: $003E Unimplemented Write: Reset: U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 9) Technical Data 46 MC68HC908LD60 — Rev. 1.1 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. Register Name Bit 7 6 5 Read: H & V Sync Output Control $003F Register Write: (HVOCR) Reset: $0040 $0041 $0042 $0043 $0044 Read: Sync Processor Control and Status Register Write: (SPCSR) Reset: 3 DCLKPH1 DCLKPH0 VSIF 2 R 0 0 COMP VINVO HINVO 1 Bit 0 HVOCR1 HVOCR0 0 0 VPOL HPOL VSIE VEDGE 0 0 0 0 0 0 0 0 Vertical Frequency High Read: Register Write: (VFHR) Reset: VOF 0 0 VF12 VF11 VF10 VF9 VF8 CPW1 CPW0 0 0 0 0 0 0 0 0 Vertical Frequency Low Read: Register Write: (VFLR) Reset: VF7 VF6 VF5 VF4 VF3 VF2 VF1 VF0 0 0 0 0 0 0 0 0 Hsync Frequency High Read: Register Write: (HFHR) Reset: HFH7 HFH6 HFH5 HFH4 HFH3 HFH2 HFH1 HFH0 0 0 0 0 0 0 0 0 0 0 HFL4 HFL3 HFL2 HFL1 HFL0 0 0 0 0 0 0 0 COINV R R R BPOR SOUT 0 0 ATPOL FSHF 0 0 R R IMASKK MODEK 0 Hsync Frequency Low Read: HOVER Register Write: (HFLR) Reset: 0 Sync Processor I/O Control Read: VSYNCS HSYNCS $0045 Register Write: (SPIOCR) Reset: 0 0 $0046 4 Read: Sync Processor Control Register 1 Write: (SPCR1) Reset: Read: $0047 ↓ $004D Reserved Write: $004E Read: Keyboard Status and Control Register Write: (KBSCR) Reset: LVSIE LVSIF 0 0 0 HPS1 HPS0 R R 0 0 0 0 R R R R R R 0 0 0 0 KEYF 0 Reset: U = Unaffected ACKK 0 0 0 X = Indeterminate 0 0 0 0 = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 9) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Memory Map 47 Memory Map Addr. Register Name Read: Keyboard Interrupt Enable $004F Register Write: (KBIER) Reset: Read: $0050 ↓ $0065 Reserved Write: $0066 13k-Byte FLASH Even Read: Byte Write Buffer Write: (13KEBUF) Reset: Read: Reserved Write: $006C 4 3 2 1 Bit 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 R R R R R R R R Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 R R R VOUTE DEE DCLKE Unaffected after Reset R Port D Control Read: IICDATE Register Write: (PDCR) Reset: 0 R R R R IICSCLE DDCDATE DDCSCLE HOUTE 0 0 0 0 0 0 MMAST MMRW MMBR2 MMBR1 MMBR0 0 0 0 0 0 0 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Multi-Master IIC Read: MMALIF MMNAKIF Master Control Register Write: 0 0 (MIMCR) Reset: 0 0 Multi-Master IIC Address Read: MMAD7 Register Write: (MMADR) Reset: 1 Read: Multi-Master IIC Control Register Write: (MMCR) Reset: MMEN MMIEN 0 0 Read: MMRXIF Multi-Master IIC 0 Status Register Write: (MMSR) Reset: 0 $006D $006E 5 Reset: $0069 $006B 6 Reset: $0067 ↓ $0068 $006A Bit 7 Read: Multi-Master IIC MMTD7 Data Transmit Register Write: (MMDTR) Reset: 1 U = Unaffected 0 MMBB MMTXAK 0 MMTXIF MMATCH MMSRW MMRXAK 0 MMAD1 MMEXTAD MMTXBE MMRXBF 0 0 0 0 1 0 1 0 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0 1 1 1 1 1 1 1 = Unimplemented R = Reserved X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 9) Technical Data 48 MC68HC908LD60 — Rev. 1.1 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. $006F $0070 $0071 $0072 $0073 $0074 $0075 $0076 $0077 $0078 Register Name Bit 7 Multi-Master IIC Read: MMRD7 Data Receive Register Write: (MMDRR) Reset: 0 Read: 0PWM4 PWM0 Data Register Write: (0PWM) Reset: 0 Read: 1PWM4 PWM1 Data Register Write: (1PWM) Reset: 0 Read: 2PWM4 PWM2 Data Register Write: (2PWM) Reset: 0 Read: 3PWM4 PWM3 Data Register Write: (3PWM) Reset: 0 Read: 4PWM4 PWM4 Data Register Write: (4PWM) Reset: 0 Read: 5PWM4 PWM5 Data Register Write: (5PWM) Reset: 0 Read: 6PWM4 PWM6 Data Register Write: (6PWM) Reset: 0 Read: 7PWM4 PWM7 Data Register Write: (7PWM) Reset: 0 Read: PWM7E PWM Control Register Write: (PWMCR) Reset: 0 U = Unaffected 6 5 4 3 2 1 Bit 0 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0 0 0 0 0 0 0 0 0PWM3 0PWM2 0PWM1 0PWM0 0BRM2 0BRM1 0BRM0 0 0 0 0 0 0 0 1PWM3 1PWM2 1PWM1 1PWM0 1BRM2 1BRM1 1BRM0 0 0 0 0 0 0 0 2PWM3 2PWM2 2PWM1 2PWM0 2BRM2 2BRM1 2BRM0 0 0 0 0 0 0 0 3PWM3 3PWM2 3PWM1 3PWM0 3BRM2 3BRM1 3BRM0 0 0 0 0 0 0 0 4PWM3 4PWM2 4PWM1 4PWM0 4BRM2 4BRM1 4BRM0 0 0 0 0 0 0 0 5PWM3 5PWM2 5PWM1 5PWM0 5BRM2 5BRM1 5BRM0 0 0 0 0 0 0 0 6PWM3 6PWM2 6PWM1 6PWM0 6BRM2 6BRM1 6BRM0 0 0 0 0 0 0 0 7PWM3 7PWM2 7PWM1 7PWM0 7BRM2 7BRM1 7BRM0 0 0 0 0 0 0 0 PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 = Unimplemented R = Reserved X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 9) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Memory Map 49 Memory Map Addr. Register Name Bit 7 6 5 4 3 2 R R R R R R 1 Bit 0 Read: $0079 ↓ $007F Unimplemented Write: Reset: Read: SIM Break Status Register Write: $FE00 (SBSR) Reset: SBSW Note R 0 Note: Writing a logic 0 clears SBSW. Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: Read: $FE02 Reserved Write: POR PIN COP ILOP ILAD 1 0 0 0 0 R R R R R BCFE R R R R 0 0 0 0 R R R R R R R Reset: $FE03 SIM Break Flag Control Read: Register Write: (SBFCR) Reset: 0 Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 Write: $FE05 (INT2) Reset: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 HVEN MASS ERASE PGM 0 0 0 0 0 0 0 0 = Unimplemented R = Reserved Read: $FE06 Reserved Write: Reset: $FE07 47,616 Bytes FLASH Read: Control Register Write: (FLCR) Reset: U = Unaffected X = Indeterminate Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 9) Technical Data 50 MC68HC908LD60 — Rev. 1.1 Memory Map Freescale Semiconductor Memory Map Input/Output (I/O) Section Addr. $FE08 Register Name Read: 47,616 Bytes FLASH Block Protect Register Write: (FLBPR) Reset: Read: $FE09 Reserved Write: Bit 7 6 5 4 3 2 1 Bit 0 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 0 0 0 0 0 0 0 0 R R R R R R R R 0 0 0 0 HVEN1 MASS1 ERASE1 PGM1 0 0 0 0 0 0 0 0 BPR16 BPR15 BPR14 BPR13 BPR12 BPR11 0 0 0 0 0 0 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset: $FE0A $FE0B $FE0C $FE0D 13k-Bytes FLASH Read: Control Register Write: (FLCR1) Reset: 13k-Bytes FLASH Read: BPR17 Block Protect Register Write: (FLBPR1) Reset: 0 Read: Break Address High Write: Register (BRKH) Reset: Read: Break Address Low Write: Register (BRKL) Reset: Break Status and Control Read: $FE0E Register Write: (BRKSCR) Reset: $FFFF Read: COP Control Register Write: (COPCTL) Reset: U = Unaffected 0 Low byte of reset vector Writing clears COP counter (any value) Unaffected by reset X = Indeterminate = Unimplemented R = Reserved Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 9) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Memory Map 51 Memory Map . Table 2-1. Vector Addresses Vector Priority Lowest Vector IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 IF6 IF5 IF4 IF3 IF2 IF1 — Highest — Address $FFE0 CGM PLL Interrupt Vector (High) $FFE1 CGM PLL Interrupt Vector (Low) $FFE2 Keyboard Interrupt Vector (High) $FFE3 Keyboard Interrupt Vector (Low) $FFE4 ADC Interrupt Vector (High) $FFE5 ADC Interrupt Vector (Low) $FFE6 Reserved $FFE7 Reserved $FFE8 MMIIC Vector (High) $FFE9 MMIIC Vector (Low) $FFEA Sync Processor Vector (High) $FFEB Sync Processor Vector (Low) $FFEC TIM Overflow Vector (High) $FFED TIM Overflow Vector (Low) $FFEE TIM Channel 1 Vector (High) $FFEF TIM Channel 1 Vector (Low) $FFF0 TIM Channel 0 Vector (High) $FFF1 TIM Channel 0 Vector (Low) $FFF2 DDC12AB Vector (High) $FFF3 DDC12AB Vector (Low) $FFF4 Reserved $FFF5 Reserved $FFF6 Reserved $FFF7 Reserved $FFF8 Reserved $FFF9 Reserved $FFFA IRQ Vector (High) $FFFB IRQ Vector (Low) $FFFC SWI Vector (High) $FFFD SWI Vector (Low) $FFFE Reset Vector (High) $FFFF Reset Vector (Low) Technical Data 52 Vector MC68HC908LD60 — Rev. 1.1 Memory Map Freescale Semiconductor Technical Data — MC68HC908LD60 Section 3. Random-Access Memory (RAM) 3.1 Contents 3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 3.2 Introduction This section describes the 1,024 bytes of RAM (random-access memory). 3.3 Functional Description Addresses $0080 through $047F are RAM locations. The location of the stack RAM is programmable. The 16-bit stack pointer allows the stack to be anywhere in the 64-Kbyte memory space. NOTE: For correct operation, the stack pointer must point only to RAM locations. Within page zero are 128 bytes of RAM. Because the location of the stack RAM is programmable, all page zero RAM locations can be used for I/O control and user data or code. When the stack pointer is moved from its reset location at $00FF out of page zero, direct addressing mode instructions can efficiently access all page zero RAM locations. Page zero RAM, therefore, provides ideal locations for frequently accessed global variables. Before processing an interrupt, the CPU uses five bytes of the stack to save the contents of the CPU registers. NOTE: For M6805 compatibility, the H register is not stacked. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Random-Access Memory (RAM) 53 Random-Access Memory (RAM) During a subroutine call, the CPU uses two bytes of the stack to store the return address. The stack pointer decrements during pushes and increments during pulls. NOTE: Be careful when using nested subroutines. The CPU may overwrite data in the RAM during a subroutine or during the interrupt stacking operation. Technical Data 54 MC68HC908LD60 — Rev. 1.1 Random-Access Memory (RAM) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 4. FLASH Memory 4.1 Contents 4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 4.4 FLASH Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4.1 13k-Byte FLASH Even Byte Write Buffer (13KEBUF) . . . . . 59 4.5 FLASH Block Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6 FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.7 FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .61 4.8 FLASH Block Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.8.1 FLASH Block Protect Registers . . . . . . . . . . . . . . . . . . . . . . 64 4.2 Introduction This section describes the operation of the embedded FLASH memory. This memory can be read, programmed, and erased from a single external supply. The program and erase operations are enabled through the use of an internal charge pump. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data FLASH Memory 55 FLASH Memory Addr. Register Name $FE07 47,616 Bytes FLASH Read: Control Register Write: (FLCR) Reset: $FE08 $FE0A $FE0B $0066 47,616 Bytes FLASH Read: Block Protect Register Write: (FLBPR) Reset: Bit 7 6 5 4 0 0 0 0 0 0 0 BPR7 BPR6 0 13k-Bytes FLASH Read: Control Register Write: (FLCR1) Reset: 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 0 BPR5 BPR4 BPR3 BPR2 BPR1 0 0 0 0 0 0 0 0 0 0 0 HVEN1 MASS1 ERASE1 PGM1 0 0 0 0 0 0 0 0 BPR16 BPR15 BPR14 BPR13 BPR12 BPR11 0 0 0 0 0 0 0 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 13k-Bytes FLASH Read: BPR17 Block Protect Register Write: (FLBPR1) Reset: 0 13k-Byte FLASH Read: Even Byte Write Buffer Write: (13KEBUF) Reset: Bit15 0 0 Unaffected after Reset Figure 4-1. FLASH I/O Register Summary 4.3 Functional Description The MC68HC908LD60 FLASH memory contains two arrays: • 13,312-byte array • 47,616-byte array The size, address range, and memory usage of the arrays are summarized in Table 4-1. Table 4-1. FLASH Memory Array Summary 13,312 Array Bytes 1,024 12,288 47,616 32 Address range $0C00–$0FFF $1000–$3FFF $4000–$F9FF $FFE0–$FFFF (User vectors) Minimum erase size 128 bytes 512 bytes 512 bytes 32 bytes by mass erase only NOTE: An erased bit reads as logic 1 and a programmed bit reads as logic 0. Technical Data 56 47,616 Array MC68HC908LD60 — Rev. 1.1 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Control Registers An additional 32 bytes of FLASH user vectors, $FFE0–$FFFF, are in the same array as the 47,616-byte. Each FLASH array is programmed and erased through control bits in their respective memory mapped FLASH control registers, FLCR and FLCR1. The 13k-byte array is programmed in double bytes, using the FLCR1 and the even byte buffer (13KEBUF). Programming tools are available from Freescale. Contact your local Freescale representative for more information. NOTE: A security feature prevents viewing of the FLASH contents.1 4.4 FLASH Control Registers The two FLASH control registers control FLASH program and erase operations. This register controls the 47,616-byte array: Address: Read: $FE07 Bit 7 6 5 4 0 0 0 0 0 0 0 0 Write: Reset: 3 2 1 Bit 0 HVEN MASS ERASE PGM 0 0 0 0 = Unimplemented Figure 4-2. 47,616-byte FLASH Control Register (FLCR) This register controls the 13k-byte array: Address: Read: $FE0A Bit 7 6 5 4 0 0 0 0 0 0 0 0 Write: Reset: 3 2 1 Bit 0 HVEN1 MASS1 ERASE1 PGM1 0 0 0 0 = Unimplemented Figure 4-3. 13k-byte FLASH Control Register (FLCR1) 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data FLASH Memory 57 FLASH Memory The bit definitions for FLCR are the same for FLCR1 for the other array. HVEN — High-Voltage Enable Bit This read/write bit enables the charge pump to drive high voltages for program and erase operations in the array. HVEN can only be set if either PGM = 1 or ERASE = 1 and the proper sequence for program or erase is followed. 1 = High voltage enabled to array and charge pump on 0 = High voltage disabled to array and charge pump off MASS — Mass Erase Control Bit This read/write bit configures the memory for mass erase operation or block erase operation when the ERASE bit is set. 1 = Mass Erase operation selected 0 = Mass Erase operation not selected ERASE — Erase Control Bit This read/write bit configures the memory for erase operation. ERASE is interlocked with the PGM bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Erase operation selected 0 = Erase operation not selected PGM — Program Control Bit This read/write bit configures the memory for program operation. PGM is interlocked with the ERASE bit such that both bits cannot be equal to 1 or set to 1 at the same time. 1 = Program operation selected 0 = Program operation not selected NOTE: The 13k-byte FLASH array is programmed in double bytes. The FLASH control register 1 (FLCR1) is used in conjunction with the 13k-byte FLASH even byte write buffer register (13KEBUF) for programming operations. See 4.4.1 13k-Byte FLASH Even Byte Write Buffer (13KEBUF) and 4.7 FLASH Program Operation. Technical Data 58 MC68HC908LD60 — Rev. 1.1 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Block Erase Operation 4.4.1 13k-Byte FLASH Even Byte Write Buffer (13KEBUF) Address: Read: Write: $0066 Bit 7 6 5 4 3 2 1 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Reset: Unaffected by reset Figure 4-4. 13k-Byte FLASH Even Byte Write Buffer (13KEBUF) Bit[7:0] — 13k-Byte FLASH Even Write Byte Buffer Data is written to this buffer to be programmed to an even location of the 13k-byte array. The byte gets programmed to the FLASH memory when the odd location is programmed. Even locations are $0C00, $0CDE, $1000, etc; the corresponding odd locations are $0C01, $0CDF, $1001, etc. The 13k-byte array are locations from $0C00 to $3FFF. Reset has no effect on these bits. 4.5 FLASH Block Erase Operation The minimum erase size for the FLASH memory is one block, and is carried out by the block erase operation. For memory $0C00–$0FFF, a block consists of 128 consecutive bytes starting from addresses $xx00 or $xx80. For memory $1000–$3FFF and $4000–$F9FF, a block consists of 512 consecutive bytes starting from addresses $x000, $x200, $x400, $x600, $x800, $xA00, $xC00, or $xE00. NOTE: The 32-byte user vectors, $FFE0–$FFFF, cannot be erased by the block erase operation because of security reasons. Mass erase is required to erase this block. Use the following procedure to erase a block of FLASH memory: 1. Set the ERASE bit, and clear the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the block address range desired. 3. Wait for a time, tnvs (min. 5µs) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data FLASH Memory 59 FLASH Memory 4. Set the HVEN bit. 5. Wait for a time, tErase (min. 10ms) 6. Clear the ERASE bit. 7. Wait for a time, tnvh (min. 5µs) 8. Clear the HVEN bit. 9. After a time, trcv (min. 1µs), the memory can be accessed again in read mode. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the same FLASH array that is being programmed or erased. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. 4.6 FLASH Mass Erase Operation A mass erase operation erases an entire array of FLASH memory. The MC68HC908LD60 contains two FLASH memory arrays, therefore, two mass erase operations are required to erase all FLASH memory in the device. Mass erasing the 13k-byte array, erases all FLASH memory from $0800 to $3FFF. Mass erasing the 47,616-byte array, erases all FLASH memory from $4000 to $FFFF. Use the following procedure to erase an entire FLASH memory array: 1. Set both the ERASE bit, and the MASS bit in the FLASH control register. 2. Write any data to any FLASH address within the FLASH memory address range. 3. Wait for a time, tnvs (5µs). 4. Set the HVEN bit. 5. Wait for a time, tERASE (10ms). 6. Clear the ERASE bit. 7. Wait for a time, tnvhl (100µs). Technical Data 60 MC68HC908LD60 — Rev. 1.1 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Program Operation 8. Clear the HVEN bit. 9. After time, trcv (1µs), the memory can be accessed again in read mode. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the same FLASH array that is being programmed or erased. While these operations must be performed in the order as shown, but other unrelated operations may occur between the steps. 4.7 FLASH Program Operation Programming of the FLASH memory is done on a row basis. A row consists of 64 consecutive bytes starting from addresses $XX00, $XX40, $XX80, and $XXC0. Use this step-by-step procedure to program a row of FLASH memory (Figure 4-5 is a flowchart representation): NOTE: In order to avoid program disturbs, the row must be erased before any byte on that row is programmed. 1. Set the PGM bit. This configures the memory for program operation and enables the latching of address and data for programming. 2. Write any data to any FLASH address within the row address range desired. 3. Wait for a time, tnvs (min. 5µs). 4. Set the HVEN bit. 5. Wait for a time, tpgs (min. 10µs). 6. For 47,616-byte array: Write data to the FLASH address to be programmed. For 13k-byte array: Write even location data to 13KEBUF then write odd location data to the odd FLASH address to be programmed. 7. Wait for time, tPROG (min. 20µs). 8. Repeat step 6 and 7 until all the bytes within the row are programmed. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data FLASH Memory 61 FLASH Memory 9. Clear the PGM bit. 10. Wait for time, tnvh (min. 5µs). 11. Clear the HVEN bit. 12. After time, trcv (min 1µs), the memory can be accessed in read mode again. This program sequence is repeated throughout the memory until all data is programmed. NOTE: Programming and erasing of FLASH locations cannot be performed by code being executed from the same FLASH array that is being programmed or erased. While these operations must be performed in the order shown, other unrelated operations may occur between the steps. Do not exceed tPROG maximum. See 22.13 FLASH Memory Characteristics. 4.8 FLASH Block Protection Due to the ability of the on-board charge pump to erase and program the FLASH memory in the target application, provision is made for protecting blocks of memory from unintentional erase or program operations due to system malfunction. This protection is done by use of a FLASH Block Protect Register for each array (FLBPR and FLBPR1). The block protect register determines the range of the FLASH memory which is to be protected. The range of the protected area starts from a location defined by block protect register and ends at the bottom of the FLASH memory array ($FFFF and $3FFF). When the memory is protected, the HVEN bit cannot be set in either ERASE or PROGRAM operations. Technical Data 62 MC68HC908LD60 — Rev. 1.1 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Block Protection 1 Algorithm for programming a row (64 bytes) of FLASH memory Set PGM bit 2 Write any data to any FLASH address within the row address range desired 3 Wait for a time, tnvs 4 Set HVEN bit 5 Wait for a time, tpgs For 13k-bytes array 6 Write even location byte to 13k-byte FLASH Even Byte Write Buffer at $0066. For 47,616 bytes array Write data to the FLASH address to be programmed 7 Write odd location byte to the odd FLASH adress to be programmed. Wait for a time, tprog Completed programming this row? Y N NOTE: The time between each FLASH address change (step 6 to step 6), or the time between the last FLASH address programmed to clearing PGM bit (step 6 to step 9) must not exceed the maximum programming time, tPROG max. 9 Clear PGM bit 10 Wait for a time, tnvh 11 Clear HVEN bit 12 Wait for a time, trcv This row program algorithm assumes the row/s to be programmed are initially erased. End of Programming Figure 4-5. FLASH Programming Flowchart MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data FLASH Memory 63 FLASH Memory 4.8.1 FLASH Block Protect Registers Each FLASH block protect register is implemented as an 7-bit I/O register. The BPR bit content of the register determines the starting location of the protected range within the FLASH memory. This register controls the 47,616-byte array: Address: Read: Write: Reset: $FE08 Bit 7 6 5 4 3 2 1 BPR7 BPR6 BPR5 BPR4 BPR3 BPR2 BPR1 0 0 0 0 0 0 0 Bit 0 0 0 Figure 4-6. 47,616-byte FLASH Block Protect Register (FLBPR) This register controls the 13k-byte array: Address: Read: Write: Reset: $FE0B Bit 7 6 5 4 3 2 1 BPR17 BPR16 BPR15 BPR14 BPR13 BPR12 BPR11 0 0 0 0 0 0 0 Bit 0 0 0 Figure 4-7. 13k-byte FLASH Block Protect Register 1 (FLBPR1) BPR[7:1] — FLASH Block Protect Bits These seven bits represent bits [15:9] of a 16-bit memory address. Bits [8:0] are logic 0s. The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $FFFF. BPR1[7:1] — FLASH Block Protect Bits These seven bits represent bits [15:9] of a 16-bit memory address. Bits [8:0] are logic 0s. Technical Data 64 MC68HC908LD60 — Rev. 1.1 FLASH Memory Freescale Semiconductor FLASH Memory FLASH Block Protection The resultant 16-bit address is used for specifying the start address of the FLASH memory for block protection. The FLASH is protected from this start address to the end of FLASH memory, at $3FFF. 16-bit memory address Start address of FLASH block protect 0 0 0 0 0 0 0 0 0 BPR[7:1] 0 Figure 4-8. FLASH Block Protect Start Address Examples of block protection for 47,616-byte FLASH memory array: BPR[7:0] FLASH Memory Protected Range $40 The entire 47,616 bytes of FLASH memory is protected. $42 (0100 0010) $4200 (0100 0010 0000 0000) to $FFFF $44 (0100 0100) $4400 (0100 0100 0000 0000) to $FFFF and so on... $F8 (1111 1000) $F800 (1111 1000 0000 0000) to $FFFF $FA $FFE0 to $FFFF (FLASH Vectors) $FC $FFE0 to $FFFF (FLASH Vectors) $FE $FFE0 to $FFFF (FLASH Vectors) $00–3E The entire 47,616 bytes FLASH memory is not protected. Examples of block protection for 13k-byte FLASH memory array: BPR1[7:0] FLASH Memory Protected Range $0C The entire 13k-byte FLASH memory is protected. $0E (0000 1110) $0E00 (0000 1110 0000 0000) to $3FFF $10 (0001 0000) $1000 (0001 0000 0000 0000) to $3FFF and so on... $38 (0011 1000) $3800 (0011 1000 0000 0000) to $3FFF $3A (0011 1010) $3A00 (0011 1010 0000 0000) to $3FFF $3C (0011 1100) $3C00 (0011 1100 0000 0000) to $3FFF $3E (0011 1110) $3E00 (0011 1110 0000 0000) to $3FFF $00–$0B or $40–$FE The entire 13k-byte FLASH memory is not protected. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data FLASH Memory 65 FLASH Memory Technical Data 66 MC68HC908LD60 — Rev. 1.1 FLASH Memory Freescale Semiconductor Technical Data — MC68HC908LD60 Section 5. Configuration Register (CONFIG) 5.1 Contents 5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 5.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 5.2 Introduction This section describes the configuration register, CONFIG. The configuration register enables or disables these options: • Stop mode recovery time (32 OSCXCLK cycles or 4096 OSCXCLK cycles) • COP timeout period (218 – 24 or 213 – 24 OSCXCLK cycles) • STOP instruction • Computer operating properly module (COP) 5.3 Functional Description The configuration register is used in the initialization of various options. The configuration register can be written once after each reset. All of the configuration register bits are cleared during reset. Since the various options affect the operation of the MCU, it is recommended that this register be written immediately after reset. The configuration register is located at $001F. The configuration register may be read at anytime. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Configuration Register (CONFIG) 67 Configuration Register (CONFIG) 5.4 Configuration Register Address: Read: $001F Bit 7 6 5 4 0 0 0 0 0 0 0 0 Write: Reset: 3 2 1 Bit 0 SSREC COPRS STOP COPD 0 0 0 0 = Unimplemented Figure 5-1. Configuration Register (CONFIG) SSREC — Short Stop Recovery Bit SSREC enables the CPU to exit stop mode with a delay of 32 OSCXCLK cycles instead of a 4096 OSCXCLK cycle delay. 1 = Stop mode recovery after 32 OSCXCLK cycles 0 = Stop mode recovery after 4096 OSCXCLK cycles NOTE: Exiting stop mode by pulling reset will result in the long stop recovery. If using an external crystal oscillator, do not set the SSREC bit. COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. (See Section 20. Computer Operating Properly (COP).) 1 = COP timeout period = 213 – 24 OSCXCLK cycles 0 = COP timeout period = 218 – 24 OSCXCLK cycles STOP — STOP Instruction Enable Bit STOP enables the STOP instruction. 1 = STOP instruction enabled 0 = STOP instruction treated as illegal opcode COPD — COP Disable Bit COPD disables the COP module. (See Section 20. Computer Operating Properly (COP).) 1 = COP module disabled 0 = COP module enabled Technical Data 68 MC68HC908LD60 — Rev. 1.1 Configuration Register (CONFIG) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 6. Central Processor Unit (CPU) 6.1 Contents 6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4 CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.4.1 Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 6.4.2 Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.3 Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.4.4 Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.4.5 Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.5 Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76 6.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77 6.7 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.8 Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.9 Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.2 Introduction The M68HC08 CPU (central processor unit) is an enhanced and fully object-code-compatible version of the M68HC05 CPU. The CPU08 Reference Manual (Freescale document order number CPU08RM/AD) contains a description of the CPU instruction set, addressing modes, and architecture. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Central Processor Unit (CPU) 69 Central Processor Unit (CPU) 6.3 Features • Object code fully upward-compatible with M68HC05 Family • 16-bit stack pointer with stack manipulation instructions • 16-bit index register with x-register manipulation instructions • 6-MHz CPU internal bus frequency • 64K-byte program/data memory space • 16 addressing modes • Memory-to-memory data moves without using accumulator • Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions • Enhanced binary-coded decimal (BCD) data handling • Modular architecture with expandable internal bus definition for extension of addressing range beyond 64K-bytes • Low-power stop and wait modes 6.4 CPU Registers Figure 6-1 shows the five CPU registers. CPU registers are not part of the memory map. Technical Data 70 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU Registers 7 0 ACCUMULATOR (A) 15 0 H X INDEX REGISTER (H:X) 0 15 STACK POINTER (SP) 0 15 PROGRAM COUNTER (PC) 7 0 V 1 1 H I N Z C CONDITION CODE REGISTER (CCR) CARRY/BORROW FLAG ZERO FLAG NEGATIVE FLAG INTERRUPT MASK HALF-CARRY FLAG TWO’S COMPLEMENT OVERFLOW FLAG Figure 6-1. CPU Registers 6.4.1 Accumulator The accumulator is a general-purpose 8-bit register. The CPU uses the accumulator to hold operands and the results of arithmetic/logic operations. Bit 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Unaffected by reset Figure 6-2. Accumulator (A) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Central Processor Unit (CPU) 71 Central Processor Unit (CPU) 6.4.2 Index Register The 16-bit index register allows indexed addressing of a 64K-byte memory space. H is the upper byte of the index register, and X is the lower byte. H:X is the concatenated 16-bit index register. In the indexed addressing modes, the CPU uses the contents of the index register to determine the conditional address of the operand. The index register can serve also as a temporary data storage location. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 X X X X X X X X Read: Write: Reset: X = Indeterminate Figure 6-3. Index Register (H:X) 6.4.3 Stack Pointer The stack pointer is a 16-bit register that contains the address of the next location on the stack. During a reset, the stack pointer is preset to $00FF. The reset stack pointer (RSP) instruction sets the least significant byte to $FF and does not affect the most significant byte. The stack pointer decrements as data is pushed onto the stack and increments as data is pulled from the stack. In the stack pointer 8-bit offset and 16-bit offset addressing modes, the stack pointer can function as an index register to access data on the stack. The CPU uses the contents of the stack pointer to determine the conditional address of the operand. Technical Data 72 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU Registers Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 Read: Write: Reset: Figure 6-4. Stack Pointer (SP) NOTE: The location of the stack is arbitrary and may be relocated anywhere in RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct address (page 0) space. For correct operation, the stack pointer must point only to RAM locations. 6.4.4 Program Counter The program counter is a 16-bit register that contains the address of the next instruction or operand to be fetched. Normally, the program counter automatically increments to the next sequential memory location every time an instruction or operand is fetched. Jump, branch, and interrupt operations load the program counter with an address other than that of the next sequential location. During reset, the program counter is loaded with the reset vector address located at $FFFE and $FFFF. The vector address is the address of the first instruction to be executed after exiting the reset state. Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Bit 0 Read: Write: Reset: Loaded with Vector from $FFFE and $FFFF Figure 6-5. Program Counter (PC) 6.4.5 Condition Code Register The 8-bit condition code register contains the interrupt mask and five flags that indicate the results of the instruction just executed. Bits 6 and MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Central Processor Unit (CPU) 73 Central Processor Unit (CPU) 5 are set permanently to logic 1. The following paragraphs describe the functions of the condition code register. Read: Write: Reset: Bit 7 6 5 4 3 2 1 Bit 0 V 1 1 H I N Z C X 1 1 X 1 X X X X = Indeterminate Figure 6-6. Condition Code Register (CCR) V — Overflow Flag The CPU sets the overflow flag when a two's complement overflow occurs. The signed branch instructions BGT, BGE, BLE, and BLT use the overflow flag. 1 = Overflow 0 = No overflow H — Half-Carry Flag The CPU sets the half-carry flag when a carry occurs between accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction uses the states of the H and C flags to determine the appropriate correction factor. 1 = Carry between bits 3 and 4 0 = No carry between bits 3 and 4 Technical Data 74 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU Registers I — Interrupt Mask When the interrupt mask is set, all maskable CPU interrupts are disabled. CPU interrupts are enabled when the interrupt mask is cleared. When a CPU interrupt occurs, the interrupt mask is set automatically after the CPU registers are saved on the stack, but before the interrupt vector is fetched. 1 = Interrupts disabled 0 = Interrupts enabled NOTE: To maintain M6805 Family compatibility, the upper byte of the index register (H) is not stacked automatically. If the interrupt service routine modifies H, then the user must stack and unstack H using the PSHH and PULH instructions. After the I bit is cleared, the highest-priority interrupt request is serviced first. A return-from-interrupt (RTI) instruction pulls the CPU registers from the stack and restores the interrupt mask from the stack. After any reset, the interrupt mask is set and can be cleared only by the clear interrupt mask software instruction (CLI). N — Negative flag The CPU sets the negative flag when an arithmetic operation, logic operation, or data manipulation produces a negative result, setting bit 7 of the result. 1 = Negative result 0 = Non-negative result Z — Zero flag The CPU sets the zero flag when an arithmetic operation, logic operation, or data manipulation produces a result of $00. 1 = Zero result 0 = Non-zero result MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Central Processor Unit (CPU) 75 Central Processor Unit (CPU) C — Carry/Borrow Flag The CPU sets the carry/borrow flag when an addition operation produces a carry out of bit 7 of the accumulator or when a subtraction operation requires a borrow. Some instructions — such as bit test and branch, shift, and rotate — also clear or set the carry/borrow flag. 1 = Carry out of bit 7 0 = No carry out of bit 7 6.5 Arithmetic/Logic Unit (ALU) The ALU performs the arithmetic and logic operations defined by the instruction set. Refer to the CPU08 Reference Manual (Freescale document order number CPU08RM/AD) for a description of the instructions and addressing modes and more detail about the architecture of the CPU. 6.6 Low-Power Modes The WAIT and STOP instructions put the MCU in low power-consumption standby modes. 6.6.1 Wait Mode The WAIT instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling interrupts. After exit from wait mode by interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock Technical Data 76 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) CPU During Break Interrupts 6.6.2 Stop Mode The STOP instruction: • Clears the interrupt mask (I bit) in the condition code register, enabling external interrupts. After exit from stop mode by external interrupt, the I bit remains clear. After exit by reset, the I bit is set. • Disables the CPU clock After exiting stop mode, the CPU clock begins running after the oscillator stabilization delay. 6.7 CPU During Break Interrupts If a break module is present on the MCU, the CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC:$FFFD or with $FEFC:$FEFD in monitor mode The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation if the break interrupt has been deasserted. 6.8 Instruction Set Summary 6.9 Opcode Map See Table 6-2. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Central Processor Unit (CPU) 77 Central Processor Unit (CPU) V H I N Z C ADC #opr ADC opr ADC opr ADC opr,X ADC opr,X ADC ,X ADC opr,SP ADC opr,SP A ← (A) + (M) + (C) Add with Carry ↕ ↕ IMM DIR EXT IX2 – ↕ ↕ ↕ IX1 IX SP1 SP2 A9 B9 C9 D9 E9 F9 9EE9 9ED9 ii dd hh ll ee ff ff IMM DIR EXT IX2 – ↕ ↕ ↕ IX1 IX SP1 SP2 AB BB CB DB EB FB 9EEB 9EDB ii dd hh ll ee ff ff ADD #opr ADD opr ADD opr ADD opr,X ADD opr,X ADD ,X ADD opr,SP ADD opr,SP Add without Carry AIS #opr Add Immediate Value (Signed) to SP SP ← (SP) + (16 « M) – – – – – – IMM AIX #opr Add Immediate Value (Signed) to H:X H:X ← (H:X) + (16 « M) – – – – – – IMM AND #opr AND opr AND opr AND opr,X AND opr,X AND ,X AND opr,SP AND opr,SP ASL opr ASLA ASLX ASL opr,X ASL ,X ASL opr,SP Arithmetic Shift Left (Same as LSL) Arithmetic Shift Right BCC rel Branch if Carry Bit Clear C C PC ← (PC) + 2 + rel ? (C) = 0 Mn ← 0 Technical Data 78 ff ee ff 2 3 4 4 3 2 4 5 A7 ii 2 AF ii 2 2 3 4 4 3 2 4 5 A4 B4 C4 D4 E4 F4 9EE4 9ED4 ii dd hh ll ee ff ff DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 38 48 58 68 78 9E68 dd DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 37 47 57 67 77 9E67 dd ff 4 1 1 4 3 5 – – – – – – REL 24 rr 3 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 11 13 15 17 19 1B 1D 1F dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 ↕ b0 b0 2 3 4 4 3 2 4 5 IMM DIR EXT IX2 – IX1 IX SP1 SP2 0 – – ↕ ↕ 0 b7 b7 Clear Bit n in M ↕ ↕ A ← (A) & (M) Logical AND ASR opr ASRA ASRX ASR opr,X ASR opr,X ASR opr,SP BCLR n, opr A ← (A) + (M) ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary ↕ ff ee ff ff ff ff 4 1 1 4 3 5 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map Effect on CCR V H I N Z C Cycles Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) BCS rel Branch if Carry Bit Set (Same as BLO) PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 BEQ rel Branch if Equal PC ← (PC) + 2 + rel ? (Z) = 1 – – – – – – REL 27 rr 3 BGE opr Branch if Greater Than or Equal To (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) = 0 – – – – – – REL 90 rr 3 BGT opr Branch if Greater Than (Signed Operands) PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = – – – – – – REL 0 92 rr 3 BHCC rel Branch if Half Carry Bit Clear PC ← (PC) + 2 + rel ? (H) = 0 – – – – – – REL 28 rr 3 BHCS rel Branch if Half Carry Bit Set PC ← (PC) + 2 + rel ? (H) = 1 – – – – – – REL 29 rr BHI rel Branch if Higher PC ← (PC) + 2 + rel ? (C) | (Z) = 0 – – – – – – REL 22 rr 3 BHS rel Branch if Higher or Same (Same as BCC) PC ← (PC) + 2 + rel ? (C) = 0 – – – – – – REL 24 rr 3 BIH rel Branch if IRQ Pin High PC ← (PC) + 2 + rel ? IRQ = 1 – – – – – – REL 2F rr 3 BIL rel Branch if IRQ Pin Low PC ← (PC) + 2 + rel ? IRQ = 0 – – – – – – REL 2E rr 3 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 93 rr 3 BIT #opr BIT opr BIT opr BIT opr,X BIT opr,X BIT ,X BIT opr,SP BIT opr,SP Bit Test BLE opr Branch if Less Than or Equal To (Signed Operands) BLO rel Branch if Lower (Same as BCS) BLS rel (A) & (M) 0 – – ↕ ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = – – – – – – REL 1 A5 B5 C5 D5 E5 F5 9EE5 9ED5 3 PC ← (PC) + 2 + rel ? (C) = 1 – – – – – – REL 25 rr 3 Branch if Lower or Same PC ← (PC) + 2 + rel ? (C) | (Z) = 1 – – – – – – REL 23 rr 3 BLT opr Branch if Less Than (Signed Operands) PC ← (PC) + 2 + rel ? (N ⊕ V) =1 – – – – – – REL 91 rr 3 BMC rel Branch if Interrupt Mask Clear PC ← (PC) + 2 + rel ? (I) = 0 – – – – – – REL 2C rr 3 BMI rel Branch if Minus PC ← (PC) + 2 + rel ? (N) = 1 – – – – – – REL 2B rr 3 BMS rel Branch if Interrupt Mask Set PC ← (PC) + 2 + rel ? (I) = 1 – – – – – – REL 2D rr 3 BNE rel Branch if Not Equal PC ← (PC) + 2 + rel ? (Z) = 0 – – – – – – REL 26 rr 3 BPL rel Branch if Plus PC ← (PC) + 2 + rel ? (N) = 0 – – – – – – REL 2A rr 3 BRA rel Branch Always PC ← (PC) + 2 + rel – – – – – – REL 20 rr 3 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Central Processor Unit (CPU) 79 Central Processor Unit (CPU) Table 6-1. Instruction Set Summary (Continued) DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – ↕ DIR (b4) DIR (b5) DIR (b6) DIR (b7) 01 03 05 07 09 0B 0D 0F dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 – – – – – – REL 21 rr 3 PC ← (PC) + 3 + rel ? (Mn) = 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – ↕ DIR (b4) DIR (b5) DIR (b6) DIR (b7) 00 02 04 06 08 0A 0C 0E dd rr dd rr dd rr dd rr dd rr dd rr dd rr dd rr 5 5 5 5 5 5 5 5 Mn ← 1 DIR (b0) DIR (b1) DIR (b2) DIR (b3) – – – – – – DIR (b4) DIR (b5) DIR (b6) DIR (b7) 10 12 14 16 18 1A 1C 1E dd dd dd dd dd dd dd dd 4 4 4 4 4 4 4 4 – – – – – – REL AD rr 4 dd rr ii rr ii rr ff rr rr ff rr 5 4 4 5 4 6 Description V H I N Z C BRCLR n,opr,rel Branch if Bit n in M Clear BRN rel Branch Never BRSET n,opr,rel Branch if Bit n in M Set BSET n,opr BSR rel Set Bit n in M Branch to Subroutine CBEQ opr,rel CBEQA #opr,rel CBEQX #opr,rel Compare and Branch if Equal CBEQ opr,X+,rel CBEQ X+,rel CBEQ opr,SP,rel PC ← (PC) + 3 + rel ? (Mn) = 0 PC ← (PC) + 2 PC ← (PC) + 2; push (PCL) SP ← (SP) – 1; push (PCH) SP ← (SP) – 1 PC ← (PC) + rel DIR PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (A) – (M) = $00 IMM PC ← (PC) + 3 + rel ? (X) – (M) = $00 – – – – – – IX1+ PC ← (PC) + 3 + rel ? (A) – (M) = $00 IX+ PC ← (PC) + 2 + rel ? (A) – (M) = $00 SP1 PC ← (PC) + 4 + rel ? (A) – (M) = $00 31 41 51 61 71 9E61 Cycles Operand Effect on CCR Opcode Operation Address Mode Source Form CLC Clear Carry Bit C←0 – – – – – 0 INH 98 1 CLI Clear Interrupt Mask I←0 – – 0 – – – INH 9A 2 M ← $00 A ← $00 X ← $00 H ← $00 M ← $00 M ← $00 M ← $00 DIR INH INH 0 – – 0 1 – INH IX1 IX SP1 3F 4F 5F 8C 6F 7F 9E6F CLR opr CLRA CLRX CLRH CLR opr,X CLR ,X CLR opr,SP Clear Technical Data 80 dd ff ff 3 1 1 1 3 2 4 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map V H I N Z C CMP #opr CMP opr CMP opr CMP opr,X CMP opr,X CMP ,X CMP opr,SP CMP opr,SP Compare A with M (A) – (M) COM opr COMA COMX COM opr,X COM ,X COM opr,SP Complement (One’s Complement) CPHX #opr CPHX opr Compare H:X with M CPX #opr CPX opr CPX opr CPX ,X CPX opr,X CPX opr,X CPX opr,SP CPX opr,SP Compare X with M DAA Decimal Adjust A (H:X) – (M:M + 1) (X) – (M) (A)10 DBNZ opr,rel DBNZA rel Decrement and Branch if Not Zero DBNZX rel DBNZ opr,X,rel DBNZ X,rel DBNZ opr,SP,rel DEC opr DECA DECX DEC opr,X DEC ,X DEC opr,SP Decrement DIV Divide M ← (M) = $FF – (M) A ← (A) = $FF – (M) X ← (X) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) M ← (M) = $FF – (M) A1 B1 C1 D1 E1 F1 9EE1 9ED1 ii dd hh ll ee ff ff DIR INH INH 1 IX1 IX SP1 33 43 53 63 73 9E63 dd 0 – – ↕ ↕ IMM DIR ↕ – – ↕ ↕ ↕ ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 U – – ↕ ↕ ↕ INH A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1 DIR PC ← (PC) + 3 + rel ? (result) ≠ 0 INH PC ← (PC) + 2 + rel ? (result) ≠ 0 – – – – – – INH PC ← (PC) + 2 + rel ? (result) ≠ 0 IX1 PC ← (PC) + 3 + rel ? (result) ≠ 0 IX PC ← (PC) + 2 + rel ? (result) ≠ 0 SP1 PC ← (PC) + 4 + rel ? (result) ≠ 0 M ← (M) – 1 A ← (A) – 1 X ← (X) – 1 M ← (M) – 1 M ← (M) – 1 M ← (M) – 1 A ← (H:A)/(X) H ← Remainder MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 ↕ – – ↕ ↕ DIR INH INH – IX1 IX SP1 – – – – ↕ ↕ INH ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 2 3 4 4 3 2 4 5 ff 4 1 1 4 3 5 65 75 ii ii+1 dd 3 4 A3 B3 C3 D3 E3 F3 9EE3 9ED3 ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ff ff ee ff 72 2 3B 4B 5B 6B 7B 9E6B dd rr rr rr ff rr rr ff rr 3A 4A 5A 6A 7A 9E6A dd 52 ff ff 5 3 3 5 4 6 4 1 1 4 3 5 7 Technical Data Central Processor Unit (CPU) 81 Central Processor Unit (CPU) V H I N Z C EOR #opr EOR opr EOR opr EOR opr,X EOR opr,X EOR ,X EOR opr,SP EOR opr,SP INC opr INCA INCX INC opr,X INC ,X INC opr,SP JMP opr JMP opr JMP opr,X JMP opr,X JMP ,X JSR opr JSR opr JSR opr,X JSR opr,X JSR ,X Load A from M LDHX #opr LDHX opr Load H:X from M LSL opr LSLA LSLX LSL opr,X LSL ,X LSL opr,SP DIR INH INH – IX1 IX SP1 3C 4C 5C 6C 7C 9E6C dd ff ee ff ff ff 2 3 4 4 3 2 4 5 4 1 1 4 3 5 PC ← Jump Address dd hh ll ee ff ff 2 3 4 3 2 PC ← (PC) + n (n = 1, 2, or 3) Push (PCL); SP ← (SP) – 1 Push (PCH); SP ← (SP) – 1 PC ← Unconditional Address DIR EXT – – – – – – IX2 IX1 IX BD CD DD ED FD dd hh ll ee ff ff 4 5 6 5 4 A6 B6 C6 D6 E6 F6 9EE6 9ED6 ii dd hh ll ee ff ff ff ee ff 2 3 4 4 3 2 4 5 ii jj dd 3 4 2 3 4 4 3 2 4 5 A ← (M) 0 – – ↕ ↕ H:X ← (M:M + 1) X ← (M) C 0 b7 b0 Technical Data 82 – – ↕ ↕ ii dd hh ll ee ff ff BC CC DC EC FC Load X from M Logical Shift Left (Same as ASL) ↕ A8 B8 C8 D8 E8 F8 9EE8 9ED8 DIR EXT – – – – – – IX2 IX1 IX Jump Jump to Subroutine 0 – – ↕ ↕ M ← (M) + 1 A ← (A) + 1 X ← (X) + 1 M ← (M) + 1 M ← (M) + 1 M ← (M) + 1 Increment LDA #opr LDA opr LDA opr LDA opr,X LDA opr,X LDA ,X LDA opr,SP LDA opr,SP LDX #opr LDX opr LDX opr LDX opr,X LDX opr,X LDX ,X LDX opr,SP LDX opr,SP A ← (A ⊕ M) Exclusive OR M with A IMM DIR EXT IX2 – IX1 IX SP1 SP2 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) IMM DIR EXT IX2 – IX1 IX SP1 SP2 IMM DIR 45 55 0 – – ↕ ↕ – 0 – – ↕ ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 AE BE CE DE EE FE 9EEE 9EDE ii dd hh ll ee ff ff DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 38 48 58 68 78 9E68 dd ↕ ff ee ff ff ff 4 1 1 4 3 5 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map V H I N Z C LSR opr LSRA LSRX LSR opr,X LSR ,X LSR opr,SP Logical Shift Right 0 C b7 MOV opr,opr MOV opr,X+ MOV #opr,opr MOV X+,opr Move MUL Unsigned multiply ↕ b0 DIR INH INH – – 0 ↕ ↕ IX1 IX SP1 (M)Destination ← (M)Source 0 – – ↕ ↕ H:X ← (H:X) + 1 (IX+D, DIX+) X:A ← (X) × (A) DD DIX+ – IMD IX+D – 0 – – – 0 INH DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 34 44 54 64 74 9E64 4E 5E 6E 7E dd ff 4 1 1 4 3 5 dd dd dd ii dd dd 5 4 4 4 ff 42 30 40 50 60 70 9E60 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 5 dd 4 1 1 4 3 5 NEG opr NEGA NEGX NEG opr,X NEG ,X NEG opr,SP Negate (Two’s Complement) NOP No Operation None – – – – – – INH 9D 1 NSA Nibble Swap A A ← (A[3:0]:A[7:4]) – – – – – – INH 62 3 M ← –(M) = $00 – (M) A ← –(A) = $00 – (A) X ← –(X) = $00 – (X) M ← –(M) = $00 – (M) M ← –(M) = $00 – (M) ↕ IMM DIR EXT IX2 – IX1 IX SP1 SP2 AA BA CA DA EA FA 9EEA 9EDA ff ff ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 ORA #opr ORA opr ORA opr ORA opr,X ORA opr,X ORA ,X ORA opr,SP ORA opr,SP Inclusive OR A and M PSHA Push A onto Stack Push (A); SP ← (SP) – 1 – – – – – – INH 87 2 PSHH Push H onto Stack Push (H); SP ← (SP) – 1 – – – – – – INH 8B 2 PSHX Push X onto Stack Push (X); SP ← (SP) – 1 – – – – – – INH 89 2 PULA Pull A from Stack SP ← (SP + 1); Pull (A) – – – – – – INH 86 2 PULH Pull H from Stack SP ← (SP + 1); Pull (H) – – – – – – INH 8A 2 PULX Pull X from Stack SP ← (SP + 1); Pull (X) – – – – – – INH 88 2 ROL opr ROLA ROLX ROL opr,X ROL ,X ROL opr,SP Rotate Left through Carry A ← (A) | (M) 0 – – ↕ ↕ C ↕ b7 b0 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 39 49 59 69 79 9E69 ff ee ff dd ff ff 4 1 1 4 3 5 Technical Data Central Processor Unit (CPU) 83 Central Processor Unit (CPU) V H I N Z C DIR INH INH – – ↕ ↕ ↕ IX1 IX SP1 36 46 56 66 76 9E66 dd Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 4 1 1 4 3 5 ROR opr RORA RORX ROR opr,X ROR ,X ROR opr,SP Rotate Right through Carry RSP Reset Stack Pointer SP ← $FF – – – – – – INH 9C 1 RTI Return from Interrupt SP ← (SP) + 1; Pull (CCR) SP ← (SP) + 1; Pull (A) SP ← (SP) + 1; Pull (X) SP ← (SP) + 1; Pull (PCH) SP ← (SP) + 1; Pull (PCL) ↕ ↕ ↕ ↕ ↕ ↕ INH 80 7 RTS Return from Subroutine SP ← SP + 1; Pull (PCH) SP ← SP + 1; Pull (PCL) – – – – – – INH 81 4 C b7 ↕ b0 IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 A2 B2 C2 D2 E2 F2 9EE2 9ED2 ff ff ii dd hh ll ee ff ff 2 3 4 4 3 2 4 5 SBC #opr SBC opr SBC opr SBC opr,X SBC opr,X SBC ,X SBC opr,SP SBC opr,SP Subtract with Carry SEC Set Carry Bit C←1 – – – – – 1 INH 99 1 SEI Set Interrupt Mask I←1 – – 1 – – – INH 9B 2 STA opr STA opr STA opr,X STA opr,X STA ,X STA opr,SP STA opr,SP Store A in M STHX opr Store H:X in M STOP Enable IRQ Pin; Stop Oscillator STX opr STX opr STX opr,X STX opr,X STX ,X STX opr,SP STX opr,SP Store X in M A ← (A) – (M) – (C) M ← (A) (M:M + 1) ← (H:X) I ← 0; Stop Oscillator M ← (X) Technical Data 84 ↕ DIR EXT IX2 – IX1 IX SP1 SP2 B7 C7 D7 E7 F7 9EE7 9ED7 – DIR 35 – – 0 – – – INH 8E 0 – – ↕ ↕ 0 – – ↕ ↕ 0 – – ↕ ↕ DIR EXT IX2 – IX1 IX SP1 SP2 BF CF DF EF FF 9EEF 9EDF ff ee ff ff ee ff 3 4 4 3 2 4 5 dd 4 dd hh ll ee ff ff 1 dd hh ll ee ff ff ff ee ff 3 4 4 3 2 4 5 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Central Processor Unit (CPU) Opcode Map V H I N Z C SUB #opr SUB opr SUB opr SUB opr,X SUB opr,X SUB ,X SUB opr,SP SUB opr,SP Subtract A ← (A) – (M) ↕ IMM DIR EXT IX2 – – ↕ ↕ ↕ IX1 IX SP1 SP2 A0 B0 C0 D0 E0 F0 9EE0 9ED0 ii dd hh ll ee ff ff ff ee ff Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) 2 3 4 4 3 2 4 5 SWI Software Interrupt PC ← (PC) + 1; Push (PCL) SP ← (SP) – 1; Push (PCH) SP ← (SP) – 1; Push (X) SP ← (SP) – 1; Push (A) SP ← (SP) – 1; Push (CCR) SP ← (SP) – 1; I ← 1 PCH ← Interrupt Vector High Byte PCL ← Interrupt Vector Low Byte TAP Transfer A to CCR CCR ← (A) ↕ ↕ ↕ ↕ ↕ ↕ INH 84 2 TAX Transfer A to X X ← (A) – – – – – – INH 97 1 TPA Transfer CCR to A A ← (CCR) – – – – – – INH 85 1 TST opr TSTA TSTX TST opr,X TST ,X TST opr,SP Test for Negative or Zero TSX Transfer SP to H:X TXA Transfer X to A TXS Transfer H:X to SP (A) – $00 or (X) – $00 or (M) – $00 83 9 0 – – ↕ ↕ DIR INH INH – IX1 IX SP1 3D 4D 5D 6D 7D 9E6D dd ff ff 3 1 1 3 2 4 H:X ← (SP) + 1 – – – – – – INH 95 2 A ← (X) – – – – – – INH 9F 1 (SP) ← (H:X) – 1 – – – – – – INH 94 2 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor – – 1 – – – INH Technical Data Central Processor Unit (CPU) 85 Central Processor Unit (CPU) V H I N Z C A C CCR dd dd rr DD DIR DIX+ ee ff EXT ff H H hh ll I ii IMD IMM INH IX IX+ IX+D IX1 IX1+ IX2 M N Accumulator Carry/borrow bit Condition code register Direct address of operand Direct address of operand and relative offset of branch instruction Direct to direct addressing mode Direct addressing mode Direct to indexed with post increment addressing mode High and low bytes of offset in indexed, 16-bit offset addressing Extended addressing mode Offset byte in indexed, 8-bit offset addressing Half-carry bit Index register high byte High and low bytes of operand address in extended addressing Interrupt mask Immediate operand byte Immediate source to direct destination addressing mode Immediate addressing mode Inherent addressing mode Indexed, no offset addressing mode Indexed, no offset, post increment addressing mode Indexed with post increment to direct addressing mode Indexed, 8-bit offset addressing mode Indexed, 8-bit offset, post increment addressing mode Indexed, 16-bit offset addressing mode Memory location Negative bit n opr PC PCH PCL REL rel rr SP1 SP2 SP U V X Z & | ⊕ () –( ) # « ← ? : ↕ — Any bit Operand (one or two bytes) Program counter Program counter high byte Program counter low byte Relative addressing mode Relative program counter offset byte Relative program counter offset byte Stack pointer, 8-bit offset addressing mode Stack pointer 16-bit offset addressing mode Stack pointer Undefined Overflow bit Index register low byte Zero bit Logical AND Logical OR Logical EXCLUSIVE OR Contents of Negation (two’s complement) Immediate value Sign extend Loaded with If Concatenated with Set or cleared Not affected Technical Data 86 Cycles Effect on CCR Description Operand Operation Opcode Source Form Address Mode Table 6-1. Instruction Set Summary (Continued) MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Table 6-2. Opcode Map Bit Manipulation DIR DIR MSB Branch REL DIR INH 3 4 1 2 5 BRSET0 3 DIR 5 BRCLR0 3 DIR 5 BRSET1 3 DIR 5 BRCLR1 3 DIR 5 BRSET2 3 DIR 5 BRCLR2 3 DIR 5 BRSET3 3 DIR 5 BRCLR3 3 DIR 5 BRSET4 3 DIR 5 BRCLR4 3 DIR 5 BRSET5 3 DIR 5 BRCLR5 3 DIR 5 BRSET6 3 DIR 5 BRCLR6 3 DIR 5 BRSET7 3 DIR 5 BRCLR7 3 DIR 4 BSET0 2 DIR 4 BCLR0 2 DIR 4 BSET1 2 DIR 4 BCLR1 2 DIR 4 BSET2 2 DIR 4 BCLR2 2 DIR 4 BSET3 2 DIR 4 BCLR3 2 DIR 4 BSET4 2 DIR 4 BCLR4 2 DIR 4 BSET5 2 DIR 4 BCLR5 2 DIR 4 BSET6 2 DIR 4 BCLR6 2 DIR 4 BSET7 2 DIR 4 BCLR7 2 DIR 3 BRA 2 REL 3 BRN 2 REL 3 BHI 2 REL 3 BLS 2 REL 3 BCC 2 REL 3 BCS 2 REL 3 BNE 2 REL 3 BEQ 2 REL 3 BHCC 2 REL 3 BHCS 2 REL 3 BPL 2 REL 3 BMI 2 REL 3 BMC 2 REL 3 BMS 2 REL 3 BIL 2 REL 3 BIH 2 REL 5 6 1 NEGX 1 INH 4 CBEQX 3 IMM 7 DIV 1 INH 1 COMX 1 INH 1 LSRX 1 INH 4 LDHX 2 DIR 1 RORX 1 INH 1 ASRX 1 INH 1 LSLX 1 INH 1 ROLX 1 INH 1 DECX 1 INH 3 DBNZX 2 INH 1 INCX 1 INH 1 TSTX 1 INH 4 MOV 2 DIX+ 1 CLRX 1 INH 4 NEG 2 IX1 5 CBEQ 3 IX1+ 3 NSA 1 INH 4 COM 2 IX1 4 LSR 2 IX1 3 CPHX 3 IMM 4 ROR 2 IX1 4 ASR 2 IX1 4 LSL 2 IX1 4 ROL 2 IX1 4 DEC 2 IX1 5 DBNZ 3 IX1 4 INC 2 IX1 3 TST 2 IX1 4 MOV 3 IMD 3 CLR 2 IX1 SP1 IX 9E6 7 Control INH INH 8 9 Register/Memory IX2 SP2 IMM DIR EXT A B C D 9ED 4 SUB 3 EXT 4 CMP 3 EXT 4 SBC 3 EXT 4 CPX 3 EXT 4 AND 3 EXT 4 BIT 3 EXT 4 LDA 3 EXT 4 STA 3 EXT 4 EOR 3 EXT 4 ADC 3 EXT 4 ORA 3 EXT 4 ADD 3 EXT 3 JMP 3 EXT 5 JSR 3 EXT 4 LDX 3 EXT 4 STX 3 EXT 4 SUB 3 IX2 4 CMP 3 IX2 4 SBC 3 IX2 4 CPX 3 IX2 4 AND 3 IX2 4 BIT 3 IX2 4 LDA 3 IX2 4 STA 3 IX2 4 EOR 3 IX2 4 ADC 3 IX2 4 ORA 3 IX2 4 ADD 3 IX2 4 JMP 3 IX2 6 JSR 3 IX2 4 LDX 3 IX2 4 STX 3 IX2 5 SUB 4 SP2 5 CMP 4 SP2 5 SBC 4 SP2 5 CPX 4 SP2 5 AND 4 SP2 5 BIT 4 SP2 5 LDA 4 SP2 5 STA 4 SP2 5 EOR 4 SP2 5 ADC 4 SP2 5 ORA 4 SP2 5 ADD 4 SP2 IX1 SP1 IX E 9EE F LSB 0 1 2 3 4 Central Processor Unit (CPU) 0 Read-Modify-Write INH IX1 5 6 7 8 9 A B C E F Technical Data 87 INH Inherent REL Relative IMM Immediate IX Indexed, No Offset DIR Direct IX1 Indexed, 8-Bit Offset EXT Extended IX2 Indexed, 16-Bit Offset DD Direct-Direct IMD Immediate-Direct IX+D Indexed-Direct DIX+ Direct-Indexed *Pre-byte for stack pointer indexed instructions 5 3 NEG NEG 3 SP1 1 IX 6 4 CBEQ CBEQ 4 SP1 2 IX+ 2 DAA 1 INH 5 3 COM COM 3 SP1 1 IX 5 3 LSR LSR 3 SP1 1 IX 4 CPHX 2 DIR 5 3 ROR ROR 3 SP1 1 IX 5 3 ASR ASR 3 SP1 1 IX 5 3 LSL LSL 3 SP1 1 IX 5 3 ROL ROL 3 SP1 1 IX 5 3 DEC DEC 3 SP1 1 IX 6 4 DBNZ DBNZ 4 SP1 2 IX 5 3 INC INC 3 SP1 1 IX 4 2 TST TST 3 SP1 1 IX 4 MOV 2 IX+D 4 2 CLR CLR 3 SP1 1 IX SP1 Stack Pointer, 8-Bit Offset SP2 Stack Pointer, 16-Bit Offset IX+ Indexed, No Offset with Post Increment IX1+ Indexed, 1-Byte Offset with Post Increment 7 3 RTI BGE 1 INH 2 REL 4 3 RTS BLT 1 INH 2 REL 3 BGT 2 REL 9 3 SWI BLE 1 INH 2 REL 2 2 TAP TXS 1 INH 1 INH 1 2 TPA TSX 1 INH 1 INH 2 PULA 1 INH 2 1 PSHA TAX 1 INH 1 INH 2 1 PULX CLC 1 INH 1 INH 2 1 PSHX SEC 1 INH 1 INH 2 2 PULH CLI 1 INH 1 INH 2 2 PSHH SEI 1 INH 1 INH 1 1 CLRH RSP 1 INH 1 INH 1 NOP 1 INH 1 STOP * 1 INH 1 1 WAIT TXA 1 INH 1 INH 2 SUB 2 IMM 2 CMP 2 IMM 2 SBC 2 IMM 2 CPX 2 IMM 2 AND 2 IMM 2 BIT 2 IMM 2 LDA 2 IMM 2 AIS 2 IMM 2 EOR 2 IMM 2 ADC 2 IMM 2 ORA 2 IMM 2 ADD 2 IMM 3 SUB 2 DIR 3 CMP 2 DIR 3 SBC 2 DIR 3 CPX 2 DIR 3 AND 2 DIR 3 BIT 2 DIR 3 LDA 2 DIR 3 STA 2 DIR 3 EOR 2 DIR 3 ADC 2 DIR 3 ORA 2 DIR 3 ADD 2 DIR 2 JMP 2 DIR 4 4 BSR JSR 2 REL 2 DIR 2 3 LDX LDX 2 IMM 2 DIR 2 3 AIX STX 2 IMM 2 DIR MSB 0 3 SUB 2 IX1 3 CMP 2 IX1 3 SBC 2 IX1 3 CPX 2 IX1 3 AND 2 IX1 3 BIT 2 IX1 3 LDA 2 IX1 3 STA 2 IX1 3 EOR 2 IX1 3 ADC 2 IX1 3 ORA 2 IX1 3 ADD 2 IX1 3 JMP 2 IX1 5 JSR 2 IX1 5 3 LDX LDX 4 SP2 2 IX1 5 3 STX STX 4 SP2 2 IX1 4 SUB 3 SP1 4 CMP 3 SP1 4 SBC 3 SP1 4 CPX 3 SP1 4 AND 3 SP1 4 BIT 3 SP1 4 LDA 3 SP1 4 STA 3 SP1 4 EOR 3 SP1 4 ADC 3 SP1 4 ORA 3 SP1 4 ADD 3 SP1 2 SUB 1 IX 2 CMP 1 IX 2 SBC 1 IX 2 CPX 1 IX 2 AND 1 IX 2 BIT 1 IX 2 LDA 1 IX 2 STA 1 IX 2 EOR 1 IX 2 ADC 1 IX 2 ORA 1 IX 2 ADD 1 IX 2 JMP 1 IX 4 JSR 1 IX 4 2 LDX LDX 3 SP1 1 IX 4 2 STX STX 3 SP1 1 IX High Byte of Opcode in Hexadecimal LSB Low Byte of Opcode in Hexadecimal 0 5 Cycles BRSET0 Opcode Mnemonic 3 DIR Number of Bytes / Addressing Mode Central Processor Unit (CPU) Opcode Map D 4 1 NEG NEGA 2 DIR 1 INH 5 4 CBEQ CBEQA 3 DIR 3 IMM 5 MUL 1 INH 4 1 COM COMA 2 DIR 1 INH 4 1 LSR LSRA 2 DIR 1 INH 4 3 STHX LDHX 2 DIR 3 IMM 4 1 ROR RORA 2 DIR 1 INH 4 1 ASR ASRA 2 DIR 1 INH 4 1 LSL LSLA 2 DIR 1 INH 4 1 ROL ROLA 2 DIR 1 INH 4 1 DEC DECA 2 DIR 1 INH 5 3 DBNZ DBNZA 3 DIR 2 INH 4 1 INC INCA 2 DIR 1 INH 3 1 TST TSTA 2 DIR 1 INH 5 MOV 3 DD 3 1 CLR CLRA 2 DIR 1 INH Central Processor Unit (CPU) Technical Data 88 MC68HC908LD60 — Rev. 1.1 Central Processor Unit (CPU) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 7. Oscillator (OSC) 7.1 Contents 7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7.3 Oscillator External Connections . . . . . . . . . . . . . . . . . . . . . . . .90 7.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.4.1 Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . 91 7.4.2 Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . 91 7.4.3 Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . 91 7.4.4 External Clock Source (OSCXCLK) . . . . . . . . . . . . . . . . . . . 91 7.4.5 Oscillator Out (OSCOUT). . . . . . . . . . . . . . . . . . . . . . . . . . . 91 7.5 Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 7.6 Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.2 Introduction The oscillator circuit is designed for use with crystals or ceramic resonators. The oscillator circuit generates the crystal clock signal, OSCXCLK, at the frequency of the crystal. This signal is divided by two before being passed on to the SIM for bus clock generation. Figure 7-1 shows the structure of the oscillator. The oscillator requires various external components. The MC68HC908LD60 operates from a nominal 24MHz crystal or external clock, providing an 8MHz internal bus clock. The 24MHz clock is required for various modules, such as the CGM. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Oscillator (OSC) 89 Oscillator (OSC) 7.3 Oscillator External Connections In its typical configuration, the oscillator requires five external components. The crystal oscillator is normally connected in a Pierce oscillator configuration, as shown in Figure 7-1. This figure shows only the logical representation of the internal components and may not represent actual circuitry. The oscillator configuration uses five components: • Crystal, X1 (nominally 24MHz) • Fixed capacitor, C1 • Tuning capacitor, C2 (can also be a fixed capacitor) • Feedback resistor, RB • Series resistor, RS (not required for 24MHz crystal) The series resistor (RS) is included in the diagram to follow strict Pierce oscillator guidelines and may not be required for all ranges of operation, especially with high frequency crystals. Refer to the crystal manufacturer’s data for more information. From SIM To SIM OSCXCLK To SIM ÷2 OSCOUT SIMOSCEN MCU OSC1 OSC2 RB X1 C1 24MHz RS * *RS can be zero (shorted) when used with higher-frequency crystals. Refer to manufacturer’s data. C2 Figure 7-1. Oscillator External Connections Technical Data 90 MC68HC908LD60 — Rev. 1.1 Oscillator (OSC) Freescale Semiconductor Oscillator (OSC) I/O Signals 7.4 I/O Signals The following paragraphs describe the oscillator I/O signals. 7.4.1 Crystal Amplifier Input Pin (OSC1) The OSC1 pin is an input to the crystal oscillator amplifier. An externally generated clock also can feed the OSC1 pin of the crystal oscillator circuit. Connect the external clock to the OSC1 pin and let the OSC2 pin float. 7.4.2 Crystal Amplifier Output Pin (OSC2) The OSC2 pin is the output of the crystal oscillator inverting amplifier. 7.4.3 Oscillator Enable Signal (SIMOSCEN) The SIMOSCEN signal comes from the SIM and enables the oscillator. 7.4.4 External Clock Source (OSCXCLK) OSCXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (fXCLK) and comes directly from the crystal oscillator circuit. Figure 7-1 shows only the logical relation of OSCXCLK to OSC1 and OSC2 and may not represent the actual circuitry. The duty cycle of OSCXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of OSCXCLK can be unstable at start-up. 7.4.5 Oscillator Out (OSCOUT) The clock driven to the SIM is the crystal frequency divided by two. This signal is driven to the SIM for generation of the bus clocks used by the CPU and other modules on the MCU. OSCOUT will be divided again in the SIM and results in the internal bus frequency being one fourth of the OSCXCLK frequency. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Oscillator (OSC) 91 Oscillator (OSC) 7.5 Low Power Modes The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes. 7.5.1 Wait Mode The WAIT instruction has no effect on the oscillator logic. OSCXCLK continues to drive to the SIM module. 7.5.2 Stop Mode The STOP instruction disables the OSCXCLK output. 7.6 Oscillator During Break Mode The oscillator continues drive OSCXCLK when the chip enters the break state. Technical Data 92 MC68HC908LD60 — Rev. 1.1 Oscillator (OSC) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 8. Clock Generator Module (CGM) 8.1 Contents 8.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 8.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 8.4.1 Crystal Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . .97 8.5 CGM I/O Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 8.5.1 External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 97 8.5.2 PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 97 8.5.3 PLL Analog Ground Pin (VSSA). . . . . . . . . . . . . . . . . . . . . . 97 8.5.4 Crystal Output Frequency Signal (OSCXCLK). . . . . . . . . . . 98 8.5.5 Crystal Reference Frequency Signal (OSCRCLK). . . . . . . . 98 8.5.6 CGM Base Clock Output (DCLK1) . . . . . . . . . . . . . . . . . . . . 98 8.5.7 CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . . 98 8.6 CGM I/O Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 8.6.1 PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . 99 8.6.2 PLL Bandwidth Control Register (PBWC) . . . . . . . . . . . . . 100 8.6.3 PLL Programming Register (PPG) . . . . . . . . . . . . . . . . . . . 102 8.6.4 H & V Sync Output Control Register (HVOCR) . . . . . . . . . 104 8.7 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 8.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 8.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 8.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 8.9 CGM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . 106 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Clock Generator Module (CGM) 93 Clock Generator Module (CGM) 8.2 Introduction This section describes the clock generator module (CGM). Using the crystal reference clock from the oscillator module, the CGM generates the display base clock, DCLK1, for the sync processor module. The CGM is able to generate a frequency up to 108MHz from a 24MHz reference clock. 8.3 Features Features of the CGM include the following: • Phase-locked loop with output frequency in integer multiples of the crystal reference • Programmable hardware voltage-controlled oscillator (VCO) for low-jitter operation • Automatic bandwidth control mode for low-jitter operation • Automatic frequency lock detector • CPU interrupt on entry or exit from locked condition 8.4 Functional Description The CGM consists of three major sub-modules: • Crystal oscillator circuit which generates the buffered constant crystal frequency clock, OSCRCLK. (See Section 7. Oscillator (OSC).) • Phase-locked loop (PLL) which generates the programmable VCO frequency clock CGMVCLK. • Base clock selector circuit; this software-controlled circuit selects either OSCXCLK divided by two or the VCO clock CGMVCLK divided by two, as the base clock DCLK1. The sync processor derives other display clocks from DCLK1. Technical Data 94 MC68HC908LD60 — Rev. 1.1 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Functional Description OSCILLATOR (OSC) (See Section 7. Oscillator (OSC).) OSC2 OSCOUT ÷2 OSCXCLK OSC1 (TO SIM) SIMOSCEN (FROM SIM) PHASE-LOCKED LOOP (PLL) HVOCR[1:0] CGMRDV OSCRCLK REFERENCE DIVIDER CLOCK SELECT CIRCUIT BCS VDDA CGMXFC DCLK1 (TO SYNC PROCESSOR) VSSA VRS[7:4] L PHASE DETECTOR VOLTAGE CONTROLLED OSCILLATOR LOOP FILTER PLL ANALOG LOCK DETECTOR LOCK BANDWIDTH CONTROL AUTO ACQ INTERRUPT CONTROL PLLIE CGMINT (TO SIM) PLLF MUL[7:4] N CGMVDV FREQUENCY DIVIDER CGMVCLK Figure 8-1. CGM Block Diagram MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Clock Generator Module (CGM) 95 Clock Generator Module (CGM) Addr. Register Name $0038 Read: PLL Control Register Write: (PCTL) Reset: $0039 Bit 7 PLLIE 0 PLL Bandwidth Control Read: Register Write: (PBWC) Reset: AUTO PLL Programming Read: Register Write: (PPG) Reset: $003A 6 PLLF 0 LOCK 5 4 PLLON BCS 1 0 ACQ XLD 3 2 1 Bit 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 MUL7 MUL6 MUL5 MUL4 VRS7 VRS6 VRS5 VRS4 0 1 1 0 0 1 1 0 H&V Sync Output Control Read: $003F Register Write: (HVOCR) Reset: DCLKPH1 DCLKPH0 0 R HVOCR1 HVOCR0 0 = Unimplemented 0 R 0 = Reserved NOTES: 1. When AUTO = 0, PLLIE is forced to logic zero and is read-only. 2. When AUTO = 0, PLLF and LOCK read as logic zero. 3. When AUTO = 1, ACQ is read-only. 4. When PLLON = 0 or VRS[7:4] = $0, BCS is forced to logic zero and is read-only. 5. When PLLON = 1, the PLL programming register is read-only. 6. When BCS = 1, PLLON is forced set and is read-only. Figure 8-2. CGM I/O Register Summary Table 8-1. Free-Running HSOUT, VSOUT, DE, and DCLK Settings Register Settings Output Pin Video Modes HVOCR[1:0] MUL[7:4] VRS[7:4] HOUT Frequency VOUT Frequency DCLK Frequency DE Video Mode 00 3 3 31.45kHz 59.91Hz 24MHz VGA 640 × 480 01 5 3 37.87kHz 60.31Hz 40MHz SVGA 800 × 600 10 8 6 48.37kHz 60.31Hz 64MHz XGA 1024 × 768 11 9 9 64.32kHz 60.00Hz 108MHz SXGA 1280 × 1024 Technical Data 96 MC68HC908LD60 — Rev. 1.1 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM I/O Signals 8.4.1 Crystal Oscillator Circuit The crystal oscillator circuit consists of an inverting amplifier and an external crystal. The OSC1 pin is the input to the amplifier and the OSC2 pin is the output. The SIMOSCEN signal from the system integration module (SIM) enables the crystal oscillator circuit. The OSCXCLK signal is the output of the crystal oscillator circuit and runs at a rate equal to the crystal frequency. OSCXCLK is then buffered to produce OSCRCLK, the PLL reference clock. (See Section 7. Oscillator (OSC).) 8.5 CGM I/O Signals The following paragraphs describe the CGM I/O signals. 8.5.1 External Filter Capacitor Pin (CGMXFC) The CGMXFC pin is required by the loop filter to filter out phase corrections. A small external capacitor (CF) is connected to this pin. NOTE: To prevent noise problems, CF should be placed as close to the CGMXFC pin as possible, with minimum routing distances and no routing of other signals across the CF connection. 8.5.2 PLL Analog Power Pin (VDDA) VDDA is the power pin used by the analog portions of the PLL. The pin should be connected to the same voltage potential as the VDD pin. 8.5.3 PLL Analog Ground Pin (VSSA) VSSA is the ground pin used by the analog portions of the PLL. The pin should be connected to the same voltage potential as the VSS pin. NOTE: Route VDDA and VSSA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Clock Generator Module (CGM) 97 Clock Generator Module (CGM) 8.5.4 Crystal Output Frequency Signal (OSCXCLK) OSCXCLK is the crystal oscillator output signal. It runs at the full speed of the crystal (fXCLK) and is generated directly from the crystal oscillator circuit. The duty cycle of OSCXCLK is unknown and may depend on the crystal and other external factors. Also, the frequency and amplitude of OSCXCLK can be unstable at start-up. 8.5.5 Crystal Reference Frequency Signal (OSCRCLK) OSCRCLK is the buffered version of OSCXCLK. It runs at the full speed of the crystal (fXCLK) and provides the reference for the PLL circuit. 8.5.6 CGM Base Clock Output (DCLK1) DCLK1 is the clock output of the CGM. This signal goes to the sync processor, which generates the display clocks. DCLK1 is software programmable to be either the oscillator output (OSCXCLK) or the VCO clock (CGMVCLK). 8.5.7 CGM CPU Interrupt (CGMINT) CGMINT is the interrupt signal generated by the PLL lock detector. 8.6 CGM I/O Registers The following registers control and monitor operation of the CGM: • PLL control register (PCTL) • PLL bandwidth control register (PBWC) • PLL programming register (PPG) • H & V sync output control register (HVOCR) Technical Data 98 MC68HC908LD60 — Rev. 1.1 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM I/O Registers 8.6.1 PLL Control Register (PCTL) The PLL control register contains the interrupt enable and flag bits, the on/off switch, and the base clock selector bit. Address: $0038 Bit 7 Read: Write: Reset: PLLIE 0 6 PLLF 0 5 4 PLLON BCS 1 0 3 2 1 Bit 0 1 1 1 1 1 1 1 1 = Unimplemented Figure 8-3. PLL Control Register (PCTL) PLLIE — PLL Interrupt Enable Bit This read/write bit enables the PLL to generate an interrupt request when the LOCK bit toggles, setting the PLL flag, PLLF. When the AUTO bit in the PLL bandwidth control register (PBWC) is clear, PLLIE cannot be written and reads as 0. Reset clears the PLLIE bit. 1 = PLL interrupts enabled 0 = PLL interrupts disabled PLLF — PLL Interrupt Flag Bit This read-only bit is set whenever the LOCK bit toggles. PLLF generates an interrupt request if the PLLIE bit is set also. PLLF always reads as 0 when the AUTO bit in the PLL bandwidth control register (PBWC) is clear. The PLLF bit should be cleared by reading the PLL control register. Reset clears the PLLF bit. 1 = Change in lock condition 0 = No change in lock condition NOTE: The PLLF bit should not be inadvertently cleared. Any read or readmodify-write operation on the PLL control register clears the PLLF bit. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Clock Generator Module (CGM) 99 Clock Generator Module (CGM) PLLON — PLL On Bit This read/write bit activates the PLL and enables the VCO clock, CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the base clock, DCLK1 (BCS = 1). Reset sets this bit so that the loop can stabilize as the MCU is powering up. 1 = PLL on 0 = PLL off BCS — Base Clock Select Bit This read/write bit selects either the crystal oscillator output, OSCXCLK, or the VCO clock, CGMVCLK, as the source of the CGM output, DCLK1. BCS cannot be set while the PLLON bit is clear. After toggling BCS, it may take up to three OSCXCLK and three CGMVCLK cycles to complete the transition from one source clock to the other. During the transition, DCLK1 is held in stasis. Reset and the STOP instruction clear the BCS bit. 1 = DCLK1 driven by CGMVCLK 0 = DCLK1 driven by OSCXCLK NOTE: PLLON and BCS have built-in protection that prevents the base clock selector circuit from selecting the VCO clock as the source of the base clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS is set, and BCS cannot be set when PLLON is clear. If the PLL is off (PLLON = 0), selecting CGMVCLK requires two writes to the PLL control register. 8.6.2 PLL Bandwidth Control Register (PBWC) The PLL bandwidth control register does the following: • Selects automatic or manual (software-controlled) bandwidth control mode • Indicates when the PLL is locked • In automatic bandwidth control mode, indicates when the PLL is in acquisition or tracking mode • In manual operation, forces the PLL into acquisition or tracking mode Technical Data 100 MC68HC908LD60 — Rev. 1.1 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM I/O Registers Address: $0039 Bit 7 Read: Write: Reset: AUTO 0 6 LOCK 0 5 4 ACQ XLD 0 0 3 2 1 Bit 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 8-4. PLL Bandwidth Control Register (PBWC) AUTO — Automatic Bandwidth Control Bit This read/write bit selects automatic or manual bandwidth control. When initializing the PLL for manual operation (AUTO = 0), the ACQ bit should be cleared before turning the PLL on. Reset clears the AUTO bit. 1 = Automatic bandwidth control 0 = Manual bandwidth control LOCK — Lock Indicator Bit When the AUTO bit is set, LOCK is a read-only bit that becomes set when the VCO clock CGMVCLK, is locked (running at the programmed frequency). When the AUTO bit is clear, LOCK reads as 0 and has no meaning. Reset clears the LOCK bit. 1 = VCO frequency correct or locked 0 = VCO frequency incorrect or unlocked ACQ — Acquisition Mode Bit When the AUTO bit is set, ACQ is a read-only bit that indicates whether the PLL is in acquisition mode or tracking mode. When the AUTO bit is clear, ACQ is a read/write bit that controls whether the PLL is in acquisition or tracking mode. In automatic bandwidth control mode (AUTO = 1), the last-written value from manual operation is stored in a temporary location and is recovered when manual operation resumes. Reset clears this bit, enabling acquisition mode. 1 = Tracking mode 0 = Acquisition mode MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Clock Generator Module (CGM) 101 Clock Generator Module (CGM) XLD — Crystal Loss Detect Bit When the VCO output, CGMVCLK, is driving DCLK1, this read/write bit indicates whether the crystal reference frequency is active or not. To check the status of the crystal reference, the following procedure should be followed: 1. Write a 1 to XLD. 2. Wait 4 × N cycles. (N is the VCO frequency multiplier, MUL[7:4].) 3. Read XLD. 1 = Crystal reference is not active 0 = Crystal reference is active The crystal loss detect function works only when the BCS bit is set, selecting CGMVCLK to drive DCLK1. When BCS is clear, XLD always reads as 0. Bits [3:0] — Reserved for test These bits enable test functions not available in user mode. To ensure software portability from development systems to user applications, software should write zeros to Bits [3:0] whenever writing to PBWC. 8.6.3 PLL Programming Register (PPG) The PLL programming register contains the programming information for the modulo feedback divider and the programming information for the hardware configuration of the VCO. Address: Read: Write: Reset: $003A Bit 7 6 5 4 3 2 1 Bit 0 MUL7 MUL6 MUL5 MUL4 VRS7 VRS6 VRS5 VRS4 0 1 1 0 0 1 1 0 Figure 8-5. PLL Programming Register (PPG) Technical Data 102 MC68HC908LD60 — Rev. 1.1 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) CGM I/O Registers MUL[7:4] — Multiplier Select Bits These read/write bits control the modulo feedback divider that selects the VCO frequency multiplier, N. A value of $0 in the multiplier select bits configures the modulo feedback divider the same as a value of $1. Reset initializes these bits to $6 to give a default multiply value of 6. Table 8-2. VCO Frequency Multiplier (N) Selection NOTE: MUL7:MUL6:MUL5:MUL4 VCO Frequency Multiplier (N) 0000 1 0001 1 0010 2 0011 3 1101 13 1110 14 1111 15 The multiplier select bits have built-in protection that prevents them from being written when the PLL is on (PLLON = 1). VRS[7:4] — VCO Range Select Bits These read/write bits control the hardware center-of-range linear multiplier L, which controls the hardware center-of-range frequency fVRS. VRS[7:4] cannot be written when the PLLON bit in the PLL control register (PCTL) is set. A value of $0 in the VCO range select bits disables the PLL and clears the BCS bit in the PCTL. Reset initializes the bits to $6 to give a default range multiply value of 6. NOTE: The VCO range select bits have built-in protection that prevents them from being written when the PLL is on (PLLON = 1) and prevents selection of the VCO clock as the source of the base clock (BCS = 1) if the VCO range select bits are all clear. The VCO range select bits must be programmed correctly. Incorrect programming may result in failure of the PLL to achieve lock. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Clock Generator Module (CGM) 103 Clock Generator Module (CGM) 8.6.4 H & V Sync Output Control Register (HVOCR) The H&V sync output control register controls the PLL reference input prescaler and the final free-running waveforms for the sync processor output signals on HOUT, VOUT, DCLK, and DE pins. (See Section 16. Sync Processor.) Address: $003F Bit 7 6 5 Read: 4 3 2 DCLKPH1 DCLKPH0 Write: Reset: 0 = Unimplemented 1 R Bit 0 HVOCR1 HVOCR0 0 0 R 0 = Reserved Figure 8-6. H&V Sync Output Control Register (HVOCR) DCLKPH[1:0] — DCLK Output Phase Adjustment These two bits are programmed to adjust the DCLK output phase. Each increment adds approximately 2 to 3ns delay to the DCLK output. HVOCR[1:0] — Free Running Video Mode Select Bits These two bits together with MUL[7:4] and VRS[7:4] in the PLL programming register determine the frequencies of the internal generated free-running signals for output to HOUT, VOUT, DE, and DCLK pins, when the SOUT bit is set in the sync processor I/O control register. These two bits determine the prescaler of PLL reference clock in the CGM module. When HVOCR[1:0]=11, the prescaler is 2; for other values, the prescaler is 3. Reset clears these bits, setting a default horizontal frequency of 31.25kHz and a vertical frequency of 60Hz, a video mode of 640×480. Register Settings Pin Outputs Video Modes HVOCR[1:0] MUL[7:4] VRS[7:4] HOUT Frequency VOUT Frequency DCLK Frequency DE Video Mode 00 3 3 31.45kHz 59.91Hz 24MHz VGA 640 × 480 01 5 3 37.87kHz 60.31Hz 40MHz SVGA 800 × 600 10 8 6 48.37kHz 60.31Hz 64MHz XGA 1024 × 768 11 9 9 64.32kHz 60.00Hz 108MHz SXGA 1280 × 1024 Technical Data 104 MC68HC908LD60 — Rev. 1.1 Clock Generator Module (CGM) Freescale Semiconductor Clock Generator Module (CGM) Interrupts 8.7 Interrupts When the AUTO bit is set in the PLL bandwidth control register (PBWC), the PLL can generate a CPU interrupt request every time the LOCK bit changes state. The PLLIE bit in the PLL control register (PCTL) enables CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL, becomes set whether interrupts are enabled or not. When the AUTO bit is clear, CPU interrupts from the PLL are disabled and PLLF reads as 0. Software should read the LOCK bit after a PLL interrupt request to see if the request was due to an entry into lock or an exit from lock. When the PLL enters lock, the VCO clock CGMVCLK, can be selected as the DCLK1 source by setting BCS in the PCTL. When the PLL exits lock, the VCO clock frequency is corrupt, and appropriate precautions should be taken. If the application is not frequency-sensitive, interrupts should be disabled to prevent PLL interrupt service routines from impeding software performance or from exceeding stack limitations. Software can select CGMVCLK as the DCLK1 source even if the PLL is not locked (LOCK = 0). Therefore, software should make sure the PLL is locked before setting the BCS bit. 8.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes. 8.8.1 Wait Mode The WAIT instruction does not affect the CGM. Before entering WAIT mode, software can disengage and turn off the PLL by clearing the BCS and PLLON bits in the PLL control register (PCTL). Less power-sensitive applications can disengage the PLL without turning it off. Applications that require the PLL to wake the MCU from WAIT mode also can deselect the PLL output without turning off the PLL. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Clock Generator Module (CGM) 105 Clock Generator Module (CGM) 8.8.2 Stop Mode When the STOP instruction executes, the SIM drives the SIMOSCEN signal low, disabling the CGM and holding low all CGM outputs (OSCXCLK, DCLK1, and CGMINT). If the STOP instruction is executed with the VCO clock, CGMVCLK, driving DCLK1, the PLL automatically clears the BCS bit in the PLL control register (PCTL), thereby selecting the crystal clock, OSCXCLK, as the source of DCLK1. When the MCU recovers from STOP, the crystal clock drives DCLK1 and BCS remains clear. 8.9 CGM During Break Interrupts The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. See Section 9. System Integration Module (SIM). To allow software to clear status bits during a break interrupt, a 1 should be written to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the PLLF bit during the break state, write a 0 to the BCFE bit. With BCFE at 0 (its default state), software can read and write the PLL control register during the break state without affecting the PLLF bit. Technical Data 106 MC68HC908LD60 — Rev. 1.1 Clock Generator Module (CGM) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 9. System Integration Module (SIM) 9.1 Contents 9.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 9.3 SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 111 9.3.1 Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.3.2 Clock Start-Up from POR . . . . . . . . . . . . . . . . . . . . . . . . . . 111 9.3.3 Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 111 9.4 Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 112 9.4.1 External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 9.4.2 Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 113 9.4.2.1 Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 9.4.2.2 Computer Operating Properly (COP) Reset. . . . . . . . . . 115 9.4.2.3 Low-Voltage Inhibit Reset . . . . . . . . . . . . . . . . . . . . . . .115 9.4.2.4 Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 9.4.2.5 Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .116 9.5 SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 9.5.1 SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 116 9.5.2 SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 116 9.5.3 SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 117 9.6 Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 9.6.1 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 9.6.1.1 Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 9.6.1.2 SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.6.2 Interrupt Status Registers. . . . . . . . . . . . . . . . . . . . . . . . . . 121 9.6.2.1 Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 123 9.6.2.2 Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 123 9.6.3 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.6.4 Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 9.6.5 Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 124 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 107 System Integration Module (SIM) 9.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 9.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 9.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 9.8 SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9.8.1 SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . 128 9.8.2 SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . 129 9.8.3 SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . 130 9.2 Introduction This section describes the system integration module, which supports up to 16 external and/or internal interrupts. Together with the CPU, the SIM controls all MCU activities. A block diagram of the SIM is shown in Figure 9-1. Figure 9-2 shows a summary of the SIM I/O registers. The SIM is a system state controller that coordinates CPU and exception timing. The SIM is responsible for: • Bus clock generation and control for CPU and peripherals: – Stop/wait/reset/break entry and recovery – Internal clock control • Master reset control, including power-on reset (POR) and COP timeout • Interrupt control: – Acknowledge timing – Arbitration control timing – Vector address generation • CPU enable/disable timing • Modular architecture expandable to 128 interrupt sources Technical Data 108 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Introduction MODULE STOP MODULE WAIT CPU STOP (FROM CPU) CPU WAIT (FROM CPU) STOP/WAIT CONTROL SIMOSCEN (TO OSCILLATOR) SIM COUNTER COP CLOCK OSCXCLK (FROM OSCILLATOR) OSCOUT (FROM OSCILLATOR) ÷2 CLOCK CONTROL RESET PIN LOGIC CLOCK GENERATORS INTERNAL CLOCKS LVI (FROM LVI MODULE) POR CONTROL MASTER RESET CONTROL RESET PIN CONTROL SIM RESET STATUS REGISTER ILLEGAL OPCODE (FROM CPU) ILLEGAL ADDRESS (FROM ADDRESS MAP DECODERS) COP (FROM COP MODULE) LVI RESET RESET INTERRUPT CONTROL AND PRIORITY DECODE INTERRUPT SOURCES CPU INTERFACE Figure 9-1. SIM Block Diagram MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 109 System Integration Module (SIM) Addr. Register Name Bit 7 6 5 4 3 2 R R R R R R Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: Read: SIM Reset Status Register $FE01 Write: (SRSR) POR: $FE03 Read: SIM Break Flag Control Register Write: (SBFCR) Reset: 1 SBSW Note Bit 0 R 0 POR PIN COP ILOP ILAD 1 0 0 0 0 BCFE R R R R R 0 0 0 0 R R R 0 Read: Interrupt Status Register 1 $FE04 Write: (INT1) Reset: IF6 IF5 IF4 IF3 IF2 IF1 0 0 R R R R R R R R 0 0 0 0 0 0 0 0 Read: Interrupt Status Register 2 $FE05 (INT2) Write: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 R R R R R R R R 0 0 0 0 0 0 0 0 Reset: = Unimplemented Note: Writing a logic 0 clears SBSW. R = Reserved Figure 9-2. SIM I/O Register Summary Table 9-1 shows the internal signal names used in this section. Table 9-1. Signal Name Conventions Signal Name Description OSCXCLK Buffered version of OSC1 from the oscillator OSCOUT The OSCXCLK frequency divided by two. This signal is again divided by two in the SIM to generate the internal bus clocks. (Bus clock = OSCXCLK divided by four) IAB Internal address bus IDB Internal data bus PORRST Signal from the power-on reset module to the SIM IRST Internal reset signal R/W Read/write signal Technical Data 110 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) SIM Bus Clock Control and Generation 9.3 SIM Bus Clock Control and Generation The bus clock generator provides system clock signals for the CPU and peripherals on the MCU. The system clocks are generated from an incoming clock, OSCOUT, as shown in Figure 9-3. From SIM OSCXCLK ÷2 OSCOUT SIM COUNTER BUS CLOCK GENERATORS ÷2 SIMOSCEN OSCILLATOR OSC1 SIM OSC2 Figure 9-3. OSC Clock Signals 9.3.1 Bus Timing In user mode, the internal bus frequency is the oscillator frequency (OSCXCLK) divided by four. 9.3.2 Clock Start-Up from POR When the power-on reset module generates a reset, the clocks to the CPU and peripherals are inactive and held in an inactive phase until after the 4096 OSCXCLK cycle POR timeout has completed. The RST is driven low by the SIM during this entire period. The IBUS clocks start upon completion of the timeout. 9.3.3 Clocks in Stop Mode and Wait Mode Upon exit from stop mode (by an interrupt, break, or reset), the SIM allows OSCXCLK to clock the SIM counter. The CPU and peripheral clocks do not become active until after the stop delay timeout. This timeout is selectable as 4096 or 32 OSCXCLK cycles. (See 9.7.2 Stop Mode.) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 111 System Integration Module (SIM) In wait mode, the CPU clocks are inactive. The SIM also produces two sets of clocks for other modules. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. 9.4 Reset and System Initialization The MCU has the following reset sources: • Power-on reset module (POR) • External reset pin (RST) • Computer operating properly module (COP) • Low-voltage inhibit (LVI) • Illegal opcode • Illegal address All of these resets produce the vector $FFFE–FFFF ($FEFE–FEFF in monitor mode) and assert the internal reset signal (IRST). IRST causes all registers to be returned to their default values and all modules to be returned to their reset states. An internal reset clears the SIM counter (see 9.5 SIM Counter), but an external reset does not. Each of the resets sets a corresponding bit in the SIM reset status register (SRSR) (see 9.8 SIM Registers). 9.4.1 External Pin Reset Pulling the asynchronous RST pin low halts all processing. The PIN bit of the SIM reset status register (SRSR) is set as long as RST is held low for a minimum of 67 OSCXCLK cycles, assuming that the POR was not the source of the reset (see Table 9-2. PIN Bit Set Timing). Figure 9-4 shows the relative timing. Table 9-2. PIN Bit Set Timing Reset Type Number of Cycles Required to Set PIN POR 4163 (4096 + 64 + 3) All others 67 (64 + 3) Technical Data 112 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Reset and System Initialization OSCOUT RST IAB VECT H VECT L PC Figure 9-4. External Reset Timing 9.4.2 Active Resets from Internal Sources SIM module in HC08 has the capability to drive the RST pin low when internal reset events occur. All internal reset sources actively pull the RST pin low for 32 OSCXCLK cycles to allow resetting of external peripherals. The internal reset signal IRST continues to be asserted for an additional 32 cycles (see Figure 95. Internal Reset Timing). An internal reset can be caused by an illegal address, illegal opcode, COP timeout, or POR (see Figure 9-6. Sources of Internal Reset). Note that for POR resets, the SIM cycles through 4096 OSCXCLK cycles during which the SIM forces the RST pin low. The internal reset signal then follows the sequence from the falling edge of RST shown in Figure 9-5. The COP reset is asynchronous to the bus clock. The active reset feature allows the part to issue a reset to peripherals and other chips within a system built around the MCU. IRST RST RST PULLED LOW BY MCU 32 CYCLES 32 CYCLES OSCXCLK IAB VECTOR HIGH Figure 9-5. Internal Reset Timing ILLEGAL ADDRESS RST ILLEGAL OPCODE RST COPRST INTERNAL RESET POR LVI Figure 9-6. Sources of Internal Reset MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 113 System Integration Module (SIM) 9.4.2.1 Power-On Reset When power is first applied to the MCU, the power-on reset module (POR) generates a pulse to indicate that power-on has occurred. The external reset pin (RST) is held low while the SIM counter counts out 4096 OSCXCLK cycles. Sixty-four OSCXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. At power-on, the following events occur: • A POR pulse is generated. • The internal reset signal is asserted. • The SIM enables the oscillator to drive OSCXCLK. • Internal clocks to the CPU and modules are held inactive for 4096 OSCXCLK cycles to allow stabilization of the oscillator. • The RST pin is driven low during the oscillator stabilization time. • The POR bit of the SIM reset status register (SRSR) is set and all other bits in the register are cleared. OSC1 PORRST 4096 CYCLES 32 CYCLES 32 CYCLES OSCXCLK OSCOUT RST $FFFE IAB $FFFF Figure 9-7. POR Recovery Technical Data 114 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Reset and System Initialization 9.4.2.2 Computer Operating Properly (COP) Reset An input to the SIM is reserved for the COP reset signal. The overflow of the COP counter causes an internal reset and sets the COP bit in the SIM reset status register (SRSR). The SIM actively pulls down the RST pin for all internal reset sources. To prevent a COP module timeout, write any value to location $FFFF. Writing to location $FFFF clears the COP counter and bits 12 through 5 of the SIM counter. The SIM counter output, which occurs at least every 212 – 24 OSCXCLK cycles, drives the COP counter. The COP should be serviced as soon as possible out of reset to guarantee the maximum amount of time before the first timeout. The COP module is disabled if the RST pin or the IRQ is held at VTST while the MCU is in monitor mode. The COP module can be disabled only through combinational logic conditioned with the high voltage signal on the RST pin or the IRQ pin. This prevents the COP from becoming disabled as a result of external noise. During a break state, VTST on the RST pin disables the COP module. 9.4.2.3 Low-Voltage Inhibit Reset The low-voltage inhibit circuit performs an internal reset when the VDD voltage falls to the LVI trip voltage VTRIPF. The external reset pin (RST) is held low while the SIM counter counts out 4096 OSCXCLK cycles. Sixty-four OSCXCLK cycles later, the CPU and memories are released from reset to allow the reset vector sequence to occur. 9.4.2.4 Illegal Opcode Reset The SIM decodes signals from the CPU to detect illegal instructions. An illegal instruction sets the ILOP bit in the SIM reset status register (SRSR) and causes a reset. If the stop enable bit, STOP, in the configure register (CONFIG) is logic zero, the SIM treats the STOP instruction as an illegal opcode and causes an illegal opcode reset. The SIM actively pulls down the RST pin for all internal reset sources. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 115 System Integration Module (SIM) 9.4.2.5 Illegal Address Reset An opcode fetch from an unmapped address generates an illegal address reset. The SIM verifies that the CPU is fetching an opcode prior to asserting the ILAD bit in the SIM reset status register (SRSR) and resetting the MCU. A data fetch from an unmapped address does not generate a reset. The SIM actively pulls down the RST pin for all internal reset sources. 9.5 SIM Counter The SIM counter is used by the power-on reset module (POR) and in stop mode recovery to allow the oscillator time to stabilize before enabling the internal bus (IBUS) clocks. The SIM counter also serves as a prescaler for the computer operating properly module (COP). The SIM counter overflow supplies the clock for the COP module. The SIM counter is 12 bits long and is clocked by the falling edge of OSCXCLK. 9.5.1 SIM Counter During Power-On Reset The power-on reset module (POR) detects power applied to the MCU. At power-on, the POR circuit asserts the signal PORRST. Once the SIM is initialized, it enables the oscillator to drive the bus clock state machine. 9.5.2 SIM Counter During Stop Mode Recovery The SIM counter also is used for stop mode recovery. The STOP instruction clears the SIM counter. After an interrupt, break, or reset, the SIM senses the state of the short stop recovery bit, SSREC, in the configure register (CONFIG). If the SSREC bit is a logic one, then the stop recovery is reduced from the normal delay of 4096 OSCXCLK cycles down to 32 OSCXCLK cycles. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. External crystal applications should use the full stop recovery time, that is, with SSREC cleared. Technical Data 116 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Exception Control 9.5.3 SIM Counter and Reset States External reset has no effect on the SIM counter (see 9.7.2 Stop Mode). The SIM counter is free-running after all reset states (see 9.4.2 Active Resets from Internal Sources for counter control and internal reset recovery sequences). 9.6 Exception Control Normally, sequential program execution can be changed in three different ways: • Interrupts – Maskable hardware CPU interrupts – Non-maskable software interrupt instruction (SWI) • Reset • Break interrupts MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 117 System Integration Module (SIM) 9.6.1 Interrupts An interrupt temporarily changes the sequence of program execution to respond to a particular event. Figure 9-10 flow charts the handling of system interrupts. Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt can take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). At the beginning of an interrupt, the CPU saves the CPU register contents on the stack and sets the interrupt mask (I bit) to prevent additional interrupts. At the end of an interrupt, the RTI instruction recovers the CPU register contents from the stack so that normal processing can resume. Figure 9-8 shows interrupt entry timing. Figure 9-9 shows interrupt recovery timing. MODULE INTERRUPT I BIT IAB IDB DUMMY DUMMY SP SP – 1 SP – 2 PC – 1[7:0] PC – 1[15:8] SP – 3 X SP – 4 A VECT H CCR VECT L V DATA H START ADDR V DATA L OPCODE R/W Figure 9-8. Interrupt Entry MODULE INTERRUPT I BIT IAB IDB SP – 4 SP – 3 CCR SP – 2 A SP – 1 X SP PC PC – 1[7:0] PC – 1[15:8] PC + 1 OPCODE OPERAND R/W Figure 9-9. Interrupt Recovery Technical Data 118 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Exception Control FROM RESET BREAK INTERRUPT? I BIT SET? YES NO YES I BIT SET? NO IRQ INTERRUPT? YES NO DDC12AB INTERRUPT? YES NO STACK CPU REGISTERS. SET I BIT. LOAD PC WITH INTERRUPT VECTOR. (As many interrupts as exist on chip) FETCH NEXT INSTRUCTION. SWI INSTRUCTION? YES NO RTI INSTRUCTION? YES UNSTACK CPU REGISTERS. NO EXECUTE INSTRUCTION. Figure 9-10. Interrupt Processing MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 119 System Integration Module (SIM) Interrupts are latched, and arbitration is performed in the SIM at the start of interrupt processing. The arbitration result is a constant that the CPU uses to determine which vector to fetch. Once an interrupt is latched by the SIM, no other interrupt may take precedence, regardless of priority, until the latched interrupt is serviced (or the I bit is cleared). (See Figure 9-10. Interrupt Processing.) 9.6.1.1 Hardware Interrupts A hardware interrupt does not stop the current instruction. Processing of a hardware interrupt begins after completion of the current instruction. When the current instruction is complete, the SIM checks all pending hardware interrupts. If interrupts are not masked (I bit clear in the condition code register), and if the corresponding interrupt enable bit is set, the SIM proceeds with interrupt processing; otherwise, the next instruction is fetched and executed. If more than one interrupt is pending at the end of an instruction execution, the highest priority interrupt is serviced first. Figure 9-11 demonstrates what happens when two interrupts are pending. If an interrupt is pending upon exit from the original interrupt service routine, the pending interrupt is serviced before the LDA instruction is executed. CLI LDA #$FF INT1 BACKGROUND ROUTINE PSHH INT1 INTERRUPT SERVICE ROUTINE PULH RTI INT2 PSHH INT2 INTERRUPT SERVICE ROUTINE PULH RTI Figure 9-11. Interrupt Recognition Example Technical Data 120 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Exception Control The LDA opcode is pre-fetched by both the INT1 and INT2 RTI instructions. However, in the case of the INT1 RTI pre-fetch, this is a redundant operation. NOTE: To maintain compatibility with the M6805 Family, the H register is not pushed on the stack during interrupt entry. If the interrupt service routine modifies the H register or uses the indexed addressing mode, software should save the H register and then restore it prior to exiting the routine. 9.6.1.2 SWI Instruction The SWI instruction is a non-maskable instruction that causes an interrupt regardless of the state of the interrupt mask (I bit) in the condition code register. NOTE: A software interrupt pushes PC onto the stack. A software interrupt does not push PC – 1, as a hardware interrupt does. 9.6.2 Interrupt Status Registers The flags in the interrupt status registers identify maskable interrupt sources. Table 9-3 summarizes the interrupt sources and the interrupt status register flags that they set. The interrupt status registers can be useful for debugging. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 121 System Integration Module (SIM) Table 9-3. Interrupt Sources Flag Mask(1) INT Register Flag Priority(2) Vector Address Reset None None None 0 $FFFE–$FFFF SWI Instruction None None None 0 $FFFC–$FFFD IRQ pin IRQF IMASK IF1 1 $FFFA–$FFFB Reserved — — IF2 2 $FFF8–$FFF9 Reserved — — IF3 3 $FFF6–$FFF7 Reserved — — IF4 3 $FFF4–$FFF5 IF5 5 $FFF2–$FFF3 Source ALIF NAKIF DDC12AB RXIF DIEN TXIF SCLIF SCLIEN TIM channel 0 CH0F CH0IE IF6 6 $FFF0–$FFF1 TIM channel 1 CH1F CH1IE IF7 7 $FFEE–$FFEF TOF TOIE IF8 8 $FFEC–$FFED VSIF VSIE LVSIF LVSIE IF9 9 $FFEA–$FFEB MMIEN IF10 10 $FFE8–FFE9 — — IF11 11 $FFE6–$FFE7 ADC conversion complete COCO AIEN IF12 12 $FFE4–$FFE5 Keyboard Interrupt KEYF KBIE7–KBIE0 IF13 13 $FFE2–$FFE3 CGM PLL PLLF PLLIE IF14 14 $FFE0–$FFE1 TIM overflow Sync processor MMALIF Multi-master IIC MMNAKIF MMRXIF MMTXIF Reserved Notes: 1. The I bit in the condition code register is a global mask for all interrupt sources except the SWI instruction. 2. Highest priority = 0. Technical Data 122 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Exception Control 9.6.2.1 Interrupt Status Register 1 Address: $FE04 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF6 IF5 IF4 IF3 IF2 IF1 0 0 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 9-12. Interrupt Status Register 1 (INT1) IF6–IF1 — Interrupt Flags 6–1 These flags indicate the presence of interrupt requests from the sources shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present Bit 1and Bit 0 — Always read 0 9.6.2.2 Interrupt Status Register 2 Address: $FE05 Bit 7 6 5 4 3 2 1 Bit 0 Read: IF14 IF13 IF12 IF11 IF10 IF9 IF8 IF7 Write: R R R R R R R R Reset: 0 0 0 0 0 0 0 0 R = Reserved Figure 9-13. Interrupt Status Register 2 (INT2) IF14–IF7 — Interrupt Flags 6–1 These flags indicate the presence of interrupt requests from the sources shown in Table 9-3. 1 = Interrupt request present 0 = No interrupt request present MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 123 System Integration Module (SIM) 9.6.3 Reset All reset sources always have equal and highest priority and cannot be arbitrated. 9.6.4 Break Interrupts The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output (see Section 21. Break Module (BRK)). The SIM puts the CPU into the break state by forcing it to the SWI vector location. Refer to the break interrupt subsection of each module to see how each module is affected by the break state. 9.6.5 Status Flag Protection in Break Mode The SIM controls whether status flags contained in other modules can be cleared during break mode. The user can select whether flags are protected from being cleared by properly initializing the break clear flag enable bit (BCFE) in the SIM break flag control register (SBFCR). Protecting flags in break mode ensures that set flags will not be cleared while in break mode. This protection allows registers to be freely read and written during break mode without losing status flag information. Setting the BCFE bit enables the clearing mechanisms. Once cleared in break mode, a flag remains cleared even when break mode is exited. Status flags with a two-step clearing mechanism — for example, a read of one register followed by the read or write of another — are protected, even when the first step is accomplished prior to entering break mode. Upon leaving break mode, execution of the second step will clear the flag as normal. Technical Data 124 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Low-Power Modes 9.7 Low-Power Modes Executing the WAIT or STOP instruction puts the MCU in a low-powerconsumption mode for standby situations. The SIM holds the CPU in a non-clocked state. The operation of each of these modes is described below. Both STOP and WAIT clear the interrupt mask (I) in the condition code register, allowing interrupts to occur. 9.7.1 Wait Mode In wait mode, the CPU clocks are inactive while the peripheral clocks continue to run. Figure 9-14 shows the timing for wait mode entry. A module that is active during wait mode can wake up the CPU with an interrupt if the interrupt is enabled. Stacking for the interrupt begins one cycle after the WAIT instruction during which the interrupt occurred. In wait mode, the CPU clocks are inactive. Refer to the wait mode subsection of each module to see if the module is active or inactive in wait mode. Some modules can be programmed to be active in wait mode. Wait mode can also be exited by a reset or break. A break interrupt during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM break status register (SBSR). If the COP disable bit, COPD, in configuration register (CONFIG) is logic zero, then the computer operating properly module (COP) is enabled and remains active in wait mode. IAB IDB WAIT ADDR WAIT ADDR + 1 PREVIOUS DATA NEXT OPCODE SAME SAME SAME SAME R/W NOTE: Previous data can be operand data or the WAIT opcode, depending on the last instruction. Figure 9-14. Wait Mode Entry Timing Figure 9-15 and Figure 9-16 show the timing for WAIT recovery. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 125 System Integration Module (SIM) IAB IDB $6E0B $A6 $A6 $6E0C $A6 $00FF $01 $0B $00FE $00FD $00FC $6E EXITSTOPWAIT NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt Figure 9-15. Wait Recovery from Interrupt or Break 32 Cycles $6E0B IAB IDB $A6 $A6 32 Cycles RST VCT H RST VCT L $A6 RST OSCXCLK Figure 9-16. Wait Recovery from Internal Reset 9.7.2 Stop Mode In stop mode, the SIM counter is reset and the system clocks are disabled. An interrupt request from a module can cause an exit from stop mode. Stacking for interrupts begins after the selected stop recovery time has elapsed. Reset or break also causes an exit from stop mode. The SIM disables the oscillator signals (OSCOUT and OSCXCLK) in stop mode, stopping the CPU and peripherals. Stop recovery time is selectable using the SSREC bit in configuration register (CONFIG). If SSREC is set, stop recovery is reduced from the normal delay of 4096 OSCXCLK cycles down to 32. This is ideal for applications using canned oscillators that do not require long start-up times from stop mode. NOTE: External crystal applications should use the full stop recovery time by clearing the SSREC bit. Technical Data 126 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) Low-Power Modes A break interrupt during stop mode sets the SIM break stop/wait bit (SBSW) in the SIM break status register (SBSR). The SIM counter is held in reset from the execution of the STOP instruction until the beginning of stop recovery. It is then used to time the recovery period. Figure 9-17 shows stop mode entry timing. CPUSTOP IAB IDB STOP ADDR STOP ADDR + 1 PREVIOUS DATA SAME NEXT OPCODE SAME SAME SAME R/W NOTE: Previous data can be operand data or the STOP opcode, depending on the last instruction. Figure 9-17. Stop Mode Entry Timing STOP RECOVERY PERIOD OSCXCLK INT/BREAK IAB STOP +1 STOP + 2 STOP + 2 SP SP – 1 SP – 2 SP – 3 Figure 9-18. Stop Mode Recovery from Interrupt or Break MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 127 System Integration Module (SIM) 9.8 SIM Registers The SIM has three memory mapped registers. Table 9-4 shows the mapping of these registers. Table 9-4. SIM Registers Summary Address Register Access Mode $FE00 SBSR User $FE01 SRSR User $FE03 SBFCR User 9.8.1 SIM Break Status Register (SBSR) The SIM break status register contains a flag to indicate that a break caused an exit from stop or wait mode. Address: Read: Write: $FE00 Bit 7 6 5 4 3 2 R R R R R R Reset: 1 SBSW Note Bit 0 R 0 Note: Writing a logic 0 clears SBSW. R = Reserved Figure 9-19. SIM Break Status Register (SBSR) SBSW — SIM Break Stop/Wait Bit This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example. Technical Data 128 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor System Integration Module (SIM) SIM Registers ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited by ; break. TST LOBYTE,SP ;If RETURNLO is not zero, BNE DOLO ;then just decrement low byte. DEC HIBYTE,SP ;Else deal with high byte, too. DOLO DEC LOBYTE,SP ;Point to WAIT/STOP opcode. RETURN PULH RTI ;Restore H register. 9.8.2 SIM Reset Status Register (SRSR) This register contains six flags that show the source of the last reset. Clear the SIM reset status register by reading it. A power-on reset sets the POR bit and clears all other bits in the register. Address: Read: $FE01 Bit 7 6 5 4 3 2 1 Bit 0 POR PIN COP ILOP ILAD R 0 0 1 0 0 0 0 0 0 Write: POR: = Unimplemented R = Reserved Figure 9-20. SIM Reset Status Register (SRSR) POR — Power-On Reset Bit 1 = Last reset caused by POR circuit 0 = Read of SRSR PIN — External Reset Bit 1 = Last reset caused by external reset pin (RST) 0 = POR or read of SRSR MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data System Integration Module (SIM) 129 System Integration Module (SIM) COP — Computer Operating Properly Reset Bit 1 = Last reset caused by COP counter 0 = POR or read of SRSR ILOP — Illegal Opcode Reset Bit 1 = Last reset caused by an illegal opcode 0 = POR or read of SRSR ILAD — Illegal Address Reset Bit (opcode fetches only) 1 = Last reset caused by an opcode fetch from an illegal address 0 = POR or read of SRSR 9.8.3 SIM Break Flag Control Register (SBFCR) The SIM break flag control register contains a bit that enables software to clear status bits while the MCU is in a break state. Address: Read: Write: Reset: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R 0 R = Reserved Figure 9-21. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Technical Data 130 MC68HC908LD60 — Rev. 1.1 System Integration Module (SIM) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 10. Monitor ROM (MON) 10.1 Contents 10.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 10.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132 10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 10.4.3 Echoing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.4.4 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 10.4.6 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141 10.2 Introduction This section describes the monitor ROM (MON) and the monitor mode entry methods. The monitor ROM allows complete testing of the MCU through a single-wire interface with a host computer. Monitor mode entry can be achieved without use of the higher test voltage, VTST, as long as vector addresses $FFFE and $FFFF are blank, thus reducing the hardware requirements for in-circuit programming. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Monitor ROM (MON) 131 Monitor ROM (MON) 10.3 Features Features of the monitor ROM include: • Normal user-mode pin functionality • One pin dedicated to serial communication between monitor ROM and host computer • Standard mark/space non-return-to-zero (NRZ) communication with host computer • Execution of code in RAM or FLASH • FLASH memory security feature1 • FLASH memory programming interface • 1024 bytes monitor ROM code size ($FA00 to $FDFF) • Monitor mode entry without high voltage, VTST, if reset vector is blank ($FFFE and $FFFF contain $FF) • Standard monitor mode entry if high voltage, VTST, is applied to IRQ 10.4 Functional Description The monitor ROM receives and executes commands from a host computer. Figure 10-1 shows a sample circuit used to enter monitor mode and communicate with a host computer via a standard RS-232 interface. Simple monitor commands can access any memory address. In monitor mode, the MCU can execute code downloaded into RAM by a host computer while most MCU pins retain normal operating mode functions. All communication between the host computer and the MCU is through the PTA0 pin. A level-shifting and multiplexing interface is required between PTA0 and the host computer. PTA0 is used in a wired-OR configuration and requires a pull-up resistor. 1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or copying the FLASH difficult for unauthorized users. Technical Data 132 MC68HC908LD60 — Rev. 1.1 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description VDD 10 kΩ 68HC908LD60 RST 0.1 µF VTST 10 Ω SW2 IRQ C (See NOTES) D OSC1 X1 9.8304 MHz 20 pF 10 MΩ OSC2 1 10 µF + MC145407 3 4 10 µF + 2 20 + 20 pF VSS1 10 µF VSS2 18 VSSA 17 19 + 10 µF VDD VDD VDD1 VDD2 0.1 µF DB-25 2 5 16 3 6 15 VDD VDDA 0.1 µF (PIN 6) 7 (PIN 7) VDD 1 MC74LCX125 2 3 6 5 PTD4 VDD 14 PTD5 10 kΩ PTA0 4 VDD VDD 7 10 kΩ A (See NOTES) B PTC3 10 kΩ SW1 PTC0 PTC1 PTA7 NOTES: 1. SW2: Position C — For monitor mode entry when IRQ = VTST: SW1: Position A — Bus clock = OSCXCLK ÷ 4 SW1: Position B — Bus clock = OSCXCLK ÷ 2 2. SW2: Position D — For monitor mode entry when reset vector is blank ($FFFE and $FFFF = $FF): Bus clock = OSCXCLK ÷ 4; PTC0, PTC1, and PTC3 voltages are not required. 3. See Table 22-4 for IRQ voltage level requirements. Figure 10-1. Monitor Mode Circuit MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Monitor ROM (MON) 133 Monitor ROM (MON) 10.4.1 Entering Monitor Mode Table 10-1 shows the pin conditions for entering monitor mode. As specified in the table, monitor mode may be entered after a power-on reset (POR) and will allow communication at 9600 baud provided one of the following sets of conditions is met: 1. If monitor entry is by high voltage on IRQ (IRQ = VTST) – The external clock is 4.9152 MHz with PTC3 low or 9.8304 MHz with PTC3 high 2. If monitor entry is by blank reset vector ($FFFE and $FFFF both contain $FF; erased state): – The external clock is 9.8304 MHz NOTE: Holding the PTC3 pin low when entering monitor mode by a high voltage causes a bypass of a divide-by-two stage at the oscillator. The OSCOUT frequency is equal to the OSCXCLK frequency, and the OSC1 input directly generates internal bus clocks. In this case, the OSC1 signal must have a 50% duty cycle at maximum bus frequency. NOTE: If the reset vector is blank and monitor mode is entered, the chip will see an additional reset cycle after the initial POR reset. Once the part has been programmed, the traditional method of applying a high voltage, VTST, to IRQ must be used to enter monitor mode. Enter monitor mode with the pin configuration shown in Table 10-1 after a reset. The rising edge of reset latches monitor mode. Once monitor mode is latched, the values on the specified pins can change. Once out of reset, the MCU monitor mode firmware then sends a break signal (10 consecutive logic zeros) to the host computer, indicating that it is ready to receive a command. The break signal also provides a timing reference to allow the host to determine the necessary baud rate. Technical Data 134 MC68HC908LD60 — Rev. 1.1 Monitor ROM (MON) Freescale Semiconductor MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Table 10-1. Monitor Mode Signal Requirements and Options Monitor ROM (MON) IRQ RST Address $FFFE/ $FFFF PTC3 PTC1 PTC0 PTA7(1) PIN 6 PIN 7 PTD4 PTD5 External Clock(2) Bus Frequency COP Baud Rate X GND X X X X X X X 0 Disabled 0 VTST VDD or VTST X 0 0 1 0 0 4.9152 MHz 2.4576 MHz Disabled 9600 Enters monitor mode. PTC0, PTC1, and PTC3 voltages only required if IRQ = VTST; PTC3 determines frequency divider. Exit monitor mode by POR or by RST low then high VTST VDD or VTST X 1 0 1 0 0 9.8304 MHz 2.4576 MHz Disabled 9600 Enters monitor mode. PTC0, PTC1, and PTC3 voltages only required if IRQ = VTST; PTC3 determines frequency divider. Exit monitor mode by POR or by RST low then high VDD or GND VDD Blank "$FFFF" X X X 0 0 9.8304 MHz 2.4576 MHz Disabled 9600 Enters monitor mode. External frequency always divided by 4. Exit monitor mode by POR only. VDD or GND VDD Not Blank X X X X X X — Enabled — Comment No operation until reset goes high. Enters user mode. Notes: Technical Data 135 Monitor ROM (MON) Functional Description 1. PTA7 = 0 if serial communication; PTA7 = 1 if parallel communication 2. External clock is derived by a 4.9152/9.8304 MHz crystal or off-chip oscillator Monitor ROM (MON) Monitor mode uses different vectors for reset and SWI. The alternate vectors are in the $FE page instead of the $FF page and allow code execution from the internal monitor firmware instead of user code. When the host computer has completed downloading code into the MCU RAM, This code can be executed by driving PTA0 low while asserting RST low and then high. The internal monitor ROM firmware will interpret the low on PTA0 as an indication to jump to RAM, and execution control will then continue from RAM. Execution of an SWI from the downloaded code will return program control to the internal monitor ROM firmware. Alternatively, the host can send a RUN command, which executes an RTI, and this can be used to send control to the address on the stack pointer. The COP module is disabled in monitor mode as long as VTST is applied to the IRQ or the RST pin. (See Section 9. System Integration Module (SIM) for more information on modes of operation.) Table 10-2 is a summary of the differences between user mode and monitor mode. Table 10-2. Mode Differences Functions COP Reset Vector High Reset Vector Low SWI Vector High SWI Vector Low User Enabled $FFFE $FFFF $FFFC $FFFD Monitor Disabled (1) $FEFE $FEFF $FEFC $FEFD Modes Notes: 1. If the high voltage (VTST) is removed from the IRQ pin, the SIM asserts its COP enable output. The COP is an option enabled or disabled by the COPD bit in the configuration register. 10.4.2 Data Format Communication with the monitor ROM is in standard non-return-to-zero (NRZ) mark/space data format. (See Figure 10-2 and Figure 10-3.) Technical Data 136 MC68HC908LD60 — Rev. 1.1 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 NEXT START BIT STOP BIT BIT 7 Figure 10-2. Monitor Data Format $A5 START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 BREAK START BIT BIT 0 BIT 1 BIT 2 BIT 3 BIT 4 BIT 5 BIT 6 BIT 7 NEXT START BIT STOP BIT STOP BIT Figure 10-3. Sample Monitor Waveforms The data transmit and receive rate can be anywhere from 4800 baud to 28.8 kbaud. Transmit and receive baud rates must be identical. 10.4.3 Echoing As shown in Figure 10-4, the monitor ROM immediately echoes each received byte back to the PTA0 pin for error checking. SENT TO MONITOR READ READ ADDR. HIGH ADDR. HIGH ADDR. LOW ECHO ADDR. LOW DATA RESULT Figure 10-4. Read Transaction Any result of a command appears after the echo of the last byte of the command. 10.4.4 Break Signal A start bit followed by nine low bits is a break signal (see Figure 10-5). When the monitor receives a break signal, it drives the PTA0 pin high for the duration of two bits before echoing the break signal. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Monitor ROM (MON) 137 Monitor ROM (MON) MISSING STOP BIT TWO-STOP-BIT DELAY BEFORE ZERO ECHO 0 1 2 3 4 5 6 0 7 1 2 3 4 5 6 7 Figure 10-5. Break Transaction 10.4.5 Commands The monitor ROM uses the following commands: • READ (read memory) • WRITE (write memory) • IREAD (indexed read) • IWRITE (indexed write) • READSP (read stack pointer) • RUN (run user program) Table 10-3. READ (Read Memory) Command Description Read byte from memory Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of specified address Opcode $4A Command Sequence SENT TO MONITOR READ READ ADDRESS HIGH ADDRESS HIGH ECHO ADDRESS LOW DATA RETURN Technical Data 138 ADDRESS LOW MC68HC908LD60 — Rev. 1.1 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description Table 10-4. WRITE (Write Memory) Command Description Write byte to memory Operand Specifics 2-byte address in high byte:low byte order; low byte followed by data byte Data Returned None Opcode $49 Command Sequence SEMT TO MONITOR WRITE WRITE ADDRESS HIGH ADDRESS HIGH ADDRESS LOW ADDRESS LOW DATA DATA ECHO Table 10-5. IREAD (Indexed Read) Command Description Read Next 2 Bytes in Memory from Last Address Accessed Operand Specifies 2-byte address in high byte:low byte order Data Returned Returns contents of next two addresses Opcode $1A Command Sequence SENT TO MONITOR IREAD IREAD ECHO MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor DATA DATA RETURN Technical Data Monitor ROM (MON) 139 Monitor ROM (MON) Table 10-6. IWRITE (Indexed Write) Command Description Write to last address accessed + 1 Operand Specifies single data byte Data Returned None Opcode $19 Command Sequence SENT TO MONITOR IWRITE IWRITE DATA DATA ECHO A sequence of IREAD or IWRITE commands can sequentially access a block of memory over the full 64k-byte memory map. Table 10-7. READSP (Read Stack Pointer) Command Description Reads stack pointer Operand None Data Returned Returns stack pointer in high byte:low byte order Opcode $0C Command Sequence SENT TO MONITOR READSP READSP ECHO Technical Data 140 SP HIGH SP LOW RETURN MC68HC908LD60 — Rev. 1.1 Monitor ROM (MON) Freescale Semiconductor Monitor ROM (MON) Functional Description Table 10-8. RUN (Run User Program) Command Description Executes RTI instruction Operand None Data Returned None Opcode $28 Command Sequence SENT TO MONITOR RUN RUN ECHO 10.4.6 Baud Rate The communication baud rate is controlled by crystal frequency and the state of the PTC3 pin upon entry into monitor mode. When PTC3 is high, the divide by ratio is 1024. If the PTC3 pin is at logic zero upon entry into monitor mode, the divide by ratio is 512. Table 10-9. Monitor Baud Rate Selection Crystal Frequency PTC3 Pin Baud Rate 4.9152 MHz 0 9600 bps 9.8304 MHz 1 9600 bps MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Monitor ROM (MON) 141 Monitor ROM (MON) Technical Data 142 MC68HC908LD60 — Rev. 1.1 Monitor ROM (MON) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 11. Timer Interface Module (TIM) 11.1 Contents 11.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.4 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145 11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 11.5.3.1 Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 148 11.5.3.2 Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .149 11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 149 11.5.4.1 Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 150 11.5.4.2 Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 151 11.5.4.3 PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 11.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153 11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .154 11.8 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.9 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 11.10.1 TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . 155 11.10.2 TIM Counter Registers (TCNTH:TCNTL) . . . . . . . . . . . . . . 157 11.10.3 TIM Counter Modulo Registers (TMODH:TMODL) . . . . . . 158 11.10.4 TIM Channel Status and Control Registers (TSC0:TSC1) . 159 11.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) . . . . . . . . . . 162 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 143 Timer Interface Module (TIM) 11.2 Introduction This section describes the timer interface module (TIM2, Version B). The TIM is a two-channel timer that provides a timing reference with input capture, output compare, and pulse-width-modulation functions. Figure 11-1 is a block diagram of the TIM. 11.3 Features Features of the TIM include the following: • Two input capture/output compare channels – Rising-edge, falling-edge, or any-edge input capture trigger – Set, clear, or toggle output compare action NOTE: • Buffered and unbuffered pulse width modulation (PWM) signal generation • Programmable TIM clock input – Seven-frequency internal bus clock prescaler selection • Free-running or modulo up-count operation • Toggle any channel pin on overflow • TIM counter stop and reset bits • Modular architecture expandable to eight channels TCH1 (timer channel 1) is not bonded to an external pin on this MCU. Therefore, any references to the timer TCH1 pin in the following text should be interpreted as not available — but the internal status and control registers are still available. 11.4 Pin Name Conventions The TIM shares the TCH0 pin with the sync processor CLAMP output. Table 11-1. Pin Name Conventions TIM Generic Pin Name: TCH0 Full TIM Pin Name: CLAMP/TCH0 Pin Selected for TCH0 By: ELS0B:ELS0A Technical Data 144 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description 11.5 Functional Description Figure 11-1 shows the structure of the TIM. The central component of the TIM is the 16-bit TIM counter that can operate as a free-running counter or a modulo up-counter. The TIM counter provides the timing reference for the input capture and output compare functions. The TIM counter modulo registers, TMODH:TMODL, control the modulo value of the TIM counter. Software can read the TIM counter value at any time without affecting the counting sequence. The two TIM channels are programmable independently as input capture or output compare channels. PRESCALER SELECT INTERNAL BUS CLOCK PRESCALER TSTOP PS2 TRST PS1 PS0 16-BIT COUNTER TOF TOIE 16-BIT COMPARATOR INTERRUPT LOGIC TMODH:TMODL TOV0 CHANNEL 0 ELS0B ELS0A CH0MAX 16-BIT COMPARATOR TCH0H:TCH0L PORT LOGIC TCH0 CH0F 16-BIT LATCH MS0A CH0IE INTERRUPT LOGIC MS0B INTERNAL BUS TOV1 CHANNEL 1 ELS1B ELS1A CH1MAX 16-BIT COMPARATOR TCH1H:TCH1L PORT LOGIC TCH1 (Not available) CH1F 16-BIT LATCH MS1A CH1IE INTERRUPT LOGIC Figure 11-1. TIM Block Diagram MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 145 Timer Interface Module (TIM) Addr. Register Name Bit 7 6 5 TOIE TSTOP 4 3 0 0 2 1 Bit 0 PS2 PS1 PS0 Read: TIM Status and Control Register Write: (TSC) Reset: TOF 0 0 1 0 0 0 0 0 Read: TIM Counter Register High $000C Write: (TCNTH) Reset: Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 Read: TIM Counter Register Low $000D Write: (TCNTL) Reset: Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 0 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 $000A $000E $000F $0010 Read: TIM Counter Modulo Register High Write: (TMODH) Reset: Read: TIM Counter Modulo Register Low Write: (TMODL) Reset: TIM Channel 0 Read: Status and Control Write: Register (TSC0) Reset: Read: TIM Channel 0 Register High Write: (TCH0H) Reset: $0011 Read: TIM Channel 0 Register Low Write: (TCH0L) Reset: $0012 $0013 TIM Channel 1 Read: Status and Control Write: Register (TSC1) Reset: 0 CH0F 0 TRST Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Indeterminate after reset CH1F 0 0 CH1IE 0 0 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 Technical Data 146 Bit3 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description Addr. $0014 $0015 Register Name Read: TIM Channel 1 Register High Write: (TCH1H) Reset: Read: TIM Channel 1 Register Low Write: (TCH1L) Reset: Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Bit2 Bit1 Bit0 Indeterminate after reset Bit7 Bit6 Bit5 Bit4 Bit3 Indeterminate after reset = Unimplemented 11.5.1 TIM Counter Prescaler The TIM clock source can be one of the seven prescaler outputs. The prescaler generates seven clock rates from the internal bus clock. The prescaler select bits, PS[2:0], in the TIM status and control register (TSC) select the TIM clock source. 11.5.2 Input Capture With the input capture function, the TIM can capture the time at which an external event occurs. When an active edge occurs on the pin of an input capture channel, the TIM latches the contents of the TIM counter into the TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is programmable. Input captures can generate TIM CPU interrupt requests. 11.5.3 Output Compare With the output compare function, the TIM can generate a periodic pulse with a programmable polarity, duration, and frequency. When the counter reaches the value in the registers of an output compare channel, the TIM can set, clear, or toggle the channel pin. Output compares can generate TIM CPU interrupt requests. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 147 Timer Interface Module (TIM) 11.5.3.1 Unbuffered Output Compare Any output compare channel can generate unbuffered output compare pulses as described in 11.5.3 Output Compare. The pulses are unbuffered because changing the output compare value requires writing the new value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change an output compare value could cause incorrect operation for up to two counter overflow periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that counter overflow period. Also, using a TIM overflow interrupt routine to write a new, smaller output compare value may cause the compare to be missed. The TIM may pass the new value before it is written. Use the following methods to synchronize unbuffered changes in the output compare value on channel x: • When changing to a smaller value, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current output compare pulse. The interrupt routine has until the end of the counter overflow period to write the new value. • When changing to a larger output compare value, enable channel x TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current counter overflow period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same counter overflow period. Technical Data 148 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description 11.5.3.2 Buffered Output Compare Channels 0 and 1 can be linked to form a buffered output compare channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The output compare value in the TIM channel 0 registers initially controls the output on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the output after the TIM overflows. At each subsequent overflow, the TIM channel registers (0 or 1) that control the output are the ones written to last. TSC0 controls and monitors the buffered output compare function, and TIM channel 1 status and control register (TSC1) is unused. NOTE: In buffered output compare operation, do not write new output compare values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered output compares. 11.5.4 Pulse Width Modulation (PWM) By using the toggle-on-overflow feature with an output compare channel, the TIM can generate a PWM signal. The value in the TIM counter modulo registers determines the period of the PWM signal. The channel pin toggles when the counter reaches the value in the TIM counter modulo registers. The time between overflows is the period of the PWM signal. As Figure 11-2 shows, the output compare value in the TIM channel registers determines the pulse width of the PWM signal. The time between overflow and output compare is the pulse width. Program the TIM to clear the channel pin on output compare if the state of the PWM pulse is logic one. Program the TIM to set the pin if the state of the PWM pulse is logic zero. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 149 Timer Interface Module (TIM) OVERFLOW OVERFLOW OVERFLOW PERIOD PULSE WIDTH TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE Figure 11-2. PWM Period and Pulse Width The value in the TIM counter modulo registers and the selected prescaler output determines the frequency of the PWM output. The frequency of an 8-bit PWM signal is variable in 256 increments. Writing $00FF (255) to the TIM counter modulo registers produces a PWM period of 256 times the internal bus clock period if the prescaler select value is 000 (see 11.10.1 TIM Status and Control Register (TSC)). The value in the TIM channel registers determines the pulse width of the PWM output. The pulse width of an 8-bit PWM signal is variable in 256 increments. Writing $0080 (128) to the TIM channel registers produces a duty cycle of 128/256 or 50%. 11.5.4.1 Unbuffered PWM Signal Generation Any output compare channel can generate unbuffered PWM pulses as described in 11.5.4 Pulse Width Modulation (PWM). The pulses are unbuffered because changing the pulse width requires writing the new pulse width value over the old value currently in the TIM channel registers. An unsynchronized write to the TIM channel registers to change a pulse width value could cause incorrect operation for up to two PWM periods. For example, writing a new value before the counter reaches the old value but after the counter reaches the new value prevents any compare during that PWM period. Also, using a TIM overflow interrupt routine to write a new, smaller pulse width value may cause the compare to be missed. The TIM may pass the new value before it is written. Technical Data 150 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Functional Description Use the following methods to synchronize unbuffered changes in the PWM pulse width on channel x: NOTE: • When changing to a shorter pulse width, enable channel x output compare interrupts and write the new value in the output compare interrupt routine. The output compare interrupt occurs at the end of the current pulse. The interrupt routine has until the end of the PWM period to write the new value. • When changing to a longer pulse width, enable channel x TIM overflow interrupts and write the new value in the TIM overflow interrupt routine. The TIM overflow interrupt occurs at the end of the current PWM period. Writing a larger value in an output compare interrupt routine (at the end of the current pulse) could cause two output compares to occur in the same PWM period. In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare also can cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 11.5.4.2 Buffered PWM Signal Generation Channels 0 and 1 can be linked to form a buffered PWM channel whose output appears on the TCH0 pin. The TIM channel registers of the linked pair alternately control the pulse width of the output. Setting the MS0B bit in TIM channel 0 status and control register (TSC0) links channel 0 and channel 1. The TIM channel 0 registers initially control the pulse width on the TCH0 pin. Writing to the TIM channel 1 registers enables the TIM channel 1 registers to synchronously control the pulse width at the beginning of the next PWM period. At each subsequent overflow, the TIM channel registers (0 or 1) that control the pulse width are the ones written to last. TSC0 controls and monitors the buffered PWM function, and TIM channel 1 status and control register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1, is available as a general-purpose I/O pin. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 151 Timer Interface Module (TIM) NOTE: In buffered PWM signal generation, do not write new pulse width values to the currently active channel registers. Writing to the active channel registers is the same as generating unbuffered PWM signals. 11.5.4.3 PWM Initialization To ensure correct operation when generating unbuffered or buffered PWM signals, use the following initialization procedure: 1. In the TIM status and control register (TSC): a. Stop the TIM counter by setting the TIM stop bit, TSTOP. b. Reset the TIM counter by setting the TIM reset bit, TRST. 2. In the TIM counter modulo registers (TMODH:TMODL), write the value for the required PWM period. 3. In the TIM channel x registers (TCHxH:TCHxL), write the value for the required pulse width. 4. In TIM channel x status and control register (TSCx): a. Write 0:1 (for unbuffered output compare or PWM signals) or 1:0 (for buffered output compare or PWM signals) to the mode select bits, MSxB:MSxA. (See Table 11-3.) b. Write 1 to the toggle-on-overflow bit, TOVx. c. NOTE: Write 1:0 (to clear output on compare) or 1:1 (to set output on compare) to the edge/level select bits, ELSxB:ELSxA. The output action on compare must force the output to the complement of the pulse width level. (See Table 11-3.) In PWM signal generation, do not program the PWM channel to toggle on output compare. Toggling on output compare prevents reliable 0% duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output compare can also cause incorrect PWM signal generation when changing the PWM pulse width to a new, much larger value. 5. In the TIM status control register (TSC), clear the TIM stop bit, TSTOP. Technical Data 152 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) Interrupts Setting MS0B links channels 0 and 1 and configures them for buffered PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially control the buffered PWM output. TIM status control register 0 (TSCR0) controls and monitors the PWM signal from the linked channels. MS0B takes priority over MS0A. Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM overflows. Subsequent output compares try to force the output to a state it is already in and have no effect. The result is a 0% duty cycle output. Setting the channel x maximum duty cycle bit (CHxMAX) and clearing the TOVx bit generates a 100% duty cycle output. See 11.10.4 TIM Channel Status and Control Registers (TSC0:TSC1). 11.6 Interrupts The following TIM sources can generate interrupt requests: • TIM overflow flag (TOF) — The TOF bit is set when the TIM counter value rolls over to $0000 after matching the value in the TIM counter modulo registers. The TIM overflow interrupt enable bit, TOIE, enables TIM overflow CPU interrupt requests. TOF and TOIE are in the TIM status and control register. • TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an input capture or output compare occurs on channel x. Channel x TIM CPU interrupt requests are controlled by the channel x interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests are enabled when CHxIE=1. CHxF and CHxIE are in the TIM channel x status and control register. 11.7 Low-Power Modes The WAIT and STOP instructions puts the MCU in low-powerconsumption standby modes. 11.7.1 Wait Mode The TIM remains active after the execution of a WAIT instruction. In wait mode the TIMA registers are not accessible by the CPU. Any enabled CPU interrupt request from the TIM can bring the MCU out of wait mode. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 153 Timer Interface Module (TIM) If TIM functions are not required during wait mode, reduce power consumption by stopping the TIM before executing the WAIT instruction. 11.7.2 Stop Mode The TIM is inactive after the execution of a STOP instruction. The STOP instruction does not affect register conditions or the state of the TIM counter. TIM operation resumes when the MCU exit stop mode after an external interrupt. 11.8 TIM During Break Interrupts A break interrupt stops the TIM counter. The system integration module (SIM) controls whether status bits in other modules can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. (See 21.6.4 SIM Break Flag Control Register.) To allow software to clear status bits during a break interrupt, write a logic one to the BCFE bit. If a status bit is cleared during the break state, it remains cleared when the MCU exits the break state. To protect status bits during the break state, write a logic zero to the BCFE bit. With BCFE at logic zero (its default state), software can read and write I/O registers during the break state without affecting status bits. Some status bits have a two-step read/write clearing procedure. If software does the first step on such a bit before the break, the bit cannot change during the break state as long as BCFE is at logic zero. After the break, doing the second step clears the status bit. 11.9 I/O Signals The TIM channel I/O pin is CLAMP/TCH0. The pin is shared with sync processor CLAMP output signal. TCH0 pin is programmable independently as an input capture pin or an output compare pin. It also can be configured as a buffered output compare or buffered PWM pin. Technical Data 154 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers 11.10 I/O Registers The following I/O registers control and monitor operation of the TIM: • TIM status and control register (TSC) • TIM counter registers (TCNTH:TCNTL) • TIM counter modulo registers (TMODH:TMODL) • TIM channel status and control registers (TSC0 and TSC1) • TIM channel registers (TCH0H:TCH0L and TCH1H:TCH1L) 11.10.1 TIM Status and Control Register (TSC) The TIM status and control register does the following: • Enables TIM overflow interrupts • Flags TIM overflows • Stops the TIM counter • Resets the TIM counter • Prescales the TIM counter clock Address: $000A Bit 7 Read: TOF Write: 0 Reset: 0 6 5 TOIE TSTOP 0 1 4 3 0 0 TRST 0 0 2 1 Bit 0 PS2 PS1 PS0 0 0 0 = Unimplemented Figure 11-3. TIM Status and Control Register (TSC) TOF — TIM Overflow Flag Bit This read/write flag is set when the TIM counter resets to $0000 after reaching the modulo value programmed in the TIM counter modulo registers. Clear TOF by reading the TIM status and control register when TOF is set and then writing a logic zero to TOF. If another TIM MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 155 Timer Interface Module (TIM) overflow occurs before the clearing sequence is complete, then writing logic zero to TOF has no effect. Therefore, a TOF interrupt request cannot be lost due to inadvertent clearing of TOF. Reset clears the TOF bit. Writing a logic one to TOF has no effect. 1 = TIM counter has reached modulo value 0 = TIM counter has not reached modulo value TOIE — TIM Overflow Interrupt Enable Bit This read/write bit enables TIM overflow interrupts when the TOF bit becomes set. Reset clears the TOIE bit. 1 = TIM overflow interrupts enabled 0 = TIM overflow interrupts disabled TSTOP — TIM Stop Bit This read/write bit stops the TIM counter. Counting resumes when TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM counter until software clears the TSTOP bit. 1 = TIM counter stopped 0 = TIM counter active NOTE: Do not set the TSTOP bit before entering wait mode if the TIM is required to exit wait mode. TRST — TIM Reset Bit Setting this write-only bit resets the TIM counter and the TIM prescaler. Setting TRST has no effect on any other registers. Counting resumes from $0000. TRST is cleared automatically after the TIM counter is reset and always reads as logic zero. Reset clears the TRST bit. 1 = Prescaler and TIM counter cleared 0 = No effect NOTE: Setting the TSTOP and TRST bits simultaneously stops the TIM counter at a value of $0000. PS[2:0] — Prescaler Select Bits These read/write bits select either the TCLK pin or one of the seven prescaler outputs as the input to the TIM counter as Table 11-2 shows. Reset clears the PS[2:0] bits. Technical Data 156 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers Table 11-2. Prescaler Selection PS2 PS1 PS0 TIM Clock Source 0 0 0 Internal Bus Clock ÷ 1 0 0 1 Internal Bus Clock ÷ 2 0 1 0 Internal Bus Clock ÷ 4 0 1 1 Internal Bus Clock ÷ 8 1 0 0 Internal Bus Clock ÷ 16 1 0 1 Internal Bus Clock ÷ 32 1 1 0 Internal Bus Clock ÷ 64 1 1 1 Not available 11.10.2 TIM Counter Registers (TCNTH:TCNTL) The two read-only TIM counter registers contain the high and low bytes of the value in the TIM counter. Reading the high byte (TCNTH) latches the contents of the low byte (TCNTL) into a buffer. Subsequent reads of TCNTH do not affect the latched TCNTL value until TCNTL is read. Reset clears the TIM counter registers. Setting the TIM reset bit (TRST) also clears the TIM counter registers. Address: Read: $000C TCNTH Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 0 0 0 0 0 0 0 0 $000D TCNTL Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 0 0 0 0 0 0 0 0 Write: Reset: Address: Read: Write: Reset: = Unimplemented Figure 11-4. TIM Counter Registers (TCNTH:TCNTL) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 157 Timer Interface Module (TIM) NOTE: If you read TCNTH during a break interrupt, be sure to unlatch TCNTL by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL retains the value latched during the break. 11.10.3 TIM Counter Modulo Registers (TMODH:TMODL) The read/write TIM modulo registers contain the modulo value for the TIM counter. When the TIM counter reaches the modulo value, the overflow flag (TOF) becomes set, and the TIM counter resumes counting from $0000 at the next clock. Writing to the high byte (TMODH) inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is written. Reset sets the TIM counter modulo registers. Address: Read: Write: Reset: Address: Read: Write: Reset: $000E TMODH Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 1 1 1 1 1 1 1 1 $000F TMODL Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 1 1 1 1 1 1 1 1 Figure 11-5. TIM Counter Modulo Registers (TMODH:TMODL) NOTE: Reset the TIM counter before writing to the TIM counter modulo registers. Technical Data 158 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers 11.10.4 TIM Channel Status and Control Registers (TSC0:TSC1) Each of the TIM channel status and control registers does the following: • Flags input captures and output compares • Enables input capture and output compare interrupts • Selects input capture, output compare, or PWM operation • Selects high, low, or toggling output on output compare • Selects rising edge, falling edge, or any edge as the active input capture trigger • Selects output toggling on TIM overflow • Selects 100% PWM duty cycle • Selects buffered or unbuffered output compare/PWM operation Address: $0010 TSC0 Bit 7 6 5 4 3 2 1 Bit 0 CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX 0 0 0 0 0 0 5 4 3 2 1 Bit 0 MS1A ELS1B ELS1A TOV1 CH1MAX 0 0 0 0 0 Read: CH0F Write: 0 Reset: 0 0 $0013 TSC1 Bit 7 6 Address: Read: CH1F Write: 0 Reset: 0 CH1IE 0 0 0 = Unimplemented Figure 11-6. TIM Channel Status and Control Registers (TSC0:TSC1) CHxF — Channel x Flag Bit When channel x is an input capture channel, this read/write bit is set when an active edge occurs on the channel x pin. When channel x is MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 159 Timer Interface Module (TIM) an output compare channel, CHxF is set when the value in the TIM counter registers matches the value in the TIM channel x registers. When TIM CPU interrupt requests are enabled (CHxIE=1), clear CHxF by reading the TIM channel x status and control register with CHxF set and then writing a logic zero to CHxF. If another interrupt request occurs before the clearing sequence is complete, then writing logic zero to CHxF has no effect. Therefore, an interrupt request cannot be lost due to inadvertent clearing of CHxF. Reset clears the CHxF bit. Writing a logic one to CHxF has no effect. 1 = Input capture or output compare on channel x 0 = No input capture or output compare on channel x CHxIE — Channel x Interrupt Enable Bit This read/write bit enables TIM CPU interrupt service requests on channel x. Reset clears the CHxIE bit. 1 = Channel x CPU interrupt requests enabled 0 = Channel x CPU interrupt requests disabled MSxB — Mode Select Bit B This read/write bit selects buffered output compare/PWM operation. MSxB exists only in the TIM channel 0 status and control register. Setting MS0B disables the channel 1 status and control register and reverts TCH1 to general-purpose I/O. Reset clears the MSxB bit. 1 = Buffered output compare/PWM operation enabled 0 = Buffered output compare/PWM operation disabled MSxA — Mode Select Bit A When ELSxB:A ≠ 00, this read/write bit selects either input capture operation or unbuffered output compare/PWM operation. See Table 11-3. 1 = Unbuffered output compare/PWM operation 0 = Input capture operation When ELSxB:A = 00, this read/write bit selects the initial output level of the TCHx pin. (See Table 11-3.) Reset clears the MSxA bit. 1 = Initial output level low 0 = Initial output level high Technical Data 160 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers NOTE: Before changing a channel function by writing to the MSxB or MSxA bit, set the TSTOP and TRST bits in the TIM status and control register (TSC). ELSxB and ELSxA — Edge/Level Select Bits When channel x is an input capture channel, these read/write bits control the active edge-sensing logic on channel x. When channel x is an output compare channel, ELSxB and ELSxA control the channel x output behavior when an output compare occurs. When ELS0B and ELS0A are both clear, channel 0 is not connected to the CLAMP/TCH0 pin. The pin is available as the CLAMP output of the sync processor. Table 11-3 shows how ELSxB and ELSxA work. Reset clears the ELSxB and ELSxA bits. Table 11-3. Mode, Edge, and Level Selection MSxB MSxA ELSxB ELSxA X 0 0 0 Mode Output Preset X 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 X 0 1 1 X 1 0 1 X 1 1 Configuration Pin is CLAMP of sync processor(1); Initial Output Level High Pin is CLAMP of sync processor(1); Initial Output Level Low Capture on Rising Edge Only Input Capture Capture on Falling Edge Only Capture on Rising or Falling Edge Output Compare or PWM Toggle Output on Compare Clear Output on Compare Set Output on Compare Buffered Toggle Output on Compare Output Clear Output on Compare Compare or Buffered Set Output on Compare PWM Notes: 1. For CLAMP/TCH0 pin only. NOTE: Before enabling a TIM channel register for input capture operation, make sure that the TCHx pin is stable for at least two bus clocks. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 161 Timer Interface Module (TIM) TOVx — Toggle-On-Overflow Bit When channel x is an output compare channel, this read/write bit controls the behavior of the channel x output when the TIM counter overflows. When channel x is an input capture channel, TOVx has no effect. Reset clears the TOVx bit. 1 = Channel x pin toggles on TIM counter overflow. 0 = Channel x pin does not toggle on TIM counter overflow. NOTE: When TOVx is set, a TIM counter overflow takes precedence over a channel x output compare if both occur at the same time. CHxMAX — Channel x Maximum Duty Cycle Bit When the TOVx bit is at logic zero, setting the CHxMAX bit forces the duty cycle of buffered and unbuffered PWM signals to 100%. As Figure 11-7 shows, the CHxMAX bit takes effect in the cycle after it is set or cleared. The output stays at the 100% duty cycle level until the cycle after CHxMAX is cleared. OVERFLOW OVERFLOW OVERFLOW OVERFLOW OVERFLOW PERIOD TCHx OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE OUTPUT COMPARE CHxMAX Figure 11-7. CHxMAX Latency 11.10.5 TIM Channel Registers (TCH0H/L:TCH1H/L) These read/write registers contain the captured TIM counter value of the input capture function or the output compare value of the output compare function. The state of the TIM channel registers after reset is unknown. In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the TIM channel x registers (TCHxH) inhibits input captures until the low byte (TCHxL) is read. Technical Data 162 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Timer Interface Module (TIM) I/O Registers In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of the TIM channel x registers (TCHxH) inhibits output compares until the low byte (TCHxL) is written. Address: Read: Write: $0011 TCH0H Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Reset: Address: Read: Write: Indeterminate after reset $0012 TCH0L Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Reset: Address: Read: Write: Indeterminate after reset $0014 TCH1H Bit 7 6 5 4 3 2 1 Bit 0 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 Reset: Address: Read: Write: Reset: Indeterminate after reset $0015 TCH1L Bit 7 6 5 4 3 2 1 Bit 0 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Indeterminate after reset Figure 11-8. TIM Channel Registers (TCH0H/L:TCH1H/L) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Timer Interface Module (TIM) 163 Timer Interface Module (TIM) Technical Data 164 MC68HC908LD60 — Rev. 1.1 Timer Interface Module (TIM) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 12. Pulse Width Modulator (PWM) 12.1 Contents 12.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 12.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165 12.4 PWM Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 12.4.1 PWM Data Registers 0 to 7 (0PWM–7PWM). . . . . . . . . . . 167 12.4.2 PWM Control Register (PWMCR) . . . . . . . . . . . . . . . . . . . 168 12.2 Introduction Eight 8-bit PWM channels are available on the MC68HC908LD60. Channels 0 to 7 are shared with port-B I/O pins under the control of the PWM control register. 12.3 Functional Description Each 8-Bit PWM channel is composed of an 8-bit register which contains a 5-bit PWM in MSB portion and a 3-bit binary rate multiplier (BRM) in LSB portion. There are eight PWM data registers, controlling each PWM channel. The value programmed in the 5-bit PWM portion will determine the pulse length of the output. The clock to the 5-bit PWM portion is the system bus clock, the repetition rate of the output is hence 187.5kHz at 6MHz clock. The 3-bit BRM will generate a number of narrow pulses which are equally distributed among an 8-PWM-cycle frame. The number of pulses generated is equal to the number programmed in the 3-bit BRM portion. Example of the waveforms are shown in Figure 12-4. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Pulse Width Modulator (PWM) 165 Pulse Width Modulator (PWM) Combining the 5-bit PWM together with the 3-bit BRM, the average duty cycle at the output will be (M+N/8)/32, where M is the content of the 5-bit PWM portion, and N is the content of the 3-bit BRM portion. Using this mechanism, a true 8-bit resolution PWM type DAC with reasonably high repetition rate can be obtained. The value of each PWM data register is continuously compared with the content of an internal counter to determine the state of each PWM channel output pin. Double buffering is not used in this PWM design. Addr. Register Name $0070 PWM0 Data Register (0PWM) Read: $0071 PWM1 Data Register (1PWM) Read: $0072 PWM2 Data Register (2PWM) Read: $0073 PWM3 Data Register (3PWM) Read: $0074 PWM4 Data Register (4PWM) Read: $0075 PWM5 Data Register (5PWM) Read: $0076 PWM6 Data Register (6PWM) Read: $0077 PWM7 Data Register (7PWM) Read: $0078 PWM Control Register (PWMCR) Read: Write: Write: Write: Write: Write: Write: Write: Write: Write: Reset: Bit 7 6 5 4 3 2 1 Bit 0 0PWM4 0PWM3 0PWM2 0PWM1 0PWM0 0BRM2 0BRM1 0BRM0 1PWM4 1PWM3 1PWM2 1PWM1 1PWM0 1BRM2 1BRM1 1BRM0 2PWM4 2PWM3 2PWM2 2PWM1 2PWM0 2BRM2 2BRM1 2BRM0 3PWM4 3PWM3 3PWM2 3PWM1 3PWM0 3BRM2 3BRM1 3BRM0 4PWM4 4PWM3 4PWM2 4PWM1 4PWM0 4BRM2 4BRM1 4BRM0 5PWM4 5PWM3 5PWM2 5PWM1 5PWM0 5BRM2 5BRM1 5BRM0 6PWM4 6PWM3 6PWM2 6PWM1 6PWM0 6BRM2 6BRM1 6BRM0 7PWM4 7PWM3 7PWM2 7PWM1 7PWM0 7BRM2 7BRM1 7BRM0 PWM7E PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 0 Figure 12-1. PWM I/O Register Summary Technical Data 166 MC68HC908LD60 — Rev. 1.1 Pulse Width Modulator (PWM) Freescale Semiconductor Pulse Width Modulator (PWM) PWM Registers 12.4 PWM Registers The PWM module uses of nine registers for data and control functions. • PWM data registers ($0070–$0077) • PWM control register ($0078) 12.4.1 PWM Data Registers 0 to 7 (0PWM–7PWM) Address: Read: Write: Reset: $0070–$0077 Bit 7 6 5 4 3 2 1 Bit 0 xPWM4 xPWM3 xPWM2 xPWM1 xPWM0 xBRM2 xBRM1 xBRM0 0 0 0 0 0 0 0 0 Figure 12-2. PWM Data Registers 0 to 7 (0PWM–7PWM) The output waveform of the eight PWM channels are each configured by an 8-bit register, which contains a 5-bit PWM in MSB portion and a 3-bit binary rate multiplier (BRM) in LSB portion xPWM4–xPWM0 — PWM Bits The value programmed in the 5-bit PWM portion will determine the pulse length of the output. The clock to the 5-bit PWM portion is the system bus clock, the repetition rate of the output is hence fOP ÷ 32. Examples of PWM output waveforms are shown in Figure 12-4. xBRM2–xBRM0 — Binary Rate Multiplier Bits The 3-bit BRM will generate a number of narrow pulses which are equally distributed among an 8-PWM-cycle frame. The number of pulses generated is equal to the number programmed in the 3-bit BRM portion. Examples of PWM output waveforms are shown in Figure 12-4. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Pulse Width Modulator (PWM) 167 Pulse Width Modulator (PWM) 12.4.2 PWM Control Register (PWMCR) Address: Read: Write: Reset: $0078 Bit 7 6 5 4 3 2 1 Bit 0 PWM7E PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 0 Figure 12-3. PWM Control Register (PWMCR) PWM7E–PWM0E — PWM Output Enable Setting a bit to 1 will enable the corresponding PWM channel to use as PWM output. A zero configures the corresponding PWM pin as a standard I/O port pin. Reset clears these bits. 1 = Port pin configured as PWM output 0 = Port pin configured as standard I/O port pin. Table 12-1. PWM Channels and Port I/O pins Port Pin PWM Channel Control Bit PTB0 PWM0 PWM0E PTB1 PWM1 PWM1E PTB2 PWM2 PWM2E PTB3 PWM3 PWM3E PTB4 PWM4 PWM4E PTB5 PWM5 PWM5E PTB6 PWM6 PWM6E PTB7 PWM7 PWM7E Technical Data 168 MC68HC908LD60 — Rev. 1.1 Pulse Width Modulator (PWM) Freescale Semiconductor Pulse Width Modulator (PWM) PWM Registers 1 PWM cycle = 32T M=$00 T M=$01 31T 16T M=$0F 16T 31T M=$1F Pulse inserted at end of PWM cycle depends on setting of N. T T=1 CPU clock period (0.167ms if CPU clock=6MHz) M = value set in 5-bit PWM (bit3-bit7) N = value set in 3-bit BRM (bit0-bit2) N xx1 x1x 1xx PWM cycles where pulses are inserted in a 8-cycle frame 4 2, 6 1, 3, 5, 7 Number of inserted pulses in a 8-cycle frame 1 2 4 Figure 12-4. 8-Bit PWM Output Waveforms MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Pulse Width Modulator (PWM) 169 Pulse Width Modulator (PWM) Technical Data 170 MC68HC908LD60 — Rev. 1.1 Pulse Width Modulator (PWM) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 13. Analog-to-Digital Converter (ADC) 13.1 Contents 13.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 13.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 13.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 13.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 13.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.4.5 Accuracy and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.5 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 13.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 13.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 13.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 13.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.7.1 ADC Analog Power Pin (VDDA). . . . . . . . . . . . . . . . . . . . . 176 13.7.2 ADC Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . .176 13.7.3 ADC Voltage Reference High Pin (VRH) . . . . . . . . . . . . . . 176 13.7.4 ADC Voltage Reference Low Pin (VRL). . . . . . . . . . . . . . . 176 13.7.5 ADC Voltage In (ADCVIN) . . . . . . . . . . . . . . . . . . . . . . . . . 176 13.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 13.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .177 13.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 13.8.3 ADC Input Clock Register . . . . . . . . . . . . . . . . . . . . . . . . . 179 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Analog-to-Digital Converter (ADC) 171 Analog-to-Digital Converter (ADC) 13.2 Introduction This section describes the analog-to-digital converter (ADC). The ADC is a 6-channel 8-bit successive approximation ADC. 13.3 Features Features of the ADC module include: Addr. $003B $003C • Six channels with multiplexed input • Linear successive approximation • 8-bit resolution • Single or continuous conversion • Conversion complete flag or conversion complete interrupt • Selectable ADC clock Register Name Bit 7 Read: ADC Status and Control Register Write: (ADSCR) Reset: Read: ADC Data Register Write: (ADR) Reset: Read: ADC Input Clock Register $003D Write: (ADICLK) Reset: 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 0 1 1 1 1 1 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 COCO Unaffected after Reset ADIV2 ADIV1 ADIV0 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 13-1. ADC I/O Register Summary Technical Data 172 MC68HC908LD60 — Rev. 1.1 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) Functional Description 13.4 Functional Description Six ADC channels are available for sampling external sources at pins PTC5–PTC0. An analog multiplexer allows the single ADC converter to select one of the six ADC channels as ADC voltage input (ADCVIN). ADCVIN is converted by the successive approximation register-based counters. The ADC resolution is eight bits. When the conversion is completed, ADC puts the result in the ADC data register and sets a flag or generates an interrupt. Figure 13-2 shows a block diagram of the ADC. INTERNAL DATA BUS READ DDRC DISABLE WRITE DDRC DDRCx RESET WRITE PTC PTCx/ADCx PTCx READ PTC ADC DATA REGISTER CONVERSION INTERRUPT COMPLETE LOGIC AIEN ADC ADC VOLTAGE IN ADCVIN ADC CHANNEL x CHANNEL SELECT (1 OF 6 CHANNELS) ADCH[4:0] ADC CLOCK COCO BUS CLOCK DISABLE CLOCK GENERATOR ADIV[2:0] ADICLK Figure 13-2. ADC Block Diagram MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Analog-to-Digital Converter (ADC) 173 Analog-to-Digital Converter (ADC) 13.4.1 ADC Port I/O Pins PTC5/ADC5–PTC0/ADC0 are general-purpose I/O pins that are shared with the ADC channels. The channel select bits, ADCH[4:0], in the ADC status and control register define which ADC channel/port pin will be used as the input signal. The ADC overrides the port I/O logic by forcing that pin as input to the ADC. The remaining ADC channels/port pins are controlled by the port I/O logic and can be used as general-purpose I/O. Writes to the port register or DDR will not have any affect on the port pin that is selected by the ADC. Read of a port pin which is in use by the ADC will return a logic 0 if the corresponding DDR bit is at logic 0. If the DDR bit is at logic 1, the value in the port data latch is read. 13.4.2 Voltage Conversion When the input voltage to the ADC equals to VRH, the ADC converts the signal to $FF (full scale). If the input voltage equals to VRL, the ADC converts it to $00. Input voltages between VRH and VRL is a straight-line linear conversion. All other input voltages will result in $FF if greater than VRH and $00 if less than VRL. NOTE: Input voltage should not exceed the analog supply voltages. 13.4.3 Conversion Time Sixteen ADC internal clocks are required to perform one conversion. The ADC starts a conversion on the first rising edge of the ADC internal clock immediately following a write to the ADSCR. If the ADC internal clock is selected to run at 1MHz, then one conversion will take 16µs to complete. With a 1MHz ADC internal clock the maximum sample rate is 62.5kHz. Conversion time = 16 to17 ADC cycles ADC frequency Number of bus cycles = conversion time × bus frequency Technical Data 174 MC68HC908LD60 — Rev. 1.1 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) Interrupts 13.4.4 Continuous Conversion In the continuous conversion mode, the ADC continuously converts the selected channel filling the ADC data register with new data after each conversion. Data from the previous conversion will be overwritten whether that data has been read or not. Conversions will continue until the ADCO bit is cleared. The conversion complete bit, COCO, in the ADC status and control register is set after each conversion and can be cleared by writing to the ADC status and control register or reading of the ADC data register. 13.4.5 Accuracy and Precision The conversion process is monotonic and has no missing codes. 13.5 Interrupts When the AIEN bit is set, the ADC module is capable of generating a CPU interrupt after each ADC conversion. A CPU interrupt is generated if the COCO bit is at logic 0. The COCO bit is not used as a conversion complete flag when interrupts are enabled. The interrupt vector is defined in Table 2-1 . Vector Addresses. 13.6 Low-Power Modes The WAIT and STOP instruction can put the MCU in low-power consumption standby modes. 13.6.1 Wait Mode The ADC continues normal operation during wait mode. Any enabled CPU interrupt request from the ADC can bring the MCU out of wait mode. If the ADC is not required to bring the MCU out of wait mode, power down the ADC by setting the ADCH[4:0] bits in the ADC status and control register to logic 1’s before executing the WAIT instruction. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Analog-to-Digital Converter (ADC) 175 Analog-to-Digital Converter (ADC) 13.6.2 Stop Mode The ADC module is inactive after the execution of a STOP instruction. Any pending conversion is aborted. ADC conversions resume when the MCU exits stop mode. Allow one conversion cycle to stabilize the analog circuitry before attempting a new ADC conversion after exiting stop mode. 13.7 I/O Signals The ADC module has six channels that are shared with port C I/O pins, PTC5/ADC5–PTC0/ADC0. 13.7.1 ADC Analog Power Pin (VDDA) The ADC analog portion uses VDDA as its power pin. Connect the VDDA pin to the same voltage potential as VDD. External filtering may be necessary to ensure clean VDDA for good results. NOTE: Route VDDA carefully for maximum noise immunity and place bypass capacitors as close as possible to the package. 13.7.2 ADC Analog Ground Pin (VSSA) The ADC analog portion uses VSSA as its ground pin. Connect the VSSA pin to the same voltage potential as VSS. 13.7.3 ADC Voltage Reference High Pin (VRH) VRH is the high voltage reference for the ADC. 13.7.4 ADC Voltage Reference Low Pin (VRL) VRL is the low voltage reference for the ADC. 13.7.5 ADC Voltage In (ADCVIN) ADCVIN is the input voltage signal from one of the six ADC channels to the ADC module. Technical Data 176 MC68HC908LD60 — Rev. 1.1 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) I/O Registers 13.8 I/O Registers Three I/O registers control and monitor ADC operation: • ADC status and control register (ADSCR) • ADC data register (ADR) • ADC input clock register (ADICLK) 13.8.1 ADC Status and Control Register Function of the ADC status and control register is described here. Address: $003B Bit 7 Read: COCO Write: Reset: 0 6 5 4 3 2 1 Bit 0 AIEN ADCO ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 0 0 1 1 1 1 1 = Unimplemented Figure 13-3. ADC Status and Control Register (ADSCR) COCO — Conversions Complete Bit When the AIEN bit is a logic 0, the COCO is a read-only bit which is set each time a conversion is completed. This bit is cleared whenever the ADC status and control register is written, or whenever the ADC data register is read. Reset clears this bit. When the AIEN bit is a logic 1 (CPU interrupt enabled), the COCO is a read-only bit, and will always be logic 0 when read. 1 = conversion completed (AIEN = 0) 0 = conversion not completed (AIEN = 0) AIEN — ADC Interrupt Enable Bit When this bit is set, an interrupt is generated at the end of an ADC conversion. The interrupt signal is cleared when the data register is read or the status and control register is written. Reset clears the AIEN bit. 1 = ADC interrupt enabled 0 = ADC interrupt disabled MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Analog-to-Digital Converter (ADC) 177 Analog-to-Digital Converter (ADC) ADCO — ADC Continuous Conversion Bit When set, the ADC will convert samples continuously and update the ADR register at the end of each conversion. Only one conversion is allowed when this bit is cleared. Reset clears the ADCO bit. 1 = Continuous ADC conversion 0 = One ADC conversion ADCH[4:0] — ADC Channel Select Bits ADCH[4:0] form a 5-bit field which is used to select one of the ADC channels or reference voltages. The five channel select bits are detailed in the Table 13-1. NOTE: Care should be taken when using a port pin as both an analog and a digital input simultaneously to prevent switching noise from corrupting the analog signal. NOTE: Recovery from the disabled state requires one conversion cycle to stabilize. Table 13-1. MUX Channel Select ADCH4 ADCH3 ADCH2 ADCH1 ADCH0 ADC Channel Input Select 0 0 0 0 0 ADC0 PTC0/ADC0 0 0 0 0 1 ADC1 PTC1/ADC1 0 0 0 1 0 ADC2 PTC2/ADC2 0 0 0 1 1 ADC3 PTC3/ADC3 0 0 1 0 0 ADC4 PTC4/ADC4 0 0 1 0 1 ADC5 PTC5/ADC5 0 0 1 1 0 ↓ ↓ ↓ ↓ ↓ — Unused(1) 1 1 0 1 0 1 1 0 1 1 — Reserved 1 1 1 0 0 — Unused 1 1 1 0 1 VRH 1 1 1 1 0 VRL 1 1 1 1 1 ADC power off Notes: 1. If any unused channels are selected, the resulting ADC conversion will be unknown. Technical Data 178 MC68HC908LD60 — Rev. 1.1 Analog-to-Digital Converter (ADC) Freescale Semiconductor Analog-to-Digital Converter (ADC) I/O Registers 13.8.2 ADC Data Register One 8-bit result register, ADC data register (ADR), is provided. This register is updated each time an ADC conversion completes. Address: Read: $003C Bit 7 6 5 4 3 2 1 Bit 0 AD7 AD6 AD5 AD4 AD3 AD2 AD1 AD0 Write: Reset: Indeterminate after Reset = Unimplemented Figure 13-4. ADC Data Register (ADR) 13.8.3 ADC Input Clock Register The ADC input clock register (ADICLK) selects the clock frequency for the ADC. Address: Read: Write: Reset: $003D Bit 7 6 5 ADIV2 ADIV1 ADIV0 0 0 0 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 13-5. ADC Input Clock Register (ADICLK) ADIV[2:0] — ADC Clock Prescaler Bits ADIV[2:0] form a 3-bit field which selects the divide ratio used by the ADC to generate the internal ADC clock. Table 13-2 shows the available clock configurations. The ADC clock should be set to approximately 1MHz. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Analog-to-Digital Converter (ADC) 179 Analog-to-Digital Converter (ADC) Table 13-2. ADC Clock Divide Ratio ADIV2 ADIV1 ADIV0 ADC Clock Rate 0 0 0 ADC Input Clock ÷ 1 0 0 1 ADC Input Clock ÷ 2 0 1 0 ADC Input Clock ÷ 4 0 1 1 ADC Input Clock ÷ 8 1 X X ADC Input Clock ÷ 16 X = don’t care Technical Data 180 MC68HC908LD60 — Rev. 1.1 Analog-to-Digital Converter (ADC) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 14. Multi-Master IIC Interface (MMIIC) 14.1 Contents 14.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 14.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 14.5 Multi-Master IIC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 14.5.1 Multi-Master IIC Address Register (MMADR) . . . . . . . . . . 184 14.5.2 Multi-Master IIC Control Register (MMCR) . . . . . . . . . . . . 185 14.5.3 Multi-Master IIC Master Control Register (MIMCR) . . . . . . 186 14.5.4 Multi-Master IIC Status Register (MMSR) . . . . . . . . . . . . . 188 14.5.5 Multi-Master IIC Data Transmit Register (MMDTR) . . . . . . 190 14.5.6 Multi-Master IIC Data Receive Register (MMDRR) . . . . . . 191 14.6 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 192 14.2 Introduction This Multi-master IIC (MMIIC) Interface is designed for internal serial communication between the MCU and other IIC devices. A hardware circuit generates "start" and "stop" signal, while byte by byte data transfer is interrupt driven by the software algorithm. Therefore, it can greatly help the software in dealing with other devices to have higher system efficiency in a typical digital monitor system. This module not only can be applied in internal communications, but can also be used as a typical command reception serial bus for factory setup and alignment purposes. It also provides the flexibility of hooking additional devices to an existing system for future expansion without adding extra hardware. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Multi-Master IIC Interface (MMIIC) 181 Multi-Master IIC Interface (MMIIC) This Multi-master IIC module uses the IICSCL clock line and the IICSDA data line to communicate with external DDC host or IIC interface. These two pins are shared with port pins PTD6 and PTD7 respectively. The outputs of IICSDA and IICSCL pins are open-drain type — no clamping diode is connected between the pin and internal VDD. The maximum data rate typically is 750k-bps. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400pF. 14.3 Features • Compatibility with multi-master IIC bus standard • Software controllable acknowledge bit generation • Interrupt driven byte by byte data transfer • Calling address identification interrupt • Auto detection of R/W bit and switching of transmit or receive mode • Detection of START, repeated START, and STOP signals • Auto generation of START and STOP condition in master mode • Arbitration loss detection and No-ACK awareness in master mode • 8 selectable baud rate master clocks • Automatic recognition of the received acknowledge bit 14.4 I/O Pins The MMIIC module uses two I/O pins, shared with standard port I/O pins. The full name of the MMIIC I/O pins are listed in Table 14-1. The generic pin name appear in the text that follows. Table 14-1. Pin Name Conventions MMIIC Generic Pin Names: Full MCU Pin Names: Pin Selected for IIC Function By: SDA PTD7/IICSDA IICDATE bit in PDCR ($0069) SCL PTD6/IICSCL IICSCLE bit in PDCR ($0069) Technical Data 182 MC68HC908LD60 — Rev. 1.1 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Multi-Master IIC Registers Addr. $006A $006B $006C $006D $006E $006F Register Name Bit 7 6 4 3 2 1 Bit 0 MMAST MMRW MMBR2 MMBR1 MMBR0 0 0 0 0 0 0 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read: MMALIF MMNAKIF Multi-Master IIC Master Control Register Write: 0 0 (MIMCR) Reset: 0 0 Read: Multi-Master IIC Address MMAD7 Register Write: (MMADR) Reset: 1 Read: Multi-Master IIC Control Register Write: (MMCR) Reset: MMEN MMIEN 0 0 Multi-Master IIC Read: MMRXIF Status Register Write: 0 (MMSR) Reset: 0 Multi-Master IIC Read: MMTD7 Data Transmit Register Write: (MMDTR) Reset: 1 Multi-Master IIC Read: MMRD7 Data Receive Register Write: (MMDRR) Reset: 0 5 MMBB MMTXAK 0 MMTXIF MMATCH MMSRW MMRXAK 0 MMAD1 MMEXTAD MMTXBE MMRXBF 0 0 0 0 1 0 1 0 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0 1 1 1 1 1 1 1 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0 0 0 0 0 0 0 0 = Unimplemented Figure 14-1. MMIIC I/O Register Summary 14.5 Multi-Master IIC Registers Six registers are associated with the Multi-master IIC module, they are outlined in the following sections. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Multi-Master IIC Interface (MMIIC) 183 Multi-Master IIC Interface (MMIIC) 14.5.1 Multi-Master IIC Address Register (MMADR) Address: Read: Write: Reset: $006B Bit 7 6 5 4 3 2 MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 1 0 1 0 0 0 1 Bit 0 MMAD1 MMEXTAD 0 0 Figure 14-2. Multi-Master IIC Address Register (MMADR) MMAD[7:1] — Multi-Master Address These seven bits can be the MMIIC interface’s own specific slave address in slave mode or the calling address when in master mode. Software must update it as the calling address while entering the master mode and restore its own slave address after the master mode is relinquished. Reset sets a default value of $A0. MMEXTAD — Multi-Master Expanded Address This bit is set to expand the address of the MMIIC in slave mode. When set, the MMIIC will acknowledge the general call address $00 and the matched 4-bit address, MMAD[7:4]. Reset clears this bit. For example, when MMADR is configured as: MMAD7 MMAD6 MMAD5 MMAD4 MMAD3 MMAD2 MMAD1 MMEXTAD 1 1 0 1 X X X 1 The MMIIC module will respond to the calling address: Bit 7 6 5 4 3 2 Bit 1 1 1 0 1 X X X 0 0 0 0 or the general calling address: 0 0 0 where X = don’t care; bit 0 of the calling address is the MMRW bit from the calling master. 1 = MMIIC responds to address $00 and $MMAD[7:4] 0 = MMIIC responds to address $MMAD[7:1] Technical Data 184 MC68HC908LD60 — Rev. 1.1 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Multi-Master IIC Registers 14.5.2 Multi-Master IIC Control Register (MMCR) Address: Read: Write: Reset: $006C Bit 7 6 MMEN MMIEN 0 0 5 4 0 0 0 0 3 MMTXAK 0 2 1 Bit 0 0 0 0 0 0 0 = Unimplemented Figure 14-3. Multi-Master IIC Control Register (MMCR) MMEN — Multi-Master IIC Enable This bit is set to enable the Multi-master IIC module. When MMEN = 0, module is disabled and all flags will restore to its poweron default states. Reset clears this bit. 1 = MMIIC module enabled 0 = MMIIC module disabled MMIEN — Multi-Master IIC Interrupt Enable When this bit is set, the MMTXIF, MMRXIF, MMALIF, and MMNAKIF flags are enabled to generate an interrupt request to the CPU. When MMIEN is cleared, the these flags are prevented from generating an interrupt request. Reset clears this bit. 1 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will generate interrupt request to CPU 0 = MMTXIF, MMRXIF, MMALIF, and/or MMNAKIF bit set will not generate interrupt request to CPU MMTXAK — Transmit Acknowledge Enable This bit is set to disable the MMIIC from sending out an acknowledge signal to the bus at the 9th clock bit after receiving 8 data bits. When MMTXAK is cleared, an acknowledge signal will be sent at the 9th clock bit. Reset clears this bit. 1 = MMIIC does not send acknowledge signals at 9th clock bit 0 = MMIIC sends acknowledge signal at 9th clock bit MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Multi-Master IIC Interface (MMIIC) 185 Multi-Master IIC Interface (MMIIC) 14.5.3 Multi-Master IIC Master Control Register (MIMCR) Address: $006A Bit 7 6 Read: MMALIF MMNAKIF Write: 0 0 Reset: 0 0 5 MMBB 0 4 3 2 1 Bit 0 MMAST MMRW MMBR2 MMBR1 MMBR0 0 0 0 0 0 Figure 14-4. Multi-Master IIC Master Control Register (MIMCR) MMALIF — Multi-Master Arbitration Lost Interrupt Flag This flag is set when software attempt to set MMAST but the MMBB has been set by detecting the start condition on the lines or when the MMIIC is transmitting a "1" to SDA line but detected a "0" from SDA line in master mode – an arbitration loss. This bit generates an interrupt request to the CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or by reset. 1 = Lost arbitration in master mode 0 = No arbitration lost MMNAKIF — No Acknowledge Interrupt Flag This flag is only set in master mode (MMAST = 1) when there is no acknowledge bit detected after one data byte or calling address is transferred. This flag also clears MMAST. MMNAKIF generates an interrupt request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or by reset. 1 = No acknowledge bit detected 0 = Acknowledge bit detected MMBB — Bus Busy Flag This flag is set after a start condition is detected (bus busy), and is cleared when a stop condition (bus idle) is detected or the MMIIC is disabled. Reset clears this bit. 1 = Start condition detected 0 = Stop condition detected or MMIIC is disabled Technical Data 186 MC68HC908LD60 — Rev. 1.1 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Multi-Master IIC Registers MMAST — Master Control Bit This bit is set to initiate a master mode transfer. In master mode, the module generates a start condition to the SDA and SCL lines, followed by sending the calling address stored in MMADR. When the MMAST bit is cleared by MMNAKIF set (no acknowledge) or by software, the module generates the stop condition to the lines after the current byte is transmitted. If an arbitration loss occurs (MMALIF = 1), the module reverts to slave mode by clearing MMAST, and releasing SDA and SCL lines immediately. This bit is cleared by writing "0" to it or by reset. 1 = Master mode operation 0 = Slave mode operation MMRW — Master Read/Write This bit will be transmitted out as bit 0 of the calling address when the module sets the MMAST bit to enter master mode. The MMRW bit determines the transfer direction of the data bytes that follows. When it is "1", the module is in master receive mode. When it is "0", the module is in master transmit mode. Reset clears this bit. 1 = Master mode receive 0 = Master mode transmit MMBR2–MMBR0 — Baud Rate Select These three bits select one of eight clock rates as the master clock when the module is in master mode. Since this master clock is derived the CPU bus clock, the user program should not execute the WAIT instruction when the MMIIC module in master mode. This will cause the SDA and SCL lines to hang, as the WAIT instruction places the MCU in wait mode, with CPU clock is halted. These bits are cleared upon reset. (See Table 14-2 . Baud Rate Select.) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Multi-Master IIC Interface (MMIIC) 187 Multi-Master IIC Interface (MMIIC) Table 14-2. Baud Rate Select MMBR2 MMBR1 MMBR0 Baud Rate 0 0 0 750k 0 0 1 375k 0 1 0 187.5k 0 1 1 93.75k 1 0 0 46.875k 1 0 1 23.437k 1 1 0 11.719k 1 1 1 5.859k NOTE: CPU bus clock is external clock ÷ 4 = 6MHz 14.5.4 Multi-Master IIC Status Register (MMSR) Address: $006D Bit 7 Read: MMRXIF 6 5 4 3 MMTXIF MMATCH MMSRW MMRXAK Write: 0 0 Reset: 0 0 0 0 1 2 0 0 1 Bit 0 MMTXBE MMRXBF 1 0 = Unimplemented Figure 14-5. Multi-Master IIC Status Register (MMSR) MMRXIF — Multi-Master IIC Receive Interrupt Flag This flag is set after the data receive register (MMDRR) is loaded with a new received data. Once the MMDRR is loaded with received data, no more received data can be loaded to the MMDRR register until the CPU reads the data from the MMDRR to clear MMRXBF flag. MMRXIF generates an interrupt request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or by reset; or when the MMEN = 0. 1 = New data in data receive register (MMDRR) 0 = No data received Technical Data 188 MC68HC908LD60 — Rev. 1.1 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Multi-Master IIC Registers MMTXIF — Multi-Master Transmit Interrupt Flag This flag is set when data in the data transmit register (MMDTR) is downloaded to the output circuit, and that new data can be written to the MMDTR. MMTXIF generates an interrupt request to CPU if the MMIEN bit in MMCR is also set. This bit is cleared by writing "0" to it or when the MMEN = 0. 1 = Data transfer completed 0 = Data transfer in progress MMATCH — Multi-Master Address Match This flag is set when the received data in the data receive register (MMDRR) is an calling address which matches with the address or its extended addresses (MMEXTAD=1) specified in the MMADR register. 1 = Received address matches MMADR 0 = Received address does not match MMSRW — Multi-Master Slave Read/Write This bit indicates the data direction when the module is in slave mode. It is updated after the calling address is received from a master device. MMSRW = 1 when the calling master is reading data from the module (slave transmit mode). MMSRW = 0 when the master is writing data to the module (receive mode). 1 = Slave mode transmit 0 = Slave mode receive MMRXAK — Multi-Master Receive Acknowledge When this bit is cleared, it indicates an acknowledge signal has been received after the completion of 8 data bits transmission on the bus. When MMRXAK is set, it indicates no acknowledge signal has been detected at the 9th clock; the module will release the SDA line for the master to generate "stop" or "repeated start" condition. Reset sets this bit. 1 = No acknowledge signal received at 9th clock bit 0 = Acknowledge signal received at 9th clock bit MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Multi-Master IIC Interface (MMIIC) 189 Multi-Master IIC Interface (MMIIC) MMTXBE — Multi-Master Transmit Buffer Empty This flag indicates the status of the data transmit register (MMDTR). When the CPU writes the data to the MMDTR, the MMTXBE flag will be cleared. MMTXBE is set when MMDTR is emptied by a transfer of its data to the output circuit. Reset sets this bit. 1 = Data transmit register empty 0 = Data transmit register full MMRXBF — Multi-Master Receive Buffer Full This flag indicates the status of the data receive register (MMDRR). When the CPU reads the data from the MMDRR, the MMRXBF flag will be cleared. MMRXBF is set when MMDRR is full by a transfer of data from the input circuit to the MMDRR. Reset clears this bit. 1 = Data receive register full 0 = Data receive register empty 14.5.5 Multi-Master IIC Data Transmit Register (MMDTR) Address: Read: Write: Reset: $006E Bit 7 6 5 4 3 2 1 Bit 0 MMTD7 MMTD6 MMTD5 MMTD4 MMTD3 MMTD2 MMTD1 MMTD0 1 1 1 1 1 1 1 1 Figure 14-6. Multi-Master IIC Data Transmit Register (MMDTR) When the MMIIC module is enabled, MMEN = 1, data written into this register depends on whether module is in master or slave mode. In slave mode, the data in MMDTR will be transferred to the output circuit when: • the module detects a matched calling address (MMATCH = 1), with the calling master requesting data (MMSRW = 1); or • the previous data in the output circuit has be transmitted and the receiving master returns an acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0). Technical Data 190 MC68HC908LD60 — Rev. 1.1 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Multi-Master IIC Registers If the calling master does not return an acknowledge bit (MMRXAK = 1), the module will release the SDA line for master to generate a "stop" or "repeated start" condition. The data in the MMDTR will not be transferred to the output circuit until the next calling from a master. The transmit buffer empty flag remains cleared (MMTXBE = 0). In master mode, the data in MMDTR will be transferred to the output circuit when: • the module receives an acknowledge bit (MMRXAK = 0), after setting master transmit mode (MMRW = 0), and the calling address has been transmitted; or • the previous data in the output circuit has be transmitted and the receiving slave returns an acknowledge bit, indicated by a received acknowledge bit (MMRXAK = 0). If the slave does not return an acknowledge bit (MMRXAK = 1), the master will generate a "stop" or "repeated start" condition. The data in the MMDTR will not be transferred to the output circuit. The transmit buffer empty flag remains cleared (MMTXBE = 0). The sequence of events for slave transmit and master transmit are illustrated in Figure 14-8. 14.5.6 Multi-Master IIC Data Receive Register (MMDRR) Address : $006F Bit 7 6 5 4 3 2 1 Bit 0 Read: MMRD7 MMRD6 MMRD5 MMRD4 MMRD3 MMRD2 MMRD1 MMRD0 Write: Reset: 0 0 0 0 0 0 0 0 = Unimplemente d Figure 14-7. Multi-Master IIC Data Receive Register (MMDRR) When the MMIIC module is enabled, MMEN = 1, data in this read-only register depends on whether module is in master or slave mode. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Multi-Master IIC Interface (MMIIC) 191 Multi-Master IIC Interface (MMIIC) In slave mode, the data in MMDRR is: • the calling address from the master when the address match flag is set (MMATCH = 1); or • the last data received when MMATCH = 0. In master mode, the data in the MMDRR is: • the last data received. When the MMDRR is read by the CPU, the receive buffer full flag is cleared (MMRXBF = 0), and the next received data is loaded to the MMDRR. Each time when new data is loaded to the MMDRR, the MMRXIF interrupt flag is set, indicating that new data is available in MMDRR. The sequence of events for slave receive and master receive are illustrated in Figure 14-8. 14.6 Programming Considerations When the MMIIC module detects an arbitration loss in master mode, it will release both SDA and SCL lines immediately. But if there are no further STOP conditions detected, the module will hang up. Therefore, it is recommended to have time-out software to recover from such ill condition. The software can start the time-out counter by looking at the MMBB (Bus Busy) flag in the MIMCR and reset the counter on the completion of one byte transmission. If a time-out occur, software can clear the MMEN bit (disable MMIIC module) to release the bus, and hence clearing the MMBB flag. This is the only way to clear the MMBB flag by software if the module hangs up due to a no STOP condition received. The MMIIC can resume operation again by setting the MMEN bit. Technical Data 192 MC68HC908LD60 — Rev. 1.1 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Multi-Master IIC Interface (MMIIC) Programming Considerations (a) Master Transmit Mode START Address MMTXBE=0 MMRW=0 MMAST=1 Data1 → MMDTR 0 ACK TX Data1 ACK MMTXBE=1 MMTXIF=1 Data3 → MMDTR MMTXBE=1 MMTXIF=1 Data2 → MMDTR TX DataN NAK STOP MMTXBE=1 MMNAKIF=1 MMTXIF=1 MMAST=0 DataN+2 → MMDTR MMTXBE=0 (b) Master Receive Mode START Address 1 ACK RX Data1 ACK Data1 → MMDRR MMRXIF=1 MMRXBF=1 MMRXBF=0 MMRW=1 MMAST=1 MMTXBE=0 (dummy data → MMDTR) RX DataN NAK STOP DataN → MMDRR MMNAKIF=1 MMRXIF=1 MMAST=0 MMRXBF=1 (c) Slave Transmit Mode START Address 1 ACK TX Data1 MMRXIF=1 MMRXBF=1 MMATCH=1 MMSRW=1 Data1 → MMDTR MMTXBE=1 MMRXBF=0 ACK MMTXBE=1 MMTXIF=1 Data2 → MMDTR TX DataN NAK STOP MMTXBE=1 MMNAKIF=1 MMTXIF=1 MMTXBE=0 DataN+2 → MMDTR (d) Slave Receive Mode START Address MMTXBE=0 MMRXBF=0 0 ACK MMRXIF=1 MMRXBF=1 MMATCH=1 MMSRW=0 RX Data1 ACK Data1 → MMDRR MMRXIF=1 MMRXBF=1 RX DataN NAK STOP DataN → MMDRR MMRXIF=1 MMRXBF=1 KEY: shaded data packets indicate a transmit by the MCU’s MMIIC module Figure 14-8. Data Transfer Sequences for Master/Slave Transmit/Receive Modes MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Multi-Master IIC Interface (MMIIC) 193 Multi-Master IIC Interface (MMIIC) Technical Data 194 MC68HC908LD60 — Rev. 1.1 Multi-Master IIC Interface (MMIIC) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 15. DDC12AB Interface 15.1 Contents 15.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 15.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 15.5 DDC Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.6 DDC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 15.6.1 DDC Address Register (DADR) . . . . . . . . . . . . . . . . . . . . . 198 15.6.2 DDC2 Address Register (D2ADR) . . . . . . . . . . . . . . . . . . . 199 15.6.3 DDC Control Register (DCR) . . . . . . . . . . . . . . . . . . . . . . . 200 15.6.4 DDC Master Control Register (DMCR) . . . . . . . . . . . . . . . 201 15.6.5 DDC Status Register (DSR) . . . . . . . . . . . . . . . . . . . . . . . . 204 15.6.6 DDC Data Transmit Register (DDTR) . . . . . . . . . . . . . . . . 206 15.6.7 DDC Data Receive Register (DDRR) . . . . . . . . . . . . . . . . . 207 15.7 Programming Considerations . . . . . . . . . . . . . . . . . . . . . . . . . 208 15.2 Introduction This DDC12AB Interface module is used by the digital monitor to show its identification information to the video controller. It contains DDC1 hardware and a two-wire, bidirectional serial bus which is fully compatible with multi-master IIC bus protocol to support DDC2AB interface. This module not only can be applied in internal communications, but can also be used as a typical command reception serial bus for factory setup and alignment purposes. It also provides the flexibility of hooking additional devices to an existing system for future expansion without adding extra hardware. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 195 DDC12AB Interface This DDC12AB module uses the DDCSCL clock line and the DDCSDA data line to communicate with external DDC host or IIC interface. These two pins are shared with port pins PTD4 and PTD5 respectively. The outputs of DDCSDA and DDCSCL pins are open-drain type — no clamping diode is connected between the pin and internal VDD. The maximum data rate typically is 100k-bps. The maximum communication length and the number of devices that can be connected are limited by a maximum bus capacitance of 400pF. 15.3 Features • DDC1 hardware • Compatibility with multi-master IIC bus standard • Software controllable acknowledge bit generation • Interrupt driven byte by byte data transfer • Calling address identification interrupt • Auto detection of R/W bit and switching of transmit or receive mode • Detection of START, repeated START, and STOP signals • Auto generation of START and STOP condition in master mode • Arbitration loss detection and No-ACK awareness in master mode • 8 selectable baud rate master clocks • Automatic recognition of the received acknowledge bit 15.4 I/O Pins The DDC12AB module uses two I/O pins, shared with standard port I/O pins. The full name of the DDC12AB I/O pins are listed in Table 15-1. The generic pin name appear in the text that follows. Table 15-1. Pin Name Conventions DDC12AB Generic Pin Names: Full MCU Pin Names: Pin Selected for DDC Function By: SDA PTD5/DDCSDA DDCDATE bit in PDCR ($0069) SCL PTD4/DDCSCL DDCSCLE bit in PDCR ($0069) Technical Data 196 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor DDC12AB Interface I/O Pins Addr. Register Name $0016 DDC Master Control Register (DMCR) Bit 7 6 5 4 3 2 1 Bit 0 Read: ALIF NAKIF BB Write: 0 0 MAST MRW BR2 BR1 BR0 Reset: 0 0 0 0 0 0 0 0 DAD7 DAD6 DAD5 DAD4 DAD3 DAD2 DAD1 EXTAD 1 0 1 0 0 0 0 0 DEN DIEN 0 0 TXAK SCLIEN DDC1EN Reset: 0 0 0 0 0 0 0 0 Read: RXIF TXIF MATCH SRW RXAK SCLIF TXBE RXBF Write: 0 0 Reset: 0 0 0 0 1 0 1 0 DTD7 DTD6 DTD5 DTD4 DTD3 DTD2 DTD1 DTD0 Reset: 1 1 1 1 1 1 1 1 Read: DRD7 DRD6 DRD5 DRD4 DRD3 DRD2 DRD1 DRD0 0 0 0 0 0 0 0 0 D2AD7 D2AD6 D2AD5 D2AD4 D2AD3 D2AD2 D2AD1 0 0 0 0 0 0 0 Read: $0017 DDC Address Register (DADR) Write: Reset: Read: $0018 $0019 DDC Control Register (DCR) DDC Status Register (DSR) DDC $001A Data Transmit Register (DDTR) $001B DDC Data Receive Register (DDRR) Write: Read: Write: Read: DDC2 Address Register (D2ADR) 0 Write: Reset: $001C 0 Write: Reset: 0 0 = Unimplemented Figure 15-1. DDC I/O Register Summary MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 197 DDC12AB Interface 15.5 DDC Protocols In DDC1 protocol communication, the module is in transmit mode. The data written to the transmit register is continuously clocked out to the SDA line by the rising edge of the Vsync input signal. During DDC1 communication, a falling transition on the SCL line can be detected to generate an interrupt to the CPU for mode switching. In DDC2AB protocol communication, the module can be either in transmit mode or in receive mode, controlled by the calling master. In DDC2 protocol communication, the module will act as a standard IIC module, able to act as a master or a slave device. 15.6 DDC Registers Seven registers are associated with the DDC module, they outlined in the following sections. 15.6.1 DDC Address Register (DADR) Address: Read: Write: Reset: $0017 Bit 7 6 5 4 3 2 1 Bit 0 DAD7 DAD6 DAD5 DAD4 DAD3 DAD2 DAD1 EXTAD 1 0 1 0 0 0 0 0 Figure 15-2. DDC Address Register (DADR) DAD[7:1] — DDC Address These seven bits can be the DDC2 interface’s own specific slave address in slave mode or the calling address when in master mode. Software must update it as the calling address while entering the master mode and restore its own slave address after the master mode is relinquished. Reset sets a default value of $A0. Technical Data 198 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor DDC12AB Interface DDC Registers EXTAD — DDC Expanded Address This bit is set to expand the address of the DDC in slave mode. When set, the DDC will acknowledge the general call address $00 and the matched 4-bit address, DAD[7:4]. Reset clears this bit. For example, when DADR is configured as: DAD7 DAD6 DAD5 DAD4 DAD3 DAD2 DAD1 EXTAD 1 1 0 1 X X X 1 The DDC module will respond to the calling address: Bit 7 6 5 4 3 2 Bit 1 1 1 0 1 X X X 0 0 0 0 or the general calling address: 0 0 0 where X = don’t care; bit 0 of the calling address is the MRW bit from the calling master. 1 = DDC responds to address $00 and $DAD[7:4] 0 = DDC responds to address $DAD[7:1] 15.6.2 DDC2 Address Register (D2ADR) Address: Read: Write: Reset: $001C Bit 7 6 5 4 3 2 1 D2AD7 D2AD6 D2AD5 D2AD4 D2AD3 D2AD2 D2AD1 0 0 0 0 0 0 0 Bit 0 0 0 Figure 15-3. DDC2 Address Register (D2ADR) D2AD[7:1] — DDC2 Address These seven bits represent the second slave address for the DDC2BI protocol. D2AD[7:1] should be set to the same value as DAD[7:1] in DADR if user application do not use DDC2BI. Reset clears all bits this register. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 199 DDC12AB Interface 15.6.3 DDC Control Register (DCR) Address: Read: Write: Reset: $0018 Bit 7 6 DEN DIEN 0 0 5 4 0 0 0 0 3 2 1 TXAK SCLIEN DDC1EN 0 0 0 Bit 0 0 0 = Unimplemented Figure 15-4. DDC Control Register (DCR) DEN — DDC Enable This bit is set to enable the DDC module. When DEN = 0, module is disabled and all flags will restore to its power-on default states. Reset clears this bit. 1 = DDC module enabled 0 = DDC module disabled DIEN — DDC Interrupt Enable When this bit is set, the TXIF, RXIF, ALIF, and NAKIF flags are enabled to generate an interrupt request to the CPU. When DIEN is cleared, the these flags are prevented from generating an interrupt request. Reset clears this bit. 1 = TXIF, RXIF, ALIF, and/or NAKIF bit set will generate interrupt request to CPU 0 = TXIF, RXIF, ALIF, and/or NAKIF bit set will not generate interrupt request to CPU TXAK — Transmit Acknowledge Enable This bit is set to disable the DDC from sending out an acknowledge signal to the bus at the 9th clock bit after receiving 8 data bits. When TXAK is cleared, an acknowledge signal will be sent at the 9th clock bit. Reset clears this bit. 1 = DDC does not send acknowledge signals at 9th clock bit 0 = DDC sends acknowledge signal at 9th clock bit Technical Data 200 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor DDC12AB Interface DDC Registers SCLIEN — SCL Interrupt Enable When this bit is set, the SCLIF flag is enabled to generate an interrupt request to the CPU. When SCLIEN is cleared, SCLIF is prevented from generating an interrupt request. Reset clears this bit. 1 = SCLIF bit set will generate interrupt request to CPU 0 = SCLIF bit set will not generate interrupt request to CPU DDC1EN — DDC1 Protocol Enable This bit is set to enable DDC1 protocol. The DDC1 protocol will use the Vsync input (from sync processor) as the master clock input to the DDC module. Vsync rising-edge will continuously clock out the data to the output circuit. No calling address comparison is performed. The SRW bit in DDC status register (DSR) will always read as "1". Reset clears this bit. 1 = DDC1 protocol enabled 0 = DDC1 protocol disabled 15.6.4 DDC Master Control Register (DMCR) Address: $0016 Bit 7 6 5 Read: ALIF NAKIF BB Write: 0 0 Reset: 0 0 0 4 3 2 1 Bit 0 MAST MRW BR2 BR1 BR0 0 0 0 0 0 Figure 15-5. DDC Master Control Register (DMCR) ALIF — DDC Arbitration Lost Interrupt Flag This flag is set when software attempt to set MAST but the BB has been set by detecting the start condition on the lines or when the DDC is transmitting a "1" to SDA line but detected a "0" from SDA line in master mode – an arbitration loss. This bit generates an interrupt request to the CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or by reset. 1 = Lost arbitration in master mode 0 = No arbitration lost MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 201 DDC12AB Interface NAKIF — No Acknowledge Interrupt Flag This flag is only set in master mode (MAST = 1) when there is no acknowledge bit detected after one data byte or calling address is transferred. This flag also clears MAST. NAKIF generates an interrupt request to CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or by reset. 1 = No acknowledge bit detected 0 = Acknowledge bit detected BB — Bus Busy Flag This flag is set after a start condition is detected (bus busy), and is cleared when a stop condition (bus idle) is detected or the DDC is disabled. Reset clears this bit. 1 = Start condition detected 0 = Stop condition detected or DDC is disabled MAST — Master Control Bit This bit is set to initiate a master mode transfer. In master mode, the module generates a start condition to the SDA and SCL lines, followed by sending the calling address stored in DADR. When the MAST bit is cleared by NAKIF set (no acknowledge) or by software, the module generates the stop condition to the lines after the current byte is transmitted. If an arbitration loss occurs (ALIF = 1), the module reverts to slave mode by clearing MAST, and releasing SDA and SCL lines immediately. This bit is cleared by writing "0" to it or by reset. 1 = Master mode operation 0 = Slave mode operation MRW — Master Read/Write This bit will be transmitted out as bit 0 of the calling address when the module sets the MAST bit to enter master mode. The MRW bit determines the transfer direction of the data bytes that follows. When it is "1", the module is in master receive mode. When it is "0", the module is in master transmit mode. Reset clears this bit. 1 = Master mode receive 0 = Master mode transmit Technical Data 202 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor DDC12AB Interface DDC Registers BR2–BR0 — Baud Rate Select These three bits select one of eight clock rates as the master clock when the module is in master mode. Since this master clock is derived the CPU bus clock, the user program should not execute the WAIT instruction when the DDC module in master mode. This will cause the SDA and SCL lines to hang, as the WAIT instruction places the MCU in WAIT mode, with CPU clock is halted. These bits are cleared upon reset. (See Table 15-2 . Baud Rate Select.) Table 15-2. Baud Rate Select BR2 BR1 BR0 Baud Rate 0 0 0 100k 0 0 1 50k 0 1 0 25k 0 1 1 12.5k 1 0 0 6.25k 1 0 1 3.125k 1 1 0 1.56k 1 1 1 0.78k NOTE: CPU bus clock is external clock ÷ 4 = 6MHz MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 203 DDC12AB Interface 15.6.5 DDC Status Register (DSR) Address: $0019 Bit 7 6 5 4 3 2 1 Bit 0 Read: RXIF TXIF MATCH SRW RXAK SCLIF TXBE RXBF Write: 0 0 Reset: 0 0 1 0 0 0 0 1 0 = Unimplemented Figure 15-6. DDC Status Register (DSR) RXIF — DDC Receive Interrupt Flag This flag is set after the data receive register (DDRR) is loaded with a new received data. Once the DDRR is loaded with received data, no more received data can be loaded to the DDRR register until the CPU reads the data from the DDRR to clear RXBF flag. RXIF generates an interrupt request to CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or by reset; or when the DEN = 0. 1 = New data in data receive register (DDRR) 0 = No data received TXIF — DDC Transmit Interrupt Flag This flag is set when data in the data transmit register (DDTR) is downloaded to the output circuit, and that new data can be written to the DDTR. TXIF generates an interrupt request to CPU if the DIEN bit in DCR is also set. This bit is cleared by writing "0" to it or when the DEN = 0. 1 = Data transfer completed 0 = Data transfer in progress MATCH — DDC Address Match This flag is set when the received data in the data receive register (DDRR) is an calling address which matches with the address or its extended addresses (EXTAD=1) specified in the DADR register. 1 = Received address matches DADR 0 = Received address does not match Technical Data 204 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor DDC12AB Interface DDC Registers SRW — DDC Slave Read/Write This bit indicates the data direction when the module is in slave mode. It is updated after the calling address is received from a master device. SRW = 1 when the calling master is reading data from the module (slave transmit mode). SRW = 0 when the master is writing data to the module (receive mode). 1 = Slave mode transmit 0 = Slave mode receive RXAK — DDC Receive Acknowledge When this bit is cleared, it indicates an acknowledge signal has been received after the completion of 8 data bits transmission on the bus. When RXAK is set, it indicates no acknowledge signal has been detected at the 9th clock; the module will release the SDA line for the master to generate "stop" or "repeated start" condition. Reset sets this bit. 1 = No acknowledge signal received at 9th clock bit 0 = Acknowledge signal received at 9th clock bit SCLIF — SCL Interrupt Flag This flag is set when a falling edge is detected on the SCL line, only if DDC1EN bit is set. SCLIF generates an interrupt request to CPU if the SCLIEN bit in DCR is also set. SCLIF is cleared by writing "0" to it or when the DCC1EN = 0, or DEN = 0. Reset clears this bit. 1 = Falling edge detected on SCL line 0 = No falling edge detected on SCL line TXBE — DDC Transmit Buffer Empty This flag indicates the status of the data transmit register (DDTR). When the CPU writes the data to the DDTR, the TXBE flag will be cleared. TXBE is set when DDTR is emptied by a transfer of its data to the output circuit. Reset sets this bit. 1 = Data transmit register empty 0 = Data transmit register full MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 205 DDC12AB Interface RXBF — DDC Receive Buffer Full This flag indicates the status of the data receive register (DDRR). When the CPU reads the data from the DDRR, the RXBF flag will be cleared. RXBF is set when DDRR is full by a transfer of data from the input circuit to the DDRR. Reset clears this bit. 1 = Data receive register full 0 = Data receive register empty 15.6.6 DDC Data Transmit Register (DDTR) Address: Read: Write: Reset: $001A Bit 7 6 5 4 3 2 1 Bit 0 DTD7 DTD6 DTD5 DTD4 DTD3 DTD2 DTD1 DTD0 1 1 1 1 1 1 1 1 Figure 15-7. DDC Data Transmit Register (DDTR) When the DDC module is enabled, DEN = 1, data written into this register depends on whether module is in master or slave mode. In slave mode, the data in DDTR will be transferred to the output circuit when: • the module detects a matched calling address (MATCH = 1), with the calling master requesting data (SRW = 1); or • the previous data in the output circuit has be transmitted and the receiving master returns an acknowledge bit, indicated by a received acknowledge bit (RXAK = 0). If the calling master does not return an acknowledge bit (RXAK = 1), the module will release the SDA line for master to generate a "stop" or "repeated start" condition. The data in the DDTR will not be transferred to the output circuit until the next calling from a master. The transmit buffer empty flag remains cleared (TXBE = 0). In master mode, the data in DDTR will be transferred to the output circuit when: Technical Data 206 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor DDC12AB Interface DDC Registers • the module receives an acknowledge bit (RXAK = 0), after setting master transmit mode (MRW = 0), and the calling address has been transmitted; or • the previous data in the output circuit has be transmitted and the receiving slave returns an acknowledge bit, indicated by a received acknowledge bit (RXAK = 0). If the slave does not return an acknowledge bit (RXAK = 1), the master will generate a "stop" or "repeated start" condition. The data in the DDTR will not be transferred to the output circuit. The transmit buffer empty flag remains cleared (TXBE = 0). The sequence of events for slave transmit and master transmit are illustrated in Figure 15-9. 15.6.7 DDC Data Receive Register (DDRR) Address: Read: $001B Bit 7 6 5 4 3 2 1 Bit 0 DRD7 DRD6 DRD5 DRD4 DRD3 DRD2 DRD1 DRD0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 15-8. DDC Data Receive Register (DDRR) When the DDC module is enabled, DEN = 1, data in this read-only register depends on whether module is in master or slave mode. In slave mode, the data in DDRR is: • the calling address from the master when the address match flag is set (MATCH = 1); or • the last data received when MATCH = 0. In master mode, the data in the DDRR is: • the last data received. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 207 DDC12AB Interface When the DDRR is read by the CPU, the receive buffer full flag is cleared (RXBF = 0), and the next received data is loaded to the DDRR. Each time when new data is loaded to the DDRR, the RXIF interrupt flag is set, indicating that new data is available in DDRR. The sequence of events for slave receive and master receive are illustrated in Figure 15-9. 15.7 Programming Considerations When the DDC module detects an arbitration loss in master mode, it will release both SDA and SCL lines immediately. But if there are no further STOP conditions detected, the module will hang up. Therefore, it is recommended to have time-out software to recover from such ill condition. The software can start the time-out counter by looking at the BB (Bus Busy) flag in the DMCR and reset the counter on the completion of one byte transmission. If a time-out occur, software can clear the DEN bit (disable DDC module) to release the bus, and hence clearing the BB flag. This is the only way to clear the BB flag by software if the module hangs up due to a no STOP condition received. The DDC can resume operation again by setting the DEN bit. Technical Data 208 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor DDC12AB Interface Programming Considerations (a) Master Transmit Mode START Address TXBE=0 MRW=0 MAST=1 Data1 → DDTR 0 TX Data1 ACK ACK TXBE=1 TXIF=1 Data3 → DDTR TXBE=1 TXIF=1 Data2 → DDTR TX DataN NAK STOP TXBE=1 NAKIF=1 TXIF=1 MAST=0 DataN+2 → DDTR TXBE=0 (b) Master Receive Mode START Address 1 RX Data1 ACK ACK Data1 → DDRR RXIF=1 RXBF=1 RXBF=0 MRW=1 MAST=1 TXBE=0 (dummy data → DDTR) RX DataN DataN → DDRR RXIF=1 RXBF=1 NAK STOP NAKIF=1 MAST=0 (c) Slave Transmit Mode START Address 1 TX Data1 ACK RXIF=1 RXBF=1 MATCH=1 SRW=1 Data1 → DDTR TXBE=1 RXBF=0 ACK TXBE=1 TXIF=1 Data2 → DDTR TX DataN TXBE=1 TXIF=1 DataN+2 → DDTR NAK STOP NAKIF=1 TXBE=0 (d) Slave Receive Mode START Address TXBE=0 RXBF=0 0 ACK RXIF=1 RXBF=1 MATCH=1 SRW=0 RX Data1 ACK Data1 → DDRR RXIF=1 RXBF=1 RX DataN NAK STOP DataN → DDRR RXIF=1 RXBF=1 KEY: shaded data packets indicate a transmit by the MCU’s DDC module Figure 15-9. Data Transfer Sequences for Master/Slave Transmit/Receive Modes MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data DDC12AB Interface 209 DDC12AB Interface Technical Data 210 MC68HC908LD60 — Rev. 1.1 DDC12AB Interface Freescale Semiconductor Technical Data — MC68HC908LD60 Section 16. Sync Processor 16.1 Contents 16.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 16.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 16.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 16.5 Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 16.5.1 Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 16.5.1.1 Hsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 216 16.5.1.2 Vsync Polarity Detection . . . . . . . . . . . . . . . . . . . . . . . . 216 16.5.1.3 Composite Sync Polarity Detection . . . . . . . . . . . . . . . . 216 16.5.2 Sync Signal Counters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 16.5.3 Polarity Controlled HOUT and VOUT Outputs . . . . . . . . . . 217 16.5.4 Clamp Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 16.5.5 Low Vertical Frequency Detect . . . . . . . . . . . . . . . . . . . . . 219 16.6 Sync Processor I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . 219 16.6.1 Sync Processor Control & Status Register (SPCSR). . . . . 219 16.6.2 Sync Processor Input/Output Control Register (SPIOCR) . 221 16.6.3 Vertical Frequency Registers (VFRs). . . . . . . . . . . . . . . . . 223 16.6.4 Hsync Frequency Registers (HFRs). . . . . . . . . . . . . . . . . . 225 16.6.5 Sync Processor Control Register 1 (SPCR1). . . . . . . . . . . 227 16.6.6 H & V Sync Output Control Register (HVOCR) . . . . . . . . . 228 16.7 System Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 211 Sync Processor 16.2 Introduction The Sync Processor is designed to detect and process sync signals inside a digital monitor system — from separated Hsync and Vsync inputs. After detection and the necessary polarity correction and/or sync separation, the corrected sync signals are sent out. The MCU can also send commands to other monitor circuitry, such as for the geometry correction and OSD, using the DDC12AB and/or the IIC communication channels. The block diagram of the Sync Processor is shown in Figure 16-2. NOTE: All quoted timings in this section assume an internal bus frequency of 6MHz. 16.3 Features Features of the Sync Processor include the following: • Polarity detector • Horizontal frequency counter • Vertical frequency counter • Low vertical frequency indicator (40.7Hz) • Polarity controlled HOUT and VOUT outputs: – From separate Hsync and Vsync – From composite sync on HSYNC input pin – From internal selectable free running Hsync and Vsync pulses • Free-running Hsync, Vsync, DE, and DCLK of 4 video modes • CLAMP pulse output to the external pre-amp chip • Internal schmitt trigger on HSYNC, and VSYNC input pins to improve noise immunity Technical Data 212 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor I/O Pins 16.4 I/O Pins The Sync Processor uses seven I/O pins, with four pins shared with standard port I/O pins and one pin shared with timer channel 0. The full name of the Sync Processor I/O pins are listed in Table 16-1. The generic pin name appear in the text that follows. Table 16-1. Pin Name Conventions Sync Processor Generic Pin Names: Full MCU Pin Names: Pin Selected for Sync Processor Function By: HSYNC HSYNC — VSYNC VSYNC — HOUT PTD3/HOUT HOUTE bit in PDCR ($0069) VOUT PTD2/VOUT VOUTE bit in PDCR ($0069) DE PTD1/DE DEE bit in PDCR ($0069) DCLK PTD0/DCLK DCLKE bit in PDCR ($0069) CLAMP CLAMP/TCH0 ELS0B and ELS0A bits in TSC0 ($0010) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 213 Sync Processor Addr. $0040 $0041 $0042 $0043 $0044 Register Name Bit 7 6 4 3 2 VSIE VEDGE COMP VINVO HINVO 0 0 0 0 0 Read: Vertical Frequency High Register Write: (VFHR) Reset: VOF 0 0 VF12 CPW1 CPW0 0 0 0 Read: Vertical Frequency Low Register Write: (VFLR) Reset: VF7 VF6 0 Read: Hsync Frequency High Register Write: (HFHR) Reset: Read: Sync Processor Control and Status Register Write: (SPCSR) Reset: 1 Bit 0 VPOL HPOL 0 0 0 VF11 VF10 VF9 VF8 0 0 0 0 0 VF5 VF4 VF3 VF2 VF1 VF0 0 0 0 0 0 0 0 HFH7 HFH6 HFH5 HFH4 HFH3 HFH2 HFH1 HFH0 0 0 0 0 0 0 0 0 0 0 HFL4 HFL3 HFL2 HFL1 HFL0 0 0 0 0 0 0 0 COINV R R R BPOR SOUT 0 0 ATPOL FSHF 0 0 Read: HOVER Hsync Frequency Low Register Write: (HFLR) Reset: 0 Read: VSYNCS HSYNCS $0045 $0046 Sync Processor I/O Control Write: Register (SPIOCR) Reset: Read: Sync Processor Control Register 1 Write: (SPCR1) Reset: 0 LVSIE 0 0 LVSIF 0 0 5 VSIF 0 0 HPS1 HPS0 0 0 Read: H&V Sync Output Control $003F Register Write: (HVOCR) Reset: R DCLKPH1 DCLKPH0 0 = Unimplemented R R 0 R HVOCR1 HVOCR0 0 0 = Reserved Figure 16-1. Sync Processor I/O Register Summary Technical Data 214 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor Functional Blocks 16.5 Functional Blocks EXTRACTED VSYNC SVF A 1 VOUT B S B S VSYNC VINVO A1 SOUT COMP VSIF POLARITY DETECT VPOL VSIE EDGE DETECT ONE SHOT VEDGE VFLR INTERNAL BUS CLOCK 6MHz 125kHz ÷ 48 VFHR VOF OVERFLOW DETECT 13-BIT COUNTER $C00 DETECT TO INTERRUPT LOGIC LVSIF LVSIE ONE SHOT HFLR CLK32/32.768 HFHR 12-BIT COUNTER HSYNC POLARITY DETECT VPOL DE A1 B S HOVER OVERFLOW DETECT HPOL COMP SVF DCLK1 FROM CGM EXTRACTED VSYNC VSYNC EXTRACTOR DCLK H/V SYNC, DE, DCLK PULSE GENERATOR HVOCR[1:0] DCLKPH[1:0] SHF BPOR B COINV CLAMP PULSE GENERATOR CLAMP A1 S SOUT HINVO HOUT Figure 16-2. Sync Processor Block Diagram MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 215 Sync Processor 16.5.1 Polarity Detection 16.5.1.1 Hsync Polarity Detection The Hsync polarity detection circuit measures the length of high and low period of the HSYNC input. If the length of high is longer than L and the length of low is shorter than S, the HPOL bit will be "0", indicating a negative polarity HSYNC input. If the length of low is longer than L and the length of high is shorter than S, the HPOL bit will be "1", indicating a positive polarity HSYNC input. The table below shows three possible cases for HSYNC polarity detection — the conditions are selected by the HPS[1:0] bits in the Sync Processor Control Register 1 (SPCR1). Polarity Detection Pulse Width SPCR1 ($0046) Long is greater than (L) Short is less than (S) HPS1 HPS0 7µs 6µs 0 0 3.5µs 3µs 1 X 14µs 12µs 0 1 16.5.1.2 Vsync Polarity Detection The Vsync polarity detection circuit performs a similar function as for Hsync. If the length of high is longer than 4ms and the length of low is shorter than 2ms, the VPOL bit will be "0", indicating a negative polarity VSYNC input. If the length of low is longer than 4ms and the length of high is shorter than 2ms, the VPOL bit will be "1", indicating a positive polarity VSYNC input. 16.5.1.3 Composite Sync Polarity Detection When a composite sync signal is the input (COMP = 1 for composite sync processing), the HPOL bit = VPOL bit, and the polarity is detected using the VSYNC polarity detection criteria described in section 16.5.1.2. Technical Data 216 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor Functional Blocks 16.5.2 Sync Signal Counters There are two counters: a 13-bit horizontal frequency counter to count the number of horizontal sync pulses within a 32ms or 8ms period; and a 13-bit vertical frequency counter to count the number of system clock cycles between two vertical sync pulses. These two data can be read by the CPU to check the signal frequencies and to determine the video mode. The 13-bit vertical frequency register encompasses vertical frequency range from approximately 15Hz to 128kHz. Due to the asynchronous timing between the incoming VSYNC signal and internal system clock, there will be ±1 count error on reading the Vertical Frequency Registers (VFRs) for the same vertical frequency. The horizontal counter counts the pulses on HSYNC pin input, and is uploaded to the Hsync Frequency Registers (HFRs) every 32.768ms or 8.192ms. 16.5.3 Polarity Controlled HOUT and VOUT Outputs The processed sync signals are output on HOUT and VOUT when the corresponding bits in Configuration Register 0 ($0069) are set. The signal to these output pins depend on SOUT and COMP bits (see Table 16-2), with polarity controlled by ATPOL, HINVO, and VINVO bits as shown in Table 16-3. Table 16-2. Sync Output Control Sync Outputs: VOUT and HOUT SOUT COMP 1 X Free-running video mode output 0 0 Sync outputs follow sync inputs VSYNC and HSYNC respectively, with polarity correction shown in Table 16-3. 0 1 HOUT follows the composite sync input and VOUT is the extracted Vsync (3 to 14µs delay to composite input), with polarity correction shown in Table 16-3. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 217 Sync Processor Table 16-3. Sync Output Polarity ATPOL SOUT VINVO or HINVO X 1 X Free-running video mode output 0 0 0 Same polarity as sync input 0 0 1 Inverted polarity of sync input 1 0 0 Negative polarity sync output 1 0 1 Positive polarity sync output Sync Outputs: VOUT/HOUT When the SOUT bit is set, the HOUT output is a free-running pulse. Both HOUT and VOUT outputs are negative polarity, with frequencies selected by the H & V Sync Output Control Register (HVOCR). 16.5.4 Clamp Pulse Output When the ELS0B and ELS0A bits in the TSC0 register are logic 0 (see Table 11-3), a clamp signal is output on the CLAMP pin. This clamp pulse is triggered either on the leading edge or the trailing edge of HSYNC, controlled by BPOR bit, with the polarity controlled by the COINV bit. See Figure 16-3 . Clamp Pulse Output Timing. HSYNC (HPOL = 1) CLAMP (BPOR = 0) Pulse width = 0.33~2.1µs CLAMP (BPOR = 1) Pulse width = 0.33~2.1µs HSYNC (HPOL = 0) CLAMP (BPOR = 0) Pulse width = 0.33~2.1µs CLAMP (BPOR = 1) Pulse width = 0.33~2.1µs Figure 16-3. Clamp Pulse Output Timing Technical Data 218 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor Sync Processor I/O Registers 16.5.5 Low Vertical Frequency Detect Logic monitors the value of the Vsync Frequency Register (VFR), and sets the low vertical frequency flag (LVSIF) when the value of VFR is higher than $C00 (frequency below 40.7Hz). LVSIF bit can generate an interrupt request to the CPU when the LVSIE bit is set and I-bit in the Condition Code Register is "0". The LVSIF bit can help the system to detect video off mode fast. 16.6 Sync Processor I/O Registers Eight registers are associated with the Sync Processor, they outlined in the following sections. 16.6.1 Sync Processor Control & Status Register (SPCSR) Address: Read: Write: Reset: $0040 Bit 7 6 VSIE VEDGE 0 0 5 VSIF 0 0 4 3 2 COMP VINVO HINVO 0 0 0 1 Bit 0 VPOL HPOL 0 0 = Unimplemented Figure 16-4. Sync Processor Control & Status Register (SPCSR) VSIE — VSync Interrupt Enable When this bit is set, the VSIF flag is enabled to generate an interrupt request to the CPU. When VSIE is cleared, the VSIF flag is prevented from generating an interrupt request to the CPU. Reset clears this bit. 1 = VSIF bit set will generate interrupt request to CPU 0 = VSIF bit set does not generate interrupt request to CPU MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 219 Sync Processor VEDGE — VSync Interrupt Edge Select This bit specifies the triggering edge of Vsync interrupt. When it is "0", the rising edge of internal Vsync signal which is either from the VSYNC pin or extracted from the composite input signal will set VSIF flag. When it is "1", the falling edge of internal Vsync signal will set VSIF flag. Reset clears this bit. 1 = VSIF bit will be set by rising edge of Vsync 0 = VSIF bit will be set by falling edge of Vsync VSIF — VSync Interrupt Flag This flag is only set by the specified edge of the internal Vsync signal, which is either from the VSYNC input pin or extracted from the composite sync input signal. The triggering edge is specified by the VEDGE bit. VSIF generates an interrupt request to the CPU if the VSIE bit is also set. This bit is cleared by writing a "0" to it or by a reset. 1 = A valid edge is detected on the Vsync 0 = No valid Vsync is detected COMP — Composite Sync Input Enable This bit is set to enable the separator circuit which extracts the Vsync pulse from the composite sync input on HSYNC or SOG pin (select by SOGSEL bit). The extracted Vsync signal is used as it were from the VSYNC input. Reset clears this bit. 1 = Composite Sync Input Enabled 0 = Composite Sync Input Disabled VINVO — VOUT Signal Polarity This bit, together with the ATPOL bit in SPCR1 controls the output polarity of the VOUT signal (see Table 16-4). HINVO — HOUT Signal Polarity This bit, together with the ATPOL bit in SPCR1 controls the output polarity of the HOUT signal (see Table 16-4). Technical Data 220 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor Sync Processor I/O Registers Table 16-4. ATPOL, VINVO, and HINVO setting Sync Outputs: VOUT/HOUT ATPOL VINVO / HINVO 0 0 Same polarity as sync input 0 1 Inverted polarity of sync input 1 0 Negative polarity sync output 1 1 Positive polarity sync output VPOL — Vsync Input Polarity This bit indicates the polarity of the VSYNC input, or the extracted Vsync from a composite sync input (COMP=1). Reset clears this bit. 1 = Vsync is positive polarity 0 = Vsync is negative polarity HPOL — Hsync Input Polarity This bit indicates the polarity of the HSYNC input. This bit equals the VPOL bit when the COMP bit is set. Reset clears this bit. 1 = Hsync is positive polarity 0 = Hsync is negative polarity 16.6.2 Sync Processor Input/Output Control Register (SPIOCR) Address: $0045 Bit 7 6 Read: VSYNCS HSYNCS Write: Reset: 0 0 5 4 3 2 1 Bit 0 COINV R R R BPOR SOUT 0 0 0 = Unimplemented R = Reserved Figure 16-5. Sync Processor Input/Output Control Register (SPIOCR) VSYNCS — VSYNC Input State This read-only bit reflects the logical state of the VSYNC input. HSYNCS — HSYNC Input State This read-only bit reflects the logical state of the HSYNC input. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 221 Sync Processor COINV — Clamp Output Invert This bit is set to invert the clamp pulse output to negative. Reset clears this bit. 1 = Clamp output is set for negative pulses 0 = Clamp output is set for positive pulses BPOR — Back Porch This bit defines the triggering edge of the clamp pulse output relative to the HSYNC input. Reset clears this bit. 1 = Clamp pulse is generated on the trailing edge of HSYNC 0 = Clamp pulse is generated on the leading edge of HSYNC SOUT — Sync Output Enable This bit will select the output signals for the VOUT and HOUT pins and generate the DE and DCLK signals to the pins. Reset clears this bit. 1 = VOUT, HOUT, DE, and DCLK outputs are internally generated free-running timing pulses with frequencies determined by HVCOR[1:0] bits in HVCOR and CGM values. 0 = VOUT and HOUT outputs are processed VSYNC and HSYNC inputs respectively and DE and DCLK are hold as logic low. Technical Data 222 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor Sync Processor I/O Registers 16.6.3 Vertical Frequency Registers (VFRs) This register pair contains the 13-bit vertical frequency count value, an overflow bit, and the clamp pulse width selection bits. Address: Read: $0041 Bit 7 6 5 4 3 2 1 Bit 0 VOF 0 0 VF12 VF11 VF10 VF9 VF8 CPW1 CPW0 0 0 0 0 0 0 0 Write: Reset: 0 Figure 16-6. Vertical Frequency High Register Address: Read: $0042 Bit 7 6 5 4 3 2 1 Bit 0 VF7 VF6 VF5 VF4 VF3 VF2 VF1 VF0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 16-7. Vertical Frequency Low Register VF[12:0] — Vertical Frame Frequency This read-only 13-bit contains information of the vertical frame frequency. An internal 13-bit counter counts the number of 8µs periods between two Vsync pulses. The most significant 5 bits of the counted value is transferred to the high byte register, and the least significant 8 bits is transferred to an intermediate buffer. When the high byte register is read, the 8-bit counted value stored in the intermediate buffer will be uploaded to the low byte register. Therefore, user program must read the high byte register first, then low byte register in order to get the complete counted value of one vertical frame. If the counter overflows, the overflow flag, VOF, will be set, indicating the counter value stored in the VFRs is meaningless. The data corresponds to the period of one vertical frame. This register can be read to determine if the frame frequency is valid, and to determine the video mode. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 223 Sync Processor The frame frequency is calculated by: 1 Vertical Frame Frequency = --------------------------------------------------VFR ± 1 × 48 × t CYC 1 = -------------------------------------VFR ± 1 × 8µ s for internal bus clock of 6MHz Table 16-5 shows examples for the Vertical Frequency Register, all VFR numbers are in hexadecimal. Table 16-5. Sample Vertical Frame Frequencies VFR Max Freq. Min Freq. VFR Max Freq. Min Freq. $02A0 186.20 Hz 185.70 Hz $0780 65.10 Hz 65.00 Hz $03C0 130.34 Hz 130.07 Hz $0823 60.04 Hz 59.98 Hz $03C1 130.21 Hz 129.94 Hz $0824 60.01 Hz 59.95 Hz $03C2 130.07 Hz 129.80 Hz $0825 59.98 Hz 59.92 Hz $04E2 100.08 Hz 99.92 Hz $09C4 50.02 Hz 49.98 Hz $04E3 100.00 Hz 99.84 Hz $09C5 50.00 Hz 49.96 Hz $04E4 99.92 Hz 99.76 Hz $09C6 49.98 Hz 49.94 Hz $06F9 70.07 Hz 69.99 Hz $1FFD 15.266 Hz 15.262 Hz $06FA 70.03 Hz 69.95 Hz $1FFE 15.264 Hz 15.260 Hz $06FB 69.99 Hz 69.91 Hz $1FFF 15.262 Hz 15.258 Hz VOF — Vertical Frequency Counter Overflow This read-only bit is set when an overflow has occurred on the 13-bit vertical frequency counter. Reset clears this bit, and will be updated every vertical frame. An overflow occurs when the period of Vsync frame exceeds 64.768ms (a vertical frame frequency lower than 15.258Hz). 1 = A vertical frequency counter overflow has occurred 0 = No vertical frequency counter overflow has occurred Technical Data 224 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor Sync Processor I/O Registers CPW[1:0] — Clamp Pulse Width The CPW1 and CPW0 bits are used to select the output clamp pulse width. Reset clears these bits, selecting a default clamp pulse width between 0.33µs and 0.375µs. These bits always read as Zeros. Table 16-6. Clamp Pulse Width CPW1 CPW0 Clamp Pulse Width 0 0 0.33µs to 0.375µs 0 1 0.5µs to 0.542µs 1 0 0.75µs to 0.792µs 1 1 2µs to 2.042µs 16.6.4 Hsync Frequency Registers (HFRs) This register pair contains the 13-bit Hsync frequency count value and an overflow bit. Address: Read: $0043 Bit 7 6 5 4 3 2 1 Bit 0 HFH7 HFH6 HFH5 HFH4 HFH3 HFH2 HFH1 HFH0 0 0 0 0 0 0 0 0 Write: Reset: Figure 16-8. Hsync Frequency High Register Address: Read: $0044 Bit 7 6 5 4 3 2 1 Bit 0 HOVER 0 0 HFL4 HFL3 HFL2 HFL1 HFL0 0 0 0 0 0 0 0 0 Write: Reset: = Unimplemented Figure 16-9. Hsync Frequency Low Register MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 225 Sync Processor HFH[7:0], HFL[4:0] — Horizontal Line Frequency This read-only 13-bit contains the number of horizontal lines in a 32ms window. An internal 13-bit counter counts the Hsync pulses within a 32ms window in every 32.768ms period. If the FSHF bit in SPCR1 is set, only the most 11-bits (HFH[7:0] & HFL[4:2]) will be updated by the counter. Thus, providing a Hsync pulse count in a 8ms window in every 8.192ms. The most significant 8 bits of counted value is transferred to the high byte register, and the least significant 5 bits is transferred to an intermediate buffer. When the high byte register is read, the 5-bit counted value stored in the intermediate buffer will be uploaded to the low byte register. Therefore, user the program must read the high byte register first then low byte register in order to get the complete counted value of Hsync pulses. If the counter overflows, the overflow flag, HOVER, will be set, indicating the number of Hsync pulses in 32ms are more than 8191 (213 –1), i.e. a Hsync frequency greater than 256kHz. For the 32ms window, the HFHR and HFLR are such that the frequency step unit in the 5-bit of HFLR is 0.03125kHz, and the step unit in the 8-bit HFHR is 1kHz. Therefore, the Hsync frequency can be easily calculated by: Hsync Frequency = [HFH + (HFL × 0.03125)] kHz where: HFH is the value of HFH[7:0] HFL is the value of HFL[4:0] HOVER — Hsync Frequency Counter Overflow This read-only bit is set when an overflow has occurred on the 13-bit Hsync frequency counter. Reset clears this bit, and will be updated every count period. An overflow occurs when the number Hsync pulses exceed 8191, a Hsync frequency greater than 256kHz. 1 = A Hsync frequency counter overflow has occurred 0 = No Hsync frequency counter overflow has occurred Technical Data 226 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor Sync Processor I/O Registers 16.6.5 Sync Processor Control Register 1 (SPCR1) Address: $0046 Bit 7 Read: Write: Reset: LVSIE 0 6 LVSIF 0 0 5 4 3 2 1 Bit 0 HPS1 HPS0 R R ATPOL FSHF 0 0 0 0 = Unimplemented R = Reserved Figure 16-10. Sync Processor Control Register 1 (SPCR1) LVSIE — Low VSync Interrupt Enable When this bit is set, the LVSIF flag is enabled to generate an interrupt request to the CPU. When LVSIE is cleared, the LVSIF flag is prevented from generating an interrupt request to the CPU. Reset clears this bit. 1 = Low Vsync interrupt enabled 0 = Low Vsync interrupt disabled LVSIF — Low VSync Interrupt Flag This read-only bit is set when the value of VFR is higher than $C00 (vertical frame frequency below 40.7Hz). LVSIF generates an interrupt request to the CPU if the LVSIE is also set. This bit is cleared by writing a "0" to it or reset. 1 = Vertical frequency is below 40.7Hz 0 = Vertical frequency is higher than 40.7Hz HPS[1:0] — HSYNC input Detection Pulse Width These two bits control the detection pulse width of HSYNC input. Reset clears these two bits, setting a default middle frequency of HSYNC input. Table 16-7. HSYNC Polarity Detection Pulse Width HPS1 HPS0 Polarity Detection Pulse Width 0 0 Long > 7µs and Short < 6µs 1 X Long > 3.5µs and Short < 3µs 0 1 Long > 14µs and Short < 12µs MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 227 Sync Processor ATPOL — Auto Polarity This bit, together with the VINVO or HINVO bits in SPCSR controls the output polarity of the VOUT or HOUT signals respectively. Reset clears this bit (see Table 16-8). Table 16-8. ATPOL, VINVO, and HINVO setting Sync Outputs: VOUT/HOUT ATPOL VINVO / HINVO 0 0 Same polarity as sync input 0 1 Inverted polarity of sync input 1 0 Negative polarity sync output 1 1 Positive polarity sync output FSHF — Fast Horizontal Frequency Count This bit is set to shorten the measurement cycle of the horizontal frequency. If it is set, only HFH[7:0] and HFL[4:2] will be updated by the Hsync counter, providing a count in a 8ms window in every 8.192ms, with HFL[1:0] reading as zeros. Therefore, user can determine the horizontal frequency change within 8.192ms to protect critical circuitry. Reset clears this bit. 1 = Number of Hsync pulses is counted in an 8ms window 0 = Number of Hsync pulses is counted in a 32ms window 16.6.6 H & V Sync Output Control Register (HVOCR) Address: $003F Bit 7 6 5 Read: 4 3 DCLKPH1 DCLKPH0 Write: Reset: 0 = Unimplemented 2 R 0 R 1 Bit 0 HVOCR1 HVOCR0 0 0 = Reserved Figure 16-11. H&V Sync Output Control Register (HVOCR) Technical Data 228 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Sync Processor System Operation DCLKPH[1:0] — DCLK Output Phase Adjustment These two bits are programmed to adjust the DCLK output phase. Each increment adds approximately 2 to 3ns delay to the DCLK output. HVOCR[1:0] — Free Running Video Mode Select Bits These two bits together with MUL[7:4] and VRS[7:4] in CGM’s PLL programming register determine the frequencies of the internal generated free-running signals for output to HOUT, VOUT, DE, and DCLK pins, when the SOUT bit is set in the sync processor I/O control register. These two bits determine the prescaler of PLL reference clock in the CGM module. When HVOCR[1:0]=11, the prescaler is 2; for other values, the prescaler is 3. Reset clears these bits, setting a default horizontal frequency of 31.25kHz and a vertical frequency of 60Hz, a video mode of 640×480. (See Section 8. Clock Generator Module (CGM).) Table 16-9. Free-Running HSOUT, VSOUT, DE, and DCLK Settings HVOCR[1:0] MUL[7:4] VRS[7:4] HOUT Frequency VOUT Frequency DCLK Frequency DE Video Mode 00 3 3 31.45kHz 59.91Hz 24MHz VGA 640 × 480 01 5 3 37.87kHz 60.31Hz 40MHz SVGA 800 × 600 10 8 6 48.37kHz 60.31Hz 64MHz XGA 1024 × 768 11 9 9 64.32kHz 60.00Hz 108MHz SXGA 1280 × 1024 16.7 System Operation This Sync Processor is designed to assist in determining the video mode of incoming HSYNC and VSYNC of various frequencies and polarities, and DPMS modes. In the DPMS standard, a no sync pulses definition can be detected when the value of the Hsync Frequency Register (the number of Hsync pulses) is less than one or when the VOF bit is set. Since the Hsync Frequency Register is updated repeatedly in every 32.768ms, and a valid Vsync must have a frequency greater than 40.7Hz, a valid Vsync pulse will arrive within the 32.768ms window. Therefore, the user should read the Hsync Frequency Register every 32.768ms to determine the presence of Hsync and/or Vsync pulses. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Sync Processor 229 Sync Processor Technical Data 230 MC68HC908LD60 — Rev. 1.1 Sync Processor Freescale Semiconductor Technical Data — MC68HC908LD60 Section 17. Input/Output (I/O) Ports 17.1 Contents 17.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.3.1 Port A Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 17.3.2 Data Direction Register A . . . . . . . . . . . . . . . . . . . . . . . . . 236 17.3.3 Port A Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 17.4.1 Port B Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 17.4.2 Data Direction Register B . . . . . . . . . . . . . . . . . . . . . . . . . 239 17.4.3 Port B Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 17.5.1 Port C Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 17.5.2 Data Direction Register C . . . . . . . . . . . . . . . . . . . . . . . . . 242 17.5.3 Port C Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 17.6.1 Port D Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244 17.6.2 Data Direction Register D. . . . . . . . . . . . . . . . . . . . . . . . . . 245 17.6.3 Port D Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247 17.7 Port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.7.1 Port E Data Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 17.7.2 Data Direction Register E. . . . . . . . . . . . . . . . . . . . . . . . . . 249 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 231 Input/Output (I/O) Ports 17.2 Introduction Thirty-nine (39) bidirectional input-output (I/O) pins form five parallel ports. All I/O pins are programmable as inputs or outputs. NOTE: Addr. Connect any unused I/O pins to an appropriate logic level, either VDD or VSS. Although the I/O ports do not require termination for proper operation, termination reduces excess current consumption and the possibility of electrostatic damage. Register Name Read: $0000 Port A Data Register Write: (PTA) Reset: Read: $0001 Port B Data Register Write: (PTB) Reset: Read: $0002 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 PTB2 PTB1 PTB0 PTC2 PTC1 PTC0 PTD2 PTD1 PTD0 Unaffected by reset PTB7 Port D Data Register Write: (PTD) Reset: 0 PTD7 DDRA7 Data Direction Register A Write: (DDRA) Reset: 0 Read: $0005 PTB5 PTB4 PTB3 PTC6 PTC5 PTC4 PTC3 Unaffected by reset Read: $0004 PTB6 Unaffected by reset Port C Data Register Write: (PTC) Reset: Read: $0003 Bit 7 DDRB7 Data Direction Register B Write: (DDRB) Reset: 0 PTD6 PTD5 PTD4 PTD3 Unaffected by reset DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 = Unimplemented Figure 17-1. Port I/O Register Summary Technical Data 232 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Introduction Addr. $0006 Register Name Bit 7 Read: 0 Data Direction Register C Write: (DDRC) Reset: 0 Read: $0007 DDRD7 Data Direction Register D Write: (DDRD) Reset: 0 Read: $0008 Port E Data Register Write: (PTE) Reset: PTE7 DDRE7 Data Direction Register E Write: (DDRE) Reset: 0 Read: Keyboard Interrupt Enable $004F Register Write: (KBIER) Reset: $0078 3 2 1 Bit 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 PTE6 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 VOUTE DEE DCLKE IICDATE Port-D Control Register Write: (PDCR) Reset: 0 Read: 4 DDRE6 Read: $0069 5 Unaffected by reset Read: $0009 6 PWM7E PWM Control Register Write: (PWMCR) Reset: 0 IICSCLE DDCDATE DDCSCLE HOUTE 0 0 0 0 0 0 0 PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 = Unimplemented Figure 17-1. Port I/O Register Summary (Continued) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 233 Input/Output (I/O) Ports Table 17-1. Port Control Register Bits Summary Port A B C D E Bit DDR 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 DDRA0 DDRA1 DDRA2 DDRA3 DDRA4 DDRA5 DDRA6 DDRA7 DDRB0 DDRB1 DDRB2 DDRB3 DDRB4 DDRB5 DDRB6 DDRB7 DDRC0 DDRC1 DDRC2 DDRC3 DDRC4 DDRC5 DDRC6 DDRD0 DDRD1 DDRD2 DDRD3 DDRD4 DDRD5 DDRD6 DDRD7 DDRE0 DDRE1 DDRE2 DDRE3 DDRE4 DDRE5 DDRE6 DDRE7 Module KBI PWM Module Control Register Control Bit KBIE0 KBIE1 KBIE2 KBIE3 KBIER $004F KBIE4 KBIE5 KBIE6 KBIE7 PWM0E PWM1E PWM2E PWM3E PWMCR $0078 PWM4E PWM5E PWM6E PWM7E ADC ADSCR $003B — — SYNC DDC12AB PDCR $0069 MMIIC — — Technical Data 234 ADCH[4:0] — DCLKE DEE VOUTE HOUTE DDCSCLE DDCDATE IICSCLE IICDATE — Pin PTA0/KBI0 PTA1/KBI1 PTA2/KBI2 PTA3/KBI3 PTA4/KBI4 PTA5/KBI5 PTA6/KBI6 PTA7/KBI7 PTB0/PWM0 PTB1/PWM1 PTB2/PWM2 PTB3/PWM3 PTB4/PWM4 PTB5/PWM5 PTB6/PWM6 PTB7/PWM7 PTC0/ADC0 PTC1/ADC1 PTC2/ADC2 PTC3/ADC3 PTC4/ADC4 PTC5/ADC5 PTC6 PTD0/DCLK PTD1/DE PTD2/VOUT PTD3/HOUT PTD4/DDCSCL PTD5/DDCSDA PTD6/IICSCL PTD7/IICSDA PTE0 PTE1 PTE2 PTE3 PTE4 PTE5 PTE6 PTE7 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port A 17.3 Port A Port A is an 8-bit special-function port that shares all eight of its pins with the keyboard interrupt module (KBI). (See Section 19. Keyboard Interrupt Module (KBI).) 17.3.1 Port A Data Register The port A data register (PTA) contains a data latch for each of the eight port A pins. Address: Read: Write: $0000 Bit 7 6 5 4 3 2 1 Bit 0 PTA7 PTA6 PTA5 PTA4 PTA3 PTA2 PTA1 PTA0 KBI2 KBI1 KBI0 Reset: Alternative Function: Unaffected by Reset KBI7 KBI6 KBI5 KBI4 KBI3 Figure 17-2. Port A Data Register (PTA) PTA[7:0] — Port A Data Bits These read/write bits are software programmable. Data direction of each port A pin is under the control of the corresponding bit in data direction register A. Reset has no effect on port A data. KBI[7:0] — Keyboard Interrupt Pins The keyboard interrupt enable bits, KBIE[7:0], in the keyboard interrupt enable register (KBIER), enable the port A pins as external interrupt pins. (See 17.3.3 Port A Options and Section 19. Keyboard Interrupt Module (KBI).) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 235 Input/Output (I/O) Ports 17.3.2 Data Direction Register A Data direction register A (DDRA) determines whether each port A pin is an input or an output. Writing a logic 1 to a DDRA bit enables the output buffer for the corresponding port A pin; a logic 0 disables the output buffer. Address: Read: Write: Reset: $0004 Bit 7 6 5 4 3 2 1 Bit 0 DDRA7 DDRA6 DDRA5 DDRA4 DDRA3 DDRA2 DDRA1 DDRA0 0 0 0 0 0 0 0 0 Figure 17-3. Data Direction Register A (DDRA) DDRA[7:0] — Data Direction Register A Bits These read/write bits control port A data direction. Reset clears DDRA[7:0], configuring all port A pins as inputs. 1 = Corresponding port A pin configured as output 0 = Corresponding port A pin configured as input NOTE: Avoid glitches on port A pins by writing to the port A data register before changing data direction register A bits from 0 to 1. Figure 17-4 shows the port A I/O logic. READ DDRA ($0004) INTERNAL DATA BUS WRITE DDRA ($0004) RESET DDRAx WRITE PTA ($0000) PTAx PTAx READ PTA ($0000) Figure 17-4. Port A I/O Circuit Technical Data 236 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port A When bit DDRAx is a logic 1, reading address $0000 reads the PTAx data latch. When bit DDRAx is a logic 0, reading address $0000 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-2 summarizes the operation of the port A pins. Table 17-2. Port A Pin Functions Accesses to DDRA DDRA Bit PTA Bit 0 X(1) 1 X Accesses to PTA I/O Pin Mode Read/Write Read Write Input, Hi-Z(2) DDRA[7:0] Pin PTA[7:0](3) Output DDRA[7:0] PTA[7:0] PTA[7:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input. 17.3.3 Port A Options The keyboard interrupt enable register (KBIER) selects the port A pins for keyboard interrupt function or as standard I/O function. (See Section 19. Keyboard Interrupt Module (KBI).) Address: Read: Write: Reset: $004F Bit 7 6 5 4 3 2 1 Bit 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 Figure 17-5. Keyboard Interrupt Enable Register (KIER) KBIE[7:0] — Keyboard Interrupt Enable Bits Setting a KBIEx bit to logic 1 configures the PTAx/KBIx pin for keyboard interrupt function. Reset clears the KBIEx bits. 1 = PTAx/KBIx pin configured as KBIx interrupt pin 0 = PTAx/KBIx pin configured as PTAx standard I/O pin MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 237 Input/Output (I/O) Ports 17.4 Port B Port B is an 8-bit special-function port that shares all eight of its pins with the pulse width modulator (PWM). (See Section 12. Pulse Width Modulator (PWM).) 17.4.1 Port B Data Register The port B data register (PTB) contains a data latch for each of the eight port pins. Address: Read: Write: $0001 Bit 7 6 5 4 3 2 1 Bit 0 PTB7 PTB6 PTB5 PTB4 PTB3 PTB2 PTB1 PTB0 PWM2 PWM1 PWM0 Reset: Alternative Function: Unaffected by reset PWM7 PWM6 PWM5 PWM4 PWM3 Figure 17-6. Port B Data Register (PTB) PTB[7:0] — Port B Data Bits These read/write bits are software-programmable. Data direction of each port B pin is under the control of the corresponding bit in data direction register B. Reset has no effect on port B data. PWM[7:0] — PWM Outputs Pins The PWM output enable bits PWM7E–PWM0E, in the PWM control register (PWMCR) enable port B pins as PWM output pins. (See 17.4.3 Port B Options and Section 12. Pulse Width Modulator (PWM).) Technical Data 238 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port B 17.4.2 Data Direction Register B Data direction register B (DDRB) determines whether each port B pin is an input or an output. Writing a logic 1 to a DDRB bit enables the output buffer for the corresponding port B pin; a logic 0 disables the output buffer. Address: Read: Write: Reset: $0005 Bit 7 6 5 4 3 2 1 Bit 0 DDRB7 DDRB6 DDRB5 DDRB4 DDRB3 DDRB2 DDRB1 DDRB0 0 0 0 0 0 0 0 0 Figure 17-7. Data Direction Register B (DDRB) DDRB[7:0] — Data Direction Register B Bits These read/write bits control port B data direction. Reset clears DDRB[7:0], configuring all port B pins as inputs. 1 = Corresponding port B pin configured as output 0 = Corresponding port B pin configured as input NOTE: Avoid glitches on port B pins by writing to the port B data register before changing data direction register B bits from 0 to 1. Figure 17-8 shows the port B I/O logic. READ DDRB ($0005) INTERNAL DATA BUS WRITE DDRB ($0005) RESET DDRBx WRITE PTB ($0001) PTBx PTBx READ PTB ($0001) Figure 17-8. Port B I/O Circuit MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 239 Input/Output (I/O) Ports When bit DDRBx is a logic 1, reading address $0001 reads the PTBx data latch. When bit DDRBx is a logic 0, reading address $0001 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-3 summarizes the operation of the port B pins. Table 17-3. Port B Pin Functions Accesses to DDRB DDRB Bit PTB Bit 0 X(1) 1 X Accesses to PTB I/O Pin Mode Read/Write Read Write Input, Hi-Z(2) DDRB[6:0] Pin PTB[6:0](3) Output DDRB[6:0] PTB[6:0] PTB[6:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input. 17.4.3 Port B Options The PWM control register (PWMCR) selects the port B pins for PWM function or as standard I/O function. (See Section 12. Pulse Width Modulator (PWM).) Address: Read: Write: Reset: $0078 Bit 7 6 5 4 3 2 1 Bit 0 PWM7E PWM6E PWM5E PWM4E PWM3E PWM2E PWM1E PWM0E 0 0 0 0 0 0 0 0 Figure 17-9. PWM Control Register (PWMCR) PWM7E–PWM0E — PWM Output Enable Bits Setting a PWMxE bit to logic 1 configures the PTBx/PWMx pin for PWM output function. Reset clears the PWMxE bits. 1 = PTBAx/PWMx pin configured as PWMx interrupt pin 0 = PTBAx/PWMx pin configured as PTBx standard I/O pin Technical Data 240 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port C 17.5 Port C Port C is an 7-bit special-function port that shares six of its pins with the analog-to-digital converter (ADC) module. (See Section 13. Analog-toDigital Converter (ADC).) 17.5.1 Port C Data Register The port C data register (PTC) contains a data latch for each of the seven port C pins. Address: $0002 Bit 7 Read: Write: 0 6 5 4 3 2 1 Bit 0 PTC6 PTC5 PTC4 PTC3 PTC2 PTC1 PTC0 ADC2 ADC1 ADC0 Reset: Alternative Function: Unaffected by reset ADC5 ADC4 ADC3 = Unimplemented Figure 17-10. Port C Data Register (PTC) PTC[6:0] — Port C Data Bits These read/write bits are software-programmable. Data direction of each port C pin is under the control of the corresponding bit in data direction register C. Reset has no effect on port C data. ADC[5:0] — Analog-to-Digital Input Pins ADC[5:0] are pins used for the input channels to the analog-to-digital converter module. The channel select bits, ADCH[4:0], in the ADC Status and Control Register define which port C pin will be used as an ADC input and overrides any control from the port I/O logic. (See 17.5.3 Port C Options and Section 13. Analog-to-Digital Converter (ADC).) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 241 Input/Output (I/O) Ports NOTE: Care must be taken when reading port C while applying analog voltages to ADC5–ADC0 pins. If the appropriate ADC channel is not enabled, excessive current drain may occur if analog voltages are applied to the PTCx/ADCx pin, while PTC is read as a digital input. Those ports not selected as analog input channels are considered digital I/O ports. 17.5.2 Data Direction Register C Data direction register C (DDRC) determines whether each port C pin is an input or an output. Writing a logic 1 to a DDRC bit enables the output buffer for the corresponding port C pin; a logic 0 disables the output buffer. Address: $0006 Bit 7 Read: 0 Write: Reset: 0 6 5 4 3 2 1 Bit 0 DDRC6 DDRC5 DDRC4 DDRC3 DDRC2 DDRC1 DDRC0 0 0 0 0 0 0 0 = Unimplemented Figure 17-11. Data Direction Register C (DDRC) DDRC[6:0] — Data Direction Register C Bits These read/write bits control port C data direction. Reset clears DDRC[6:0], configuring all port C pins as inputs. 1 = Corresponding port C pin configured as output 0 = Corresponding port C pin configured as input NOTE: Avoid glitches on port C pins by writing to the port C data register before changing data direction register C bits from 0 to 1. Figure 17-12 shows the port C I/O logic. Technical Data 242 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port C READ DDRC ($0006) INTERNAL DATA BUS WRITE DDRC ($0006) RESET DDRCx WRITE PTC ($0002) PTCx PTCx READ PTC ($0002) Figure 17-12. Port C I/O Circuit When bit DDRCx is a logic 1, reading address $0002 reads the PTCx data latch. When bit DDRCx is a logic 0, reading address $0002 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-4 summarizes the operation of the port C pins. Table 17-4. Port C Pin Functions Accesses to DDRC DDRC Bit PTC Bit 0 X(1) 1 X Accesses to PTC I/O Pin Mode Read/Write Read Write Input, Hi-Z(2) DDRC[6:0] Pin PTC[6:0](3) Output DDRC[6:0] PTC[6:0] PTC[6:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect input. 17.5.3 Port C Options The ADCH[4:0] bits in the ADC Status and Control Register defines which PTCx/ADCx pin is used as an ADC input and overrides any control from the port I/O logic by forcing that pin as the input to the analog circuitry. (See Section 13. Analog-to-Digital Converter (ADC).) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 243 Input/Output (I/O) Ports 17.6 Port D Port D is an 8-bit special-function port that shares two of its pins with the multi-master IIC (MMIIC) module, two of its pins with the DDC12AB module, and four of its pins with the sync processor. 17.6.1 Port D Data Register The port D data register (PTD) contains a data latch for each of the eight port D pins. Address: Read: Write: $0003 Bit 7 6 5 4 3 2 1 Bit 0 PTD7 PTD6 PTD5 PTD4 PTD3 PTD2 PTD1 PTD0 VOUT DE DCLK Reset: Alternative Function: Unaffected by reset IICSDA IICSCL DDCSDA DDCSCL HOUT Figure 17-13. Port D Data Register (PTD) PTD[7:0] — Port D Data Bits These read/write bits are software-programmable. Data direction of each port D pin is under the control of the corresponding bit in data direction register D. Reset has no effect on port D data. IICSDA, IICSCL — Multi-master IIC Data and Clock pins The PTD7/IICSDA and PTD6/IICSCL pins are multi-master IIC data and clock pins. When the IICDATE and IICSCLE bits in the port D control register (PDCR) are clear, the PTD7/IICSDA and PTD6/IICSCL pins are available for general-purpose I/O. (See 17.6.3 Port D Options.) DDCSCL, DDCSDA — DDC12AB Data and Clock pins The PTD4/DDCSCL and PTD5/DDCSDA pins are DDC12AB clock and data pins respectively. When the DDCSCLE and DDCDATE bits in the port D control register (PDCR) are clear, the PTD4/DDCSCL and PTD5/DDCSDA pins are available for general-purpose I/O. (See 17.6.3 Port D Options.) Technical Data 244 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port D HOUT— Sync Processor HOUT Pulse Output Pin The PTD3/HOUT pin is the sync processor HOUT pulse output pin. When the HOUTE bit in the port D control register (PDCR) is clear, the PTD3/HOUT pin is available for general-purpose I/O. (See 17.6.3 Port D Options.) VOUT — Sync Processor VOUT Pulse Output Pin The PTD2/VOUT pin is the sync processor VOUT pulse output pin. When the VOUTE bit in the port D control register (PDCR) is clear, the PTD2/VOUT pin is available for general-purpose I/O. (See 17.6.3 Port D Options.) DE — Sync Processor DE Pulse Output Pin The PTD1/DE pin is the sync processor DE pulse output pin. When the DEE bit in the port D control register (PDCR) is clear, the PTD1/DE pin is available for general-purpose I/O. (See 17.6.3 Port D Options.) DCLK — Sync Processor DCLK Pulse Output Pin The PTD0/DCLK pin is the sync processor DCLK pulse output pin. When the DCLKE bit in the port D control register (PDCR) is clear, the PTD0/DCLK pin is available for general-purpose I/O. (See 17.6.3 Port D Options.) 17.6.2 Data Direction Register D Data direction register D (DDRD) determines whether each port D pin is an input or an output. Writing a logic 1 to a DDRD bit enables the output buffer for the corresponding port D pin; a logic 0 disables the output buffer. Address: Read: Write: Reset: $0007 Bit 7 6 5 4 3 2 1 Bit 0 DDRD7 DDRD6 DDRD5 DDRD4 DDRD3 DDRD2 DDRD1 DDRD0 0 0 0 0 0 0 0 0 Figure 17-14. Data Direction Register D (DDRD) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 245 Input/Output (I/O) Ports DDRD[7:0] — Data Direction Register D Bits These read/write bits control port D data direction. Reset clears DDRD[7:0], configuring all port D pins as inputs. 1 = Corresponding port D pin configured as output 0 = Corresponding port D pin configured as input NOTE: Avoid glitches on port D pins by writing to the port D data register before changing data direction register D bits from 0 to 1. Figure 17-15 shows the port D I/O logic. READ DDRD ($0007) INTERNAL DATA BUS WRITE DDRD ($0007) DDRDx RESET WRITE PTD ($0003) PTDx PTDx READ PTD ($0003) Figure 17-15. Port D I/O Circuit When bit DDRDx is a logic 1, reading address $0003 reads the PTDx data latch. When bit DDRDx is a logic 0, reading address $0003 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-5 summarizes the operation of the port D pins. Table 17-5. Port D Pin Functions DDRD Bit PTD Bit I/O Pin Mode Accesses to DDRD Accesses to PTD Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRD[7:0] Pin PTD[7:0](3) 1 X Output DDRD[7:0] PTD[7:0] PTD[7:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input. Technical Data 246 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port D 17.6.3 Port D Options The port D control register (PDCR) selects the port D pins for module function or as standard I/O function. Address: $0069 Bit 7 Read: Write: Reset: IICDATE 0 6 5 4 IICSCLE DDCDATE DDCSCLE 0 0 0 3 2 1 Bit 0 HOUTE VOUTE DEE DCLKE 0 0 0 0 Figure 17-16. Port D Control Register (PDCR) IICDATE — MMIIC Data Pin Enable This bit is set to configure the PTD7/IICSDA pin for IICSDA function. Reset clears this bit. 1 = PTD7/IICSDA pin configured as IICSDA pin 0 = PTD7/IICSDA pin configured as standard I/O pin IICSCLE — MMIIC Clock Pin Enable This bit is set to configure the PTD6/IICSCL pin for IICSCL function. Reset clears this bit. 1 = PTD6/IICSCL pin configured as IICSCL pin 0 = PTD6/IICSCL pin configured as standard I/O pin DDCDATE — DDC Data Pin Enable This bit is set to configure the PTD5/DDCSDA pin for DDCSDA function. Reset clears this bit. 1 = PTD5/DDCSDA pin configured as DDCSDA pin 0 = PTD5/DDCSDA pin configured as standard I/O port DDCSCLE — DDC Clock Pin Enable This bit is set to configure the PTD4/DDCSCL pin for DDCSCL function. Reset clears this bit. 1 = PTD4/DDCSCL pin configured as DDCSCL pin 0 = PTD4/DDCSCL pin configured as standard I/O port MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 247 Input/Output (I/O) Ports HOUTE — HOUT Pin Enable This bit is set to configure the PTD3/HOUT pin for sync processor HOUT output. Reset clears this bit. 1 = PTD3/HOUT pin configured as HOUT pin 0 = PTD3/HOUT pin configured as standard I/O pin VOUTE — VOUT Pin Enable This bit is set to configure the PTD2/VOUT pin for sync processor VOUT output. Reset clears this bit. 1 = PTD2/VOUT pin configured as VOUT pin 0 = PTD2/VOUT pin configured as standard I/O pin DEE — DE Pin Enable This bit is set to configure the PTD1/DE pin for sync processor DE output. Reset clears this bit. 1 = PTD1/DE pin configured as DE pin 0 = PTD1/DE pin configured as standard I/O pin DCLKE — DCLK Pin Enable This bit is set to configure the PTD0/DCLK pin for sync processor DCLK output. Reset clears this bit. 1 = PTD0/DCLK pin configured as DCLK pin 0 = PTD0/DCLK pin configured as standard I/O pin Technical Data 248 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Input/Output (I/O) Ports Port E 17.7 Port E Port E is a standard 8-bit bidirectional port. 17.7.1 Port E Data Register The port E data register (PTE) contains a data latch for each of the eight port E pins. Address: Read: Write: $0008 Bit 7 6 5 4 3 2 1 Bit 0 PTE7 PTE6 PTE5 PTE4 PTE3 PTE2 PTE1 PTE0 Reset: Unaffected by reset Figure 17-17. Port E Data Register (PTE) PTE[7:0] — Port E Data Bits These read/write bits are software-programmable. Data direction of each port E pin is under the control of the corresponding bit in data direction register E. Reset has no effect on port E data. 17.7.2 Data Direction Register E Data direction register E (DDRE) determines whether each port E pin is an input or an output. Writing a logic 1 to a DDRE bit enables the output buffer for the corresponding port E pin; a logic 0 disables the output buffer. Address: Read: Write: Reset: $0009 Bit 7 6 5 4 3 2 1 Bit 0 DDRE7 DDRE6 DDRE5 DDRE4 DDRE3 DDRE2 DDRE1 DDRE0 0 0 0 0 0 0 0 0 Figure 17-18. Data Direction Register E (DDRE) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Input/Output (I/O) Ports 249 Input/Output (I/O) Ports DDRE[7:0] — Data Direction Register E Bits These read/write bits control port E data direction. Reset clears DDRE[7:0], configuring all port E pins as inputs. 1 = Corresponding port E pin configured as output 0 = Corresponding port E pin configured as input NOTE: Avoid glitches on port E pins by writing to the port E data register before changing data direction register E bits from 0 to 1. Figure 17-19 shows the port E I/O logic. READ DDRE ($0009) INTERNAL DATA BUS WRITE DDRE ($0009) DDREx RESET WRITE PTE ($0008) PTEx PTEx READ PTE ($0008) Figure 17-19. Port E I/O Circuit When bit DDREx is a logic 1, reading address $0008 reads the PTEx data latch. When bit DDREx is a logic 0, reading address $0008 reads the voltage level on the pin. The data latch can always be written, regardless of the state of its data direction bit. Table 17-6 summarizes the operation of the port E pins. Table 17-6. Port E Pin Functions DDRE Bit PTE Bit I/O Pin Mode Accesses to DDRE Accesses to PTD Read/Write Read Write 0 X(1) Input, Hi-Z(2) DDRE[7:0] Pin PTE[7:0](3) 1 X Output DDRE[7:0] PTE[7:0] PTE[7:0] Notes: 1. X = don’t care. 2. Hi-Z = high impedance. 3. Writing affects data register, but does not affect the input. Technical Data 250 MC68HC908LD60 — Rev. 1.1 Input/Output (I/O) Ports Freescale Semiconductor Technical Data — MC68HC908LD60 Section 18. External Interrupt (IRQ) 18.1 Contents 18.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 18.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .252 18.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 18.5 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 255 18.6 IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 256 18.2 Introduction The IRQ (external interrupt) module provides a maskable interrupt input. 18.3 Features Features of the IRQ module include the following: • A dedicated external interrupt pin, IRQ • IRQ interrupt control bits • Hysteresis buffer • Programmable edge-only or edge and level interrupt sensitivity • Automatic interrupt acknowledge • Internal pullup resistor MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data External Interrupt (IRQ) 251 External Interrupt (IRQ) 18.4 Functional Description A logic 0 applied to the external interrupt pin can latch a CPU interrupt request. Figure 18-1 shows the structure of the IRQ module. Interrupt signals on the IRQ pin are latched into the IRQ latch. An interrupt latch remains set until one of the following actions occurs: • Vector fetch — A vector fetch automatically generates an interrupt acknowledge signal that clears the IRQ latch. • Software clear — Software can clear the interrupt latch by writing to the acknowledge bit in the interrupt status and control register (INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch. • Reset — A reset automatically clears the interrupt latch. The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or falling-edge and low-leveltriggered. The MODE bit in the INTSCR controls the triggering sensitivity of the IRQ pin. When the interrupt pin is edge-triggered only, the CPU interrupt request remains set until a vector fetch, software clear, or reset occurs. When the interrupt pin is both falling-edge and low-level-triggered, the CPU interrupt request remains set until both of the following occur: • Vector fetch or software clear • Return of the interrupt pin to logic 1 The vector fetch or software clear may occur before or after the interrupt pin returns to logic 1. As long as the pin is low, the interrupt request remains pending. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. When set, the IMASK bit in the INTSCR mask all external interrupt requests. A latched interrupt request is not presented to the interrupt priority logic unless the IMASK bit is clear. Technical Data 252 MC68HC908LD60 — Rev. 1.1 External Interrupt (IRQ) Freescale Semiconductor External Interrupt (IRQ) Functional Description NOTE: The interrupt mask (I) in the condition code register (CCR) masks all interrupt requests, including external interrupt requests. (See 9.6 Exception Control.) INTERNAL ADDRESS BUS ACK RESET TO CPU FOR BIL/BIH INSTRUCTIONS VECTOR FETCH DECODER VDD INTERNAL PULLUP VDD IRQF DEVICE D CLR Q CK IRQ SYNCHRONIZER IRQ INTERRUPT REQUEST HIGH VOLTAGE DETECT TO MODE SELECT LOGIC IRQ FF IMASK MODE Figure 18-1. IRQ Module Block Diagram Addr. $001E Register Name Read: IRQ Status and Control Register Write: (INTSCR) Reset: Bit 7 6 5 4 3 2 0 0 0 0 IRQF 0 ACK 0 0 0 0 0 0 1 Bit 0 IMASK MODE 0 0 = Unimplemented Figure 18-2. IRQ I/O Register Summary MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data External Interrupt (IRQ) 253 External Interrupt (IRQ) 18.4.1 IRQ Pin A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch. A vector fetch, software clear, or reset clears the IRQ latch. If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur to clear IRQ: • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the latch. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACK bit in the interrupt status and control register (INTSCR). The ACK bit is useful in applications that poll the IRQ pin and require software to clear the IRQ latch. Writing to the ACK bit prior to leaving an interrupt service routine can also prevent spurious interrupts due to noise. Setting ACK does not affect subsequent transitions on the IRQ pin. A falling edge that occurs after writing to the ACK bit latches another interrupt request. If the IRQ mask bit, IMASK, is clear, the CPU loads the program counter with the vector address at locations $FFFA and $FFFB. • Return of the IRQ pin to logic 1 — As long as the IRQ pin is at logic 0, IRQ remains active. The vector fetch or software clear and the return of the IRQ pin to logic 1 may occur in any order. The interrupt request remains pending as long as the IRQ pin is at logic 0. A reset will clear the latch and the MODE control bit, thereby clearing the interrupt even if the pin stays low. If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With MODE clear, a vector fetch or software clear immediately clears the IRQ latch. The IRQF bit in the INTSCR register can be used to check for pending interrupts. The IRQF bit is not affected by the IMASK bit, which makes it useful in applications where polling is preferred. Use the BIH or BIL instruction to read the logic level on the IRQ pin. NOTE: When using the level-sensitive interrupt trigger, avoid false interrupts by masking interrupt requests in the interrupt routine. Technical Data 254 MC68HC908LD60 — Rev. 1.1 External Interrupt (IRQ) Freescale Semiconductor External Interrupt (IRQ) IRQ Status and Control Register (INTSCR) 18.5 IRQ Status and Control Register (INTSCR) The IRQ status and control register (INTSCR) controls and monitors operation of the IRQ module. The INTSCR has the following functions: • Shows the state of the IRQ flag • Clears the IRQ latch • Masks IRQ interrupt request • Controls triggering sensitivity of the IRQ interrupt pin Address: Read: $001E Bit 7 6 5 4 3 2 0 0 0 0 IRQF 0 ACK Write: Reset: 0 0 0 0 0 0 1 Bit 0 IMASK MODE 0 0 = Unimplemented Figure 18-3. IRQ Status and Control Register (INTSCR) IRQF — IRQ Flag This read-only status bit is high when the IRQ interrupt is pending. 1 = IRQ interrupt pending 0 = IRQ interrupt not pending ACK — IRQ Interrupt Request Acknowledge Bit Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always reads as logic 0. Reset clears ACK. IMASK — IRQ Interrupt Mask Bit Writing a logic 1 to this read/write bit disables IRQ interrupt requests. Reset clears IMASK. 1 = IRQ interrupt requests disabled 0 = IRQ interrupt requests enabled MODE — IRQ Edge/Level Select Bit This read/write bit controls the triggering sensitivity of the IRQ pin. Reset clears MODE. 1 = IRQ interrupt requests on falling edges and low levels 0 = IRQ interrupt requests on falling edges only MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data External Interrupt (IRQ) 255 External Interrupt (IRQ) 18.6 IRQ Module During Break Interrupts The system integration module (SIM) controls whether the IRQ latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear the latches during the break state. (See Section 9. System Integration Module (SIM).) To allow software to clear the IRQ latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latches during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the IRQ status and control register during the break state has no effect on the IRQ latch. Technical Data 256 MC68HC908LD60 — Rev. 1.1 External Interrupt (IRQ) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 19. Keyboard Interrupt Module (KBI) 19.1 Contents 19.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 19.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 19.4 I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 19.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .259 19.6 Keyboard Initialization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 19.7 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261 19.7.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 262 19.7.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 263 19.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263 19.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263 19.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .263 19.9 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 264 19.2 Introduction The keyboard interrupt module (KBI) provides eight independently maskable external interrupts which are accessible via PTA0–PTA7. When a port pin is enabled for keyboard interrupt function, an internal pullup device is also enabled on the pin. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Keyboard Interrupt Module (KBI) 257 Keyboard Interrupt Module (KBI) 19.3 Features Features of the keyboard interrupt module (KBI) include: • Eight keyboard interrupt pins with pullup devices • Separate keyboard interrupt enable bits and one keyboard interrupt mask • Programmable edge-only or edge- and level- interrupt sensitivity • Exit from low-lower modes Addr. Register Name $004E Keyboard Status and Read: Control Register Write: (KBSCR) Reset: Keyboard Interrupt Enable Read: $004F Register Write: (KBIER) Reset: Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 ACKK 1 Bit 0 IMASKK MODEK 0 0 0 0 0 0 0 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 = Unimplemented Figure 19-1. KBI I/O Register Summary 19.4 I/O Pins The eight keyboard interrupt pins are shared with standard port I/O pins. The full name of the KBI pins are listed in Table 19-1. The generic pin name appear in the text that follows. Table 19-1. Pin Name Conventions KBI Generic Pin Name Full MCU Pin Name Pin Selected for KBI Function by KBIEx Bit in KBIER KBI0–KBI7 PTA0/KBI0–PTA7/KBI7 KBIE0–KBIE7 Technical Data 258 MC68HC908LD60 — Rev. 1.1 Keyboard Interrupt Module (KBI) Freescale Semiconductor Keyboard Interrupt Module (KBI) Functional Description 19.5 Functional Description INTERNAL BUS KBI0 ACKK VDD . KBIE0 TO PULLUP ENABLE D . CLR VECTOR FETCH DECODER KEYF RESET Q SYNCHRONIZER CK . KEYBOARD INTERRUPT FF KBI7 Keyboard Interrupt Request IMASKK MODEK KBIE7 TO PULLUP ENABLE Figure 19-2. Keyboard Interrupt Module Block Diagram Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register independently enables or disables each port A pin as a keyboard interrupt pin. Enabling a keyboard interrupt pin also enables its internal pullup device. A logic 0 applied to an enabled keyboard interrupt pin latches a keyboard interrupt request. A keyboard interrupt is latched when one or more keyboard pins goes low after all were high. The MODEK bit in the keyboard status and control register controls the triggering mode of the keyboard interrupt. • If the keyboard interrupt is edge-sensitive only, a falling edge on a keyboard pin does not latch an interrupt request if another keyboard pin is already low. To prevent losing an interrupt request on one pin because another pin is still low, software can disable the latter pin while it is low. • If the keyboard interrupt is falling edge- and low level-sensitive, an interrupt request is present as long as any keyboard pin is low. If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to clear a keyboard interrupt request: MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Keyboard Interrupt Module (KBI) 259 Keyboard Interrupt Module (KBI) • Vector fetch or software clear — A vector fetch generates an interrupt acknowledge signal to clear the interrupt request. Software may generate the interrupt acknowledge signal by writing a logic 1 to the ACKK bit in the keyboard status and control register (KBSCR). The ACKK bit is useful in applications that poll the keyboard interrupt pins and require software to clear the keyboard interrupt request. Writing to the ACKK bit prior to leaving an interrupt service routine also can prevent spurious interrupts due to noise. Setting ACKK does not affect subsequent transitions on the keyboard interrupt pins. A falling edge that occurs after writing to the ACKK bit latches another interrupt request. If the keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the program counter with the vector address at locations $FFE2 and $FFE3. • Return of all enabled keyboard interrupt pins to logic 1 — As long as any enabled keyboard interrupt pin is at logic 0, the keyboard interrupt remains set. The vector fetch or software clear and the return of all enabled keyboard interrupt pins to logic 1 may occur in any order. If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear immediately clears the keyboard interrupt request. Reset clears the keyboard interrupt request and the MODEK bit, clearing the interrupt request even if a keyboard interrupt pin stays at logic 0. The keyboard flag bit (KEYF) in the keyboard status and control register can be used to see if a pending interrupt exists. The KEYF bit is not affected by the keyboard interrupt mask bit (IMASKK) which makes it useful in applications where polling is preferred. To determine the logic level on a keyboard interrupt pin, use the data direction register to configure the pin as an input and read the data register. NOTE: Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding keyboard interrupt pin to be an input, overriding the data direction register. However, the data direction register bit must be a logic 0 for software to read the pin. Technical Data 260 MC68HC908LD60 — Rev. 1.1 Keyboard Interrupt Module (KBI) Freescale Semiconductor Keyboard Interrupt Module (KBI) Keyboard Initialization 19.6 Keyboard Initialization When a keyboard interrupt pin is enabled, it takes time for the pullup device to reach a logic 1. Therefore, a false interrupt can occur as soon as the pin is enabled. To prevent a false interrupt on keyboard initialization: 1. Mask keyboard interrupts by setting the IMASKK bit in the keyboard status and control register. 2. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 3. Write to the ACKK bit in the keyboard status and control register to clear any false interrupts. 4. Clear the IMASKK bit. An interrupt signal on an edge-triggered pin can be acknowledged immediately after enabling the pin. An interrupt signal on an edge- and level-triggered interrupt pin must be acknowledged after a delay that depends on the external load. Another way to avoid a false interrupt: 1. Configure the keyboard pins as outputs by setting the appropriate DDRA bits in data direction register A. 2. Write logic 1s to the appropriate port A data register bits. 3. Enable the KBI pins by setting the appropriate KBIEx bits in the keyboard interrupt enable register. 19.7 I/O Registers These registers control and monitor operation of the keyboard module: • Keyboard status and control register (KBSCR) • Keyboard interrupt enable register (KBIER) MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Keyboard Interrupt Module (KBI) 261 Keyboard Interrupt Module (KBI) 19.7.1 Keyboard Status and Control Register • Flags keyboard interrupt requests • Acknowledges keyboard interrupt requests • Masks keyboard interrupt requests • Controls keyboard interrupt triggering sensitivity Address: Read: $004E Bit 7 6 5 4 3 2 0 0 0 0 KEYF 0 Write: Reset: ACKK 0 0 0 0 0 0 1 Bit 0 IMASKK MODEK 0 0 = Unimplemented Figure 19-3. Keyboard Status and Control Register (KBSCR) KEYF — Keyboard Flag Bit This read-only bit is set when a keyboard interrupt is pending. Reset clears the KEYF bit. 1 = Keyboard interrupt pending 0 = No keyboard interrupt pending ACKK — Keyboard Acknowledge Bit Writing a logic 1 to this write-only bit clears the keyboard interrupt request. ACKK always reads as logic 0. Reset clears ACKK. IMASKK — Keyboard Interrupt Mask Bit Writing a logic 1 to this read/write bit prevents the output of the keyboard interrupt mask from generating interrupt requests. Reset clears the IMASKK bit. 1 = Keyboard interrupt requests masked 0 = Keyboard interrupt requests not masked MODEK — Keyboard Triggering Sensitivity Bit This read/write bit controls the triggering sensitivity of the keyboard interrupt pins. Reset clears MODEK. 1 = Keyboard interrupt requests on falling edges and low levels 0 = Keyboard interrupt requests on falling edges only Technical Data 262 MC68HC908LD60 — Rev. 1.1 Keyboard Interrupt Module (KBI) Freescale Semiconductor Keyboard Interrupt Module (KBI) Low-Power Modes 19.7.2 Keyboard Interrupt Enable Register The keyboard interrupt enable register enables or disables each port A pin to operate as a keyboard interrupt pin. Address: Read: Write: Reset: $004F Bit 7 6 5 4 3 2 1 Bit 0 KBIE7 KBIE6 KBIE5 KBIE4 KBIE3 KBIE2 KBIE1 KBIE0 0 0 0 0 0 0 0 0 Figure 19-4. Keyboard Interrupt Enable Register (KBIER) KBIE7–KBIE0 — Keyboard Interrupt Enable Bits Each of these read/write bits enables the corresponding keyboard interrupt pin to latch interrupt requests. Reset clears the keyboard interrupt enable register. 1 = PTAx/KBIx pin enabled as keyboard interrupt pin 0 = PTAx/KBIx pin not enabled as keyboard interrupt pin 19.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low-powerconsumption standby modes. 19.8.1 Wait Mode The keyboard interrupt module remains active in wait mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of wait mode. 19.8.2 Stop Mode The keyboard interrupt module remains active in stop mode. Clearing the IMASKK bit in the keyboard status and control register enables keyboard interrupt requests to bring the MCU out of stop mode. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Keyboard Interrupt Module (KBI) 263 Keyboard Interrupt Module (KBI) 19.9 Keyboard Module During Break Interrupts The system integration module (SIM) controls whether the keyboard interrupt latch can be cleared during the break state. The BCFE bit in the break flag control register (BFCR) enables software to clear status bits during the break state. To allow software to clear the keyboard interrupt latch during a break interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the break state, it remains cleared when the MCU exits the break state. To protect the latch during the break state, write a logic 0 to the BCFE bit. With BCFE at logic 0 (its default state), writing to the keyboard acknowledge bit (ACKK) in the keyboard status and control register during the break state has no effect. (See 19.7.1 Keyboard Status and Control Register.) Technical Data 264 MC68HC908LD60 — Rev. 1.1 Keyboard Interrupt Module (KBI) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 20. Computer Operating Properly (COP) 20.1 Contents 20.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265 20.3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266 20.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 20.4.1 OSCXCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 20.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 20.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .267 20.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267 20.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 20.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 20.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 20.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 268 20.5 COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 20.6 Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 20.7 Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269 20.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269 20.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 20.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .270 20.9 COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 270 20.2 Introduction The computer operating properly (COP) module contains a free-running counter that generates a reset if allowed to overflow. The COP module helps software recover from runaway code. Prevent a COP reset by clearing the COP counter periodically. The COP module can be disabled through the COPD bit in the CONFIG register. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Computer Operating Properly (COP) 265 Computer Operating Properly (COP) 20.3 Functional Description Figure 20-1 shows the structure of the COP module. RESET STATUS REGISTER COP TIMEOUT CLEAR STAGES 5–12 STOP INSTRUCTION INTERNAL RESET SOURCES RESET VECTOR FETCH RESET CIRCUIT 12-BIT COP PRESCALER CLEAR ALL STAGES OSCXCLK COPCTL WRITE COP CLOCK 6-BIT COP COUNTER COPEN (FROM SIM) COP DISABLE (COPD FROM CONFIG) RESET COPCTL WRITE CLEAR COP COUNTER COP RATE SEL (COPRS FROM CONFIG) Figure 20-1. COP Block Diagram The COP counter is a free-running 6-bit counter preceded by a 12-bit prescaler counter. If not cleared by software, the COP counter overflows and generates an asynchronous reset after 218 – 24 or 213 – 24 OSCXCLK cycles, depending on the state of the COP rate select bit, COPRS, in configuration register 1. With a 218 – 24 OSCXCLK cycle overflow option, a 24MHz crystal gives a COP timeout period of 10.922ms. Writing any value to location $FFFF before an overflow occurs prevents a COP reset by clearing the COP counter and stages 12 through 5 of the prescaler. NOTE: Service the COP immediately after reset and before entering or after exiting stop mode to guarantee the maximum time before the first COP counter overflow. Technical Data 266 MC68HC908LD60 — Rev. 1.1 Computer Operating Properly (COP) Freescale Semiconductor Computer Operating Properly (COP) I/O Signals A COP reset pulls the RST pin low for 32 OSCXCLK cycles and sets the COP bit in the SIM reset status register (SRSR). In monitor mode, the COP is disabled if the RST pin or the IRQ is held at VTST. During the break state, VTST on the RST pin disables the COP. NOTE: Place COP clearing instructions in the main program and not in an interrupt subroutine. Such an interrupt subroutine could keep the COP from generating a reset even while the main program is not working properly. 20.4 I/O Signals The following paragraphs describe the signals shown in Figure 20-1. 20.4.1 OSCXCLK OSCXCLK is the crystal oscillator output signal. OSCXCLK frequency is equal to the crystal frequency. 20.4.2 STOP Instruction The STOP instruction clears the COP prescaler. 20.4.3 COPCTL Write Writing any value to the COP control register (COPCTL) (see 20.5 COP Control Register) clears the COP counter and clears bits 12 through 5 of the prescaler. Reading the COP control register returns the low byte of the reset vector. 20.4.4 Power-On Reset The power-on reset (POR) circuit clears the COP prescaler 4096 OSCXCLK cycles after power-up. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Computer Operating Properly (COP) 267 Computer Operating Properly (COP) 20.4.5 Internal Reset An internal reset clears the COP prescaler and the COP counter. 20.4.6 Reset Vector Fetch A reset vector fetch occurs when the vector address appears on the data bus. A reset vector fetch clears the COP prescaler. 20.4.7 COPD (COP Disable) The COPD signal reflects the state of the COP disable bit (COPD) in the CONFIG register. (See Figure 20-2.) 20.4.8 COPRS (COP Rate Select) The COPRS signal reflects the state of the COP rate select bit (COPRS) in the CONFIG register. (See Figure 20-2.) Address: Read: $001F Bit 7 6 5 4 0 0 0 0 0 0 0 0 Write: Reset: 3 2 1 Bit 0 SSREC COPRS STOP COPD 0 0 0 0 = Unimplemented Figure 20-2. Configuration Register (CONFIG) COPRS — COP Rate Select Bit COPRS selects the COP timeout period. Reset clears COPRS. 1 = COP timeout period is 213 – 24 OSCXCLK cycles 0 = COP timeout period is 218 – 24 OSCXCLK cycles COPD — COP Disable Bit COPD disables the COP module. 1 = COP module disabled 0 = COP module enabled Technical Data 268 MC68HC908LD60 — Rev. 1.1 Computer Operating Properly (COP) Freescale Semiconductor Computer Operating Properly (COP) COP Control Register 20.5 COP Control Register The COP control register is located at address $FFFF and overlaps the reset vector. Writing any value to $FFFF clears the COP counter and starts a new timeout period. Reading location $FFFF returns the low byte of the reset vector. Address: $FFFF Bit 7 6 5 4 3 Read: Low byte of reset vector Write: Clear COP counter Reset: Unaffected by reset 2 1 Bit 0 Figure 20-3. COP Control Register (COPCTL) 20.6 Interrupts The COP does not generate CPU interrupt requests. 20.7 Monitor Mode When monitor mode is entered with VTST on the IRQ pin, the COP is disabled as long as VTST remains on the IRQ pin or the RST pin. When monitor mode is entered by having blank reset vectors and not having VTST on the IRQ pin, the COP is automatically disabled until a POR occurs. 20.8 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Computer Operating Properly (COP) 269 Computer Operating Properly (COP) 20.8.1 Wait Mode The COP remains active during wait mode. To prevent a COP reset during wait mode, periodically clear the COP counter in a CPU interrupt routine. 20.8.2 Stop Mode Stop mode turns off the OSCXCLK input to the COP and clears the COP prescaler. Service the COP immediately before entering or after exiting stop mode to ensure a full COP timeout period after entering or exiting stop mode. To prevent inadvertently turning off the COP with a STOP instruction, a configuration option is available that disables the STOP instruction. When the STOP bit in the configuration register has the STOP instruction is disabled, execution of a STOP instruction results in an illegal opcode reset. 20.9 COP Module During Break Mode The COP is disabled during a break interrupt when VTST is present on the RST pin. Technical Data 270 MC68HC908LD60 — Rev. 1.1 Computer Operating Properly (COP) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 21. Break Module (BRK) 21.1 Contents 21.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 21.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .272 21.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 274 21.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .274 21.4.3 TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . 274 21.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 274 21.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 21.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .274 21.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275 21.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 21.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 275 21.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 276 21.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 276 21.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 278 21.2 Introduction This section describes the break module. The break module can generate a break interrupt that stops normal program flow at a defined address to enter a background program. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Break Module (BRK) 271 Break Module (BRK) 21.3 Features Features of the break module include: • Accessible input/output (I/O) registers during the break interrupt • CPU-generated break interrupts • Software-generated break interrupts • COP disabling during break interrupts 21.4 Functional Description When the internal address bus matches the value written in the break address registers, the break module issues a breakpoint signal to the CPU. The CPU then loads the instruction register with a software interrupt instruction (SWI) after completion of the current CPU instruction. The program counter vectors to $FFFC and $FFFD ($FEFC and $FEFD in monitor mode). The following events can cause a break interrupt to occur: • A CPU-generated address (the address in the program counter) matches the contents of the break address registers. • Software writes a logic 1 to the BRKA bit in the break status and control register. When a CPU-generated address matches the contents of the break address registers, the break interrupt begins after the CPU completes its current instruction. A return-from-interrupt instruction (RTI) in the break routine ends the break interrupt and returns the MCU to normal operation. Figure 21-1 shows the structure of the break module. Technical Data 272 MC68HC908LD60 — Rev. 1.1 Break Module (BRK) Freescale Semiconductor Break Module (BRK) Functional Description IAB15–IAB8 BREAK ADDRESS REGISTER HIGH 8-BIT COMPARATOR IAB15–IAB0 BREAK CONTROL 8-BIT COMPARATOR BREAK ADDRESS REGISTER LOW IAB7–IAB0 Figure 21-1. Break Module Block Diagram Addr. Register Name Read: SIM Break Status Register $FE00 Write: (SBSR) Reset: $FE03 $FE0C $FE0D Read: SIM Break Flag Control Write: Register (SBFCR) Reset: Read: Break Address Register Write: High (BRKH) Reset: Read: Break Address Register Write: Low (BRKL) Reset: Read: Break Status and Control $FE0E Write: Register (BRKSCR) Reset: Note: Writing a logic 0 clears SBSW. Bit 7 6 5 4 3 2 R R R R R R 1 SBSW Note Bit 0 R 0 BCFE R R R R R R R Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 BRKE BRKA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 R = Reserved 0 = Unimplemented Figure 21-2. Break Module I/O Register Summary MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Break Module (BRK) 273 Break Module (BRK) 21.4.1 Flag Protection During Break Interrupts The BCFE bit in the SIM break flag control register (SBFCR) enables software to clear status bits during the break state. 21.4.2 CPU During Break Interrupts The CPU starts a break interrupt by: • Loading the instruction register with the SWI instruction • Loading the program counter with $FFFC and $FFFD ($FEFC and $FEFD in monitor mode) The break interrupt begins after completion of the CPU instruction in progress. If the break address register match occurs on the last cycle of a CPU instruction, the break interrupt begins immediately. 21.4.3 TIM During Break Interrupts A break interrupt stops the timer counters. 21.4.4 COP During Break Interrupts The COP is disabled during a break interrupt when VTST is present on the RST pin. 21.5 Low-Power Modes The WAIT and STOP instructions put the MCU in low powerconsumption standby modes. 21.5.1 Wait Mode If enabled, the break module is active in wait mode. In the break routine, the user can subtract one from the return address on the stack if SBSW is set (see Section 9. System Integration Module (SIM)). Clear the SBSW bit by writing logic 0 to it. Technical Data 274 MC68HC908LD60 — Rev. 1.1 Break Module (BRK) Freescale Semiconductor Break Module (BRK) Break Module Registers 21.5.2 Stop Mode A break interrupt causes exit from stop mode and sets the SBSW bit in the break status register. 21.6 Break Module Registers These registers control and monitor operation of the break module: • Break status and control register (BRKSCR) • Break address register high (BRKH) • Break address register low (BRKL) • SIM break status register (SBSR) • SIM break flag control register (SBFCR) 21.6.1 Break Status and Control Register The break status and control register (BRKSCR) contains break module enable and status bits. Address: Read: Write: Reset: $FE0E Bit 7 6 BRKE BRKA 0 0 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 = Unimplemented Figure 21-3. Break Status and Control Register (BRKSCR) BRKE — Break Enable Bit This read/write bit enables breaks on break address register matches. Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit. 1 = Breaks enabled on 16-bit address match 0 = Breaks disabled on 16-bit address match MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Break Module (BRK) 275 Break Module (BRK) BRKA — Break Active Bit This read/write status and control bit is set when a break address match occurs. Writing a logic 1 to BRKA generates a break interrupt. Clear BRKA by writing a logic 0 to it before exiting the break routine. Reset clears the BRKA bit. 1 = (When read) Break address match 0 = (When read) No break address match 21.6.2 Break Address Registers The break address registers (BRKH and BRKL) contain the high and low bytes of the desired breakpoint address. Reset clears the break address registers. Address: Read: Write: Reset: $FE0C Bit 7 6 5 4 3 2 1 Bit 0 Bit 15 14 13 12 11 10 9 Bit 8 0 0 0 0 0 0 0 0 Figure 21-4. Break Address Register High (BRKH) Address: Read: Write: Reset: $FE0D Bit 7 6 5 4 3 2 1 Bit 0 Bit 7 6 5 4 3 2 1 Bit 0 0 0 0 0 0 0 0 0 Figure 21-5. Break Address Register Low (BRKL) 21.6.3 SIM Break Status Register The SIM break status register (SBSR) contains a flag to indicate that a break caused an exit from wait mode. The flag is useful in applications requiring a return to wait mode after exiting from a break interrupt. Technical Data 276 MC68HC908LD60 — Rev. 1.1 Break Module (BRK) Freescale Semiconductor Break Module (BRK) Break Module Registers Address: Read: Write: $FE00 Bit 7 6 5 4 3 2 R R R R R R Reset: 1 SBSW Note Bit 0 R 0 Note: Writing a logic 0 clears SBSW. R = Reserved Figure 21-6. SIM Break Status Register (SBSR) SBSW — SIM Break Stop/Wait Bit This status bit is useful in applications requiring a return to wait or stop mode after exiting from a break interrupt. Clear SBSW by writing a logic 0 to it. Reset clears SBSW. 1 = Stop mode or wait mode was exited by break interrupt 0 = Stop mode or wait mode was not exited by break interrupt SBSW can be read within the break interrupt routine. The user can modify the return address on the stack by subtracting one from it. The following code is an example. ; This code works if the H register has been pushed onto the stack in the break ; service routine software. This code should be executed at the end of the break ; service routine software. HIBYTE EQU 5 LOBYTE EQU 6 ; If not SBSW, do RTI BRCLR SBSW,SBSR, RETURN ; See if wait mode or stop mode was exited by ; break. TST LOBYTE,SP ;If RETURNLO is not zero, BNE DOLO ;then just decrement low byte. DEC HIBYTE,SP ;Else deal with high byte, too. DOLO DEC LOBYTE,SP ;Point to WAIT/STOP opcode. RETURN PULH RTI ;Restore H register. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Break Module (BRK) 277 Break Module (BRK) 21.6.4 SIM Break Flag Control Register The SIM break flag control register (SBFCR) contains a bit that enables software to clear status bits while the MCU is in a break state. Address: Read: Write: Reset: $FE03 Bit 7 6 5 4 3 2 1 Bit 0 BCFE R R R R R R R 0 R = Reserved Figure 21-7. SIM Break Flag Control Register (SBFCR) BCFE — Break Clear Flag Enable Bit This read/write bit enables software to clear status bits by accessing status registers while the MCU is in a break state. To clear status bits during the break state, the BCFE bit must be set. 1 = Status bits clearable during break 0 = Status bits not clearable during break Technical Data 278 MC68HC908LD60 — Rev. 1.1 Break Module (BRK) Freescale Semiconductor Technical Data — MC68HC908LD60 Section 22. Electrical Specifications 22.1 Contents 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280 22.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 280 22.4 Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 281 22.5 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 22.6 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 282 22.7 Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 22.8 TImer Interface Module Characteristics . . . . . . . . . . . . . . . . . 283 22.9 Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 22.10 ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 284 22.11 Sync Processor Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 22.12 DDC12AB/MMIIC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 22.12.1 DDC12AB/MMIIC Interface Input Signal Timing . . . . . . . . 285 22.12.2 DDC12AB/MMIIC Interface Output Signal Timing . . . . . . . 285 22.13 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 286 MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Electrical Specifications 279 Electrical Specifications 22.2 Introduction This section contains electrical and timing specifications. 22.3 Absolute Maximum Ratings Maximum ratings are the extreme limits to which the MCU can be exposed without permanently damaging it. NOTE: This device is not guaranteed to operate properly at the maximum ratings. Refer to 22.6 DC Electrical Characteristics for guaranteed operating conditions. Table 22-1. Absolute Maximum Ratings Characteristic(1) Symbol Value Unit Supply voltage VDD –0.3 to +3.9 V Input voltage VIN VSS –0.3 to VDD +0.3 V Input voltage, +5V pins IICSDA, IICSCL, DDCSDA, DCSCL, HSYNC, VSYNC VHIN VSS –0.3 to +5.5 V I ±25 mA Storage temperature TSTG –55 to +150 °C Maximum current out of VSS IMVSS 80 mA Maximum current into VDD IMVDD 80 mA Maximum current per pin excluding VDD and VSS Notes: 1. Voltages referenced to VSS. NOTE: This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. For proper operation, it is recommended that VIN and VOUT be constrained to the range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either VSS or VDD.) Technical Data 280 MC68HC908LD60 — Rev. 1.1 Electrical Specifications Freescale Semiconductor Electrical Specifications Functional Operating Range 22.4 Functional Operating Range Table 22-2. Operating Range Characteristic Symbol Value Unit TA 0 to +85 °C VDD 3.0 to 3.6 V Operating temperature range Operating voltage range 22.5 Thermal Characteristics Table 22-3. Thermal Characteristics Characteristic Symbol Value Thermal resistance QFP (64 pins) θJA 70 I/O pin power dissipation PI/O User determined W Power dissipation(1) PD PD = (IDD x VDD) + PI/O = K/(TJ + 273 °C) W Constant(2) K PD × (TA + 273 °C) + PD2 × θJA W/°C Average junction temperature TJ TA + (PD × θJA) °C TJM 100 °C Maximum junction temperature Unit °C/W Notes: 1. Power dissipation is a function of temperature. 2. K is a constant unique to the device. K can be determined for a known TA and measured PD. With this value of K, PD and TJ can be determined for any value of TA. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Electrical Specifications 281 Electrical Specifications 22.6 DC Electrical Characteristics Table 22-4. DC Electrical Characteristics Characteristic(1) Symbol Min Typ(2) Max Unit Output high voltage (ILOAD = –2.0mA) All output pins VOH 2.4 — — V Output low voltage (ILOAD = 1.6mA) All output pins VOL — — 0.4 V Input high voltage All ports (except PTD4–PTD7), IRQ, RST, OSC1 For +5V rated pins HSYNC, VSYNC, IICSDA, IICSCL, DDCSDA, DDCSCL VIH 0.7 × VDD — VDD V 2.0 — 5.5 Input low voltage All ports (except PTD4–PTD7), IRQ, RST, OSC1 For +5V rated pins HSYNC, VSYNC, IICSDA, IICSCL, DDCSDA, DDCSCL VIL VSS — 0.2 × VDD VSS — 0.8 VDD supply current Run, PLL off, fOP = 6.0 MHz(3) Wait, PLL off, fOP = 6.0 MHz(4) Stop(5) 0°C to +85°C IDD — — — 9 4 100 16 8 200 mA mA µA I/O ports Hi-Z leakage current IIL — — ±10 µA Input current All input pins (except below pins) HSYNC, VSYNC IIN — — — — ±1 ±2 µA Capacitance Ports (as input or output) COUT CIN — — — — 12 8 pF POR re-arm voltage(6) VPOR 0 — 100 mV RPOR 0.035 — — V/ms Monitor mode entry voltage VTST VDD + 1.7 — 6 V Pull-up resistor KBI0–KBI7, RST, IRQ RPU 30 45 60 kΩ POR rise time ramp rate (7) Low-voltage inhibit, trip falling voltage VTRIPF Low-voltage inhibit, trip rising voltage VTRIPR Low-voltage inhibit reset/recover hysteresis VHYS 2.45 V 2.6 — V V 150 — mV Notes: 1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only. 3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD. Measured with all modules enabled. 4. Wait IDD measured using external square wave clock source (fOSCXCLK = 24MHz); all inputs 0.2 V from rail; no dc loads; less than 100 pF on all outputs. CL = 20 pF on OSC2; all ports configured as inputs; OSC2 capacitance linearly affects wait IDD. 5. STOP IDD OSC1 grounded, no port pins sourcing current. 6. Maximum is highest voltage that POR is guaranteed. 7. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum VDD is reached. Technical Data 282 MC68HC908LD60 — Rev. 1.1 Electrical Specifications Freescale Semiconductor Electrical Specifications Control Timing 22.7 Control Timing Table 22-5. Control Timing Characteristic(1) Symbol Min Max Unit Internal operating frequency(2) fOP — 6 MHz RST input pulse width low(3) tIRL 50 — ns Notes: 1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this information. 3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset. 22.8 TImer Interface Module Characteristics Table 22-6. TIM Characteristics Characteristic Symbol Min Max Unit tTIH, tTIL 125 — ns tTCH, tTCL (1/fOP) + 5 — ns Input capture pulse width Input clock pulse width 22.9 Oscillator Characteristics Table 22-7. Oscillator Characteristics Characteristic Symbol Min Typ Max Unit Crystal frequency(1) fOSCXCLK — 24 — MHz External clock Reference frequency(1), (2) fOSCXCLK dc 24 — MHz Crystal fixed capacitance(3) C1 — 15 — pF Crystal tuning capacitance(3) C2 — 15 — pF Feedback bias resistor RB — 2 — MΩ Series resistor(3) RS — 0 — Ω Notes: 1. The sync processor module is designed to function at fOSCXCLK = 24MHz. 2. No more than 10% duty cycle deviation from 50% 3. Not Required for high frequency crystals MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Electrical Specifications 283 Electrical Specifications 22.10 ADC Electrical Characteristics Table 22-8. ADC Electrical Characteristics Characteristic(1) Symbol Min Max Unit Supply voltage VDDAD 3.0 3.6 V Input voltages VADIN 0 VDD V Resolution BAD 8 8 Bits Absolute accuracy AAD ±1 ±2 LSB Includes quantization ADC internal clock fADIC 0.5 1.048 MHz tAIC = 1/fADIC, tested only at 1 MHz Conversion range RAD VSS VDD V Power-up time tADPU 16 Conversion time tADC 16 17 tAIC cycles Sample time(2) tADS 5 — tAIC cycles Zero input reading(3) ZADI 00 02 HEX Full-scale reading(3) FADI FD FF HEX Input capacitance CADI — 8 pF — — ±1 µA Input leakage(4): Port C Comments VDD ± 10% tAIC cycles Not tested Notes: 1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted. 2. Source impedances greater than 10 kΩ adversely affect internal RC charging time during input sampling. 3. Zero-input/full-scale reading requires sufficient decoupling measures for accurate conversions. 4. The external system error caused by input leakage current is approximately equal to the product of R source and input current. 22.11 Sync Processor Timing Table 22-9. Sync Processor Timing Characteristic(1) Symbol Min Max Unit VSYNC input sync pulse tVI.SP 8 2048 µs HSYNC input sync pulse tHI.SP 0.1 6 µs VSYNC to VSYNCO delay (8pF loading) tVVd 30 40 µs HSYNC to HSYNCO delay (8pF loading) tHHd 30 40 µs DE set-up time of DCLK tDESu 4 — µs DE hold time of DCLK tDEHd 4 — µs Notes: 1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. Technical Data 284 MC68HC908LD60 — Rev. 1.1 Electrical Specifications Freescale Semiconductor Electrical Specifications DDC12AB/MMIIC Timing 22.12 DDC12AB/MMIIC Timing SDA SCL tHD.STA tLOW tHIGH tSU.DAT tHD.DAT tSU.STA tSU.STO Figure 22-1. MMIIC Signal Timings 22.12.1 DDC12AB/MMIIC Interface Input Signal Timing Table 22-10. DDC12AB/MMIIC Interface Input Signal Timing Characteristic(1) Symbol Min Max Unit tHD.STA 2 — tCYC Clock low period tLOW 4 — tCYC Clock high period tHIGH 4 — tCYC Data set-up time tSU.DAT 250 — ns Data hold time tHD.DAT 0 — ns START condition set-up time (for repeated START condition only) tSU.STA 2 — tCYC STOP condition set-up time tSU.STO 2 — tCYC START condition hold time Notes: 1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 22.12.2 DDC12AB/MMIIC Interface Output Signal Timing Table 22-11. DDC12AB/MMIIC Interface Output Signal Timing Characteristic(1) Symbol Min Max Unit SDA/SCL rise time(2) tR — 1 µs SDA/SCL fall time tF — 300 ns Data set-up time tSU.DAT tLOW — ns Data hold time tHD.DAT 0 — ns Notes: 1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted. 2. With 200pF loading on the SDA/SCL pins. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Electrical Specifications 285 Electrical Specifications 22.13 FLASH Memory Characteristics Table 22-12. FLASH Memory Electrical Characteristics Characteristic Symbol Min Max Unit Program bus clock frequency — 1 — MHz FLASH block size $0C00–$0FFF $1000–F9FF — — 128 512 Bytes Bytes FLASH programming size — 64 Bytes Read bus clock frequency fRead(1) 32k 6M Hz Page erase time tErase(2) 10 — ms Mass erase time tMErase(3) 10 — ms PGM/ERASE to HVEN set up time tnvs 5 — µs High-voltage hold time tnvh 5 — µs High-voltage hold time (mass erase) tnvhl 100 — µs Program hold time tpgs 20 — ns Program time tPROG 20 40 µs Return to read time trcv(4) 1 — µs Cumulative program HV period 4,7616 bytes array 13k-bytes array tHV(5) — — 6 3 ms ms — 10k — Cycles Row program endurance — 10k — Cycles Data retention time(9) — 10 — Years Row erase endurance(7) (8) tHV1 (6) Notes: 1. fREAD is defined as the frequency range for which the FLASH memory can be read. 2. If the page erase time is longer than tErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 3. If the mass erase time is longer than tMErase (Min), there is no erase-disturb, but it reduces the endurance of the FLASH memory. 4. trcv is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing HVEN to logic 0. 5. tHV is defined as the cumulative high voltage programming time to the same row before next erase. tHV must satisfy this condition: tnvs + tnvh + tpgs + (tPROG × 64) ≤ tHV max. 6. tHV1 is the tHV spec for 13k-bytes array 7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 8. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many erase / program cycles. 9. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time specified. Technical Data 286 MC68HC908LD60 — Rev. 1.1 Electrical Specifications Freescale Semiconductor Technical Data — MC68HC908LD60 Section 23. Mechanical Specifications 23.1 Contents 23.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 23.3 64-Pin Plastic Quad Flat Pack (QFP) . . . . . . . . . . . . . . . . . . . 288 23.2 Introduction This section gives the dimensions for: • 64-pin plastic quad flat pack (case 840B-01) Figure 23-1 shows the latest package drawing at the time of this publication. To make sure that you have the latest package specifications, please visit the Freescale website at http://freescale.com. Follow the World Wide Web on-line instructions to retrieve the current mechanical specifications. MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Mechanical Specifications 287 Mechanical Specifications 23.3 64-Pin Plastic Quad Flat Pack (QFP) L 48 33 DETAIL A S D S H A–B V 0.20 (0.008) M B P B M L B 0.20 (0.008) –B– C A–B –A– 0.05 (0.002) A–B S D 32 S 49 –A–, –B–, –D– DETAIL A 64 17 F 1 16 –D– A 0.20 (0.008) C A–B S D S 0.05 (0.002) A–B S 0.20 (0.008) M H A–B S D S M J N E M C M H 0.02 (0.008) DATUM PLANE M C A–B S D S SECTION B–B 0.01 (0.004) G U T R –H– DETAILC –H– –C– SEATING PLANE BASE METAL D DATUM PLANE Q K W X DETAIL C NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE. 4. DATUMS –A–, –B– AND –D– TO BE DETERMINED AT DATUM PLANE –H–. 5. DIMENSIONS S AND V TO BE DETERMINED AT SEATING PLANE –C–. 6. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 (0.010) PER SIDE. DIMENSIONS A AND B DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE –H–. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) PER SIDE. TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. DIM A B C D E F G H J K L M N P Q R S T U V W X MILLIMETERS MIN MAX 13.90 14.10 13.90 14.10 2.15 2.45 0.30 0.45 2.00 2.40 0.30 0.40 0.80 BSC — 0.25 0.13 0.23 0.65 0.95 12.00 REF 5° 10° 0.13 0.17 0.40 BSC 0° 7° 0.13 0.30 16.95 17.45 0.13 — 0° — 16.95 17.45 0.35 0.45 1.6 REF INCHES MIN MAX 0.547 0.555 0.547 0.555 0.085 0.096 0.012 0.018 0.079 0.094 0.012 0.016 0.031 BSC — 0.010 0.005 0.009 0.026 0.037 0.472 REF 5° 10° 0.005 0.007 0.016 BSC 0° 7° 0.005 0.012 0.667 0.687 0.005 — 0° — 0.667 0.687 0.014 0.018 0.063 REF Figure 23-1. 64-Pin Plastic Quad Flat Pack (QFP) Technical Data 288 MC68HC908LD60 — Rev. 1.1 Mechanical Specifications Freescale Semiconductor Technical Data — MC68HC908LD60 Section 24. Ordering Information 24.1 Contents 24.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 24.3 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289 24.2 Introduction This section contains ordering numbers for the MC68HC908LD60. 24.3 MC Order Numbers Table 24-1. MC Order Numbers MC Order Number(1) MC68HC908LD60IFU Package Operating Temperature Range 64-Pin QFP 0 °C to +85 °C Notes: 1. I = Operating temperature range: 0 °C to +85 °C FU = Quad Flat Pack MC68HC908LD60 — Rev. 1.1 Freescale Semiconductor Technical Data Ordering Information 289 Ordering Information Technical Data 290 MC68HC908LD60 — Rev. 1.1 Ordering Information Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com RoHS-compliant and/or Pb- free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative. E-mail: [email protected] For information on Freescale.s Environmental Products program, go to http://www.freescale.com/epp. USA/Europe or Locations Not Listed: Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) [email protected] Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] Rev. 1.1 MC68HC908LD60/D August 16, 2005 Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The ARM POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a trademark of ARM Limited. Java and all other Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The Bluetooth trademarks are owned by their proprietor and used by Freescale Semiconductor, Inc. under license. © Freescale Semiconductor, Inc. 2005. All rights reserved.