FREESCALE MC908LJ12CFUE

深圳市南天星电子科技有限公司
专业代理飞思卡尔
(Freescale)
飞思卡尔主要产品
8 位微控制器
16 位微控制器
数字信号处理器与控制器
i.MX 应用处理器
基于 ARM®技术的 Kinetis MCU
32/64 位微控制器与处理器
模拟与电源管理器件
射频器件(LDMOS,收发器)
传感器(压力,加速度,磁场,
触摸,电池)
飞思卡尔产品主要应用
汽车电子
数据连接
消费电子
工业控制
医疗保健
电机控制
网络
智能能源
深圳市南天星电子科技有限公司
电话:0755-83040796
传真:0755-83040790
邮箱:[email protected]
网址:www.soustar.com.cn
地址:深圳市福田区福明路雷圳大厦 2306 室
MC68HC908LJ12
Technical Data
M68HC08
Microcontrollers
Rev. 2.1
MC68HC908LJ12/D
August 2, 2005
freescale.com
MC68HC908LJ12
Technical Data
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. "Typical" parameters which may be provided in Freescale data sheets
and/or specifications can and do vary in different applications and actual performance
may vary over time. All operating parameters, including "Typicals" must be validated
for each customer application by customer's technical experts. Freescale does not
convey any license under its patent rights nor the rights of others. Freescale products
are not designed, intended, or authorized for use as components in systems intended
for surgical implant into the body, or other applications intended to support or sustain
life, or for any other application in which the failure of the Freescale product could
create a situation where personal injury or death may occur. Should Buyer purchase or
use Freescale products for any such unintended or unauthorized application, Buyer
shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates,
and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim
alleges that Freescale was negligent regarding the design or manufacture of the part.
Freescale, Inc. is an Equal Opportunity/Affirmative Action Employer.
© Freescale, Inc., 2002
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Technical Data
3
Technical Data
To provide the most up-to-date information, the revision of our
documents on the World Wide Web will be the most current. Your printed
copy may be an earlier revision. To verify you have the latest information
available, refer to:
http://freescale.com
The following revision history table summarizes changes contained in
this document. For your convenience, the page number designators
have been linked to the appropriate location.
Revision History
Date
Revision
Level
February
2002
2
August, 2005
2.1
Description
First general release.
—
Updated to meet Freescale identity guidelines.
—
Technical Data
4
Page
Number(s)
MC68HC908LJ12 — Rev. 2.1
Technical Data
Freescale Semiconductor
Technical Data — MC68HC908LJ12
List of Sections
Section 1. General Description . . . . . . . . . . . . . . . . . . . . 33
Section 2. Memory Map . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Section 3. Random-Access Memory (RAM) . . . . . . . . . . 59
Section 4. FLASH Memory (FLASH) . . . . . . . . . . . . . . . . 61
Section 5. Configuration Registers (CONFIG) . . . . . . . . 71
Section 6. Central Processor Unit (CPU) . . . . . . . . . . . . 77
Section 7. Oscillator (OSC) . . . . . . . . . . . . . . . . . . . . . . . 95
Section 8. Clock Generator Module (CGM) . . . . . . . . . . 101
Section 9. System Integration Module (SIM) . . . . . . . . 131
Section 10. Monitor ROM (MON) . . . . . . . . . . . . . . . . . . 155
Section 11. Timer Interface Module (TIM) . . . . . . . . . . . 185
Section 12. Real Time Clock (RTC) . . . . . . . . . . . . . . . . 209
Section 13. Infrared Serial Communications
Interface Module (IRSCI) . . . . . . . . . . . . 227
Section 14. Serial Peripheral Interface Module (SPI) . . 269
Section 15. Analog-to-Digital Converter (ADC) . . . . . . 301
Section 16. Liquid Crystal Display Driver (LCD) . . . . . 317
Section 17. Input/Output (I/O) Ports . . . . . . . . . . . . . . . 341
Section 18. External Interrupt (IRQ) . . . . . . . . . . . . . . . 357
Section 19. Keyboard Interrupt Module (KBI). . . . . . . . 363
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
List of Sections
5
List of Sections
Section 20. Computer Operating Properly (COP) . . . . 371
Section 21. Low-Voltage Inhibit (LVI) . . . . . . . . . . . . . . 377
Section 22. Break Module (BRK) . . . . . . . . . . . . . . . . . . 383
Section 23. Electrical Specifications. . . . . . . . . . . . . . . 391
Section 24. Mechanical Specifications . . . . . . . . . . . . . 407
Section 25. Ordering Information . . . . . . . . . . . . . . . . . 411
Technical Data
6
MC68HC908LJ12 — Rev. 2.1
List of Sections
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Table of Contents
Section 1. General Description
1.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
1.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.6
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
1.6.1
Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 40
1.6.2
Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .40
1.6.3
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 41
1.6.4
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.5
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.6
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 41
1.6.7
ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 41
1.6.8
ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 41
1.6.9
Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . . . 42
1.6.10 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.11 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.12 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.13 LCD Backplane and Frontplane
(BP0–BP2, FP0/BP3, FP1–FP18). . . . . . . . . . . . . . . . . . 42
Section 2. Memory Map
2.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
2.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 43
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
7
Table of Contents
2.4
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Section 3. Random-Access Memory (RAM)
3.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
3.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Section 4. FLASH Memory (FLASH)
4.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
4.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
4.4
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.8
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.8.1
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 68
Section 5. Configuration Registers (CONFIG)
5.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71
5.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
5.4
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 73
5.5
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 75
Technical Data
8
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Table of Contents
Section 6. Central Processor Unit (CPU)
6.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
6.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.1
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.3
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.4
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.5
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
6.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
6.7
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Section 7. Oscillator (OSC)
7.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
7.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.4
Crystal (X-tal) Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5.1
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . 98
7.5.2
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . 98
7.5.3
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . 98
7.5.4
Internal RC Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5.5
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . . 98
7.5.6
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . . 98
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
9
Table of Contents
7.6
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
7.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
7.7
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 99
Section 8. Clock Generator Module (CGM)
8.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
8.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
8.4.1
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4.2
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 106
8.4.3
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4.4
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 108
8.4.5
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 108
8.4.6
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4.7
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 114
8.4.8
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.9
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5.1
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 116
8.5.2
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 116
8.5.3
PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 116
8.5.4
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 116
8.5.5
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 116
8.5.6
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 117
8.5.7
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 117
8.5.8
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 117
8.6
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.6.1
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.6.2
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .120
8.6.3
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 122
8.6.4
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .123
8.6.5
PLL Reference Divider Select Register . . . . . . . . . . . . . . . 124
Technical Data
10
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Table of Contents
8.7
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
8.8
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.8.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
8.8.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
8.8.3
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 126
8.9
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 127
8.9.1
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .127
8.9.2
Parametric Influences on Reaction Time . . . . . . . . . . . . . . 127
8.9.3
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Section 9. System Integration Module (SIM)
9.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131
9.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 134
9.3.1
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.3.2
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 135
9.3.3
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 136
9.4
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 136
9.4.1
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.4.2
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 137
9.4.2.1
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
9.4.2.2
Computer Operating Properly (COP) Reset. . . . . . . . . . 139
9.4.2.3
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.4.2.4
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .140
9.4.2.5
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 140
9.4.2.6
Monitor Mode Entry Module Reset (MODRST) . . . . . . . 140
9.5
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.5.1
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 141
9.5.2
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 141
9.5.3
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 141
9.6
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
9.6.1
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.6.1.1
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.6.1.2
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
11
Table of Contents
9.6.1.3
9.6.1.4
9.6.1.5
9.6.1.6
9.6.2
9.6.3
9.6.4
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .145
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 145
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 147
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 147
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 148
9.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.7.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
9.7.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
9.8
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.8.1
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.8.2
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 153
9.8.3
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 154
Section 10. Monitor ROM (MON)
10.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
10.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
10.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
Technical Data
12
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Table of Contents
Section 11. Timer Interface Module (TIM)
11.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
11.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.5.3.1
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 192
11.5.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .193
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 193
11.5.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 194
11.5.4.2
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 195
11.5.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
11.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
11.8
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 198
11.9
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 200
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 203
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 204
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Section 12. Real Time Clock (RTC)
12.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
12.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
13
Table of Contents
12.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
12.4.1 Time Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
12.4.2 Calendar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
12.4.3 Alarm Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
12.4.4 Timebase Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
12.4.5 Chronograph Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
12.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
12.6 RTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
12.6.1 RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . . 216
12.6.2 RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . . 218
12.6.3 RTC Status Register (RTCSR). . . . . . . . . . . . . . . . . . . . . . 219
12.6.4 Alarm Minute and Hour Registers (ALMR and ALHR) . . . . 222
12.6.5 Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.6.6 Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.6.7 Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.6.8 Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.6.9 Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . .225
12.6.10 Year Register (YRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.6.11 Day-Of-Week Register (DOWR) . . . . . . . . . . . . . . . . . . . . 226
12.6.12 Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . . 226
Section 13. Infrared Serial Communications
Interface Module (IRSCI)
13.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
13.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
13.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
13.5
IRSCI Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
13.6 Infrared Functional Description. . . . . . . . . . . . . . . . . . . . . . . . 232
13.6.1 Infrared Transmit Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 233
Technical Data
14
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Table of Contents
13.6.2
Infrared Receive Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 233
13.7 SCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .234
13.7.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
13.7.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
13.7.2.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.7.2.2
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.7.2.3
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.7.2.4
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.7.2.5
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .239
13.7.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.7.3.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.7.3.2
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
13.7.3.3
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
13.7.3.4
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.7.3.5
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .243
13.7.3.6
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
13.7.3.7
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.7.3.8
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
13.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
13.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
13.9
SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .249
13.10 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.10.1 PTB0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 249
13.10.2 PTB1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.11 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
13.11.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
13.11.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
13.11.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
13.11.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
13.11.5 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . 262
13.11.6 SCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . . 263
13.11.7 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . 264
13.11.8 SCI Infrared Control Register . . . . . . . . . . . . . . . . . . . . . . . 267
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
15
Table of Contents
Section 14. Serial Peripheral Interface Module (SPI)
14.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .269
14.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
14.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 271
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
14.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
14.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
14.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
14.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . 275
14.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 276
14.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 278
14.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 279
14.7
Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 281
14.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
14.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
14.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
14.9
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286
14.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
14.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
14.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
14.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 291
14.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 291
14.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
14.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
14.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Technical Data
16
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Table of Contents
14.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 296
14.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Section 15. Analog-to-Digital Converter (ADC)
15.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .301
15.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
15.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303
15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305
15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
15.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
15.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
15.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308
15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
15.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
15.7.2 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 309
15.7.3 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 309
15.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 309
15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .310
15.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
15.8.3 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 314
Section 16. Liquid Crystal Display Driver (LCD)
16.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .317
16.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
16.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
17
Table of Contents
16.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 318
16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320
16.5.1 LCD Duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
16.5.2 LCD Voltages (VLCD, VLCD1, VLCD2, VLCD3) . . . . . . . . . . . 323
16.5.3 LCD Cycle Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
16.5.4 Fast Charge and Low Current . . . . . . . . . . . . . . . . . . . . . . 324
16.5.5 Contrast Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
16.7.1 BP0–BP3 (Backplane Drivers) . . . . . . . . . . . . . . . . . . . . . . 326
16.7.2 FP0–FP26 (Frontplane Drivers) . . . . . . . . . . . . . . . . . . . . . 328
16.8
Seven Segment Display Connection . . . . . . . . . . . . . . . . . . . 332
16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
16.9.1 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . . 335
16.9.2 LCD Clock Register (LCDCLK) . . . . . . . . . . . . . . . . . . . . . 337
16.9.3 LCD Data Registers (LDAT1–LDAT14) . . . . . . . . . . . . . . . 339
Section 17. Input/Output (I/O) Ports
17.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .341
17.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
17.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 344
17.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 345
17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
17.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 347
17.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 348
17.4.3 Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . . 350
17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
17.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 351
17.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 352
Technical Data
18
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Table of Contents
17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
17.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 354
17.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 355
Section 18. External Interrupt (IRQ)
18.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .357
18.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
18.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
18.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
18.5
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 361
18.6
IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 361
Section 19. Keyboard Interrupt Module (KBI)
19.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .363
19.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
19.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
19.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
19.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365
19.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
19.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 367
19.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 368
19.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 369
19.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
19.8
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
19.9
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
19.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 370
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
19
Table of Contents
Section 20. Computer Operating Properly (COP)
20.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .371
20.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
20.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372
20.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373
20.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
20.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
20.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
20.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 374
20.5
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
20.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375
20.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375
20.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
20.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
20.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
20.9
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 376
Section 21. Low-Voltage Inhibit (LVI)
21.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .377
21.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
21.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378
21.4.1 Interrupt LVI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
21.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .380
21.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 380
21.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
21.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Technical Data
20
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Table of Contents
21.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
21.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382
21.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382
Section 22. Break Module (BRK)
22.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .383
22.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
22.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384
22.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 386
22.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .386
22.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 386
22.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 386
22.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
22.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386
22.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387
22.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
22.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 387
22.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 388
22.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 388
22.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 390
Section 23. Electrical Specifications
23.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .391
23.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
23.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 392
23.4
Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 393
23.5
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
23.6
5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 394
23.7
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 396
23.8
5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Table of Contents
21
Table of Contents
23.9
3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
23.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 398
23.11 3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 398
23.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .399
23.13 3.3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .400
23.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 401
23.15 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 401
23.16 5.0V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
23.17 3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
23.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 406
Section 24. Mechanical Specifications
24.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .407
24.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
24.3
52-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 408
24.4
64-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 409
24.5
64-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 410
Section 25. Ordering Information
25.1
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .411
25.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
25.3
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
Technical Data
22
MC68HC908LJ12 — Rev. 2.1
Table of Contents
Freescale Semiconductor
Technical Data — MC68HC908LJ12
List of Figures
Figure
Title
1-1
1-2
1-3
1-4
MC68HC908LJ12 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . 37
64-Pin QFP and 64-Pin LQFP Pin Assignment . . . . . . . . . . . . 38
52-Pin LQFP Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Power Supply Bypassing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2-1
2-2
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Control, Status, and Data Registers . . . . . . . . . . . . . . . . . . . . .46
4-1
4-2
4-3
4-4
4-5
FLASH I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . 62
FLASH Control Register (FLCR) . . . . . . . . . . . . . . . . . . . . . . . 63
FLASH Programming Flowchart . . . . . . . . . . . . . . . . . . . . . . . . 67
FLASH Block Protect Register (FLBPR). . . . . . . . . . . . . . . . . . 68
FLASH Block Protect Start Address . . . . . . . . . . . . . . . . . . . . .68
5-1
5-2
5-3
CONFIG Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 73
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 75
6-1
6-2
6-3
6-4
6-5
6-6
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Accumulator (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Index Register (H:X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Program Counter (PC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
Condition Code Register (CCR) . . . . . . . . . . . . . . . . . . . . . . . . 82
7-1
Oscillator Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . 96
8-1
8-2
8-3
CGM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
CGM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . 105
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 115
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Page
Technical Data
List of Figures
23
List of Figures
Figure
Title
8-4
8-5
8-6
8-7
8-8
8-9
8-10
PLL Control Register (PCTL) . . . . . . . . . . . . . . . . . . . . . . . . . 118
PLL Bandwidth Control Register (PBWCR) . . . . . . . . . . . . . . 121
PLL Multiplier Select Register High (PMSH) . . . . . . . . . . . . . 122
PLL Multiplier Select Register Low (PMSL) . . . . . . . . . . . . . . 122
PLL VCO Range Select Register (PMRS) . . . . . . . . . . . . . . . 123
PLL Reference Divider Select Register (PMDS) . . . . . . . . . . 124
PLL Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18
9-19
9-20
9-21
9-22
SIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
SIM I/O Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .134
CGM Clock Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
External Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
Internal Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Sources of Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
POR Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Interrupt Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Interrupt Recovery Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Interrupt Recognition Example . . . . . . . . . . . . . . . . . . . . . . . . 144
Interrupt Status Register 1 (INT1). . . . . . . . . . . . . . . . . . . . . . 145
Interrupt Status Register 2 (INT2). . . . . . . . . . . . . . . . . . . . . . 147
Interrupt Status Register 3 (INT3). . . . . . . . . . . . . . . . . . . . . . 147
Wait Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Wait Recovery from Interrupt or Break . . . . . . . . . . . . . . . . . . 150
Wait Recovery from Internal Reset. . . . . . . . . . . . . . . . . . . . . 150
Stop Mode Entry Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Stop Mode Recovery from Interrupt or Break . . . . . . . . . . . . . 151
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 152
SIM Reset Status Register (SRSR) . . . . . . . . . . . . . . . . . . . . 153
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 154
10-1
10-2
10-3
10-4
10-5
Monitor Mode Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Low-Voltage Monitor Mode Entry Flowchart. . . . . . . . . . . . . . 162
Monitor Data Format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Break Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
Read Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
Technical Data
24
Page
MC68HC908LJ12 — Rev. 2.1
List of Figures
Freescale Semiconductor
List of Figures
Figure
Title
10-6
10-7
10-8
10-9
10-10
Write Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Stack Pointer at Monitor Mode Entry . . . . . . . . . . . . . . . . . . . 168
Monitor Mode Entry Timing. . . . . . . . . . . . . . . . . . . . . . . . . . .169
Data Block Format for ROM-Resident Routines. . . . . . . . . . . 172
EE_WRITE FLASH Memory Usage . . . . . . . . . . . . . . . . . . . .181
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13
11-14
11-15
TIM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
TIM I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .189
PWM Period and Pulse Width . . . . . . . . . . . . . . . . . . . . . . . . 194
TIM Status and Control Register (TSC) . . . . . . . . . . . . . . . . . 200
TIM Counter Registers High (TCNTH) . . . . . . . . . . . . . . . . . . 202
TIM Counter Registers Low (TCNTL) . . . . . . . . . . . . . . . . . . . 202
TIM Counter Modulo Register High (TMODH) . . . . . . . . . . . . 203
TIM Counter Modulo Register Low (TMODL) . . . . . . . . . . . . . 203
TIM Channel 0 Status and Control Register (TSC0) . . . . . . . 204
TIM Channel 1 Status and Control Register (TSC1) . . . . . . . 204
CHxMAX Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .207
TIM Channel 0 Register High (TCH0H) . . . . . . . . . . . . . . . . . 208
TIM Channel 0 Register Low (TCH0L) . . . . . . . . . . . . . . . . . . 208
TIM Channel 1 Register High (TCH1H) . . . . . . . . . . . . . . . . . 208
TIM Channel 1 Register Low (TCH1L) . . . . . . . . . . . . . . . . . . 208
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
RTC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 210
RTC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . . . . 216
RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . . . . 218
RTC Status Register (RTCSR) . . . . . . . . . . . . . . . . . . . . . . . . 219
Alarm Minute Register (ALMR). . . . . . . . . . . . . . . . . . . . . . . . 222
Alarm Hour Register (ALHR) . . . . . . . . . . . . . . . . . . . . . . . . . 222
Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Year Register (YRR). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Day-Of-Week Register (DOWR). . . . . . . . . . . . . . . . . . . . . . . 226
Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . . . . 226
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Page
Technical Data
List of Figures
25
List of Figures
Figure
Title
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
IRSCI I/O Registers Summary . . . . . . . . . . . . . . . . . . . . . . . . 230
IRSCI Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Infrared Sub-Module Diagram . . . . . . . . . . . . . . . . . . . . . . . . 232
Infrared SCI Data Example. . . . . . . . . . . . . . . . . . . . . . . . . . .233
SCI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .234
SCI Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .235
SCI Transmitter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
SCI Receiver Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 240
Receiver Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Slow Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Fast Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
SCI Control Register 1 (SCC1). . . . . . . . . . . . . . . . . . . . . . . . 251
SCI Control Register 2 (SCC2). . . . . . . . . . . . . . . . . . . . . . . . 254
SCI Control Register 3 (SCC3). . . . . . . . . . . . . . . . . . . . . . . . 256
SCI Status Register 1 (SCS1) . . . . . . . . . . . . . . . . . . . . . . . . 258
Flag Clearing Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . . . 262
SCI Data Register (SCDR) . . . . . . . . . . . . . . . . . . . . . . . . . . .263
SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . . . 264
SCI Infrared Control Register (SCIRCR) . . . . . . . . . . . . . . . . 267
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10
14-11
14-12
14-13
14-14
14-15
SPI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .271
SPI Module Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . .272
Full-Duplex Master-Slave Connections . . . . . . . . . . . . . . . . . 273
Transmission Format (CPHA = 0) . . . . . . . . . . . . . . . . . . . . . 277
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Transmission Format (CPHA = 1) . . . . . . . . . . . . . . . . . . . . . 278
Transmission Start Delay (Master) . . . . . . . . . . . . . . . . . . . . . 280
SPRF/SPTE CPU Interrupt Timing . . . . . . . . . . . . . . . . . . . . . 281
Missed Read of Overflow Condition . . . . . . . . . . . . . . . . . . . .283
Clearing SPRF When OVRF Interrupt Is Not Enabled . . . . . . 284
SPI Interrupt Request Generation . . . . . . . . . . . . . . . . . . . . . 287
CPHA/SS Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
SPI Control Register (SPCR) . . . . . . . . . . . . . . . . . . . . . . . . . 294
SPI Status and Control Register (SPSCR) . . . . . . . . . . . . . . . 296
SPI Data Register (SPDR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
Technical Data
26
Page
MC68HC908LJ12 — Rev. 2.1
List of Figures
Freescale Semiconductor
List of Figures
Figure
Title
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
ADC I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 303
ADC Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
8-Bit Truncation Mode Error . . . . . . . . . . . . . . . . . . . . . . . . . . 307
ADC Status and Control Register (ADSCR) . . . . . . . . . . . . . . 310
ADRH and ADRL in 8-Bit Truncated Mode. . . . . . . . . . . . . . . 312
ADRH and ADRL in Right Justified Mode. . . . . . . . . . . . . . . . 312
ADRH and ADRL in Left Justified Mode . . . . . . . . . . . . . . . . . 313
ADRH and ADRL in Left Justified Sign Data Mode . . . . . . . . 313
ADC Clock Control Register (ADICLK). . . . . . . . . . . . . . . . . . 314
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15
16-16
16-17
16-18
LCD I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 319
LCD Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Simplified LCD Schematic (1/3 Duty, 1/3 Bias) . . . . . . . . . . . 322
Fast Charge Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
1/3 Duty LCD Backplane Driver Waveforms. . . . . . . . . . . . . . 326
Static LCD Backplane Driver Waveform. . . . . . . . . . . . . . . . . 327
1/4 Duty LCD Backplane Driver Waveforms. . . . . . . . . . . . . . 327
Static LCD Frontplane Driver Waveforms. . . . . . . . . . . . . . . . 328
1/3 Duty LCD Frontplane Driver Waveforms . . . . . . . . . . . . . 329
1/4 Duty LCD Frontplane Driver Waveforms . . . . . . . . . . . . . 330
1/4 Duty LCD Frontplane Driver Waveforms (continued) . . . . 331
7-Segment Display Example . . . . . . . . . . . . . . . . . . . . . . . . . 332
BP0–BP2 and FP0–FP2 Output Waveforms for
7-Segment Display Example . . . . . . . . . . . . . . . . . . . . . . . 333
"f" Segment Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . .334
"e" Segment Voltage Waveform . . . . . . . . . . . . . . . . . . . . . . . 334
LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . . . .335
LCD Clock Register (LCDCLK). . . . . . . . . . . . . . . . . . . . . . . . 337
LCD Data Registers 1–14 (LDAT1–LDAT14) . . . . . . . . . . . . . 339
17-1
17-2
17-3
17-4
17-5
17-6
17-7
I/O Port Register Summary. . . . . . . . . . . . . . . . . . . . . . . . . . .342
Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . . . 345
Port A I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 349
Port B I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Page
Technical Data
List of Figures
27
List of Figures
Figure
17-8
17-9
17-10
17-11
17-12
17-13
17-14
Title
Page
Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . . . . 350
Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . . . 351
Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . . . 352
Port C I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . . . 354
Data Direction Register D (DDRD) . . . . . . . . . . . . . . . . . . . . . 355
Port D I/O Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
18-1 IRQ Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 359
18-2 IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 362
19-1
19-2
19-3
19-4
KBI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . .364
Keyboard Interrupt Block Diagram . . . . . . . . . . . . . . . . . . . . . 365
Keyboard Status and Control Register (KBSCR) . . . . . . . . . . 368
Keyboard Interrupt Enable Register (KBIER) . . . . . . . . . . . . . 369
20-1 COP Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
20-2 Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . 374
20-3 COP Control Register (COPCTL) . . . . . . . . . . . . . . . . . . . . . . 375
21-1 LVI I/O Register Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
21-2 LVI Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . .378
22-1
22-2
22-3
22-4
22-5
22-6
22-7
Break Module Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . 385
Break Module I/O Register Summary . . . . . . . . . . . . . . . . . . . 385
Break Status and Control Register (BRKSCR). . . . . . . . . . . . 387
Break Address Register High (BRKH) . . . . . . . . . . . . . . . . . . 388
Break Address Register Low (BRKL) . . . . . . . . . . . . . . . . . . . 388
SIM Break Status Register (SBSR) . . . . . . . . . . . . . . . . . . . . 389
SIM Break Flag Control Register (SBFCR) . . . . . . . . . . . . . . 390
23-1 SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
23-2 SPI Slave Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
24-1 52-Pin Low-Profile Quad Flat Pack (Case No. 848D). . . . . . . 408
24-2 64-Pin Low-Profile Quad Flat Pack (Case No. 840F) . . . . . . . 409
24-3 64-Pin Quad Flat Pack (Case No. 840B) . . . . . . . . . . . . . . . . 410
Technical Data
28
MC68HC908LJ12 — Rev. 2.1
List of Figures
Freescale Semiconductor
Technical Data — MC68HC908LJ12
List of Tables
Table
Title
2-1
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
5-1
LVI Trip Point Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6-1
6-2
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8-1
8-3
8-2
Numeric Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
VPR1 and VPR0 Programming . . . . . . . . . . . . . . . . . . . . . . .120
PRE 1 and PRE0 Programming . . . . . . . . . . . . . . . . . . . . . . . 120
9-1
9-2
9-3
Signal Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
PIN Bit Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Vector Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
Monitor Mode Signal Requirements and Options . . . . . . . . . . 160
Mode Differences (Vectors) . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Monitor Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . 164
READ (Read Memory) Command . . . . . . . . . . . . . . . . . . . . . 165
WRITE (Write Memory) Command. . . . . . . . . . . . . . . . . . . . . 166
IREAD (Indexed Read) Command . . . . . . . . . . . . . . . . . . . . . 166
IWRITE (Indexed Write) Command . . . . . . . . . . . . . . . . . . . . 167
READSP (Read Stack Pointer) Command . . . . . . . . . . . . . . . 167
RUN (Run User Program) Command . . . . . . . . . . . . . . . . . . . 168
Summary of ROM-Resident Routines . . . . . . . . . . . . . . . . . . 171
PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
ERARNGE Routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
MON_PRGRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
MON_ERARNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Page
Technical Data
List of Tables
29
List of Tables
Table
Title
Page
10-16 ICP_LDRNGE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10-17 EE_WRITE Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10-18 EE_READ Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
11-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11-2 Prescaler Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
11-3 Mode, Edge, and Level Selection . . . . . . . . . . . . . . . . . . . . . . 206
12-1 CGMXCLK Frequency for RTC Input Reference . . . . . . . . . . 219
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Start Bit Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
Data Bit Recovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242
Stop Bit Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .243
SCI Pin Functions (Standard and Infrared). . . . . . . . . . . . . . . 250
Character Format Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 253
SCI Baud Rate Prescaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
SCI Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
SCI Baud Rate Selection Examples . . . . . . . . . . . . . . . . . . . .266
Infrared Narrow Pulse Selection . . . . . . . . . . . . . . . . . . . . . . . 267
14-1
14-2
14-3
14-4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
SPI Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286
SPI Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
SPI Master Baud Rate Selection . . . . . . . . . . . . . . . . . . . . . . 298
15-1 MUX Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
15-2 ADC Clock Divide Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
15-3 ADC Mode Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .315
16-1
16-3
16-2
16-4
16-5
16-6
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
LCD Bias Voltage Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Resistor Ladder Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Fast Charge Duty Cycle Selection . . . . . . . . . . . . . . . . . . . . . 337
LCD Duty Cycle Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
LCD Waveform Base Clock Selection . . . . . . . . . . . . . . . . . . 338
Technical Data
30
MC68HC908LJ12 — Rev. 2.1
List of Tables
Freescale Semiconductor
List of Tables
Table
17-1
17-2
17-3
17-4
17-5
Title
Page
Port Control Register Bits Summary. . . . . . . . . . . . . . . . . . . .343
Port A Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Port B Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Port C Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Port D Pin Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
18-1 IRQ I/O Port Register Summary . . . . . . . . . . . . . . . . . . . . . . . 359
19-1 Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
21-1 LVI Status Register (LVISR) . . . . . . . . . . . . . . . . . . . . . . . . . . 381
21-2 LVIOUT Bit Indication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
23-1
23-2
23-3
23-4
23-5
23-6
23-7
23-8
23-9
23-10
23-11
23-12
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 394
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 396
5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
5.0V Oscillator Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 398
3.3V Oscillator Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 398
ADC 5.0V Electrical Characteristics . . . . . . . . . . . . . . . . . . . .399
ADC 3.3V Electrical Characteristics . . . . . . . . . . . . . . . . . . . .400
FLASH Memory Electrical Characteristics . . . . . . . . . . . . . . . 406
25-1 MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
List of Tables
31
List of Tables
Technical Data
32
MC68HC908LJ12 — Rev. 2.1
List of Tables
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 1. General Description
1.1 Contents
1.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.6
Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
1.6.1
Power Supply Pins (VDD and VSS) . . . . . . . . . . . . . . . . . . . . 40
1.6.2
Analog Power Supply Pin (VDDA) . . . . . . . . . . . . . . . . . . . . .40
1.6.3
Oscillator Pins (OSC1 and OSC2) . . . . . . . . . . . . . . . . . . . . 41
1.6.4
External Reset Pin (RST) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.5
External Interrupt Pin (IRQ) . . . . . . . . . . . . . . . . . . . . . . . . . 41
1.6.6
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . . 41
1.6.7
ADC Voltage High Reference Pin (VREFH). . . . . . . . . . . . . . 41
1.6.8
ADC Voltage Low Reference Pin (VREFL) . . . . . . . . . . . . . . 41
1.6.9
Port A Input/Output (I/O) Pins (PTA7–PTA0) . . . . . . . . . . . . 42
1.6.10 Port B I/O Pins (PTB7–PTB0) . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.11 Port C I/O Pins (PTC7–PTC0) . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.12 Port D I/O Pins (PTD7–PTD0) . . . . . . . . . . . . . . . . . . . . . . . 42
1.6.13 LCD Backplane and Frontplane
(BP0–BP2, FP0/BP3, FP1–FP18). . . . . . . . . . . . . . . . . . 42
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
General Description
33
General Description
1.2 Introduction
The MC68HC908LJ12 is a member of the low-cost, high-performance
M68HC08 Family of 8-bit microcontroller units (MCUs). The M68HC08
Family is based on the customer-specified integrated circuit (CSIC)
design strategy. All MCUs in the family use the enhanced M68HC08
central processor unit (CPU08) and are available with a variety of
modules, memory sizes and types, and package types.
1.3 Features
Features of the MC68HC908LJ12 include the following:
•
High-performance M68HC08 architecture
•
Fully upward-compatible object code with M6805, M146805, and
M68HC05 Families
•
Maximum internal bus frequency:
– 8-MHz at 5V operating voltage
– 4-MHz at 3.3V operating voltage
•
32-kHz crystal oscillator clock input with 32MHz internal phaselock-loop
•
Optional continuous crystal oscillator operation in stop mode
•
12k-bytes user program FLASH memory with security1 feature
•
512 bytes of on-chip RAM
•
Two 16-bit, 2-channel timer interface modules (TIM1 and TIM2)
with selectable input capture, output compare, and PWM
capability on each channel
•
Real time clock (RTC) with clock, calendar, alarm, and
chronograph functions. Selectable periodic interrupt requests for
seconds, minutes, hours, days, 2-Hz, 4-Hz, and 100-Hz
•
Serial communications interface module (SCI) with infrared (IR)
encoder/decoder
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Technical Data
34
MC68HC908LJ12 — Rev. 2.1
General Description
Freescale Semiconductor
General Description
•
Serial peripheral interface module (SPI)
•
IRQ external interrupt pin with integrated pullup
•
8-bit keyboard wakeup port with programmable pullup
•
32 general-purpose input/output (I/O) pins:
– High current 8-mA sink capability on PTB2–PTB5
– High current 20-mA sink capability on PTB0–PTB1
•
4/3 backplanes and static with maximum 27 frontplanes liquid
crystal display (LCD) driver
•
6-channel, 10-bit successive approximation analog-to-digital
converter (ADC)
•
Resident routines for in-circuit programming and EEPROM
emulation
•
Low-power design (fully static with stop and wait modes)
•
Master reset pin (with integrated pullup) and power-on reset
•
Spike filter protection for EMC performance enhancement
•
System protection features
– Optional computer operating properly (COP) reset, driven by
internal 64-kHz RC oscillator
– Low-voltage detection with optional reset or interrupt
– Illegal opcode detection with reset
– Illegal address detection with reset
•
64-pin quad flat pack (QFP), 64-pin low-profile quad flat pack
(LQFP), 52-pin low-profile quad flat pack (LQFP), and die form
•
Specific features of the MC68HC908LJ12 in 52-pin LQFP are:
– 20 general-purpose I/Os only
– High current 8-mA sink capability on PTB2–PTB3 only
– 4-bit keyboard wakeup port with programmable pullup
– No serial peripheral interface module (SPI)
– No TIM2 input capture/output compare pins
– 4-channel analog-to-digital converter only
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
General Description
35
General Description
Features of the CPU08 include the following:
•
Enhanced HC05 programming model
•
Extensive loop control functions
•
16 addressing modes (eight more than the HC05)
•
16-bit Index register and stack pointer
•
Memory-to-memory data transfers
•
Fast 8 × 8 multiply instruction
•
Fast 16/8 divide instruction
•
Binary-coded decimal (BCD) instructions
•
Optimization for controller applications
•
Efficient C language support
1.4 MCU Block Diagram
Figure 1-1 shows the structure of the MC68HC908LJ12.
Technical Data
36
MC68HC908LJ12 — Rev. 2.1
General Description
Freescale Semiconductor
General Description
INTERNAL BUS
USER FLASH — 12,288 BYTES
USER RAM — 512 BYTES
32.768-kHz OSCILLATOR
CGMXFC
PHASE-LOCKED LOOP
SYSTEM INTEGRATION
MODULE
* IRQ
EXTERNAL INTERRUPT
MODULE
DDRB
2-CHANNEL TIMER INTERFACE
MODULE 2
SERIAL COMMUNICATIONS
INTERFACE MODULE
(WITH INFRARED
ENCODER/DECODER)
REAL TIME CLOCK
MODULE
* RST
PTC7/FP26
PTC6/FP25
PTC5/FP24
PTC4/FP23
PTC3/FP22
PTC2/FP21
PTC1/FP20
PTC0/FP19
2-CHANNEL TIMER INTERFACE
MODULE 1
DDRC
CLOCK GENERATOR MODULE
OSC1
OSC2
PTB7/ADC5
PTB6/ADC4
PTB5/T2CH1‡
PTB4/T2CH0‡
PTB3/T1CH1‡
PTB2/T1CH0‡
PTB1/RxD†
PTB0/TxD†
10-BIT ANALOG-TO-DIGITAL
CONVERTER MODULE
MONITOR ROM — 960 BYTES
USER FLASH VECTOR SPACE — 48 BYTES
PORTA
CONTROL AND STATUS REGISTERS — 96 BYTES
KEYBOARD INTERRUPT
MODULE
PORTB
ARITHMETIC/LOGIC
UNIT (ALU)
PTA7/ADC3
PTA6/ADC2
PTA5/ADC1
PTA4/ADC0
PTA3/KBI3**
PTA2/KBI2**
PTA1/KBI1**
PTA0/KBI0**
PORTC
CPU
REGISTERS
DDRA
M68HC08 CPU
LIQUID CRYSTAL DISPLAY
DRIVER MODULE
#
FP1–FP18
BP0–BP2
COMPUTER OPERATING
PROPERLY MODULE
VDD
POWER
VSS
ADC REFERENCE
PORTD
LOW-VOLTAGE INHIBIT
MODULE
VDDA
VREFH
VREFL
SERIAL PERIPHERAL
INTERFACE MODULE
DDRD
POWER-ON RESET
MODULE
FP0/BP3
PTD7/KBI7**
PTD6/KBI6**
PTD5/KBI5**
PTD4/KBI4**
PTD3/SPSCK
PTD2/MOSI
PTD1/MISO
PTD0/SS
#
* Pin contains integrated pullup device.
** Pin contains integrated pullup device if configured as KBI.
†
High current sink pin, 15mA.
‡
High current sink pin, 8mA.
# Pins available on 64-pin packages only.
Figure 1-1. MC68HC908LJ12 Block Diagram
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
General Description
37
General Description
BP1
BP0
PTB5/T2CH1
PTB4/T2CH0
PTB3/T1CH1
PTB2/T1CH0
PTB1/RxD
PTB0/TxD
CGMXFC
OSC2
OSC1
VSS
VDD
62
61
60
59
58
57
56
55
54
53
52
51
50
FP0/BP3
1
49
VDDA
BP2
63
64
PTD4/KBI4
1.5 Pin Assignments
48
VREFL
FP7
9
40
PTA3/KBI3
FP8
10
39
PTA2/KBI2
PTD6/KBI6
11
38
PTA1/KBI1
PTD7/KBI7
12
37
PTA0/KBI0
FP9
13
36
PTC7/FP26
FP10
14
35
PTC6/FP25
FP11
15
34
PTC5/FP24
PTD3/SPSCK
PTD0/SS
32
33
RST
16
17
FP12
31
PTA4/ADC0
IRQ
41
30
8
PTC4/FP23
FP6
29
PTA5/ADC1
PTC3/FP22
42
28
7
PTC2/FP21
FP5
27
PTA6/ADC2
PTC1/FP20
43
26
6
PTD1/MISO
FP4
25
PTA7/ADC3
PTD2/MOSI
44
24
5
PTC0/FP19
FP3
23
PTB6/ADC4
FP18
45
22
4
FP17
FP2
21
PTB7/ADC5
FP16
46
20
3
FP15
FP1
19
VREFH
FP14
47
18
2
FP13
PTD5/KBI5
Figure 1-2. 64-Pin QFP and 64-Pin LQFP Pin Assignment
Technical Data
38
MC68HC908LJ12 — Rev. 2.1
General Description
Freescale Semiconductor
BP0
PTB3/T1CH1
PTB2/T1CH0
PTB1/RxD
PTB0/TxD
CGMXFC
OSC2
OSC1
VSS
VDD
50
49
48
47
46
45
44
43
42
41
FP0/BP3
1
40
VDDA
BP1
51
52
BP2
General Description
39
VREFL
33
PTA3/KBI3
FP7
8
32
PTA2/KBI2
FP8
9
31
PTA1/KBI1
FP9
10
30
PTA0/KBI0
FP10
11
29
PTC7/FP26
FP11
12
28
PTC6/FP25
FP13
PTC5/FP24
26
27
RST
13
14
FP12
25
7
IRQ
FP6
24
PTA4/ADC0
PTC4/FP23
34
23
6
PTC3/FP22
FP5
22
PTA5/ADC1
PTC2/FP21
35
21
5
PTC1/FP20
FP4
20
PTA6/ADC2
PTC0/FP19
36
19
4
FP18
FP3
18
PTA7/ADC3
FP17
37
17
3
FP16
FP2
16
VREFH
FP15
38
15
2
FP14
FP1
Pins not available on 52-LQFP package:
PTB7ADC5
PTD7/KBI7
PTB6/ADC4
PTD6/KBI6
PTB5/T2CH1
PTD5/KBI5
PTB4/T2CH0
PTD4/KBI4
PTD3/SPSCK
PTD2/MOSI
PTD1/MISO
PTD0/SS
Internal pads are unconnected.
Figure 1-3. 52-Pin LQFP Pin Assignment
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
General Description
39
General Description
1.6 Pin Functions
Description of pin functions are provided here.
1.6.1 Power Supply Pins (VDD and VSS)
VDD and VSS are the power supply and ground pins. The MCU operates
from a single power supply.
Fast signal transitions on MCU pins place high, short-duration current
demands on the power supply. To prevent noise problems, take special
care to provide power supply bypassing at the MCU as Figure 1-4
shows. Place the C1 bypass capacitor as close to the MCU as possible.
Use a high-frequency-response ceramic capacitor for C1. C2 is an
optional bulk current bypass capacitor for use in applications that require
the port pins to source high current levels. VSS must be grounded for
proper MCU operation.
1.6.2 Analog Power Supply Pin (VDDA)
VDDA is the voltage supply for the analog parts of the MCU. Connect the
VDDA pin to the same voltage potential as VDD. For maximum noise
immunity, route VDDA via a separate trace and place bypass capacitors
as close as possible to the package (see Figure 1-4).
MCU
VDD
0.1 µF
VSS
VDDA
0.1 µF
C1(a)
C1(b)
+
+
C2(a)
C2(b)
VDD
NOTE: Component values shown
represent typical applications.
VDD
Figure 1-4. Power Supply Bypassing
Technical Data
40
MC68HC908LJ12 — Rev. 2.1
General Description
Freescale Semiconductor
General Description
1.6.3 Oscillator Pins (OSC1 and OSC2)
The OSC1 and OSC2 pins are the connections for the on-chip oscillator
circuit. The OSC1 pin contains a schmitt-trigger and a spike filter for
improved EMC performance. See Section 7. Oscillator (OSC).
1.6.4 External Reset Pin (RST)
A logic 0 on the RST pin forces the MCU to a known start-up state. RST
is bidirectional, allowing a reset of the entire system. It is driven low when
any internal reset source is asserted. A schmitt-trigger and a spike filter
is associated with this pin so that the device is more robust to EMC
noise.This pin also contains an internal pullup resistor. See Section 9.
System Integration Module (SIM).
1.6.5 External Interrupt Pin (IRQ)
IRQ is an asynchronous external interrupt pin. This pin contains an
internal pullup resistor. See Section 18. External Interrupt (IRQ).
1.6.6 External Filter Capacitor Pin (CGMXFC)
CGMXFC is an external filter capacitor connection for the CGM. See
Section 8. Clock Generator Module (CGM).
1.6.7 ADC Voltage High Reference Pin (VREFH)
VREFH is the voltage input pin for the ADC voltage high reference. See
Section 15. Analog-to-Digital Converter (ADC)
1.6.8 ADC Voltage Low Reference Pin (VREFL)
VREFL is the voltage input pin for the ADC voltage low reference. See
Section 15. Analog-to-Digital Converter (ADC)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
General Description
41
General Description
1.6.9 Port A Input/Output (I/O) Pins (PTA7–PTA0)
PTA7–PTA0 are special function, bidirectional port pins (Section 17.).
PTA7/ADC3–PTA4/ADC0 are shared with the ADC (Section 15.), and
PTA3/KBI3–PTA0/KBI0 are shared with the KBI module (Section 19.).
1.6.10 Port B I/O Pins (PTB7–PTB0)
PTB7–PTB0 are special function, bidirectional port pins (Section 17.).
PTB0/TxD–PTB1/RxD are shared with the SCI module (Section 13.),
PTB5/T2CH1–PTB4/T2CH0 are shared with the TIM2 (Section 11.),
PTB3/T1CH1–PTB2/T1CH0 are shared with the TIM1(Section 11.),
PTB6/ADC4–PTB7/ADC5 are shared with the ADC (Section 15.).
1.6.11 Port C I/O Pins (PTC7–PTC0)
PTC7–PTC0 are special function, bidirectional port pins (Section 17.).
PTC7/FP26–PTC0/FP19 are shared with the LCD frontplane drivers
(Section 16.).
1.6.12 Port D I/O Pins (PTD7–PTD0)
PTD7–PTD0 are special function, bidirectional port pins (Section 17.).
PTD7/KBI7–PTD4/KBI4 are shared with KBI module (Section 19.).
PTD3/SPSCK–PTD0/SS are shared with SPI module (Section 14.).
1.6.13 LCD Backplane and Frontplane (BP0–BP2, FP0/BP3, FP1–FP18)
BP0–BP2 are the LCD backplane driver pins and FP1– FP18 are the
frontplane driver pins. FP0/BP3 is the shared driver pin between FP0
and BP3 (Section 16.).
Technical Data
42
MC68HC908LJ12 — Rev. 2.1
General Description
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 2. Memory Map
2.1 Contents
2.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.3
Unimplemented Memory Locations . . . . . . . . . . . . . . . . . . . . . 43
2.4
Reserved Memory Locations . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5
Input/Output (I/O) Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.2 Introduction
The CPU08 can address 64k-bytes of memory space. The memory
map, shown in Figure 2-1, includes:
•
12,288 bytes of user FLASH memory
•
512 bytes of random-access memory (RAM)
•
48 bytes of user-defined vectors
•
960 bytes of monitor ROM
2.3 Unimplemented Memory Locations
Accessing an unimplemented location can cause an illegal address
reset if illegal address resets are enabled. In the memory map
(Figure 2-1) and in register figures in this document, unimplemented
locations are shaded.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
43
Memory Map
2.4 Reserved Memory Locations
Accessing a reserved location can have unpredictable effects on MCU
operation. In the Figure 2-1 and in register figures in this document,
reserved locations are marked with the word Reserved or with the
letter R.
2.5 Input/Output (I/O) Section
Most of the control, status, and data registers are in the zero page area
of $0000–$005F. Additional I/O registers have these addresses:
•
$FE00; SIM break status register, SBSR
•
$FE01; SIM reset status register, SRSR
•
$FE02; Reserved
•
$FE03; SIM break flag control register, SBFCR
•
$FE04; Interrupt status register 1, INT1
•
$FE05; Interrupt status register 2, INT2
•
$FE06; Interrupt status register 3, INT3
•
$FE07; Reserved
•
$FE08; FLASH control register, FLCR
•
$FE09; FLASH block protect register, FLBPR
•
$FE0A; Reserved
•
$FE0B; Reserved
•
$FE0C; Break address register high, BRKH
•
$FE0D; Break address register low, BRKL
•
$FE0E; Break status and control register, BRKSCR
•
$FE0F; LVI status register, LVISR
•
$FFFF; COP control register, COPCTL
Data registers are shown in Figure 2-2. Table 2-1 is a list of vector
locations.
Technical Data
44
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Memory Map
$0000
↓
$005F
I/O Registers
96 Bytes
$0060
↓
$025F
RAM
512 Bytes
$0260
↓
$BFFF
Unimplemented
48,544 Bytes
$C000
↓
$EFFF
FLASH Memory
12,288 Bytes
$F000
↓
$FBFF
Unimplemented
3,072 Bytes
$FC00
↓
$FDFF
Monitor ROM 1
512 Bytes
$FE00
SIM Break Status Register (SBSR)
$FE01
SIM Reset Status Register (SRSR)
$FE02
Reserved
$FE03
SIM Break Flag Control Register (SBFCR)
$FE04
Interrupt Status Register 1 (INT1)
$FE05
Interrupt Status Register 2 (INT2)
$FE06
Interrupt Status Register 3 (INT3)
$FE07
Reserved
$FE08
FLASH Control Register (FLCR)
$FE09
FLASH Block Protect Register (FLBPR)
$FE0A
Reserved
$FE0B
Reserved
$FE0C
Break Address Register High (BRKH)
$FE0D
Break Address Register Low (BRKL)
$FE0E
Break Status and Control Register (BRKSCR)
$FE0F
LVI Status Register (LVISR)
$FE10
↓
$FFCF
Monitor ROM 2
448 Bytes
$FFD0
↓
$FFFF
FLASH Vectors
48 Bytes
Figure 2-1. Memory Map
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
45
Memory Map
Addr.
Register Name
$0000
Read:
Port A Data Register
Write:
(PTA)
Reset:
$0001
$0002
$0003
Read:
Port B Data Register
Write:
(PTB)
Reset:
Read:
Port C Data Register
Write:
(PTC)
Reset:
Read:
Port D Data Register
Write:
(PTD)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
U
U
U
U
U
U
U
U
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
U
U
U
U
U
U
U
U
PTC7
PTC6
PTC5
PTC4
PTC3
PTC2
PTC1
PTC0
U
U
U
U
U
U
U
U
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
U
U
U
U
U
U
U
U
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
= Unimplemented
R
Read:
DDRA7
Data Direction Register A
$0004
Write:
(DDRA)
Reset:
0
Read:
DDRB7
Data Direction Register B
Write:
$0005
(DDRB)
Reset:
0
Read:
DDRC7
Data Direction Register C
$0006
Write:
(DDRC)
Reset:
0
Read:
DDRD7
Data Direction Register D
$0007
Write:
(DDRD)
Reset:
0
Read:
$0008
Unimplemented Write:
Reset:
Read:
$0009
Unimplemented Write:
Reset:
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 1 of 12)
Technical Data
46
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Memory Map
Addr.
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
0
0
LEDB5
LEDB4
LEDB3
LEDB2
LEDB1
LEDB0
0
0
0
0
0
0
0
0
SPRIE
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
0
1
0
1
0
0
0
OVRF
MODF
SPTE
MODFEN
SPR1
SPR0
Read:
$000A
Unimplemented Write:
Reset:
Read:
$000B
Unimplemented Write:
Reset:
$000C
Read:
Port B LED Control
Register Write:
(LEDB)
Reset:
Read:
$000D
Unimplemented Write:
Reset:
$000E
Unimplemented
Read:
Write:
Reset:
Read:
$000F
Unimplemented Write:
Reset:
$0010
$0011
$0012
$0013
Read:
SPI Control Register
Write:
(SPCR)
Reset:
Read:
SPI Status and Control
Register Write:
(SPSCR)
Reset:
Read:
SPI Data Register
Write:
(SPDR)
Reset:
SPRF
0
0
0
0
1
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
U
U
U
U
U
U
U
U
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
= Unimplemented
R
Read:
LOOPS
SCI Control Register 1
Write:
(SCC1)
Reset:
0
U = Unaffected
ERRIE
ENSCI
0
0
0
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 2 of 12)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
47
Memory Map
Addr.
$0014
$0015
$0016
$0017
$0018
$0019
$001A
$001B
$001C
$001D
Register Name
Read:
SCI Control Register 2
Write:
(SCC2)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
T8
DMARE
DMATE
ORIE
NEIE
FEIE
PEIE
Read:
SCI Control Register 3
Write:
(SCC3)
Reset:
R8
U
U
0
0
0
0
0
0
Read:
SCI Status Register 1
Write:
(SCS1)
Reset:
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
1
1
0
0
0
0
0
0
Read:
SCI Status Register 2
Write:
(SCS2)
Reset:
0
0
0
0
0
0
BKF
RPF
0
0
0
0
0
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
U
U
U
U
U
U
U
U
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
0
0
0
0
R
TNP1
TNP0
IREN
0
0
0
0
0
0
0
0
0
0
0
0
KEYF
0
IMASKK
MODEK
Read:
SCI Data Register
Write:
(SCDR)
Reset:
Read:
SCI Baud Rate Register
Write:
(SCBR)
Reset:
Read:
SCI Infrared Control
Register Write:
(SCIRCR)
Reset:
Keyboard Status and Read:
Control Register
Write:
(KBSCR)
Reset:
Read:
Keyboard Interrupt
Enable Register Write:
(KBIER)
Reset:
Read:
Configuration Register 2
Write:
(CONFIG2)†
Reset:
U = Unaffected
CKS
0
R
0
ACKK
0
0
0
0
0
0
0
0
KBIE7
KBIE6
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
0
STOP_
IRCDIS
PCEH
PCEL
LVISEL1
LVISEL0
0
0
0
0
0††
0††
= Unimplemented
R
STOP_
DIV2CLK
XCLKEN
0
X = Indeterminate
0
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 3 of 12)
Technical Data
48
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Memory Map
Addr.
$001E
$001F
Register Name
Read:
IRQ Status and Control
Register Write:
(INTSCR)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
IRQF
0
IMASK
MODE
0
0
0
SSREC
STOP
COPD
0
0
0
PS2
PS1
PS0
ACK
0
Read:
COPRS
Configuration Register 1
Write:
†
(CONFIG1)
Reset:
0
0
0
0
LVISTOP LVIRSTD LVIPWRD
0
0
TOIE
TSTOP
0
0
1
0
0
0
† One-time writable register after each reset.
†† Reset by POR only.
$0020
$0021
$0022
$0023
$0024
Read:
Timer 1 Status and
Control Register Write:
(T1SC)
Reset:
TOF
0
0
1
0
0
0
0
0
Read:
Timer 1 Counter
Register High Write:
(T1CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 1 Counter
Register Low Write:
(T1CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
= Unimplemented
R
Read:
Timer 1 Counter Modulo
Register High Write:
(T1MODH)
Reset:
Read:
Timer 1 Counter Modulo
Register Low Write:
(T1MODL)
Reset:
Read:
Timer 1 Channel 0 Status
$0025
and Control Register Write:
(T1SC0)
Reset:
$0026
Read:
Timer 1 Channel 0
Register High Write:
(T1CH0H)
Reset:
U = Unaffected
0
CH0F
0
X = Indeterminate
TRST
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 4 of 12)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
49
Memory Map
Addr.
$0027
Register Name
Read:
Timer 1 Channel 0
Register Low Write:
(T1CH0L)
Reset:
Read:
Timer 1 Channel 1 Status
$0028
and Control Register Write:
(T1SC1)
Reset:
$0029
$002A
$002B
Read:
Timer 1 Channel 1
Register High Write:
(T1CH1H)
Reset:
Read:
Timer 1 Channel 1
Register Low Write:
(T1CH1L)
Reset:
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
CH1F
0
CH1IE
0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
TOIE
TSTOP
0
0
PS2
PS1
PS0
TOF
0
0
1
0
0
0
0
0
Read:
Timer 2 Counter
Register High Write:
(T2CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 2 Counter
Register Low Write:
(T2CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
= Unimplemented
R
$002D
$002F
6
Read:
Timer 2 Status and
Control Register Write:
(T2SC)
Reset:
$002C
$002E
Bit 7
Read:
Timer 2 Counter Modulo
Register High Write:
(T2MODH)
Reset:
Read:
Timer 2 Counter Modulo
Register Low Write:
(T2MODL)
Reset:
Read:
Timer 2 Channel 0 Status
$0030
and Control Register Write:
(T2SC0)
Reset:
U = Unaffected
0
CH0F
0
0
X = Indeterminate
TRST
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 5 of 12)
Technical Data
50
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Memory Map
Addr.
$0031
$0032
Register Name
Read:
Timer 2 Channel 0
Register High Write:
(T2CH0H)
Reset:
Read:
Timer 2 Channel 0
Register Low Write:
(T2CH0L)
Reset:
Read:
Timer 2 Channel 1 Status
$0033
and Control Register Write:
(T2SC1)
Reset:
$0034
$0035
$0036
$0037
$0038
$0039
$003A
Read:
Timer 2 Channel 1
Register High Write:
(T2CH1H)
Reset:
Read:
Timer 2 Channel 1
Register Low Write:
(T2CH1L)
Reset:
Read:
PLL Control Register
Write:
(PTCL)
Reset:
Read:
PLL Bandwidth Control
Register Write:
(PBWC)
Reset:
Read:
PLL Multiplier Select
Register High Write:
(PMSH)
Reset:
Read:
PLL Multiplier Select
Register Low Write:
(PMSL)
Reset:
Read:
PLL VCO Range Select
Register Write:
(PMRS)
Reset:
U = Unaffected
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
CH1F
0
CH1IE
0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
X
X
X
X
X
X
X
X
Bit 7
6
5
4
3
2
1
Bit 0
X
X
X
X
X
X
X
X
PLLON
BCS
PRE1
PRE0
VPR1
VPR0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
MUL11
MUL10
MUL9
MUL8
PLLIE
0
AUTO
PLLF
0
LOCK
ACQ
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MUL7
MUL6
MUL5
MUL4
MUL3
MUL2
MUL1
MUL0
0
1
0
0
0
0
0
0
VRS7
VRS6
VRS5
VRS4
VRS3
VRS2
VRS1
VRS0
0
1
0
0
0
0
0
0
= Unimplemented
R
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 6 of 12)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
51
Memory Map
Addr.
$003B
$003C
$003D
$003E
Register Name
Bit 7
6
5
4
Read:
PLL Reference Divider
Select Register Write:
(PMDS)
Reset:
0
0
0
0
0
0
0
Read:
ADC Status and Control
Register Write:
(ADSCR)
Reset:
COCO
AIEN
0
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
Read:
ADC Data Register Low
(ADRL) Write:
Reset:
$003F
Read:
ADC Clock Register
(ADCLK) Write:
Reset:
Unimplemented
$0040
3
2
1
Bit 0
RDS3
RDS2
RDS1
RDS0
0
0
0
0
1
ADCO
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
0
0
1
1
1
1
1
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
ADIV2
ADIV1
ADIV0
ADICLK
MODE1
MODE0
0
0
0
0
0
0
0
1
0
0
ALMIE
CHRIE
DAYIE
HRIE
MINIE
SECIE
TB1IE
TB2IE
0
0
0
0
0
0
0
0
0
0
R
CHRCLR
CHRE
RTCE
XTL2
XTL1
XTL0
0
0
0
0
0
0
0
0
ALMF
CHRF
DAYF
HRF
MINF
SECF
TB1F
TB2F
0
0
0
0
0
0
0
0
= Unimplemented
R
R
Read:
Write:
Reset:
Read:
Unimplemented Write:
$0041
Reset:
$0042
$0043
$0044
Read:
RTC Control Register 1
Write:
(RTCCR1)
Reset:
Read:
RTC Control Register 2
Write:
(RTCCR2)
Reset:
Read:
RTC Status Register
Write:
(RTCSR)
Reset:
U = Unaffected
X = Indeterminate
0
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 7 of 12)
Technical Data
52
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Memory Map
Addr.
$0045
$0046
$0047
$0048
$0049
$004A
$004B
$004C
$004D
$004E
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Read:
Alarm Minute Register
Write:
(ALMR)
Reset:
0
0
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
Read:
Alarm Hour Register
Write:
(ALHR)
Reset:
0
0
0
AH4
AH3
AH2
AH1
AH0
0
0
0
0
0
0
0
0
Read:
Second Register
Write:
(SECR)
Reset:
0
0
SEC5
SEC4
SEC3
SEC2
SEC1
SEC0
0
0
0
0
0
0
0
0
Read:
Minute Register
Write:
(MINR)
Reset:
0
0
MIN5
MIN4
MIN3
MIN2
MIN1
MIN0
0
0
0
0
0
0
0
0
Read:
Hour Register
Write:
(HRR)
Reset:
0
0
0
HR4
HR3
HR2
HR1
HR0
0
0
0
0
0
0
0
0
Read:
Day Register
Write:
(DAYR)
Reset:
0
0
0
DAY4
DAY3
DAY2
DAY1
DAY0
0
0
0
0
0
0
0
1
Read:
Month Register
Write:
(MTHR)
Reset:
0
0
0
0
MTH3
MTH2
MTH1
MTH0
0
0
0
0
0
0
0
1
YR7
YR6
YR5
YR4
YR3
YR2
YR1
YR0
0
0
0
0
0
0
0
0
0
0
0
0
0
DOW2
DOW1
DOW0
0
0
0
0
0
0
0
0
0
CHR6
CHR5
CHR4
CHR3
CHR2
CHR1
CHR0
0
0
0
0
0
0
0
0
= Unimplemented
R
Read:
Year Register
Write:
(YRR)
Reset:
Read:
Day-Of-Week Register
Write:
(DOWR)
Reset:
Read:
Chronograph Data
Register Write:
(CHRR)
Reset:
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 8 of 12)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
53
Memory Map
Addr.
$004F
Register Name
Bit 7
Read:
LCD Clock Register
Write:
(LCDCLK)
Reset:
Read:
$0050
Reserved Write:
6
5
4
3
2
1
Bit 0
FCCTL1
FCCTL0
DUTY1
DUTY0
LCLK2
LCLK1
LCLK0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
FC
LC
LCCON3
LCCON2
LCCON1
LCCON0
0
Reset:
$0051
$0052
$0053
$0054
$0055
$0056
$0057
$0058
Read:
LCD Control Register
Write:
(LCDCR)
Reset:
Read:
LCD Data Register 1
Write:
(LDAT1)
Reset:
Read:
LCD Data Register 2
Write:
(LDAT2)
Reset:
Read:
LCD Data Register 3
Write:
(LDAT3)
Reset:
Read:
LCD Data Register 4
Write:
(LDAT4)
Reset:
Read:
LCD Data Register 5
Write:
(LDAT5)
Reset:
Read:
LCD Data Register 6
Write:
(LDAT6)
Reset:
Read:
LCD Data Register 7
Write:
(LDAT7)
Reset:
U = Unaffected
LCDE
0
0
0
0
0
0
0
0
0
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
U
U
U
U
U
U
U
U
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
U
U
U
U
U
U
U
U
F5B3
F5B2
F5B1
F5B0
F4B3
F4B2
F4B1
F4B0
U
U
U
U
U
U
U
U
F7B3
F7B2
F7B1
F7B0
F6B3
F6B2
F6B1
F6B0
U
U
U
U
U
U
U
U
F9B3
F9B2
F9B1
F9B0
F8B3
F8B2
F8B1
F8B0
U
U
U
U
U
U
U
U
F11B3
F11B2
F11B1
F11B0
F10B3
F10B2
F10B1
F10B0
U
U
U
U
U
U
U
U
F13B3
F13B2
F13B1
F13B0
F12B3
F12B2
F12B1
F12B0
U
U
U
U
U
U
U
U
= Unimplemented
R
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 9 of 12)
Technical Data
54
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Memory Map
Addr.
Register Name
$0059
Read:
LCD Data Register 8
Write:
(LDAT8)
Reset:
$005A
$005B
$005C
$005D
$005E
$005F
Read:
LCD Data Register 9
Write:
(LDAT9)
Reset:
Read:
LCD Data Register 10
Write:
(LDAT10)
Reset:
Read:
LCD Data Register 11
Write:
(LDAT11)
Reset:
Read:
LCD Data Register 12
Write:
(LDAT12)
Reset:
Read:
LCD Data Register 13
Write:
(LDAT13)
Reset:
Read:
LCD Data Register 14
Write:
(LDAT14)
Reset:
Read:
SIM Break Status Register
$FE00
Write:
(SBSR)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
F15B3
F15B2
F15B1
F15B0
F14B3
F14B2
F14B1
F14B0
U
U
U
U
U
U
U
U
F17B3
F17B2
F17B1
F17B0
F16B3
F16B2
F16B1
F16B0
U
U
U
U
U
U
U
U
F19B3
F19B2
F19B1
F19B0
F18B3
F18B2
F18B1
F18B0
U
U
U
U
U
U
U
U
F21B3
F21B2
F21B1
F21B0
F20B3
F20B2
F20B1
F20B0
U
U
U
U
U
U
U
U
F23B3
F23B2
F23B1
F23B0
F22B3
F22B2
F22B1
F22B0
U
U
U
U
U
U
U
U
F25B3
F25B2
F25B1
F25B0
F24B3
F24B2
F24B1
F24B0
U
U
U
U
U
U
U
U
F26B3
F26B2
F26B1
F26B0
U
U
U
U
U
U
U
U
R
R
R
R
R
R
SBSW
Note
R
0
Note: Writing a logic 0 clears SBSW.
Read:
SIM Reset Status Register
$FE01
Write:
(SRSR)
POR:
U = Unaffected
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
= Unimplemented
R
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 10 of 12)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
55
Memory Map
Addr.
Register Name
Read:
$FE02
Reserved Write:
Bit 7
6
5
4
3
2
1
Bit 0
R
R
R
R
R
R
R
R
BCFE
R
R
R
R
R
R
R
Reset:
$FE03
Read:
SIM Break Flag Control
Register Write:
(SBFCR)
Reset:
0
Read:
Interrupt Status Register 1
Write:
$FE04
(INT1)
Reset:
IF6
IF5
IF4
IF3
IF2
IF1
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 2
$FE05
Write:
(INT2)
Reset:
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 3
$FE06
Write:
(INT3)
Reset:
0
0
0
0
0
IF17
IF16
IF15
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
HVEN
MASS
ERASE
PGM
0
0
0
0
0
0
0
0
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
= Unimplemented
R
Read:
$FE07
Reserved Write:
Reset:
$FE08
$FE09
Read:
FLASH Control Register
Write:
(FLCR)
Reset:
Read:
FLASH Block Protect
Register Write:
(FLBPR)
Reset:
Read:
$FE0A
Reserved Write:
Reset:
Read:
$FE0B
Reserved Write:
Reset:
U = Unaffected
X = Indeterminate
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 11 of 12)
Technical Data
56
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Memory Map
Addr.
$FE0C
$FE0D
Register Name
Read:
Break Address
Register High Write:
(BRKH)
Reset:
Read:
Break Address
Register Low Write:
(BRKL)
Reset:
Read:
Break Status and Control
$FE0E
Register Write:
(BRKSCR)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
BRKE
BRKA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
LVIIF
0
0
0
0
0
0
0
0
0
Read: LVIOUT
Low-Voltage Inhibit Status
$FE0F
Register Write:
(LVISR)
Reset:
0
$FFFF
LVIIE
0
Read:
COP Control Register
Write:
(COPCTL)
Reset:
U = Unaffected
LVIIAK
0
0
Low byte of reset vector
Writing clears COP counter (any value)
Unaffected by reset
X = Indeterminate
= Unimplemented
R
= Reserved
Figure 2-2. Control, Status, and Data Registers (Sheet 12 of 12)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Memory Map
57
Memory Map
.
Table 2-1. Vector Addresses
Priority
INT Flag
Lowest
IF17
IF16
IF15
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
IF6
IF5
IF4
IF3
IF2
IF1
—
Highest
—
Address
$FFDA
Real Time Clock Vector (High)
$FFDB
Real Time Clock Vector (Low)
$FFDC
ADC Conversion Complete Vector (High)
$FFDD
ADC Conversion Complete Vector (Low)
$FFDE
Keyboard Vector (High)
$FFDF
Keyboard Vector (Low)
$FFE0
SCI Transmit Vector (High)
$FFE1
SCI Transmit Vector (Low)
$FFE2
SCI Receive Vector (High)
$FFE3
SCI Receive Vector (Low)
$FFE4
SCI Error Vector (High)
$FFE5
SCI Error Vector (Low)
$FFE6
SPI Receive Vector (High)
$FFE7
SPI Receive Vector (Low)
$FFE8
SPI Transmit Vector (High)
$FFE9
SPI Transmit Vector (Low)
$FFEA
TIM2 Overflow Vector (High)
$FFEB
TIM2 Overflow Vector (Low)
$FFEC
TIM2 Channel 1 Vector (High)
$FFED
TIM2 Channel 1 Vector (Low)
$FFEE
TIM2 Channel 0 Vector (High)
$FFEF
TIM2 Channel 0 Vector (Low)
$FFF0
TIM1 Overflow Vector (High)
$FFF1
TIM1 Overflow Vector (Low)
$FFF2
TIM1 Channel 1 Vector (High)
$FFF3
TIM1 Channel 1 Vector (Low)
$FFF4
TIM1 Channel 0 Vector (High)
$FFF5
TIM1 Channel 0 Vector (Low)
$FFF6
PLL Vector (High)
$FFF7
PLL Vector (Low)
$FFF8
LVI Vector (High)
$FFF9
LVI Vector (Low)
$FFFA
IRQ Vector (High)
$FFFB
IRQ Vector (Low)
$FFFC
SWI Vector (High)
$FFFD
SWI Vector (Low)
$FFFE
Reset Vector (High)
$FFFF
Reset Vector (Low)
Technical Data
58
Vector
MC68HC908LJ12 — Rev. 2.1
Memory Map
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 3. Random-Access Memory (RAM)
3.1 Contents
3.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
3.2 Introduction
This section describes the 512 bytes of RAM (random-access memory).
3.3 Functional Description
Addresses $0060 through $025F are RAM locations. The location of the
stack RAM is programmable. The 16-bit stack pointer allows the stack to
be anywhere in the 64k-byte memory space.
NOTE:
For correct operation, the stack pointer must point only to RAM
locations.
Within page zero are 160 bytes of RAM. Because the location of the
stack RAM is programmable, all page zero RAM locations can be used
for I/O control and user data or code. When the stack pointer is moved
from its reset location at $00FF out of page zero, direct addressing mode
instructions can efficiently access all page zero RAM locations. Page
zero RAM, therefore, provides ideal locations for frequently accessed
global variables.
Before processing an interrupt, the CPU uses five bytes of the stack to
save the contents of the CPU registers.
NOTE:
For M6805 compatibility, the H register is not stacked.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Random-Access Memory (RAM)
59
Random-Access Memory (RAM)
During a subroutine call, the CPU uses two bytes of the stack to store
the return address. The stack pointer decrements during pushes and
increments during pulls.
NOTE:
Be careful when using nested subroutines. The CPU may overwrite data
in the RAM during a subroutine or during the interrupt stacking
operation.
Technical Data
60
MC68HC908LJ12 — Rev. 2.1
Random-Access Memory (RAM)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 4. FLASH Memory (FLASH)
4.1 Contents
4.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
4.4
FLASH Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5
FLASH Page Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6
FLASH Mass Erase Operation . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7
FLASH Program Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . .66
4.8
FLASH Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
4.8.1
FLASH Block Protect Register . . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Introduction
This section describes the operation of the embedded FLASH memory.
This memory can be read, programmed, and erased from a single
external supply. The program and erase operations are enabled through
the use of an internal charge pump.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
FLASH Memory (FLASH)
61
FLASH Memory (FLASH)
Addr.
$FE08
$FE09
Register Name
Bit 7
6
5
4
0
0
0
0
0
0
0
BPR7
BPR6
0
0
Read:
FLASH Control Register
Write:
(FLCR)
Reset:
Read:
FLASH Block Protect
Register Write:
(FLBPR)
Reset:
3
2
1
Bit 0
HVEN
MASS
ERASE
PGM
0
0
0
0
0
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
0
0
0
0
0
0
= Unimplemented
Figure 4-1. FLASH I/O Register Summary
4.3 Functional Description
The FLASH memory consists of an array of 12,288 bytes for user
memory plus a block of 48 bytes for user interrupt vectors. An erased bit
reads as logic 1 and a programmed bit reads as a logic 0. The FLASH
memory page size is defined as 128 bytes, and is the minimum size that
can be erased in a page erase operation. Program and erase operations
are facilitated through control bits in FLASH control register (FLCR). The
address ranges for the FLASH memory are:
•
$C000–$EFFF; user memory; 12,288 bytes
•
$FFD0–$FFFF; user interrupt vectors; 48 bytes
Programming tools are available from Freescale. Contact your local
Freescale representative for more information.
NOTE:
A security feature prevents viewing of the FLASH contents.1
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Technical Data
62
MC68HC908LJ12 — Rev. 2.1
FLASH Memory (FLASH)
Freescale Semiconductor
FLASH Memory (FLASH)
4.4 FLASH Control Register
The FLASH control register (FLCR) controls FLASH program and erase
operations.
Address:
Read:
$FE08
Bit 7
6
5
4
0
0
0
0
0
0
0
0
Write:
Reset:
3
2
1
Bit 0
HVEN
MASS
ERASE
PGM
0
0
0
0
Figure 4-2. FLASH Control Register (FLCR)
HVEN — High Voltage Enable Bit
This read/write bit enables the charge pump to drive high voltages for
program and erase operations in the array. HVEN can only be set if
either PGM = 1 or ERASE = 1 and the proper sequence for program
or erase is followed.
1 = High voltage enabled to array and charge pump on
0 = High voltage disabled to array and charge pump off
MASS — Mass Erase Control Bit
This read/write bit configures the memory for mass erase operation or
block erase operation when the ERASE bit is set.
1 = Mass Erase operation selected
0 = Block Erase operation selected
ERASE — Erase Control Bit
This read/write bit configures the memory for erase operation.
ERASE is interlocked with the PGM bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Erase operation selected
0 = Erase operation not selected
PGM — Program Control Bit
This read/write bit configures the memory for program operation.
PGM is interlocked with the ERASE bit such that both bits cannot be
equal to 1 or set to 1 at the same time.
1 = Program operation selected
0 = Program operation not selected
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
FLASH Memory (FLASH)
63
FLASH Memory (FLASH)
4.5 FLASH Page Erase Operation
Use the following procedure to erase a page of FLASH memory. A page
consists of 128 consecutive bytes starting from addresses $xx00 or
$xx80. The 48-byte user interrupt vectors area also forms a page. The
48-byte user interrupt vectors cannot be erased by the page erase
operation because of security reasons. Mass erase is required to erase
this page.
1. Set the ERASE bit and clear the MASS bit in the FLASH control
register.
2. Write any data to any FLASH address within the page address
range desired.
3. Wait for a time, tnvs (at least 10µs).
4. Set the HVEN bit.
5. Wait for a time, terase (1ms).
6. Clear the ERASE bit.
7. Wait for a time, tnvh (5µs).
8. Clear the HVEN bit.
9. After time, trcv (1µs), the memory can be accessed again in read
mode.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
executing code from the FLASH memory; the code must be executed
from RAM. While these operations must be performed in the order as
shown, but other unrelated operations may occur between the steps.
Technical Data
64
MC68HC908LJ12 — Rev. 2.1
FLASH Memory (FLASH)
Freescale Semiconductor
FLASH Memory (FLASH)
4.6 FLASH Mass Erase Operation
Use the following procedure to erase the entire FLASH memory to read
as logic 1:
1. Set both the ERASE bit and the MASS bit in the FLASH control
register.
2. Write any data to any FLASH address within the FLASH memory
address range.
3. Wait for a time, tnvs (10µs).
4. Set the HVEN bit.
5. Wait for a time tmerase (4ms).
6. Clear the ERASE bit.
7. Wait for a time, tnvhl (100µs).
8. Clear the HVEN bit.
9. After time, trcv (1µs), the memory can be accessed again in read
mode.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
executing code from the FLASH memory; the code must be executed
from RAM. While these operations must be performed in the order as
shown, but other unrelated operations may occur between the steps.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
FLASH Memory (FLASH)
65
FLASH Memory (FLASH)
4.7 FLASH Program Operation
Programming of the FLASH memory is done on a row basis. A row
consists of 64 consecutive bytes starting from addresses $xx00, $xx40,
$xx80, or $xxC0. The procedure for programming a row of the FLASH
memory is outlined below:
1. Set the PGM bit. This configures the memory for program
operation and enables the latching of address and data for
programming.
2. Write any data to any FLASH address within the row address
range desired.
3. Wait for a time, tnvs (10µs).
4. Set the HVEN bit.
5. Wait for a time, tpgs (5µs).
6. Write data to the FLASH address to be programmed.
7. Wait for time, tprog (30µs).
8. Repeat step 6 and 7 until all the bytes within the row are
programmed.
9. Clear the PGM bit.
10. Wait for time, tnvh (5µs).
11. Clear the HVEN bit.
12. After time, trcv (1µs), the memory can be accessed again in read
mode.
This program sequence is repeated throughout the memory until all data
is programmed.
NOTE:
Programming and erasing of FLASH locations cannot be performed by
executing code from the FLASH memory; the code must be executed
from RAM. While these operations must be performed in the order as
shown, but other unrelated operations may occur between the steps. Do
not exceed tprog maximum. See 23.18 FLASH Memory
Characteristics.
Figure 4-3 shows a flowchart representation for programming the
FLASH memory.
Technical Data
66
MC68HC908LJ12 — Rev. 2.1
FLASH Memory (FLASH)
Freescale Semiconductor
FLASH Memory (FLASH)
1
Set PGM bit
Algorithm for programming
a row (64 bytes) of FLASH memory
2
Write any data to any FLASH address
within the row address range desired
3
Wait for a time, tnvs
4
Set HVEN bit
5
Wait for a time, tpgs
6
7
Write data to the FLASH address
to be programmed
Wait for a time, tprog
Completed
programming
this row?
Y
N
NOTE:
The time between each FLASH address change (step 6 to step 6), or
the time between the last FLASH address programmed
to clearing PGM bit (step 6 to step 9)
must not exceed the maximum programming
time, tPROG max.
9
Clear PGM bit
10
Wait for a time, tnvh
11
Clear HVEN bit
12
Wait for a time, trcv
This row program algorithm assumes the row/s
to be programmed are initially erased.
End of Programming
Figure 4-3. FLASH Programming Flowchart
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
FLASH Memory (FLASH)
67
FLASH Memory (FLASH)
4.8 FLASH Protection
Due to the ability of the on-board charge pump to erase and program the
FLASH memory in the target application, provision is made to protect
pages of memory from unintentional erase or program operations due to
system malfunction. This protection is done by use of a FLASH block
protect register (FLBPR). The FLBPR determines the range of the
FLASH memory which is to be protected. The range of the protected
area starts from a location defined by FLBPR and ends to the bottom of
the FLASH memory ($FFFF). When the memory is protected, the HVEN
bit cannot be set in either erase or program operations.
NOTE:
When the FLBPR is cleared (all 0’s), the entire FLASH memory is
protected from being programmed and erased. When all the bits are set,
the entire FLASH memory is accessible for program and erase.
4.8.1 FLASH Block Protect Register
The FLASH block protect register is implemented as an 8-bit I/O register.
The content of this register determine the starting location of the
protected range within the FLASH memory.
Address:
Read:
Write:
Reset:
$FE09
Bit 7
6
5
4
3
2
1
Bit 0
BPR7
BPR6
BPR5
BPR4
BPR3
BPR2
BPR1
BPR0
0
0
0
0
0
0
0
0
Figure 4-4. FLASH Block Protect Register (FLBPR)
BPR[7:0] — FLASH Block Protect Register Bit 7 to Bit 0
BPR[7:1] represent bits [13:7] of a 16-bit memory address. Bits
[15:14] are logic 1’s and bits [6:0] are logic 0’s.
16-bit memory address
Start address of FLASH block protect
1 1
0 0 0 0 0 0 0
BPR[7:1]
Figure 4-5. FLASH Block Protect Start Address
Technical Data
68
MC68HC908LJ12 — Rev. 2.1
FLASH Memory (FLASH)
Freescale Semiconductor
FLASH Memory (FLASH)
BPR0 is used only for BPR[7:0] = $FF, for no block protection.
The resultant 16-bit address is used for specifying the start address
of the FLASH memory for block protection. The FLASH is protected
from this start address to the end of FLASH memory, at $FFFF. With
this mechanism, the protect start address can be XX00 or XX80 (at
page boundaries — 128 bytes) within the FLASH memory.
Examples of protect start address:
BPR[7:0]
Start of Address of Protect Range
$00 or $01
$C000 (1100 0000 0000 0000)
The entire FLASH memory is protected.
$02 or $03
$C080 (1100 0000 1000 0000)
$04 or $05
$C100 (1100 0001 0000 0000)
$06 or $07
$C180 (1100 0001 1000 0000)
$08 or $09
$C200 (1100 0010 0000 0000)
and so on...
$F8 or $F9
$FE00 (1111 1110 0000 0000)
$FA or $FB
$FE80 (1111 1110 1000 0000)
$FC or $FD
$FF00 (1111 1111 0000 0000)
$FE
$FF80 (1111 1111 1000 0000)
$FF
The entire FLASH memory is not protected.
Note:
The end address of the protected range is always $FFFF.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
FLASH Memory (FLASH)
69
FLASH Memory (FLASH)
Technical Data
70
MC68HC908LJ12 — Rev. 2.1
FLASH Memory (FLASH)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 5. Configuration Registers (CONFIG)
5.1 Contents
5.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
5.4
Configuration Register 1 (CONFIG1) . . . . . . . . . . . . . . . . . . . . 73
5.5
Configuration Register 2 (CONFIG2) . . . . . . . . . . . . . . . . . . . . 75
5.2 Introduction
This section describes the configuration registers, CONFIG1 and
CONFIG2. The configuration registers enable or disable these options:
•
Computer operating properly module (COP)
•
COP timeout period (218 – 24 or 213 – 24 ICLK cycles)
•
Low-voltage inhibit (LVI) module power
•
LVI module reset
•
LVI module in stop mode
•
LVI module voltage trip point selection
•
STOP instruction
•
Stop mode recovery time (32 ICLK cycles or 4096 ICLK cycles)
•
Oscillator during stop mode
•
LCD frontplanes FP19–FP26 on port C
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Configuration Registers (CONFIG)
71
Configuration Registers (CONFIG)
Addr.
$001D
$001F
Register Name
Bit 7
6
0
STOP_
IRCDIS
0
0
Read:
Configuration Register 2
Write:
(CONFIG2)†
Reset:
Read:
COPRS
Configuration Register 1
† Write:
(CONFIG1)
Reset:
0
5
4
STOP_
DIV2CLK
XCLKEN
0
0
LVISTOP LVIRSTD LVIPWRD
0
0
1
3
2
1
Bit 0
PCEH
PCEL
LVISEL1
LVISEL0
0
0
0††
0††
SSREC
STOP
COPD
0
0
0
0
0
† One-time writable register after each reset.
†† Reset by POR only.
= Unimplemented
Figure 5-1. CONFIG Registers Summary
5.3 Functional Description
The configuration registers are used in the initialization of various
options. The configuration registers can be written once after each reset.
All of the configuration register bits are cleared during reset. Since the
various options affect the operation of the MCU, it is recommended that
these registers be written immediately after reset. The configuration
registers are located at $001D and $001F. The configuration registers
may be read at anytime.
NOTE:
The options except LVISEL[1:0] are one-time writable by the user after
each reset. The LVISEL[1:0] bits are one-time writable by the user only
after each POR (power-on reset). The CONFIG registers are not in the
FLASH memory but are special registers containing one-time writable
latches after each reset. Upon a reset, the CONFIG registers default to
predetermined settings as shown in Figure 5-2 and Figure 5-3.
Technical Data
72
MC68HC908LJ12 — Rev. 2.1
Configuration Registers (CONFIG)
Freescale Semiconductor
Configuration Registers (CONFIG)
5.4 Configuration Register 1 (CONFIG1)
Address:
$001F
Bit 7
Read:
Write:
Reset:
COPRS
0
6
5
4
LVISTOP LVIRSTD LVIPWRD
0
0
1
3
0
0
2
1
Bit 0
SSREC
STOP
COPD
0
0
0
= Unimplemented
Figure 5-2. Configuration Register 1 (CONFIG1)
COPRS — COP Rate Select
COPRS selects the COP time-out period. Reset clears COPRS. (See
Section 20. Computer Operating Properly (COP).)
1 = COP time out period = 213 – 24 ICLK cycles
0 = COP time out period = 218 – 24 ICLK cycles
LVISTOP — LVI Enable in Stop Mode
When the LVIPWRD bit is clear, setting the LVISTOP bit enables the
LVI to operate during stop mode. Reset clears LVISTOP. (See
Section 21. Low-Voltage Inhibit (LVI).)
1 = LVI enabled during stop mode
0 = LVI disabled during stop mode
LVIRSTD — LVI Reset Disable
LVIRSTD disables the reset signal from the LVI module. (See
Section 21. Low-Voltage Inhibit (LVI).)
1 = LVI module resets disabled
0 = LVI module resets enabled
LVIPWRD — LVI Power Disable Bit
LVIPWRD disables the LVI module. (See Section 21. Low-Voltage
Inhibit (LVI).) Reset sets LVIPWRD.
1 = LVI module power disabled
0 = LVI module power enabled
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Configuration Registers (CONFIG)
73
Configuration Registers (CONFIG)
SSREC — Short Stop Recovery
SSREC enables the CPU to exit stop mode with a delay of 32 ICLK
cycles instead of a 4096 ICLK cycle delay.
1 = Stop mode recovery after 32 ICLK cycles
0 = Stop mode recovery after 4096 ICLK cycles
NOTE:
Exiting stop mode by pulling reset will result in the long stop recovery.
If using an external crystal oscillator, do not set the SSREC bit.
NOTE:
When the LVISTOP is enabled, the system stabilization time for power
on reset and long stop recovery (both 4096 ICLK cycles) gives a delay
longer than the enable time for the LVI. There is no period where the
MCU is not protected from a low power condition. However, when using
the short stop recovery configuration option, the 32 ICLK delay is less
than the LVI’s turn-on time and there exists a period in start-up where the
LVI is not protecting the MCU.
STOP — STOP Instruction Enable
STOP enables the STOP instruction.
1 = STOP instruction enabled
0 = STOP instruction treated as illegal opcode
COPD — COP Disable Bit
COPD disables the COP module. (See Section 20. Computer
Operating Properly (COP).)
1 = COP module disabled
0 = COP module enabled
Technical Data
74
MC68HC908LJ12 — Rev. 2.1
Configuration Registers (CONFIG)
Freescale Semiconductor
Configuration Registers (CONFIG)
5.5 Configuration Register 2 (CONFIG2)
Address:
Read:
$001D
Bit 7
6
0
STOP_
IRCDIS
0
0
Write:
Reset:
5
4
STOP_
DIV2CLK
XCLKEN
0
0
= Unimplemented
3
2
1
Bit 0
PCEH
PCEL
LVISEL1
LVISEL0
0
0
0††
0††
†† Reset by POR only.
Figure 5-3. Configuration Register 2 (CONFIG2)
STOP_IRCDIS — Internal RC Oscillator Stop Mode Disable
Setting STOP_IRCDIS disables the internal RC oscillator during stop
mode. When this bit is cleared, the internal RC oscillator continues to
operate in stop mode. Reset clears this bit.
1 = Internal RC oscillator disabled during stop mode
0 = Internal RC oscillator enabled during stop mode
STOP_XCLKEN — Crystal Oscillator Stop Mode Enable
Setting STOP_XCLKEN enables the external crystal (XTAL) oscillator
to continue operating during stop mode. This is useful for driving the
real time clock module to allow it to generate periodic wake-up while
in stop mode. When this bit is cleared, the external XTAL oscillator will
be disabled during stop mode. Reset clears this bit.
1 = XTAL oscillator enabled during stop mode
0 = XTAL oscillator disabled during stop mode
DIV2CLK — Divide-by-2 Clock Bypass
When CGMXCLK is selected to drive the system clocks (BCS=0),
setting DIV2CLK allows the CGMXCLK to bypass the divide-by-2
divider in the CGM module; CGMOUT will equal CGMXCLK and bus
clock will equal CGMXCLK divide-by-2.
DIV2CLK bit has no effect when the BCS=1 in the PLL control
register (CGMVCLK selected and divide-by-2 always enabled). Reset
clears this bit.
1 = Divide-by-2 divider bypassed;
When BSC=0, CGMOUT equals CGMXCLK
0 = Divide-by-2 divider enabled;
When BSC=0, CGMOUT equals CGMXCLK divide-by-2
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Configuration Registers (CONFIG)
75
Configuration Registers (CONFIG)
PCEH — Port C Enable High Nibble
Setting PCEH configures the PTC4/FP23–PTC7/FP26 pins for LCD
frontplane driver use. Reset clears this bit.
1 = PTC4/FP23–PTC7/FP26 pins configured as LCD frontplane
driver pins: FP23–FP26
0 = PTC4/FP23–PTC7/FP26 pins configured as standard I/O pins:
PTC4–PTC7
PCEL — Port C Enable Low Nibble
Setting PCEL configures the PTC0/FP19–PTC3/FP22 pins for LCD
frontplane driver use. Reset clears this bit.
1 = PTC0/FP19–PTC3/FP22 pins configured as LCD frontplane
driver pins: FP19–FP22
0 = PTC0/FP19–PTC3/FP22 pins configured as standard I/O pins:
PTC0–PTC3
LVISEL[1:0] — LVI Operating Mode Selection
LVISEL[1:0] selects the voltage operating mode of the LVI module.
(See Section 21. Low-Voltage Inhibit (LVI).) The voltage mode
selected for the LVI should match the operating VDD. See Section 23.
Electrical Specifications for the LVI voltage trip points for each of
the modes.
LVISEL1
LVISEL0
Operating Mode
0
0
Reserved (2.5V)
0
1
3V
1
0
5V
1
1
Reserved
Table 5-1. LVI Trip Point Selection
Technical Data
76
MC68HC908LJ12 — Rev. 2.1
Configuration Registers (CONFIG)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 6. Central Processor Unit (CPU)
6.1 Contents
6.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4
CPU Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.1
Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2
Index Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.3
Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.4
Program Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.4.5
Condition Code Register . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.5
Arithmetic/Logic Unit (ALU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
6.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
6.7
CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.8
Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.9
Opcode Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Central Processor Unit (CPU)
77
Central Processor Unit (CPU)
6.2 Introduction
The M68HC08 CPU (central processor unit) is an enhanced and fully
object-code-compatible version of the M68HC05 CPU. The CPU08
Reference Manual (Freescale document order number CPU08RM/AD)
contains a description of the CPU instruction set, addressing modes,
and architecture.
6.3 Features
Feature of the CPU include:
•
Object code fully upward-compatible with M68HC05 Family
•
16-bit stack pointer with stack manipulation instructions
•
16-Bit index register with X-register manipulation instructions
•
8-MHz CPU internal bus frequency
•
64-Kbyte program/data memory space
•
16 addressing modes
•
Memory-to-memory data moves without using accumulator
•
Fast 8-bit by 8-bit multiply and 16-bit by 8-bit divide instructions
•
Enhanced binary-coded decimal (BCD) data handling
•
Modular architecture with expandable internal bus definition for
extension of addressing range beyond 64-Kbytes
•
Low-power stop and wait modes
Technical Data
78
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
6.4 CPU Registers
Figure 6-1 shows the five CPU registers. CPU registers are not part of
the memory map.
0
7
ACCUMULATOR (A)
0
15
H
X
INDEX REGISTER (H:X)
15
0
STACK POINTER (SP)
15
0
PROGRAM COUNTER (PC)
7
0
V 1 1 H I N Z C
CONDITION CODE REGISTER (CCR)
CARRY/BORROW FLAG
ZERO FLAG
NEGATIVE FLAG
INTERRUPT MASK
HALF-CARRY FLAG
TWO’S COMPLEMENT OVERFLOW FLAG
Figure 6-1. CPU Registers
6.4.1 Accumulator
The accumulator is a general-purpose 8-bit register. The CPU uses the
accumulator to hold operands and the results of arithmetic/logic
operations.
Bit 7
6
5
4
3
2
1
Bit 0
Read:
Write:
Reset:
Unaffected by reset
Figure 6-2. Accumulator (A)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Central Processor Unit (CPU)
79
Central Processor Unit (CPU)
6.4.2 Index Register
The 16-bit index register allows indexed addressing of a 64K-byte
memory space. H is the upper byte of the index register, and X is the
lower byte. H:X is the concatenated 16-bit index register.
In the indexed addressing modes, the CPU uses the contents of the
index register to determine the conditional address of the operand.
The index register can serve also as a temporary data storage location.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
X
X
X
X
X
X
X
X
Read:
Write:
Reset:
X = Indeterminate
Figure 6-3. Index Register (H:X)
6.4.3 Stack Pointer
The stack pointer is a 16-bit register that contains the address of the next
location on the stack. During a reset, the stack pointer is preset to
$00FF. The reset stack pointer (RSP) instruction sets the least
significant byte to $FF and does not affect the most significant byte. The
stack pointer decrements as data is pushed onto the stack and
increments as data is pulled from the stack.
In the stack pointer 8-bit offset and 16-bit offset addressing modes, the
stack pointer can function as an index register to access data on the
stack. The CPU uses the contents of the stack pointer to determine the
conditional address of the operand.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Read:
Write:
Reset:
Figure 6-4. Stack Pointer (SP)
Technical Data
80
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
NOTE:
The location of the stack is arbitrary and may be relocated anywhere in
RAM. Moving the SP out of page 0 ($0000 to $00FF) frees direct
address (page 0) space. For correct operation, the stack pointer must
point only to RAM locations.
6.4.4 Program Counter
The program counter is a 16-bit register that contains the address of the
next instruction or operand to be fetched.
Normally, the program counter automatically increments to the next
sequential memory location every time an instruction or operand is
fetched. Jump, branch, and interrupt operations load the program
counter with an address other than that of the next sequential location.
During reset, the program counter is loaded with the reset vector
address located at $FFFE and $FFFF. The vector address is the
address of the first instruction to be executed after exiting the reset state.
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Bit
0
Read:
Write:
Reset:
Loaded with Vector from $FFFE and $FFFF
Figure 6-5. Program Counter (PC)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Central Processor Unit (CPU)
81
Central Processor Unit (CPU)
6.4.5 Condition Code Register
The 8-bit condition code register contains the interrupt mask and five
flags that indicate the results of the instruction just executed. Bits 6 and
5 are set permanently to logic 1. The following paragraphs describe the
functions of the condition code register.
Read:
Write:
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
V
1
1
H
I
N
Z
C
X
1
1
X
1
X
X
X
X = Indeterminate
Figure 6-6. Condition Code Register (CCR)
V — Overflow Flag
The CPU sets the overflow flag when a two's complement overflow
occurs. The signed branch instructions BGT, BGE, BLE, and BLT use
the overflow flag.
1 = Overflow
0 = No overflow
H — Half-Carry Flag
The CPU sets the half-carry flag when a carry occurs between
accumulator bits 3 and 4 during an add-without-carry (ADD) or addwith-carry (ADC) operation. The half-carry flag is required for binarycoded decimal (BCD) arithmetic operations. The DAA instruction
uses the states of the H and C flags to determine the appropriate
correction factor.
1 = Carry between bits 3 and 4
0 = No carry between bits 3 and 4
Technical Data
82
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
I — Interrupt Mask
When the interrupt mask is set, all maskable CPU interrupts are
disabled. CPU interrupts are enabled when the interrupt mask is
cleared. When a CPU interrupt occurs, the interrupt mask is set
automatically after the CPU registers are saved on the stack, but
before the interrupt vector is fetched.
1 = Interrupts disabled
0 = Interrupts enabled
NOTE:
To maintain M6805 Family compatibility, the upper byte of the index
register (H) is not stacked automatically. If the interrupt service routine
modifies H, then the user must stack and unstack H using the PSHH and
PULH instructions.
After the I bit is cleared, the highest-priority interrupt request is
serviced first.
A return-from-interrupt (RTI) instruction pulls the CPU registers from
the stack and restores the interrupt mask from the stack. After any
reset, the interrupt mask is set and can be cleared only by the clear
interrupt mask software instruction (CLI).
N — Negative Flag
The CPU sets the negative flag when an arithmetic operation, logic
operation, or data manipulation produces a negative result, setting
bit 7 of the result.
1 = Negative result
0 = Non-negative result
Z — Zero Flag
The CPU sets the zero flag when an arithmetic operation, logic
operation, or data manipulation produces a result of $00.
1 = Zero result
0 = Non-zero result
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Central Processor Unit (CPU)
83
Central Processor Unit (CPU)
C — Carry/Borrow Flag
The CPU sets the carry/borrow flag when an addition operation
produces a carry out of bit 7 of the accumulator or when a subtraction
operation requires a borrow. Some instructions — such as bit test and
branch, shift, and rotate — also clear or set the carry/borrow flag.
1 = Carry out of bit 7
0 = No carry out of bit 7
6.5 Arithmetic/Logic Unit (ALU)
The ALU performs the arithmetic and logic operations defined by the
instruction set.
Refer to the CPU08 Reference Manual (Freescale document order
number CPU08RM/AD) for a description of the instructions and
addressing modes and more detail about the architecture of the CPU.
6.6 Low-Power Modes
The WAIT and STOP instructions put the MCU in low power-consumption
standby modes.
6.6.1 Wait Mode
The WAIT instruction:
•
Clears the interrupt mask (I bit) in the condition code register,
enabling interrupts. After exit from wait mode by interrupt, the I bit
remains clear. After exit by reset, the I bit is set.
•
Disables the CPU clock.
Technical Data
84
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
6.6.2 Stop Mode
The STOP instruction:
•
Clears the interrupt mask (I bit) in the condition code register,
enabling external interrupts. After exit from stop mode by external
interrupt, the I bit remains clear. After exit by reset, the I bit is set.
•
Disables the CPU clock.
After exiting stop mode, the CPU clock begins running after the oscillator
stabilization delay.
6.7 CPU During Break Interrupts
If the break module is enabled, a break interrupt causes the CPU to
execute the software interrupt instruction (SWI) at the completion of the
current CPU instruction. (See Section 22. Break Module (BRK).) The
program counter vectors to $FFFC–$FFFD ($FEFC–$FEFD in monitor
mode).
A return-from-interrupt instruction (RTI) in the break routine ends the
break interrupt and returns the MCU to normal operation if the break
interrupt has been deasserted.
6.8 Instruction Set Summary
Table 6-1 provides a summary of the M68HC08 instruction set.
6.9 Opcode Map
The opcode map is provided in Table 6-2.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Central Processor Unit (CPU)
85
Central Processor Unit (CPU)
V H I N Z C
ADC #opr
ADC opr
ADC opr
ADC opr,X
ADC opr,X
ADC ,X
ADC opr,SP
ADC opr,SP
A ← (A) + (M) + (C)
Add with Carry
↕ ↕
IMM
DIR
EXT
IX2
– ↕ ↕ ↕
IX1
IX
SP1
SP2
A9
B9
C9
D9
E9
F9
9EE9
9ED9
ii
dd
hh ll
ee ff
ff
IMM
DIR
EXT
IX2
– ↕ ↕ ↕
IX1
IX
SP1
SP2
AB
BB
CB
DB
EB
FB
9EEB
9EDB
ii
dd
hh ll
ee ff
ff
ADD #opr
ADD opr
ADD opr
ADD opr,X
ADD opr,X
ADD ,X
ADD opr,SP
ADD opr,SP
Add without Carry
AIS #opr
Add Immediate Value (Signed) to SP
SP ← (SP) + (16 « M)
– – – – – – IMM
AIX #opr
Add Immediate Value (Signed) to H:X
H:X ← (H:X) + (16 « M)
– – – – – – IMM
AND #opr
AND opr
AND opr
AND opr,X
AND opr,X
AND ,X
AND opr,SP
AND opr,SP
ASL opr
ASLA
ASLX
ASL opr,X
ASL ,X
ASL opr,SP
Arithmetic Shift Left
(Same as LSL)
Arithmetic Shift Right
BCC rel
Branch if Carry Bit Clear
C
C
PC ← (PC) + 2 + rel ? (C) = 0
Mn ← 0
Technical Data
86
ff
ee ff
2
3
4
4
3
2
4
5
A7
ii
2
AF
ii
2
2
3
4
4
3
2
4
5
A4
B4
C4
D4
E4
F4
9EE4
9ED4
ii
dd
hh ll
ee ff
ff
DIR
INH
INH
– – ↕ ↕ ↕
IX1
IX
SP1
38
48
58
68
78
9E68
dd
DIR
INH
INH
– – ↕ ↕ ↕
IX1
IX
SP1
37
47
57
67
77
9E67
dd
ff
4
1
1
4
3
5
– – – – – – REL
24
rr
3
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – –
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
11
13
15
17
19
1B
1D
1F
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
↕
b0
b0
2
3
4
4
3
2
4
5
IMM
DIR
EXT
IX2
–
IX1
IX
SP1
SP2
0 – – ↕ ↕
0
b7
b7
Clear Bit n in M
↕ ↕
A ← (A) & (M)
Logical AND
ASR opr
ASRA
ASRX
ASR opr,X
ASR opr,X
ASR opr,SP
BCLR n, opr
A ← (A) + (M)
ff
ee ff
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 1 of 8)
↕
ff
ee ff
ff
ff
ff
4
1
1
4
3
5
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
Effect on
CCR
V H I N Z C
Cycles
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 2 of 8)
BCS rel
Branch if Carry Bit Set (Same as BLO)
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
BEQ rel
Branch if Equal
PC ← (PC) + 2 + rel ? (Z) = 1
– – – – – – REL
27
rr
3
BGE opr
Branch if Greater Than or Equal To
(Signed Operands)
PC ← (PC) + 2 + rel ? (N ⊕ V) = 0
– – – – – – REL
90
rr
3
BGT opr
Branch if Greater Than (Signed
Operands)
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 0 – – – – – – REL
92
rr
3
BHCC rel
Branch if Half Carry Bit Clear
PC ← (PC) + 2 + rel ? (H) = 0
– – – – – – REL
28
rr
3
BHCS rel
Branch if Half Carry Bit Set
PC ← (PC) + 2 + rel ? (H) = 1
– – – – – – REL
29
rr
3
BHI rel
Branch if Higher
PC ← (PC) + 2 + rel ? (C) | (Z) = 0
– – – – – – REL
22
rr
3
BHS rel
Branch if Higher or Same
(Same as BCC)
PC ← (PC) + 2 + rel ? (C) = 0
– – – – – – REL
24
rr
3
BIH rel
Branch if IRQ Pin High
PC ← (PC) + 2 + rel ? IRQ = 1
– – – – – – REL
2F
rr
3
BIL rel
Branch if IRQ Pin Low
PC ← (PC) + 2 + rel ? IRQ = 0
– – – – – – REL
2E
rr
3
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
IMM
DIR
EXT
IX2
–
IX1
IX
SP1
SP2
A5
B5
C5
D5
E5
F5
9EE5
9ED5
BIT #opr
BIT opr
BIT opr
BIT opr,X
BIT opr,X
BIT ,X
BIT opr,SP
BIT opr,SP
Bit Test
BLE opr
Branch if Less Than or Equal To
(Signed Operands)
PC ← (PC) + 2 + rel ? (Z) | (N ⊕ V) = 1
– – – – – – REL
93
rr
3
BLO rel
Branch if Lower (Same as BCS)
PC ← (PC) + 2 + rel ? (C) = 1
– – – – – – REL
25
rr
3
BLS rel
Branch if Lower or Same
PC ← (PC) + 2 + rel ? (C) | (Z) = 1
– – – – – – REL
23
rr
3
BLT opr
Branch if Less Than (Signed Operands)
PC ← (PC) + 2 + rel ? (N ⊕ V) =1
– – – – – – REL
91
rr
3
BMC rel
Branch if Interrupt Mask Clear
PC ← (PC) + 2 + rel ? (I) = 0
– – – – – – REL
2C
rr
3
BMI rel
Branch if Minus
PC ← (PC) + 2 + rel ? (N) = 1
– – – – – – REL
2B
rr
3
BMS rel
Branch if Interrupt Mask Set
PC ← (PC) + 2 + rel ? (I) = 1
– – – – – – REL
2D
rr
3
BNE rel
Branch if Not Equal
PC ← (PC) + 2 + rel ? (Z) = 0
– – – – – – REL
26
rr
3
BPL rel
Branch if Plus
PC ← (PC) + 2 + rel ? (N) = 0
– – – – – – REL
2A
rr
3
BRA rel
Branch Always
PC ← (PC) + 2 + rel
– – – – – – REL
20
rr
3
(A) & (M)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
0 – – ↕ ↕
Technical Data
Central Processor Unit (CPU)
87
Central Processor Unit (CPU)
Table 6-1. Instruction Set Summary (Sheet 3 of 8)
Operand
Cycles
Effect on
CCR
Opcode
Operation
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – ↕
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
01
03
05
07
09
0B
0D
0F
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
5
5
5
5
5
5
5
5
– – – – – – REL
21
rr
3
PC ← (PC) + 3 + rel ? (Mn) = 1
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – ↕
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
00
02
04
06
08
0A
0C
0E
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
dd rr
5
5
5
5
5
5
5
5
Mn ← 1
DIR (b0)
DIR (b1)
DIR (b2)
DIR (b3)
– – – – – –
DIR (b4)
DIR (b5)
DIR (b6)
DIR (b7)
10
12
14
16
18
1A
1C
1E
dd
dd
dd
dd
dd
dd
dd
dd
4
4
4
4
4
4
4
4
– – – – – – REL
AD
rr
4
dd rr
ii rr
ii rr
ff rr
rr
ff rr
5
4
4
5
4
6
Description
V H I N Z C
BRCLR n,opr,rel Branch if Bit n in M Clear
BRN rel
Branch Never
BRSET n,opr,rel Branch if Bit n in M Set
BSET n,opr
Set Bit n in M
BSR rel
Branch to Subroutine
CBEQ opr,rel
CBEQA #opr,rel
CBEQX #opr,rel
Compare and Branch if Equal
CBEQ opr,X+,rel
CBEQ X+,rel
CBEQ opr,SP,rel
PC ← (PC) + 3 + rel ? (Mn) = 0
PC ← (PC) + 2
PC ← (PC) + 2; push (PCL)
SP ← (SP) – 1; push (PCH)
SP ← (SP) – 1
PC ← (PC) + rel
Address
Mode
Source
Form
DIR
PC ← (PC) + 3 + rel ? (A) – (M) = $00
IMM
PC ← (PC) + 3 + rel ? (A) – (M) = $00
IMM
PC ← (PC) + 3 + rel ? (X) – (M) = $00
– – – – – –
IX1+
PC ← (PC) + 3 + rel ? (A) – (M) = $00
IX+
PC ← (PC) + 2 + rel ? (A) – (M) = $00
SP1
PC ← (PC) + 4 + rel ? (A) – (M) = $00
31
41
51
61
71
9E61
CLC
Clear Carry Bit
C←0
– – – – – 0 INH
98
1
CLI
Clear Interrupt Mask
I←0
– – 0 – – – INH
9A
2
M ← $00
A ← $00
X ← $00
H ← $00
M ← $00
M ← $00
M ← $00
DIR
INH
INH
0 – – 0 1 – INH
IX1
IX
SP1
3F
4F
5F
8C
6F
7F
9E6F
CLR opr
CLRA
CLRX
CLRH
CLR opr,X
CLR ,X
CLR opr,SP
Clear
Technical Data
88
dd
ff
ff
3
1
1
1
3
2
4
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
V H I N Z C
CMP #opr
CMP opr
CMP opr
CMP opr,X
CMP opr,X
CMP ,X
CMP opr,SP
CMP opr,SP
Compare A with M
(A) – (M)
COM opr
COMA
COMX
COM opr,X
COM ,X
COM opr,SP
Complement (One’s Complement)
CPHX #opr
CPHX opr
Compare H:X with M
CPX #opr
CPX opr
CPX opr
CPX ,X
CPX opr,X
CPX opr,X
CPX opr,SP
CPX opr,SP
Compare X with M
DAA
Decimal Adjust A
M ← (M) = $FF – (M)
A ← (A) = $FF – (M)
X ← (X) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
M ← (M) = $FF – (M)
(H:X) – (M:M + 1)
(X) – (M)
(A)10
↕
IMM
DIR
EXT
IX2
– – ↕ ↕ ↕
IX1
IX
SP1
SP2
A1
B1
C1
D1
E1
F1
9EE1
9ED1
ii
dd
hh ll
ee ff
ff
DIR
INH
INH
1
IX1
IX
SP1
33
43
53
63
73
9E63
dd
0 – – ↕ ↕
IMM
DIR
↕
– – ↕ ↕ ↕
↕
IMM
DIR
EXT
IX2
– – ↕ ↕ ↕
IX1
IX
SP1
SP2
ff
ee ff
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 4 of 8)
2
3
4
4
3
2
4
5
ff
4
1
1
4
3
5
65
75
ii ii+1
dd
3
4
A3
B3
C3
D3
E3
F3
9EE3
9ED3
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
ff
ff
ee ff
U – – ↕ ↕ ↕ INH
72
DIR
INH
– – – – – – INH
IX1
IX
SP1
3B
4B
5B
6B
7B
9E6B
dd rr
rr
rr
ff rr
rr
ff rr
5
3
3
5
4
6
DIR
INH
INH
–
IX1
IX
SP1
3A
4A
5A
6A
7A
9E6A
dd
4
1
1
4
3
5
2
A ← (A) – 1 or M ← (M) – 1 or X ← (X) – 1
DBNZ opr,rel
DBNZA rel
Decrement and Branch if Not Zero
DBNZX rel
DBNZ opr,X,rel
DBNZ X,rel
DBNZ opr,SP,rel
DEC opr
DECA
DECX
DEC opr,X
DEC ,X
DEC opr,SP
Decrement
DIV
Divide
EOR #opr
EOR opr
EOR opr
EOR opr,X
EOR opr,X
EOR ,X
EOR opr,SP
EOR opr,SP
Exclusive OR M with A
PC ← (PC) + 3 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 3 + rel ? (result) ≠ 0
PC ← (PC) + 2 + rel ? (result) ≠ 0
PC ← (PC) + 4 + rel ? (result) ≠ 0
M ← (M) – 1
A ← (A) – 1
X ← (X) – 1
M ← (M) – 1
M ← (M) – 1
M ← (M) – 1
A ← (H:A)/(X)
H ← Remainder
A ← (A ⊕ M)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
↕
– – ↕ ↕
– – – – ↕ ↕ INH
0 – – ↕ ↕
IMM
DIR
EXT
IX2
–
IX1
IX
SP1
SP2
ff
ff
52
A8
B8
C8
D8
E8
F8
9EE8
9ED8
7
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
Technical Data
Central Processor Unit (CPU)
89
Central Processor Unit (CPU)
V H I N Z C
INC opr
INCA
INCX
INC opr,X
INC ,X
INC opr,SP
JMP opr
JMP opr
JMP opr,X
JMP opr,X
JMP ,X
JSR opr
JSR opr
JSR opr,X
JSR opr,X
JSR ,X
Increment
Jump to Subroutine
Load A from M
LDHX #opr
LDHX opr
Load H:X from M
LSL opr
LSLA
LSLX
LSL opr,X
LSL ,X
LSL opr,SP
LSR opr
LSRA
LSRX
LSR opr,X
LSR ,X
LSR opr,SP
Logical Shift Right
dd
ff
ff
4
1
1
4
3
5
PC ← Jump Address
dd
hh ll
ee ff
ff
2
3
4
3
2
PC ← (PC) + n (n = 1, 2, or 3)
Push (PCL); SP ← (SP) – 1
Push (PCH); SP ← (SP) – 1
PC ← Unconditional Address
DIR
EXT
– – – – – – IX2
IX1
IX
BD
CD
DD
ED
FD
dd
hh ll
ee ff
ff
4
5
6
5
4
A6
B6
C6
D6
E6
F6
9EE6
9ED6
ii
dd
hh ll
ee ff
ff
ff
ee ff
2
3
4
4
3
2
4
5
ii jj
dd
3
4
2
3
4
4
3
2
4
5
A ← (M)
0 – – ↕ ↕
H:X ← (M:M + 1)
X ← (M)
C
0
b7
0
C
b7
b0
IMM
DIR
EXT
IX2
–
IX1
IX
SP1
SP2
IMM
DIR
45
55
0 – – ↕ ↕
–
0 – – ↕ ↕
IMM
DIR
EXT
IX2
–
IX1
IX
SP1
SP2
AE
BE
CE
DE
EE
FE
9EEE
9EDE
ii
dd
hh ll
ee ff
ff
DIR
INH
INH
– – ↕ ↕ ↕
IX1
IX
SP1
38
48
58
68
78
9E68
dd
DIR
INH
INH
– – 0 ↕ ↕
IX1
IX
SP1
34
44
54
64
74
9E64
dd
↕
b0
Technical Data
90
– – ↕ ↕
3C
4C
5C
6C
7C
9E6C
BC
CC
DC
EC
FC
Load X from M
Logical Shift Left
(Same as ASL)
↕
DIR
INH
INH
–
IX1
IX
SP1
DIR
EXT
– – – – – – IX2
IX1
IX
Jump
LDA #opr
LDA opr
LDA opr
LDA opr,X
LDA opr,X
LDA ,X
LDA opr,SP
LDA opr,SP
LDX #opr
LDX opr
LDX opr
LDX opr,X
LDX opr,X
LDX ,X
LDX opr,SP
LDX opr,SP
M ← (M) + 1
A ← (A) + 1
X ← (X) + 1
M ← (M) + 1
M ← (M) + 1
M ← (M) + 1
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 5 of 8)
↕
ff
ee ff
ff
ff
ff
ff
4
1
1
4
3
5
4
1
1
4
3
5
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
V H I N Z C
MOV opr,opr
MOV opr,X+
MOV #opr,opr
MOV X+,opr
Move
MUL
Unsigned multiply
(M)Destination ← (M)Source
0 – – ↕ ↕
H:X ← (H:X) + 1 (IX+D, DIX+)
X:A ← (X) × (A)
DD
DIX+
–
IMD
IX+D
– 0 – – – 0 INH
DIR
INH
INH
– – ↕ ↕ ↕
IX1
IX
SP1
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 6 of 8)
4E
5E
6E
7E
dd dd
dd
ii dd
dd
5
4
4
4
42
30
40
50
60
70
9E60
5
dd
4
1
1
4
3
5
NEG opr
NEGA
NEGX
NEG opr,X
NEG ,X
NEG opr,SP
Negate (Two’s Complement)
NOP
No Operation
None
– – – – – – INH
9D
1
NSA
Nibble Swap A
A ← (A[3:0]:A[7:4])
– – – – – – INH
62
3
M ← –(M) = $00 – (M)
A ← –(A) = $00 – (A)
X ← –(X) = $00 – (X)
M ← –(M) = $00 – (M)
M ← –(M) = $00 – (M)
↕
IMM
DIR
EXT
IX2
–
IX1
IX
SP1
SP2
AA
BA
CA
DA
EA
FA
9EEA
9EDA
ff
ff
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
ORA #opr
ORA opr
ORA opr
ORA opr,X
ORA opr,X
ORA ,X
ORA opr,SP
ORA opr,SP
Inclusive OR A and M
PSHA
Push A onto Stack
Push (A); SP ← (SP) – 1
– – – – – – INH
87
2
PSHH
Push H onto Stack
Push (H); SP ← (SP) – 1
– – – – – – INH
8B
2
PSHX
Push X onto Stack
Push (X); SP ← (SP) – 1
– – – – – – INH
89
2
PULA
Pull A from Stack
SP ← (SP + 1); Pull (A)
– – – – – – INH
86
2
PULH
Pull H from Stack
SP ← (SP + 1); Pull (H)
– – – – – – INH
8A
2
PULX
Pull X from Stack
SP ← (SP + 1); Pull (X)
– – – – – – INH
88
2
ROL opr
ROLA
ROLX
ROL opr,X
ROL ,X
ROL opr,SP
Rotate Left through Carry
A ← (A) | (M)
C
↕
b7
ROR opr
RORA
RORX
ROR opr,X
ROR ,X
ROR opr,SP
Rotate Right through Carry
RSP
Reset Stack Pointer
0 – – ↕ ↕
b0
C
b7
b0
SP ← $FF
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
↕
ff
ee ff
DIR
INH
INH
– – ↕ ↕ ↕
IX1
IX
SP1
39
49
59
69
79
9E69
dd
DIR
INH
INH
– – ↕ ↕ ↕
IX1
IX
SP1
36
46
56
66
76
9E66
dd
– – – – – – INH
9C
ff
ff
ff
ff
4
1
1
4
3
5
4
1
1
4
3
5
1
Technical Data
Central Processor Unit (CPU)
91
Central Processor Unit (CPU)
V H I N Z C
RTI
Return from Interrupt
RTS
Return from Subroutine
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 7 of 8)
SP ← (SP) + 1; Pull (CCR)
SP ← (SP) + 1; Pull (A)
SP ← (SP) + 1; Pull (X)
SP ← (SP) + 1; Pull (PCH)
SP ← (SP) + 1; Pull (PCL)
↕ ↕ ↕ ↕ ↕ ↕ INH
80
7
SP ← SP + 1; Pull (PCH)
SP ← SP + 1; Pull (PCL)
– – – – – – INH
81
4
IMM
DIR
EXT
IX2
– – ↕ ↕ ↕
IX1
IX
SP1
SP2
A2
B2
C2
D2
E2
F2
9EE2
9ED2
ii
dd
hh ll
ee ff
ff
2
3
4
4
3
2
4
5
SBC #opr
SBC opr
SBC opr
SBC opr,X
SBC opr,X
SBC ,X
SBC opr,SP
SBC opr,SP
Subtract with Carry
SEC
Set Carry Bit
C←1
– – – – – 1 INH
99
1
SEI
Set Interrupt Mask
I←1
– – 1 – – – INH
9B
2
STA opr
STA opr
STA opr,X
STA opr,X
STA ,X
STA opr,SP
STA opr,SP
Store A in M
STHX opr
Store H:X in M
STOP
Enable IRQ Pin; Stop Oscillator
STX opr
STX opr
STX opr,X
STX opr,X
STX ,X
STX opr,SP
STX opr,SP
SUB #opr
SUB opr
SUB opr
SUB opr,X
SUB opr,X
SUB ,X
SUB opr,SP
SUB opr,SP
Store X in M
Subtract
A ← (A) – (M) – (C)
M ← (A)
(M:M + 1) ← (H:X)
I ← 0; Stop Oscillator
M ← (X)
A ← (A) – (M)
Technical Data
92
↕
DIR
EXT
IX2
– IX1
IX
SP1
SP2
B7
C7
D7
E7
F7
9EE7
9ED7
– DIR
35
– – 0 – – – INH
8E
0 – – ↕ ↕
0 – – ↕ ↕
ff
ee ff
3
4
4
3
2
4
5
dd
4
dd
hh ll
ee ff
ff
1
DIR
EXT
IX2
– IX1
IX
SP1
SP2
BF
CF
DF
EF
FF
9EEF
9EDF
dd
hh ll
ee ff
ff
IMM
DIR
EXT
IX2
– – ↕ ↕ ↕
IX1
IX
SP1
SP2
A0
B0
C0
D0
E0
F0
9EE0
9ED0
ii
dd
hh ll
ee ff
ff
0 – – ↕ ↕
↕
ff
ee ff
ff
ee ff
ff
ee ff
3
4
4
3
2
4
5
2
3
4
4
3
2
4
5
MC68HC908LJ12 — Rev. 2.1
Central Processor Unit (CPU)
Freescale Semiconductor
Central Processor Unit (CPU)
V H I N Z C
Cycles
Effect on
CCR
Description
Operand
Operation
Opcode
Source
Form
Address
Mode
Table 6-1. Instruction Set Summary (Sheet 8 of 8)
SWI
Software Interrupt
PC ← (PC) + 1; Push (PCL)
SP ← (SP) – 1; Push (PCH)
SP ← (SP) – 1; Push (X)
SP ← (SP) – 1; Push (A)
SP ← (SP) – 1; Push (CCR)
SP ← (SP) – 1; I ← 1
PCH ← Interrupt Vector High Byte
PCL ← Interrupt Vector Low Byte
TAP
Transfer A to CCR
CCR ← (A)
↕ ↕ ↕ ↕ ↕ ↕ INH
84
2
TAX
Transfer A to X
X ← (A)
– – – – – – INH
97
1
TPA
Transfer CCR to A
A ← (CCR)
– – – – – – INH
85
1
TST opr
TSTA
TSTX
TST opr,X
TST ,X
TST opr,SP
Test for Negative or Zero
TSX
Transfer SP to H:X
TXA
Transfer X to A
TXS
Transfer H:X to SP
A
C
CCR
dd
dd rr
DD
DIR
DIX+
ee ff
EXT
ff
H
H
hh ll
I
ii
IMD
IMM
INH
IX
IX+
IX+D
IX1
IX1+
IX2
M
N
(A) – $00 or (X) – $00 or (M) – $00
83
9
0 – – ↕ ↕
DIR
INH
INH
–
IX1
IX
SP1
3D
4D
5D
6D
7D
9E6D
dd
ff
ff
3
1
1
3
2
4
H:X ← (SP) + 1
– – – – – – INH
95
2
A ← (X)
– – – – – – INH
9F
1
(SP) ← (H:X) – 1
– – – – – – INH
94
2
Accumulator
Carry/borrow bit
Condition code register
Direct address of operand
Direct address of operand and relative offset of branch instruction
Direct to direct addressing mode
Direct addressing mode
Direct to indexed with post increment addressing mode
High and low bytes of offset in indexed, 16-bit offset addressing
Extended addressing mode
Offset byte in indexed, 8-bit offset addressing
Half-carry bit
Index register high byte
High and low bytes of operand address in extended addressing
Interrupt mask
Immediate operand byte
Immediate source to direct destination addressing mode
Immediate addressing mode
Inherent addressing mode
Indexed, no offset addressing mode
Indexed, no offset, post increment addressing mode
Indexed with post increment to direct addressing mode
Indexed, 8-bit offset addressing mode
Indexed, 8-bit offset, post increment addressing mode
Indexed, 16-bit offset addressing mode
Memory location
Negative bit
n
opr
PC
PCH
PCL
REL
rel
rr
SP1
SP2
SP
U
V
X
Z
&
|
⊕
()
–( )
#
«
←
?
:
↕
—
Any bit
Operand (one or two bytes)
Program counter
Program counter high byte
Program counter low byte
Relative addressing mode
Relative program counter offset byte
Relative program counter offset byte
Stack pointer, 8-bit offset addressing mode
Stack pointer 16-bit offset addressing mode
Stack pointer
Undefined
Overflow bit
Index register low byte
Zero bit
Logical AND
Logical OR
Logical EXCLUSIVE OR
Contents of
Negation (two’s complement)
Immediate value
Sign extend
Loaded with
If
Concatenated with
Set or cleared
Not affected
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
– – 1 – – – INH
Technical Data
Central Processor Unit (CPU)
93
MSB
Branch
REL
DIR
INH
3
4
1
2
3
4
5
6
7
8
9
A
B
C
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
1
2
5
BRSET0
3 DIR
5
BRCLR0
3 DIR
5
BRSET1
3 DIR
5
BRCLR1
3 DIR
5
BRSET2
3 DIR
5
BRCLR2
3 DIR
5
BRSET3
3 DIR
5
BRCLR3
3 DIR
5
BRSET4
3 DIR
5
BRCLR4
3 DIR
5
BRSET5
3 DIR
5
BRCLR5
3 DIR
5
BRSET6
3 DIR
5
BRCLR6
3 DIR
5
BRSET7
3 DIR
5
BRCLR7
3 DIR
4
BSET0
2 DIR
4
BCLR0
2 DIR
4
BSET1
2 DIR
4
BCLR1
2 DIR
4
BSET2
2 DIR
4
BCLR2
2 DIR
4
BSET3
2 DIR
4
BCLR3
2 DIR
4
BSET4
2 DIR
4
BCLR4
2 DIR
4
BSET5
2 DIR
4
BCLR5
2 DIR
4
BSET6
2 DIR
4
BCLR6
2 DIR
4
BSET7
2 DIR
4
BCLR7
2 DIR
3
BRA
2 REL
3
BRN
2 REL
3
BHI
2 REL
3
BLS
2 REL
3
BCC
2 REL
3
BCS
2 REL
3
BNE
2 REL
3
BEQ
2 REL
3
BHCC
2 REL
3
BHCS
2 REL
3
BPL
2 REL
3
BMI
2 REL
3
BMC
2 REL
3
BMS
2 REL
3
BIL
2 REL
3
BIH
2 REL
5
6
1
NEGX
1 INH
4
CBEQX
3 IMM
7
DIV
1 INH
1
COMX
1 INH
1
LSRX
1 INH
4
LDHX
2 DIR
1
RORX
1 INH
1
ASRX
1 INH
1
LSLX
1 INH
1
ROLX
1 INH
1
DECX
1 INH
3
DBNZX
2 INH
1
INCX
1 INH
1
TSTX
1 INH
4
MOV
2 DIX+
1
CLRX
1 INH
4
NEG
2
IX1
5
CBEQ
3 IX1+
3
NSA
1 INH
4
COM
2 IX1
4
LSR
2 IX1
3
CPHX
3 IMM
4
ROR
2 IX1
4
ASR
2 IX1
4
LSL
2 IX1
4
ROL
2 IX1
4
DEC
2 IX1
5
DBNZ
3 IX1
4
INC
2 IX1
3
TST
2 IX1
4
MOV
3 IMD
3
CLR
2 IX1
SP1
IX
9E6
7
Control
INH
INH
8
9
Register/Memory
IX2
SP2
IMM
DIR
EXT
A
B
C
D
9ED
4
SUB
3 EXT
4
CMP
3 EXT
4
SBC
3 EXT
4
CPX
3 EXT
4
AND
3 EXT
4
BIT
3 EXT
4
LDA
3 EXT
4
STA
3 EXT
4
EOR
3 EXT
4
ADC
3 EXT
4
ORA
3 EXT
4
ADD
3 EXT
3
JMP
3 EXT
5
JSR
3 EXT
4
LDX
3 EXT
4
STX
3 EXT
4
SUB
3 IX2
4
CMP
3 IX2
4
SBC
3 IX2
4
CPX
3 IX2
4
AND
3 IX2
4
BIT
3 IX2
4
LDA
3 IX2
4
STA
3 IX2
4
EOR
3 IX2
4
ADC
3 IX2
4
ORA
3 IX2
4
ADD
3 IX2
4
JMP
3 IX2
6
JSR
3 IX2
4
LDX
3 IX2
4
STX
3 IX2
5
SUB
4 SP2
5
CMP
4 SP2
5
SBC
4 SP2
5
CPX
4 SP2
5
AND
4 SP2
5
BIT
4 SP2
5
LDA
4 SP2
5
STA
4 SP2
5
EOR
4 SP2
5
ADC
4 SP2
5
ORA
4 SP2
5
ADD
4 SP2
IX1
SP1
IX
E
9EE
F
LSB
0
Central Processor Unit (CPU)
0
Read-Modify-Write
INH
IX1
D
E
F
4
1
NEG
NEGA
2 DIR 1 INH
5
4
CBEQ CBEQA
3 DIR 3 IMM
5
MUL
1 INH
4
1
COM
COMA
2 DIR 1 INH
4
1
LSR
LSRA
2 DIR 1 INH
4
3
STHX
LDHX
2 DIR 3 IMM
4
1
ROR
RORA
2 DIR 1 INH
4
1
ASR
ASRA
2 DIR 1 INH
4
1
LSL
LSLA
2 DIR 1 INH
4
1
ROL
ROLA
2 DIR 1 INH
4
1
DEC
DECA
2 DIR 1 INH
5
3
DBNZ DBNZA
3 DIR 2 INH
4
1
INC
INCA
2 DIR 1 INH
3
1
TST
TSTA
2 DIR 1 INH
5
MOV
3 DD
3
1
CLR
CLRA
2 DIR 1 INH
INH Inherent
REL Relative
IMM Immediate
IX
Indexed, No Offset
DIR Direct
IX1 Indexed, 8-Bit Offset
EXT Extended
IX2 Indexed, 16-Bit Offset
DD Direct-Direct
IMD Immediate-Direct
IX+D Indexed-Direct DIX+ Direct-Indexed
*Pre-byte for stack pointer indexed instructions
5
3
NEG
NEG
3 SP1 1 IX
6
4
CBEQ
CBEQ
4 SP1 2 IX+
2
DAA
1 INH
5
3
COM
COM
3 SP1 1 IX
5
3
LSR
LSR
3 SP1 1 IX
4
CPHX
2 DIR
5
3
ROR
ROR
3 SP1 1 IX
5
3
ASR
ASR
3 SP1 1 IX
5
3
LSL
LSL
3 SP1 1 IX
5
3
ROL
ROL
3 SP1 1 IX
5
3
DEC
DEC
3 SP1 1 IX
6
4
DBNZ
DBNZ
4 SP1 2 IX
5
3
INC
INC
3 SP1 1 IX
4
2
TST
TST
3 SP1 1 IX
4
MOV
2 IX+D
4
2
CLR
CLR
3 SP1 1 IX
SP1 Stack Pointer, 8-Bit Offset
SP2 Stack Pointer, 16-Bit Offset
IX+ Indexed, No Offset with
Post Increment
IX1+ Indexed, 1-Byte Offset with
Post Increment
7
3
RTI
BGE
1 INH 2 REL
4
3
RTS
BLT
1 INH 2 REL
3
BGT
2 REL
9
3
SWI
BLE
1 INH 2 REL
2
2
TAP
TXS
1 INH 1 INH
1
2
TPA
TSX
1 INH 1 INH
2
PULA
1 INH
2
1
PSHA
TAX
1 INH 1 INH
2
1
PULX
CLC
1 INH 1 INH
2
1
PSHX
SEC
1 INH 1 INH
2
2
PULH
CLI
1 INH 1 INH
2
2
PSHH
SEI
1 INH 1 INH
1
1
CLRH
RSP
1 INH 1 INH
1
NOP
1 INH
1
STOP
*
1 INH
1
1
WAIT
TXA
1 INH 1 INH
2
SUB
2 IMM
2
CMP
2 IMM
2
SBC
2 IMM
2
CPX
2 IMM
2
AND
2 IMM
2
BIT
2 IMM
2
LDA
2 IMM
2
AIS
2 IMM
2
EOR
2 IMM
2
ADC
2 IMM
2
ORA
2 IMM
2
ADD
2 IMM
3
SUB
2 DIR
3
CMP
2 DIR
3
SBC
2 DIR
3
CPX
2 DIR
3
AND
2 DIR
3
BIT
2 DIR
3
LDA
2 DIR
3
STA
2 DIR
3
EOR
2 DIR
3
ADC
2 DIR
3
ORA
2 DIR
3
ADD
2 DIR
2
JMP
2 DIR
4
4
BSR
JSR
2 REL 2 DIR
2
3
LDX
LDX
2 IMM 2 DIR
2
3
AIX
STX
2 IMM 2 DIR
MSB
0
3
SUB
2 IX1
3
CMP
2 IX1
3
SBC
2 IX1
3
CPX
2 IX1
3
AND
2 IX1
3
BIT
2 IX1
3
LDA
2 IX1
3
STA
2 IX1
3
EOR
2 IX1
3
ADC
2 IX1
3
ORA
2 IX1
3
ADD
2 IX1
3
JMP
2 IX1
5
JSR
2 IX1
5
3
LDX
LDX
4 SP2 2 IX1
5
3
STX
STX
4 SP2 2 IX1
4
SUB
3 SP1
4
CMP
3 SP1
4
SBC
3 SP1
4
CPX
3 SP1
4
AND
3 SP1
4
BIT
3 SP1
4
LDA
3 SP1
4
STA
3 SP1
4
EOR
3 SP1
4
ADC
3 SP1
4
ORA
3 SP1
4
ADD
3 SP1
2
SUB
1 IX
2
CMP
1 IX
2
SBC
1 IX
2
CPX
1 IX
2
AND
1 IX
2
BIT
1 IX
2
LDA
1 IX
2
STA
1 IX
2
EOR
1 IX
2
ADC
1 IX
2
ORA
1 IX
2
ADD
1 IX
2
JMP
1 IX
4
JSR
1 IX
4
2
LDX
LDX
3 SP1 1 IX
4
2
STX
STX
3 SP1 1 IX
High Byte of Opcode in Hexadecimal
LSB
Low Byte of Opcode in Hexadecimal
0
5
Cycles
BRSET0 Opcode Mnemonic
3 DIR Number of Bytes / Addressing Mode
Central Processor Unit (CPU)
Technical Data
94
Table 6-2. Opcode Map
Bit Manipulation
DIR
DIR
Technical Data — MC68HC908LJ12
Section 7. Oscillator (OSC)
7.1 Contents
7.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3
Internal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.4
Crystal (X-tal) Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.5.1
Crystal Amplifier Input Pin (OSC1). . . . . . . . . . . . . . . . . . . . 98
7.5.2
Crystal Amplifier Output Pin (OSC2) . . . . . . . . . . . . . . . . . . 98
7.5.3
Oscillator Enable Signal (SIMOSCEN). . . . . . . . . . . . . . . . . 98
7.5.4
Internal RC Clock (ICLK) . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.5.5
CGM Oscillator Clock (CGMXCLK) . . . . . . . . . . . . . . . . . . . 98
7.5.6
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . . 98
7.6
Low Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.6.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
7.6.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
7.7
Oscillator During Break Mode. . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2 Introduction
The oscillator module provides the reference clock for the clock
generator module (CGM), the real time clock module (RTC), and other
MCU sub-systems.
The oscillator module consist of two types of oscillator circuits:
•
Internal RC oscillator
•
Crystal (x-tal) oscillator
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Oscillator (OSC)
95
Oscillator (OSC)
The reference clock for the CGM, real time clock module (RTC), and
other MCU sub-systems is driven by the crystal oscillator. The COP
module is always driven by internal RC oscillator.
The RC internal oscillator runs continuously after a POR or reset and is
always available in run and wait modes. In stop mode, it can be disabled
by setting the STOP_IRCDIS bit in CONFIG2 register.
Figure 7-1. shows the block diagram of the oscillator module.
SIMOSCEN
From SIM
CONFIG2
EN
STOP_IRCDIS
ICLK
INTERNAL RC
To SIM, COP
OSCILLATOR
INTERNAL RC OSCILLATOR
CGMRCLK
To CGM PLL
CONFIG2
CGMXCLK
STOP_XCLKEN
MCU
To RTC, ADC, LCD,
CGM Clock Selection MUX
CRYSTAL OSCILLATOR
OSC1
OSC2
RB
RS*
*RS can be zero (shorted) when used with higher-frequency crystals.
Refer to manufacturer’s data.
X1
See Section 23. for component value requirements.
C1
C2
Figure 7-1. Oscillator Module Block Diagram
Technical Data
96
MC68HC908LJ12 — Rev. 2.1
Oscillator (OSC)
Freescale Semiconductor
Oscillator (OSC)
7.3 Internal Oscillator
The internal RC oscillator clock (ICLK) is a free running 64kHz clock (at
VDD = 5V) that requires no external components. It is the reference clock
input to the computer operating properly (COP) module.
The ICLK can be turned off in stop mode by setting the STOP_IRCDIS
bit in CONFIG2. After reset, the bit is clear by default and ICLK is
enabled during stop mode.
7.4 Crystal (X-tal) Oscillator
The crystal (x-tal) oscillator circuit is designed for use with an external
crystal or ceramic resonator to provide an accurate clock source.
In its typical configuration, the X-tal oscillator is connected in a Pierce
oscillator configuration, as shown in Figure 7-1. This figure shows only
the logical representation of the internal components and may not
represent actual circuitry. The oscillator configuration uses five
components:
•
Crystal, X1
•
Fixed capacitor, C1
•
Tuning capacitor, C2 (can also be a fixed capacitor)
•
Feedback resistor, RB
•
Series resistor, RS (optional)
The series resistor (RS) is included in the diagram to follow strict Pierce
oscillator guidelines and may not be required for all ranges of operation,
especially with high frequency crystals. Refer to the crystal
manufacturer’s data for more information.
7.5 I/O Signals
The following paragraphs describe the oscillator I/O signals.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Oscillator (OSC)
97
Oscillator (OSC)
7.5.1 Crystal Amplifier Input Pin (OSC1)
OSC1 pin is an input to the crystal oscillator amplifier. Schmitt trigger and
glitch filter are implemented on this pin to improve EMC performance.
See Section 23. Electrical Specifications for detail specification of the
glitch filter.
7.5.2 Crystal Amplifier Output Pin (OSC2)
OSC2 pin is the output of the crystal oscillator inverting amplifier.
7.5.3 Oscillator Enable Signal (SIMOSCEN)
The SIMOSCEN signal from the system integration module (SIM)
enables/disables the internal RC and x-tal oscillator circuits.
7.5.4 Internal RC Clock (ICLK)
The ICLK clock is the output from the internal RC oscillator. This clock
drives the SIM and COP modules.
7.5.5 CGM Oscillator Clock (CGMXCLK)
The CGMXCLK clock is the output from the x-tal oscillator. This clock
drives to CGM, real time clock module, analog-to-digital converter, liquid
crystal display driver module, and other MCU sub-systems.
7.5.6 CGM Reference Clock (CGMRCLK)
This is buffered signal of CGMXCLK, it is used by the CGM as the
phase-locked-loop (PLL) reference clock.
7.6 Low Power Modes
The WAIT and STOP instructions put the MCU in low-power
consumption standby modes.
Technical Data
98
MC68HC908LJ12 — Rev. 2.1
Oscillator (OSC)
Freescale Semiconductor
Oscillator (OSC)
7.6.1 Wait Mode
The WAIT instruction has no effect on the oscillator module. CGMXCLK,
CGMRCLK, and ICLK continues to drive the MCU modules.
7.6.2 Stop Mode
The STOP instruction clears the SIMOSCEN signal, and hence the
CGMXCLK (and CGMRCLK) clock stops running. For continuous
CGMXCLK operation in stop mode, set the STOP_XCLKEN to logic 1
before entering stop mode. Continuous CGMXCLK operation in stop
mode allows the RTC module to generate interrupts to wake up the CPU.
By default, the internal RC oscillator clock, ICLK, continues to run in stop
mode. To disable the ICLK in stop mode, set the STOP_IRCDIS bit to
logic 1 before entering stop mode.
7.7 Oscillator During Break Mode
The oscillator circuits continue to drive CGMXCLK, CGMRCLK, and
ICLK when the device enters the break state.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Oscillator (OSC)
99
Oscillator (OSC)
Technical Data
100
MC68HC908LJ12 — Rev. 2.1
Oscillator (OSC)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 8. Clock Generator Module (CGM)
8.1 Contents
8.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
8.4
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103
8.4.1
Oscillator Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4.2
Phase-Locked Loop Circuit (PLL) . . . . . . . . . . . . . . . . . . . 106
8.4.3
PLL Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.4.4
Acquisition and Tracking Modes . . . . . . . . . . . . . . . . . . . . 108
8.4.5
Manual and Automatic PLL Bandwidth Modes. . . . . . . . . . 108
8.4.6
Programming the PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.4.7
Special Programming Exceptions . . . . . . . . . . . . . . . . . . . 114
8.4.8
Base Clock Selector Circuit . . . . . . . . . . . . . . . . . . . . . . . . 114
8.4.9
CGM External Connections . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.5.1
External Filter Capacitor Pin (CGMXFC) . . . . . . . . . . . . . . 116
8.5.2
PLL Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . . 116
8.5.3
PLL Analog Ground Pin (VSSA) . . . . . . . . . . . . . . . . . . . . . 116
8.5.4
Oscillator Output Frequency Signal (CGMXCLK) . . . . . . . 116
8.5.5
CGM Reference Clock (CGMRCLK) . . . . . . . . . . . . . . . . . 116
8.5.6
CGM VCO Clock Output (CGMVCLK) . . . . . . . . . . . . . . . . 117
8.5.7
CGM Base Clock Output (CGMOUT). . . . . . . . . . . . . . . . . 117
8.5.8
CGM CPU Interrupt (CGMINT) . . . . . . . . . . . . . . . . . . . . . 117
8.6
CGM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.6.1
PLL Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.6.2
PLL Bandwidth Control Register . . . . . . . . . . . . . . . . . . . .120
8.6.3
PLL Multiplier Select Registers . . . . . . . . . . . . . . . . . . . . . 122
8.6.4
PLL VCO Range Select Register . . . . . . . . . . . . . . . . . . . .123
8.6.5
PLL Reference Divider Select Register . . . . . . . . . . . . . . . 124
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
101
Clock Generator Module (CGM)
8.7
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
8.8
Special Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.8.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125
8.8.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126
8.8.3
CGM During Break Interrupts. . . . . . . . . . . . . . . . . . . . . . . 126
8.9
Acquisition/Lock Time Specifications . . . . . . . . . . . . . . . . . . . 127
8.9.1
Acquisition/Lock Time Definitions. . . . . . . . . . . . . . . . . . . .127
8.9.2
Parametric Influences on Reaction Time . . . . . . . . . . . . . . 127
8.9.3
Choosing a Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Introduction
This section describes the clock generator module (CGM). The CGM
generates the base clock signal, CGMOUT, which is based on either the
oscillator clock divided by two or the divided phase-locked loop (PLL)
clock, CGMPCLK, divided by two. CGMOUT is the clock from which the
SIM derives the system clocks, including the bus clock, which is at a
frequency of CGMOUT÷2.
The PLL is a frequency generator designed for use with a low frequency
crystal (typically 32.768kHz) to generate a base frequency and dividing
to a maximum bus frequency of 8MHz.
Technical Data
102
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
8.3 Features
Features of the CGM include:
•
Phase-locked loop with output frequency in integer multiples of an
integer dividend of the crystal reference
•
Low-frequency crystal operation with low-power operation and
high-output frequency resolution
•
Programmable prescaler for power-of-two increases in frequency
•
Programmable hardware voltage-controlled oscillator (VCO) for
low-jitter operation
•
Automatic bandwidth control mode for low-jitter operation
•
Automatic frequency lock detector
•
CPU interrupt on entry or exit from locked condition
•
Configuration register bit to allow oscillator operation during stop
mode
8.4 Functional Description
The CGM consists of three major sub-modules:
•
Oscillator module — The oscillator module generates the constant
reference frequency clock, CGMRCLK (buffered CGMXCLK).
•
Phase-locked loop (PLL) — The PLL generates the
programmable VCO frequency clock, CGMVCLK, and the divided,
CGMPCLK. The CGMPCLK is one of the reference clocks to the
base clock selector circuit.
•
Base clock selector circuit — This software-controlled circuit
selects the one of three clocks as the base clock, CGMOUT:
CGMXCLK, CGMXCLK divided by two, or CGMPCLK divided by
two.
Figure 8-1 shows the structure of the CGM.
Figure 8-2 is a summary of the CGM registers.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
103
Clock Generator Module (CGM)
OSCILLATOR (OSC) MODULE
See Section 7. Oscillator (OSC).
SIMOSCEN
From SIM
ICLK
INTERNAL RC OSC
To SIM (and COP)
CGMXCLK
OSC2
CRYSTAL OSCILLATOR
T0 RTC, ADC, LCD
CGMRCLK
OSC1
USER MODE:
CGMOUT = B
RESET: A
PHASE-LOCKED LOOP (PLL)
RESET: A
A
÷2
B S
REFERENCE
DIVIDER
CGMRCLK
B S
BASE
CLOCK
SELECT
CIRCUIT
BCS
R
CGMOUT
A
1
B1 S
1
CGMRDV
A
To SIM
SIMDIV2
From SIM
DIV2CLK
RDS[3:0]
VDDA
CGMXFC
CGMPCLK
VSSA
CONFIG2
VPR[1:0]
VRS[7:0]
L
PHASE
DETECTOR
2E
VOLTAGE
CONTROLLED
OSCILLATOR
LOOP
FILTER
PLL ANALOG
AUTOMATIC
MODE
CONTROL
LOCK
DETECTOR
LOCK
AUTO
MUL[11:0]
N
CGMVDV
FREQUENCY
DIVIDER
ACQ
CGMINT
INTERRUPT
CONTROL
PLLIE
To SIM
PLLF
PRE[1:0]
2P
FREQUENCY
DIVIDER
CGMVCLK
CGMPCLK
Figure 8-1. CGM Block Diagram
Technical Data
104
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
Addr.
Register Name
Bit 7
Read:
$0036
$0037
$0038
$0039
$003A
$003B
PLL Control Register
Write:
(PTCL)
Reset:
Read:
PLL Bandwidth Control
Register Write:
(PBWC)
Reset:
Read:
PLL Multiplier Select
Register High Write:
(PMSH)
Reset:
Read:
PLL Multiplier Select
Register Low Write:
(PMSL)
Reset:
Read:
PLL VCO Range Select
Register Write:
(PMRS)
Reset:
Read:
PLL Reference Divider
Select Register Write:
(PMDS)
Reset:
PLLIE
0
AUTO
6
PLLF
0
LOCK
5
4
3
2
1
Bit 0
PLLON
BCS
PRE1
PRE0
VPR1
VPR0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
MUL11
MUL10
MUL9
MUL8
ACQ
R
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MUL7
MUL6
MUL5
MUL4
MUL3
MUL2
MUL1
MUL0
0
1
0
0
0
0
0
0
VRS7
VRS6
VRS5
VRS4
VRS3
VRS2
VRS1
VRS0
0
1
0
0
0
0
0
0
0
0
0
0
RDS3
RDS2
RDS1
RDS0
0
0
0
0
0
0
0
1
= Unimplemented
R
= Reserved
NOTES:
1. When AUTO = 0, PLLIE is forced clear and is read-only.
2. When AUTO = 0, PLLF and LOCK read as clear.
3. When AUTO = 1, ACQ is read-only.
4. When PLLON = 0 or VRS7:VRS0 = $0, BCS is forced clear and is read-only.
5. When PLLON = 1, the PLL programming register is read-only.
6. When BCS = 1, PLLON is forced set and is read-only.
Figure 8-2. CGM I/O Register Summary
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
105
Clock Generator Module (CGM)
8.4.1 Oscillator Module
The oscillator module provides two clock outputs CGMXCLK and
CGMRCLK to the CGM module. CGMXCLK or CGMXCLK divide-by-two
can be selected to drive the SIM module to generate the system bus
clocks. CGMRCLK is the reference clock for the phase-lock-loop, to
generate a higher frequency clock. The oscillator module also provides
the reference clock for the real time clock (RTC) module.
See Section 7. Oscillator (OSC) for detailed description on oscillator
module. See Section 12. Real Time Clock (RTC) for detailed
description on RTC.
8.4.2 Phase-Locked Loop Circuit (PLL)
The PLL is a frequency generator that can operate in either acquisition
mode or tracking mode, depending on the accuracy of the output
frequency. The PLL can change between acquisition and tracking
modes either automatically or manually.
8.4.3 PLL Circuits
The PLL consists of these circuits:
•
Voltage-controlled oscillator (VCO)
•
Reference divider
•
Frequency pre-scaler
•
Modulo VCO frequency divider
•
Phase detector
•
Loop filter
•
Lock detector
Technical Data
106
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
The operating range of the VCO is programmable for a wide range of
frequencies and for maximum immunity to external noise, including
supply and CGMXFC noise. The VCO frequency is bound to a range
from roughly one-half to twice the center-of-range frequency, fVRS.
Modulating the voltage on the CGMXFC pin changes the frequency
within this range. By design, fVRS is equal to the nominal center-of-range
frequency, fNOM, (38.4 kHz) times a linear factor, L, and a power-of-two
factor, E, or (L × 2E)fNOM.
CGMRCLK is the PLL reference clock, a buffered version of CGMXCLK.
CGMRCLK runs at a frequency, fRCLK, and is fed to the PLL through a
programmable modulo reference divider, which divides fRCLK by a
factor, R. The divider’s output is the final reference clock, CGMRDV,
running at a frequency, fRDV = fRCLK/R. With an external crystal
(30kHz–100kHz), always set R = 1 for specified performance. With an
external high-frequency clock source, use R to divide the external
frequency to between 30kHz and 100kHz.
The VCO’s output clock, CGMVCLK, running at a frequency, fVCLK, is
fed back through a programmable pre-scaler divider and a
programmable modulo divider. The pre-scaler divides the VCO clock by
a power-of-two factor P (the CGMPCLK) and the modulo divider reduces
the VCO clock by a factor, N. The dividers’ output is the VCO feedback
clock, CGMVDV, running at a frequency, fVDV = fVCLK/(N × 2P). (See
8.4.6 Programming the PLL for more information.)
The phase detector then compares the VCO feedback clock, CGMVDV,
with the final reference clock, CGMRDV. A correction pulse is generated
based on the phase difference between the two signals. The loop filter
then slightly alters the DC voltage on the external capacitor connected
to CGMXFC based on the width and direction of the correction pulse.
The filter can make fast or slow corrections depending on its mode,
described in 8.4.4 Acquisition and Tracking Modes. The value of the
external capacitor and the reference frequency determines the speed of
the corrections and the stability of the PLL.
The lock detector compares the frequencies of the VCO feedback clock,
CGMVDV, and the final reference clock, CGMRDV. Therefore, the
speed of the lock detector is directly proportional to the final reference
frequency, fRDV. The circuit determines the mode of the PLL and the lock
condition based on this comparison.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
107
Clock Generator Module (CGM)
8.4.4 Acquisition and Tracking Modes
The PLL filter is manually or automatically configurable into one of two
operating modes:
•
Acquisition mode — In acquisition mode, the filter can make large
frequency corrections to the VCO. This mode is used at PLL start
up or when the PLL has suffered a severe noise hit and the VCO
frequency is far off the desired frequency. When in acquisition
mode, the ACQ bit is clear in the PLL bandwidth control register.
(See 8.6.2 PLL Bandwidth Control Register.)
•
Tracking mode — In tracking mode, the filter makes only small
corrections to the frequency of the VCO. PLL jitter is much lower
in tracking mode, but the response to noise is also slower. The
PLL enters tracking mode when the VCO frequency is nearly
correct, such as when the PLL is selected as the base clock
source. (See 8.4.8 Base Clock Selector Circuit.) The PLL is
automatically in tracking mode when not in acquisition mode or
when the ACQ bit is set.
8.4.5 Manual and Automatic PLL Bandwidth Modes
The PLL can change the bandwidth or operational mode of the loop filter
manually or automatically. Automatic mode is recommended for most
users.
In automatic bandwidth control mode (AUTO = 1), the lock detector
automatically switches between acquisition and tracking modes.
Automatic bandwidth control mode also is used to determine when the
VCO clock, CGMVCLK, is safe to use as the source for the base clock,
CGMOUT. (See 8.6.2 PLL Bandwidth Control Register.) If PLL
interrupts are enabled, the software can wait for a PLL interrupt request
and then check the LOCK bit. If interrupts are disabled, software can poll
the LOCK bit continuously (during PLL start-up, usually) or at periodic
intervals. In either case, when the LOCK bit is set, the VCO clock is safe
to use as the source for the base clock. (See 8.4.8 Base Clock Selector
Circuit.) If the VCO is selected as the source for the base clock and the
LOCK bit is clear, the PLL has suffered a severe noise hit and the
software must take appropriate action, depending on the application.
(See 8.7 Interrupts for information and precautions on using interrupts.)
Technical Data
108
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
The following conditions apply when the PLL is in automatic bandwidth
control mode:
•
The ACQ bit (See 8.6.2 PLL Bandwidth Control Register.) is a
read-only indicator of the mode of the filter. (See 8.4.4
Acquisition and Tracking Modes.)
•
The ACQ bit is set when the VCO frequency is within a certain
tolerance and is cleared when the VCO frequency is out of a
certain tolerance. (See 8.9 Acquisition/Lock Time
Specifications for more information.)
•
The LOCK bit is a read-only indicator of the locked state of the
PLL.
•
The LOCK bit is set when the VCO frequency is within a certain
tolerance and is cleared when the VCO frequency is out of a
certain tolerance. (See 8.9 Acquisition/Lock Time
Specifications for more information.)
•
CPU interrupts can occur if enabled (PLLIE = 1) when the PLL’s
lock condition changes, toggling the LOCK bit. (See 8.6.1 PLL
Control Register.)
The PLL also may operate in manual mode (AUTO = 0). Manual mode
is used by systems that do not require an indicator of the lock condition
for proper operation. Such systems typically operate well below
fBUSMAX.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
109
Clock Generator Module (CGM)
The following conditions apply when in manual mode:
•
ACQ is a writable control bit that controls the mode of the filter.
Before turning on the PLL in manual mode, the ACQ bit must be
clear.
•
Before entering tracking mode (ACQ = 1), software must wait a
given time, tACQ (See 8.9 Acquisition/Lock Time
Specifications.), after turning on the PLL by setting PLLON in the
PLL control register (PCTL).
•
Software must wait a given time, tAL, after entering tracking mode
before selecting the PLL as the clock source to CGMOUT
(BCS = 1).
•
The LOCK bit is disabled.
•
CPU interrupts from the CGM are disabled.
8.4.6 Programming the PLL
The following procedure shows how to program the PLL.
NOTE:
The round function in the following equations means that the real
number should be rounded to the nearest integer number.
1. Choose the desired bus frequency, fBUSDES.
2. Calculate the desired VCO frequency, fVCLKDES.
P
P
f VCLKDES = 2 × f CGMPCLK = 2 × 4
× fBUSDES
where P is the power of two multiplier, and can be 0, 1, 2, or 3
3. Choose a practical PLL reference frequency, fRCLK, and the
reference clock divider, R. Typically, the reference is 32.768kHz
and R = 1.
Frequency errors to the PLL are corrected at a rate of fRCLK/R. For
stability and lock time reduction, this rate must be as fast as
possible. The VCO frequency must be an integer multiple of this
rate.
Technical Data
110
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
The relationship between the VCO frequency, fVCLK, and the
reference frequency, fRCLK, is
P
2 N
f VCLK = ----------- ( f RCLK )
R
where N is the integer range multiplier, between 1 and 4095.
In cases where desired bus frequency has some tolerance,
choose fRCLK to a value determined either by other module
requirements (such as modules which are clocked by CGMXCLK),
cost requirements, or ideally, as high as the specified range
allows. See Section 23. Electrical Specifications. Choose the
reference divider, R = 1.
When the tolerance on the bus frequency is tight, choose fRCLK to
an integer divisor of fBUSDES, and R = 1. If fRCLK cannot meet this
requirement, use the following equation to solve for R with
practical choices of fRCLK, and choose the fRCLK that gives the
lowest R.
 f VCLKDES 
  f VCLKDES
R = round R MAX ×   -------------------------- – integer  -------------------------- 
 f RCLK  
  f RCLK 
4. Calculate N:
 R × f VCLKDES
N = round  -------------------------------------
P
 f
×2 
RCLK
5. Calculate and verify the adequacy of the VCO and bus
frequencies fVCLK and fBUS.
P
2 N
f VCLK = ----------- ( f RCLK )
R
f BUS =
f
VCLK
---------P
2 ×4
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
111
Clock Generator Module (CGM)
6. Select the VCO’s power-of-two range multiplier E, according to
this table:
Frequency Range
E
0 < fVCLK < 9,830,400
0
9,830,400 ≤ fVCLK < 19,660,800
1
19,660,800 ≤ fVCLK < 39,321,600
2
NOTE: Do not program E to a value of 3.
7. Select a VCO linear range multiplier, L, where fNOM = 38.4kHz
 f VCLK 
L = round  --------------------------
 2E × f

NOM
8. Calculate and verify the adequacy of the VCO programmed
center-of-range frequency, fVRS. The center-of-range frequency is
the midpoint between the minimum and maximum frequencies
attainable by the PLL.
E
f VRS = ( L × 2 )f NOM
For proper operation,
E
f NOM × 2
f VRS – f VCLK ≤ -------------------------2
9. Verify the choice of P, R, N, E, and L by comparing fVCLK to fVRS
and fVCLKDES. For proper operation, fVCLK must be within the
application’s tolerance of fVCLKDES, and fVRS must be as close as
possible to fVCLK.
NOTE:
Exceeding the recommended maximum bus frequency or VCO
frequency can crash the MCU.
Technical Data
112
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
10. Program the PLL registers accordingly:
a. In the PRE bits of the PLL control register (PCTL), program
the binary equivalent of P.
b. In the VPR bits of the PLL control register (PCTL), program
the binary equivalent of E.
c. In the PLL multiplier select register low (PMSL) and the PLL
multiplier select register high (PMSH), program the binary
equivalent of N.
d. In the PLL VCO range select register (PMRS), program the
binary coded equivalent of L.
e. In the PLL reference divider select register (PMDS), program
the binary coded equivalent of R.
NOTE:
The values for P, E, N, L, and R can only be programmed when the PLL
is off (PLLON = 0).
Table 8-1 provides numeric examples (numbers are in hexadecimal
notation):
Table 8-1. Numeric Examples
CGMVCLK
CGMPCLK
fBUS
fRCLK
R
N
P
E
L
8.0 MHz
8.0 MHz
2.0 MHz
32.768 kHz
1
F5
0
0
D1
9.8304 MHz
9.8304 MHz
2.4576 MHz
32.768 kHz
1
12C
0
1
80
10.0 MHz
10.0 MHz
2.5 MHz
32.768 kHz
1
132
0
1
83
16 MHz
16 MHz
4.0 MHz
32.768 kHz
1
1E9
0
1
D1
19.6608 MHz
19.6608 MHz
4.9152 MHz
32.768 kHz
1
258
0
2
80
20 MHz
20 MHz
5.0 MHz
32.768 kHz
1
263
0
2
82
29.4912 MHz
29.4912 MHz
7.3728 MHz
32.768 kHz
1
384
0
2
C0
32 MHz
32 MHz
8.0 MHz
32.768 kHz
1
3D1
0
2
D0
32 MHz
16 MHz
4.0 MHz
32.768 kHz
1
1E9
1
2
D0
32 MHz
8 MHz
2.0 MHz
32.768 kHz
1
F5
2
2
D0
32 MHz
4 MHz
1.0 MHz
32.768 kHz
1
7B
3
2
D0
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
113
Clock Generator Module (CGM)
8.4.7 Special Programming Exceptions
The programming method described in 8.4.6 Programming the PLL
does not account for three possible exceptions. A value of 0 for R, N, or
L is meaningless when used in the equations given. To account for these
exceptions:
•
A 0 value for R or N is interpreted exactly the same as a value of 1.
•
A 0 value for L disables the PLL and prevents its selection as the
source for the base clock.
(See 8.4.8 Base Clock Selector Circuit.)
8.4.8 Base Clock Selector Circuit
This circuit is used to select either the oscillator clock, CGMXCLK, or the
divided VCO clock, CGMPCLK, as the source of the base clock,
CGMOUT. The two input clocks go through a transition control circuit
that waits up to three CGMXCLK cycles and three CGMPCLK cycles to
change from one clock source to the other. During this time, CGMOUT
is held in stasis. The output of the transition control circuit is then divided
by two to correct the duty cycle. Therefore, the bus clock frequency,
which is one-half of CGMOUT, is one-fourth the frequency of the
selected clock (CGMXCLK or CGMPCLK).
For the CGMXCLK, the divide-by-2 can be by-passed by setting the
DIV2CLK bit in the CONFIG2 register. Therefore, the bus clock
frequency can be one-half of CGMXCLK.
The BCS bit in the PLL control register (PCTL) selects which clock drives
CGMOUT. The divided VCO clock cannot be selected as the base clock
source if the PLL is not turned on. The PLL cannot be turned off if the
divided VCO clock is selected. The PLL cannot be turned on or off
simultaneously with the selection or deselection of the divided VCO
clock. The divided VCO clock also cannot be selected as the base clock
source if the factor L is programmed to a 0. This value would set up a
condition inconsistent with the operation of the PLL, so that the PLL
would be disabled and the oscillator clock would be forced as the source
of the base clock.
Technical Data
114
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
8.4.9 CGM External Connections
In its typical configuration, the CGM requires up to four external
components.
Figure 8-3 shows the external components for the PLL:
•
Bypass capacitor, CBYP
•
Filter network
Care should be taken with PCB routing in order to minimize signal cross
talk and noise. (See 8.9 Acquisition/Lock Time Specifications for
routing information, filter network and its effects on PLL performance.)
MCU
VSSA
CGMXFC
VDDA
VDD
10 kΩ
0.01 µF
CBYP
0.1 µF
0.033 µF
Note: Filter network in box can be replaced with a 0.47µF capacitor, but will degrade stability.
Figure 8-3. CGM External Connections
8.5 I/O Signals
The following paragraphs describe the CGM I/O signals.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
115
Clock Generator Module (CGM)
8.5.1 External Filter Capacitor Pin (CGMXFC)
The CGMXFC pin is required by the loop filter to filter out phase
corrections. An external filter network is connected to this pin. (See
Figure 8-3.)
NOTE:
To prevent noise problems, the filter network should be placed as close
to the CGMXFC pin as possible, with minimum routing distances and no
routing of other signals across the network.
8.5.2 PLL Analog Power Pin (VDDA)
VDDA is a power pin used by the analog portions of the PLL. Connect the
VDDA pin to the same voltage potential as the VDD pin.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
8.5.3 PLL Analog Ground Pin (VSSA)
VSSA is a ground pin used by the analog portions of the PLL. Connect
the VSSA pin to the same voltage potential as the VSS pin.
NOTE:
Route VSSA carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
NOTE:
On this MCU, the VSSA is physically bonded to the VSS pin.
8.5.4 Oscillator Output Frequency Signal (CGMXCLK)
CGMXCLK is the oscillator output signal. It runs at the full speed of the
oscillator, and is generated directly from the crystal oscillator circuit, the
RC oscillator circuit, or the internal oscillator circuit.
8.5.5 CGM Reference Clock (CGMRCLK)
CGMRCLK is a buffered version of CGMXCLK, this clock is the
reference clock for the phase-locked-loop circuit.
Technical Data
116
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
8.5.6 CGM VCO Clock Output (CGMVCLK)
CGMVCLK is the clock output from the VCO.
8.5.7 CGM Base Clock Output (CGMOUT)
CGMOUT is the clock output of the CGM. This signal goes to the SIM,
which generates the MCU clocks. CGMOUT is a 50 percent duty cycle
clock running at twice the bus frequency. CGMOUT is software
programmable to be equal to CGMXCLK, CGMXCLK divided by two, or
CGMPCLK divided by two.
8.5.8 CGM CPU Interrupt (CGMINT)
CGMINT is the interrupt signal generated by the PLL lock detector.
8.6 CGM Registers
The following registers control and monitor operation of the CGM:
•
PLL control register (PCTL)
(See 8.6.1 PLL Control Register.)
•
PLL bandwidth control register (PBWC)
(See 8.6.2 PLL Bandwidth Control Register.)
•
PLL multiplier select registers (PMSH and PMSL)
(See 8.6.3 PLL Multiplier Select Registers.)
•
PLL VCO range select register (PMRS)
(See 8.6.4 PLL VCO Range Select Register.)
•
PLL reference divider select register (PMDS)
(See 8.6.5 PLL Reference Divider Select Register.)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
117
Clock Generator Module (CGM)
8.6.1 PLL Control Register
The PLL control register (PCTL) contains the interrupt enable and flag
bits, the on/off switch, the base clock selector bit, the prescaler bits, and
the VCO power-of-two range selector bits.
Address:
$0036
Bit 7
Read:
Write:
Reset:
PLLIE
0
6
PLLF
0
5
4
3
2
1
Bit 0
PLLON
BCS
PRE1
PRE0
VPR1
VPR0
1
0
0
0
0
0
= Unimplemented
Figure 8-4. PLL Control Register (PCTL)
PLLIE — PLL Interrupt Enable Bit
This read/write bit enables the PLL to generate an interrupt request
when the LOCK bit toggles, setting the PLL flag, PLLF. When the
AUTO bit in the PLL bandwidth control register (PBWC) is clear,
PLLIE cannot be written and reads as logic 0. Reset clears the PLLIE
bit.
1 = PLL interrupts enabled
0 = PLL interrupts disabled
PLLF — PLL Interrupt Flag Bit
This read-only bit is set whenever the LOCK bit toggles. PLLF
generates an interrupt request if the PLLIE bit also is set. PLLF
always reads as logic 0 when the AUTO bit in the PLL bandwidth
control register (PBWC) is clear. Clear the PLLF bit by reading the
PLL control register. Reset clears the PLLF bit.
1 = Change in lock condition
0 = No change in lock condition
NOTE:
Do not inadvertently clear the PLLF bit. Any read or read-modify-write
operation on the PLL control register clears the PLLF bit.
Technical Data
118
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
PLLON — PLL On Bit
This read/write bit activates the PLL and enables the VCO clock,
CGMVCLK. PLLON cannot be cleared if the VCO clock is driving the
base clock, CGMOUT (BCS = 1). (See 8.4.8 Base Clock Selector
Circuit.) Reset sets this bit so that the loop can stabilize as the MCU
is powering up.
1 = PLL on
0 = PLL off
BCS — Base Clock Select Bit
This read/write bit selects either the oscillator output, CGMXCLK, or
the divided VCO clock, CGMPCLK, as the source of the CGM output,
CGMOUT. CGMOUT frequency is one-half the frequency of the
selected clock. BCS cannot be set while the PLLON bit is clear. After
toggling BCS, it may take up to three CGMXCLK and three
CGMPCLK cycles to complete the transition from one source clock to
the other. During the transition, CGMOUT is held in stasis. (See 8.4.8
Base Clock Selector Circuit.) Reset clears the BCS bit.
1 = CGMPCLK divided by two drives CGMOUT
0 = CGMXCLK divided by two drives CGMOUT
NOTE:
PLLON and BCS have built-in protection that prevents the base clock
selector circuit from selecting the VCO clock as the source of the base
clock if the PLL is off. Therefore, PLLON cannot be cleared when BCS
is set, and BCS cannot be set when PLLON is clear. If the PLL is off
(PLLON = 0), selecting CGMPCLK requires two writes to the PLL control
register. (See 8.4.8 Base Clock Selector Circuit.)
PRE1 and PRE0 — Prescaler Program Bits
These read/write bits control a prescaler that selects the prescaler
power-of-two multiplier, P. (See 8.4.3 PLL Circuits and 8.4.6
Programming the PLL.) PRE1 and PRE0 cannot be written when
the PLLON bit is set. Reset clears these bits.
These prescaler bits affects the relationship between the VCO clock
and the final system bus clock.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
119
Clock Generator Module (CGM)
Table 8-2. PRE 1 and PRE0 Programming
PRE1 and PRE0
P
Prescaler Multiplier
00
0
1
01
1
2
10
2
4
11
3
8
VPR1 and VPR0 — VCO Power-of-Two Range Select Bits
These read/write bits control the VCO’s hardware power-of-two range
multiplier E that, in conjunction with L (See 8.4.3 PLL Circuits, 8.4.6
Programming the PLL, and 8.6.4 PLL VCO Range Select
Register.) controls the hardware center-of-range frequency, fVRS.
VPR1:VPR0 cannot be written when the PLLON bit is set. Reset
clears these bits.
Table 8-3. VPR1 and VPR0 Programming
VPR1 and VPR0
E
VCO Power-of-Two
Range Multiplier
00
0
1
01
1
2
10
2
4
NOTE: Do not program E to a value of 3.
8.6.2 PLL Bandwidth Control Register
The PLL bandwidth control register (PBWC):
•
Selects automatic or manual (software-controlled) bandwidth
control mode
•
Indicates when the PLL is locked
•
In automatic bandwidth control mode, indicates when the PLL is in
acquisition or tracking mode
•
In manual operation, forces the PLL into acquisition or tracking
mode
Technical Data
120
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
Address:
$0037
Bit 7
Read:
Write:
Reset:
AUTO
0
6
LOCK
0
5
ACQ
0
4
3
2
1
0
0
0
0
0
0
0
0
= Unimplemented
R
Bit 0
R
0
= Reserved
Figure 8-5. PLL Bandwidth Control Register (PBWCR)
AUTO — Automatic Bandwidth Control Bit
This read/write bit selects automatic or manual bandwidth control.
When initializing the PLL for manual operation (AUTO = 0), clear the
ACQ bit before turning on the PLL. Reset clears the AUTO bit.
1 = Automatic bandwidth control
0 = Manual bandwidth control
LOCK — Lock Indicator Bit
When the AUTO bit is set, LOCK is a read-only bit that becomes set
when the VCO clock, CGMVCLK, is locked (running at the
programmed frequency). When the AUTO bit is clear, LOCK reads as
logic 0 and has no meaning. The write one function of this bit is
reserved for test, so this bit must always be written a 0. Reset clears
the LOCK bit.
1 = VCO frequency correct or locked
0 = VCO frequency incorrect or unlocked
ACQ — Acquisition Mode Bit
When the AUTO bit is set, ACQ is a read-only bit that indicates
whether the PLL is in acquisition mode or tracking mode. When the
AUTO bit is clear, ACQ is a read/write bit that controls whether the
PLL is in acquisition or tracking mode.
In automatic bandwidth control mode (AUTO = 1), the last-written
value from manual operation is stored in a temporary location and is
recovered when manual operation resumes. Reset clears this bit,
enabling acquisition mode.
1 = Tracking mode
0 = Acquisition mode
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
121
Clock Generator Module (CGM)
8.6.3 PLL Multiplier Select Registers
The PLL multiplier select registers (PMSH and PMSL) contain the
programming information for the modulo feedback divider.
Address:
Read:
$0038
Bit 7
6
5
4
0
0
0
0
0
0
0
0
Write:
Reset:
3
2
1
Bit 0
MUL11
MUL10
MUL9
MUL8
0
0
0
0
= Unimplemented
Figure 8-6. PLL Multiplier Select Register High (PMSH)
Address:
Read:
Write:
Reset:
$0039
Bit 7
6
5
4
3
2
1
Bit 0
MUL7
MUL6
MUL5
MUL4
MUL3
MUL2
MUL1
MUL0
0
1
0
0
0
0
0
0
Figure 8-7. PLL Multiplier Select Register Low (PMSL)
MUL[11:0] — Multiplier Select Bits
These read/write bits control the modulo feedback divider that selects
the VCO frequency multiplier N. (See 8.4.3 PLL Circuits and 8.4.6
Programming the PLL.) A value of $0000 in the multiplier select
registers configure the modulo feedback divider the same as a value
of $0001. Reset initializes the registers to $0040 for a default multiply
value of 64.
NOTE:
The multiplier select bits have built-in protection such that they cannot
be written when the PLL is on (PLLON = 1).
Technical Data
122
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
8.6.4 PLL VCO Range Select Register
The PLL VCO range select register (PMRS) contains the programming
information required for the hardware configuration of the VCO.
Address:
Read:
Write:
Reset:
$003A
Bit 7
6
5
4
3
2
1
Bit 0
VRS7
VRS6
VRS5
VRS4
VRS3
VRS2
VRS1
VRS0
0
1
0
0
0
0
0
0
Figure 8-8. PLL VCO Range Select Register (PMRS)
VRS[7:0] — VCO Range Select Bits
These read/write bits control the hardware center-of-range linear
multiplier L which, in conjunction with E (See 8.4.3 PLL Circuits,
8.4.6 Programming the PLL, and 8.6.1 PLL Control Register.),
controls the hardware center-of-range frequency, fVRS. VRS[7:0]
cannot be written when the PLLON bit in the PCTL is set. (See 8.4.7
Special Programming Exceptions.) A value of $00 in the VCO
range select register disables the PLL and clears the BCS bit in the
PLL control register (PCTL). (See 8.4.8 Base Clock Selector Circuit
and 8.4.7 Special Programming Exceptions.). Reset initializes the
register to $40 for a default range multiply value of 64.
NOTE:
The VCO range select bits have built-in protection such that they cannot
be written when the PLL is on (PLLON = 1) and such that the VCO clock
cannot be selected as the source of the base clock (BCS = 1) if the VCO
range select bits are all clear.
The PLL VCO range select register must be programmed correctly.
Incorrect programming can result in failure of the PLL to achieve lock.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
123
Clock Generator Module (CGM)
8.6.5 PLL Reference Divider Select Register
The PLL reference divider select register (PMDS) contains the
programming information for the modulo reference divider.
Address:
Read:
$003B
Bit 7
6
5
4
0
0
0
0
0
0
0
0
Write:
Reset:
3
2
1
Bit 0
RDS3
RDS2
RDS1
RDS0
0
0
0
1
= Unimplemented
Figure 8-9. PLL Reference Divider Select Register (PMDS)
RDS[3:0] — Reference Divider Select Bits
These read/write bits control the modulo reference divider that selects
the reference division factor, R. (See 8.4.3 PLL Circuits and 8.4.6
Programming the PLL.) RDS[3:0] cannot be written when the
PLLON bit in the PCTL is set. A value of $00 in the reference divider
select register configures the reference divider the same as a value of
$01. (See 8.4.7 Special Programming Exceptions.) Reset
initializes the register to $01 for a default divide value of 1.
NOTE:
The reference divider select bits have built-in protection such that they
cannot be written when the PLL is on (PLLON = 1).
NOTE:
The default divide value of 1 is recommended for all applications.
Technical Data
124
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
8.7 Interrupts
When the AUTO bit is set in the PLL bandwidth control register (PBWC),
the PLL can generate a CPU interrupt request every time the LOCK bit
changes state. The PLLIE bit in the PLL control register (PCTL) enables
CPU interrupts from the PLL. PLLF, the interrupt flag in the PCTL,
becomes set whether interrupts are enabled or not. When the AUTO bit
is clear, CPU interrupts from the PLL are disabled and PLLF reads as
logic 0.
Software should read the LOCK bit after a PLL interrupt request to see
if the request was due to an entry into lock or an exit from lock. When the
PLL enters lock, the divided VCO clock, CGMPCLK, divided by two can
be selected as the CGMOUT source by setting BCS in the PCTL. When
the PLL exits lock, the VCO clock frequency is corrupt, and appropriate
precautions should be taken. If the application is not frequency sensitive,
interrupts should be disabled to prevent PLL interrupt service routines
from impeding software performance or from exceeding stack
limitations.
NOTE:
Software can select the CGMPCLK divided by two as the CGMOUT
source even if the PLL is not locked (LOCK = 0). Therefore, software
should make sure the PLL is locked before setting the BCS bit.
8.8 Special Modes
The WAIT instruction puts the MCU in low power-consumption standby
modes.
8.8.1 Wait Mode
The WAIT instruction does not affect the CGM. Before entering wait
mode, software can disengage and turn off the PLL by clearing the BCS
and PLLON bits in the PLL control register (PCTL) to save power. Less
power-sensitive applications can disengage the PLL without turning it
off, so that the PLL clock is immediately available at WAIT exit. This
would be the case also when the PLL is to wake the MCU from wait
mode, such as when the PLL is first enabled and waiting for LOCK or
LOCK is lost.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
125
Clock Generator Module (CGM)
8.8.2 Stop Mode
If the oscillator stop mode enable bit (STOP_XCLKEN in CONFIG2
register) is configured to disabled the oscillator in stop mode, then the
STOP instruction disables the CGM (oscillator and phase locked loop)
and holds low all CGM outputs (CGMOUT, CGMVCLK, CGMPCLK, and
CGMINT).
If the STOP instruction is executed with the divided VCO clock,
CGMPCLK, divided by two driving CGMOUT, the PLL automatically
clears the BCS bit in the PLL control register (PCTL), thereby selecting
the oscillator clock, CGMXCLK, divided by two as the source of
CGMOUT. When the MCU recovers from STOP, the crystal clock
divided by two drives CGMOUT and BCS remains clear.
If the oscillator stop mode enable bit is configured for continuous
oscillator operation in stop mode, then the phase locked loop is shut off
but the CGMXCLK will continue to drive the SIM and other MCU subsystems.
8.8.3 CGM During Break Interrupts
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state. (See 9.8.3 SIM Break Flag Control
Register.)
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the PLLF bit during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
the PLL control register during the break state without affecting the PLLF
bit.
Technical Data
126
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
8.9 Acquisition/Lock Time Specifications
The acquisition and lock times of the PLL are, in many applications, the
most critical PLL design parameters. Proper design and use of the PLL
ensures the highest stability and lowest acquisition/lock times.
8.9.1 Acquisition/Lock Time Definitions
Typical control systems refer to the acquisition time or lock time as the
reaction time, within specified tolerances, of the system to a step input.
In a PLL, the step input occurs when the PLL is turned on or when it
suffers a noise hit. The tolerance is usually specified as a percent of the
step input or when the output settles to the desired value plus or minus
a percent of the frequency change. Therefore, the reaction time is
constant in this definition, regardless of the size of the step input. For
example, consider a system with a 5 percent acquisition time tolerance.
If a command instructs the system to change from 0Hz to 1MHz, the
acquisition time is the time taken for the frequency to reach
1MHz ±50kHz. 50kHz = 5% of the 1MHz step input. If the system is
operating at 1MHz and suffers a –100kHz noise hit, the acquisition time
is the time taken to return from 900kHz to 1MHz ±5kHz. 5kHz = 5% of
the 100kHz step input.
Other systems refer to acquisition and lock times as the time the system
takes to reduce the error between the actual output and the desired
output to within specified tolerances. Therefore, the acquisition or lock
time varies according to the original error in the output. Minor errors may
not even be registered. Typical PLL applications prefer to use this
definition because the system requires the output frequency to be within
a certain tolerance of the desired frequency regardless of the size of the
initial error.
8.9.2 Parametric Influences on Reaction Time
Acquisition and lock times are designed to be as short as possible while
still providing the highest possible stability. These reaction times are not
constant, however. Many factors directly and indirectly affect the
acquisition time.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
127
Clock Generator Module (CGM)
The most critical parameter which affects the reaction times of the PLL
is the reference frequency, fRDV. This frequency is the input to the phase
detector and controls how often the PLL makes corrections. For stability,
the corrections must be small compared to the desired frequency, so
several corrections are required to reduce the frequency error.
Therefore, the slower the reference the longer it takes to make these
corrections. This parameter is under user control via the choice of crystal
frequency fXCLK and the R value programmed in the reference divider.
(See 8.4.3 PLL Circuits, 8.4.6 Programming the PLL, and 8.6.5 PLL
Reference Divider Select Register.)
Another critical parameter is the external filter network. The PLL
modifies the voltage on the VCO by adding or subtracting charge from
capacitors in this network. Therefore, the rate at which the voltage
changes for a given frequency error (thus change in charge) is
proportional to the capacitance. The size of the capacitor also is related
to the stability of the PLL. If the capacitor is too small, the PLL cannot
make small enough adjustments to the voltage and the system cannot
lock. If the capacitor is too large, the PLL may not be able to adjust the
voltage in a reasonable time. (See 8.9.3 Choosing a Filter.)
Also important is the operating voltage potential applied to VDDA. The
power supply potential alters the characteristics of the PLL. A fixed value
is best. Variable supplies, such as batteries, are acceptable if they vary
within a known range at very slow speeds. Noise on the power supply is
not acceptable, because it causes small frequency errors which
continually change the acquisition time of the PLL.
Temperature and processing also can affect acquisition time because
the electrical characteristics of the PLL change. The part operates as
specified as long as these influences stay within the specified limits.
External factors, however, can cause drastic changes in the operation of
the PLL. These factors include noise injected into the PLL through the
filter capacitor, filter capacitor leakage, stray impedances on the circuit
board, and even humidity or circuit board contamination.
Technical Data
128
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Clock Generator Module (CGM)
8.9.3 Choosing a Filter
As described in 8.9.2 Parametric Influences on Reaction Time, the
external filter network is critical to the stability and reaction time of the
PLL. The PLL is also dependent on reference frequency and supply
voltage.
Either of the filter networks in Figure 8-10 is recommended when using
a 32.768kHz reference clock (CGMRCLK). Figure 8-10 (a) is used for
applications requiring better stability. Figure 8-10 (b) is used in low-cost
applications where stability is not critical.
CGMXFC
10 kΩ
CGMXFC
0.01 µF
0.47 µF
0.033 µF
VSSA
VSSA
(a)
(b)
Figure 8-10. PLL Filter
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Clock Generator Module (CGM)
129
Clock Generator Module (CGM)
Technical Data
130
MC68HC908LJ12 — Rev. 2.1
Clock Generator Module (CGM)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 9. System Integration Module (SIM)
9.1 Contents
9.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9.3
SIM Bus Clock Control and Generation . . . . . . . . . . . . . . . . . 134
9.3.1
Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.3.2
Clock Start-up from POR or LVI Reset. . . . . . . . . . . . . . . . 135
9.3.3
Clocks in Stop Mode and Wait Mode . . . . . . . . . . . . . . . . . 136
9.4
Reset and System Initialization. . . . . . . . . . . . . . . . . . . . . . . . 136
9.4.1
External Pin Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.4.2
Active Resets from Internal Sources . . . . . . . . . . . . . . . . . 137
9.4.2.1
Power-On Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
9.4.2.2
Computer Operating Properly (COP) Reset. . . . . . . . . . 139
9.4.2.3
Illegal Opcode Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.4.2.4
Illegal Address Reset . . . . . . . . . . . . . . . . . . . . . . . . . . .140
9.4.2.5
Low-Voltage Inhibit (LVI) Reset . . . . . . . . . . . . . . . . . . . 140
9.4.2.6
Monitor Mode Entry Module Reset (MODRST) . . . . . . . 140
9.5
SIM Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.5.1
SIM Counter During Power-On Reset . . . . . . . . . . . . . . . . 141
9.5.2
SIM Counter During Stop Mode Recovery . . . . . . . . . . . . . 141
9.5.3
SIM Counter and Reset States. . . . . . . . . . . . . . . . . . . . . . 141
9.6
Exception Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142
9.6.1
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.6.1.1
Hardware Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.6.1.2
SWI Instruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.6.1.3
Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . .145
9.6.1.4
Interrupt Status Register 1 . . . . . . . . . . . . . . . . . . . . . . . 145
9.6.1.5
Interrupt Status Register 2 . . . . . . . . . . . . . . . . . . . . . . . 147
9.6.1.6
Interrupt Status Register 3 . . . . . . . . . . . . . . . . . . . . . . . 147
9.6.2
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.6.3
Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
131
System Integration Module (SIM)
9.6.4
Status Flag Protection in Break Mode . . . . . . . . . . . . . . . . 148
9.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.7.1
Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
9.7.2
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .150
9.8
SIM Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.8.1
SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 152
9.8.2
SIM Reset Status Register . . . . . . . . . . . . . . . . . . . . . . . . 153
9.8.3
SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 154
9.2 Introduction
This section describes the system integration module (SIM). Together
with the CPU, the SIM controls all MCU activities. A block diagram of the
SIM is shown in Figure 9-1. Table 9-1 is a summary of the SIM
input/output (I/O) registers. The SIM is a system state controller that
coordinates CPU and exception timing. The SIM is responsible for:
•
Bus clock generation and control for CPU and peripherals:
– Stop/wait/reset/break entry and recovery
– Internal clock control
•
Master reset control, including power-on reset (POR) and COP
timeout
•
Interrupt control:
– Acknowledge timing
– Arbitration control timing
– Vector address generation
•
CPU enable/disable timing
•
Modular architecture expandable to 128 interrupt sources
Table 9-1 shows the internal signal names used in this section.
Technical Data
132
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
MODULE STOP
MODULE WAIT
CPU STOP (FROM CPU)
CPU WAIT (FROM CPU)
STOP/WAIT
CONTROL
SIMOSCEN (TO CGM, OSC)
SIM
COUNTER
COP CLOCK
ICLK (FROM OSC)
CGMOUT (FROM CGM)
÷2
CLOCK
CONTROL
VDD
CLOCK GENERATORS
INTERNAL CLOCKS
INTERNAL
PULLUP
DEVICE
RESET
PIN LOGIC
LVI (FROM LVI MODULE)
POR CONTROL
MASTER
RESET
CONTROL
RESET PIN CONTROL
SIM RESET STATUS REGISTER
ILLEGAL OPCODE (FROM CPU)
ILLEGAL ADDRESS (FROM ADDRESS
MAP DECODERS)
COP (FROM COP MODULE)
RESET
INTERRUPT SOURCES
INTERRUPT CONTROL
AND PRIORITY DECODE
CPU INTERFACE
Figure 9-1. SIM Block Diagram
Table 9-1. Signal Name Conventions
Signal Name
ICLK
Description
Internal RC oscillator clock
CGMXCLK
Buffered version of OSC1 from the oscillator module
CGMPCLK
PLL output and the divided PLL output
CGMOUT
PLL-based or oscillator-based clock output from CGM module
(Bus clock = CGMOUT ÷ 2)
IAB
Internal address bus
IDB
Internal data bus
PORRST
Signal from the power-on reset module to the SIM
IRST
Internal reset signal
R/W
Read/write signal
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
133
System Integration Module (SIM)
Addr.
Register Name
Read:
SIM Break Status Register
$FE00
Write:
(SBSR)
Reset:
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
SBSW
Note
Bit 0
R
0
Note: Writing a logic 0 clears SBSW.
Read:
SIM Reset Status Register
$FE01
Write:
(SRSR)
POR:
$FE03
Read:
SIM Break Flag Control
Register Write:
(SBFCR)
Reset:
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
BCFE
R
R
R
R
R
R
R
0
Read:
Interrupt Status Register 1
$FE04
Write:
(INT1)
Reset:
IF6
IF5
IF4
IF3
IF2
IF1
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 2
$FE05
Write:
(INT2)
Reset:
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
Interrupt Status Register 3
$FE06
Write:
(INT3)
Reset:
0
0
0
0
0
IF17
IF16
IF15
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
= Unimplemented
R
= Reserved
Figure 9-2. SIM I/O Register Summary
9.3 SIM Bus Clock Control and Generation
The bus clock generator provides system clock signals for the CPU and
peripherals on the MCU. The system clocks are generated from an
incoming clock, CGMOUT, as shown in Figure 9-3. This clock can come
from either the oscillator module or from the on-chip PLL. (See Section
8. Clock Generator Module (CGM).)
Technical Data
134
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
OSC2
OSCILLATOR (OSC) MODULE
CGMXCLK
OSC1
ICLK
STOP MODE CLOCK
ENABLE SIGNALS
FROM CONFIG2
TO RTC, ADC
SIM COUNTER
SIMOSCEN
SYSTEM INTEGRATION MODULE
CGMRCLK
CGMOUT
÷2
PHASE-LOCKED LOOP (PLL)
SIMDIV2
IT12
TO REST
OF MCU
BUS CLOCK
GENERATORS
IT23
TO REST
OF MCU
PTC1
MONITOR MODE
USER MODE
Figure 9-3. CGM Clock Signals
9.3.1 Bus Timing
In user mode, the internal bus frequency is either the oscillator output
(CGMXCLK) divided by four, CGMXCLK divided by two, or the PLL
output (CGMPCLK) divided by four.
9.3.2 Clock Start-up from POR or LVI Reset
When the power-on reset module or the low-voltage inhibit module
generates a reset, the clocks to the CPU and peripherals are inactive
and held in an inactive phase until after the 4096 ICLK cycle POR
timeout has completed. The RST pin is driven low by the SIM during this
entire period. The IBUS clocks start upon completion of the timeout.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
135
System Integration Module (SIM)
9.3.3 Clocks in Stop Mode and Wait Mode
Upon exit from stop mode by an interrupt, break, or reset, the SIM allows
ICLK to clock the SIM counter. The CPU and peripheral clocks do not
become active until after the stop delay timeout. This timeout is
selectable as 4096 or 32 ICLK cycles. (See 9.7.2 Stop Mode.)
In wait mode, the CPU clocks are inactive. The SIM also produces two
sets of clocks for other modules. Refer to the wait mode subsection of
each module to see if the module is active or inactive in wait mode.
Some modules can be programmed to be active in wait mode.
9.4 Reset and System Initialization
The MCU has these reset sources:
•
Power-on reset module (POR)
•
External reset pin (RST)
•
Computer operating properly module (COP)
•
Low-voltage inhibit module (LVI)
•
Illegal opcode
•
Illegal address
All of these resets produce the vector $FFFE:$FFFF ($FEFE:$FEFF in
monitor mode) and assert the internal reset signal (IRST). IRST causes
all registers to be returned to their default values and all modules to be
returned to their reset states.
An internal reset clears the SIM counter (see 9.5 SIM Counter), but an
external reset does not. Each of the resets sets a corresponding bit in
the SIM reset status register (SRSR). (See 9.8 SIM Registers.)
Technical Data
136
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
9.4.1 External Pin Reset
The RST pin circuit includes an internal pull-up device. Pulling the
asynchronous RST pin low halts all processing. The PIN bit of the SIM
reset status register (SRSR) is set as long as RST is held low for a
minimum of 67 ICLK cycles, assuming that neither the POR nor the LVI
was the source of the reset. See Table 9-2 for details.
Figure 9-4 shows the relative timing.
Table 9-2. PIN Bit Set Timing
Reset Type
Number of Cycles Required to Set PIN
POR/LVI
4163 (4096 + 64 + 3)
All others
67 (64 + 3)
CGMOUT
RST
IAB
VECT H VECT L
PC
Figure 9-4. External Reset Timing
9.4.2 Active Resets from Internal Sources
All internal reset sources actively pull the RST pin low for 32 ICLK cycles
to allow resetting of external peripherals. The internal reset signal IRST
continues to be asserted for an additional 32 cycles (see Figure 9-5). An
internal reset can be caused by an illegal address, illegal opcode, COP
timeout, LVI, or POR (see Figure 9-6).
NOTE:
For LVI or POR resets, the SIM cycles through 4096 + 32 ICLK cycles
during which the SIM forces the RST pin low. The internal reset signal
then follows the sequence from the falling edge of RST shown in
Figure 9-5.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
137
System Integration Module (SIM)
IRST
RST
RST PULLED LOW BY MCU
32 CYCLES
32 CYCLES
ICLK
IAB
VECTOR HIGH
Figure 9-5. Internal Reset Timing
The COP reset is asynchronous to the bus clock.
ILLEGAL ADDRESS RST
ILLEGAL OPCODE RST
COPRST
LVI
POR
INTERNAL RESET
Figure 9-6. Sources of Internal Reset
The active reset feature allows the part to issue a reset to peripherals
and other chips within a system built around the MCU.
9.4.2.1 Power-On Reset
When power is first applied to the MCU, the power-on reset module
(POR) generates a pulse to indicate that power-on has occurred. The
external reset pin (RST) is held low while the SIM counter counts out
4096 + 32 ICLK cycles. Thirty-two ICLK cycles later, the CPU and
memories are released from reset to allow the reset vector sequence to
occur.
At power-on, these events occur:
•
A POR pulse is generated.
•
The internal reset signal is asserted.
•
The SIM enables CGMOUT.
•
Internal clocks to the CPU and modules are held inactive for 4096
ICLK cycles to allow stabilization of the oscillator.
•
The RST pin is driven low during the oscillator stabilization time.
•
The POR bit of the SIM reset status register (SRSR) is set and all
other bits in the register are cleared.
Technical Data
138
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
OSC1
PORRST
4096
CYCLES
32
CYCLES
32
CYCLES
ICLK
CGMOUT
RST
IRST
$FFFE
IAB
$FFFF
Figure 9-7. POR Recovery
9.4.2.2 Computer Operating Properly (COP) Reset
An input to the SIM is reserved for the COP reset signal. The overflow of
the COP counter causes an internal reset and sets the COP bit in the
SIM reset status register (SRSR). The SIM actively pulls down the RST
pin for all internal reset sources.
To prevent a COP module timeout, write any value to location $FFFF.
Writing to location $FFFF clears the COP counter and bits 12 through 5
of the SIM counter. The SIM counter output, which occurs at least every
213 – 24 ICLK cycles, drives the COP counter. The COP should be
serviced as soon as possible out of reset to guarantee the maximum
amount of time before the first timeout.
The COP module is disabled if the RST pin or the IRQ pin is held at VTST
while the MCU is in monitor mode. The COP module can be disabled
only through combinational logic conditioned with the high voltage signal
on the RST or the IRQ pin. This prevents the COP from becoming
disabled as a result of external noise. During a break state, VTST on the
RST pin disables the COP module.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
139
System Integration Module (SIM)
9.4.2.3 Illegal Opcode Reset
The SIM decodes signals from the CPU to detect illegal instructions. An
illegal instruction sets the ILOP bit in the SIM reset status register
(SRSR) and causes a reset.
If the stop enable bit, STOP, in the mask option register is logic 0, the
SIM treats the STOP instruction as an illegal opcode and causes an
illegal opcode reset. The SIM actively pulls down the RST pin for all
internal reset sources.
9.4.2.4 Illegal Address Reset
An opcode fetch from an unmapped address generates an illegal
address reset. The SIM verifies that the CPU is fetching an opcode prior
to asserting the ILAD bit in the SIM reset status register (SRSR) and
resetting the MCU. A data fetch from an unmapped address does not
generate a reset. The SIM actively pulls down the RST pin for all internal
reset sources.
9.4.2.5 Low-Voltage Inhibit (LVI) Reset
The low-voltage inhibit module (LVI) asserts its output to the SIM when
the VDD voltage falls to the LVI trip falling voltage, VTRIPF. The LVI bit in
the SIM reset status register (SRSR) is set, and the external reset pin
(RST) is held low while the SIM counter counts out 4096 + 32 ICLK
cycles. Thirty-two ICLK cycles later, the CPU is released from reset to
allow the reset vector sequence to occur. The SIM actively pulls down
the RST pin for all internal reset sources.
9.4.2.6 Monitor Mode Entry Module Reset (MODRST)
The monitor mode entry module reset (MODRST) asserts its output to
the SIM when monitor mode is entered in the condition where the reset
vectors are blank ($FF). (See Section 10. Monitor ROM (MON).) When
MODRST gets asserted, an internal reset occurs. The SIM actively pulls
down the RST pin for all internal reset sources.
Technical Data
140
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
9.5 SIM Counter
The SIM counter is used by the power-on reset module (POR) and in
stop mode recovery to allow the oscillator time to stabilize before
enabling the internal bus (IBUS) clocks. The SIM counter also serves as
a prescaler for the computer operating properly module (COP). The SIM
counter overflow supplies the clock for the COP module. The SIM
counter is 12 bits long and is clocked by the falling edge of ICLK.
9.5.1 SIM Counter During Power-On Reset
The power-on reset module (POR) detects power applied to the MCU.
At power-on, the POR circuit asserts the signal PORRST. Once the SIM
is initialized, it enables the clock generation module (CGM) to drive the
bus clock state machine.
9.5.2 SIM Counter During Stop Mode Recovery
The SIM counter also is used for stop mode recovery. The STOP
instruction clears the SIM counter. After an interrupt, break, or reset, the
SIM senses the state of the short stop recovery bit, SSREC, in the
configuration register 1 (CONFIG1). If the SSREC bit is a logic 1, then
the stop recovery is reduced from the normal delay of 4096 ICLK cycles
down to 32 ICLK cycles. This is ideal for applications using canned
oscillators that do not require long start-up times from stop mode.
External crystal applications should use the full stop recovery time, that
is, with SSREC cleared.
9.5.3 SIM Counter and Reset States
External reset has no effect on the SIM counter. (See 9.7.2 Stop Mode
for details.) The SIM counter is free-running after all reset states. (See
9.4.2 Active Resets from Internal Sources for counter control and
internal reset recovery sequences.)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
141
System Integration Module (SIM)
9.6 Exception Control
Normal, sequential program execution can be changed in three different
ways:
•
Interrupts:
– Maskable hardware CPU interrupts
– Non-maskable software interrupt instruction (SWI)
•
Reset
•
Break interrupts
9.6.1 Interrupts
At the beginning of an interrupt, the CPU saves the CPU register
contents on the stack and sets the interrupt mask (I bit) to prevent
additional interrupts. At the end of an interrupt, the RTI instruction
recovers the CPU register contents from the stack so that normal
processing can resume. Figure 9-8 shows interrupt entry timing, and
Figure 9-9 shows interrupt recovery timing.
MODULE
INTERRUPT
I-BIT
IAB
IDB
SP
DUMMY
DUMMY
SP – 1
SP – 2
PC – 1[7:0] PC – 1[15:8]
SP – 3
X
SP – 4
A
VECT H
CCR
VECT L
V DATA H
START ADDR
V DATA L
OPCODE
R/W
Figure 9-8. Interrupt Entry Timing
MODULE
INTERRUPT
I-BIT
IAB
IDB
SP – 4
SP – 3
CCR
SP – 2
A
SP – 1
X
SP
PC
PC – 1[15:8] PC – 1[7:0]
PC + 1
OPCODE
OPERAND
R/W
Figure 9-9. Interrupt Recovery Timing
Technical Data
142
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
Interrupts are latched, and arbitration is performed in the SIM at the start
of interrupt processing. The arbitration result is a constant that the CPU
uses to determine which vector to fetch. Once an interrupt is latched by
the SIM, no other interrupt can take precedence, regardless of priority,
until the latched interrupt is serviced (or the I bit is cleared).
(See Figure 9-10.)
FROM RESET
BREAK
I BIT
SET?
INTERRUPT?
YES
NO
YES
I-BIT SET?
NO
IRQ
INTERRUPT?
YES
NO
STACK CPU REGISTERS
SET I-BIT
LOAD PC WITH INTERRUPT VECTOR
AS MANY INTERRUPTS
AS EXIST ON CHIP
FETCH NEXT
INSTRUCTION
SWI
INSTRUCTION?
YES
NO
RTI
INSTRUCTION?
YES
UNSTACK CPU REGISTERS
NO
EXECUTE INSTRUCTION
Figure 9-10. Interrupt Processing
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
143
System Integration Module (SIM)
9.6.1.1 Hardware Interrupts
A hardware interrupt does not stop the current instruction. Processing of
a hardware interrupt begins after completion of the current instruction.
When the current instruction is complete, the SIM checks all pending
hardware interrupts. If interrupts are not masked (I bit clear in the
condition code register) and if the corresponding interrupt enable bit is
set, the SIM proceeds with interrupt processing; otherwise, the next
instruction is fetched and executed.
If more than one interrupt is pending at the end of an instruction
execution, the highest priority interrupt is serviced first. Figure 9-11
demonstrates what happens when two interrupts are pending. If an
interrupt is pending upon exit from the original interrupt service routine,
the pending interrupt is serviced before the LDA instruction is executed.
CLI
LDA #$FF
INT1
BACKGROUND
ROUTINE
PSHH
INT1 INTERRUPT SERVICE ROUTINE
PULH
RTI
INT2
PSHH
INT2 INTERRUPT SERVICE ROUTINE
PULH
RTI
Figure 9-11. Interrupt Recognition Example
The LDA opcode is prefetched by both the INT1 and INT2 RTI
instructions. However, in the case of the INT1 RTI prefetch, this is a
redundant operation.
NOTE:
To maintain compatibility with the M6805 Family, the H register is not
pushed on the stack during interrupt entry. If the interrupt service routine
modifies the H register or uses the indexed addressing mode, software
should save the H register and then restore it prior to exiting the routine.
Technical Data
144
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
9.6.1.2 SWI Instruction
The SWI instruction is a non-maskable instruction that causes an
interrupt regardless of the state of the interrupt mask (I bit) in the
condition code register.
NOTE:
A software interrupt pushes PC onto the stack. A software interrupt does
not push PC – 1, as a hardware interrupt does.
9.6.1.3 Interrupt Status Registers
The flags in the interrupt status registers identify maskable interrupt
sources. Table 9-3 summarizes the interrupt sources and the interrupt
status register flags that they set. The interrupt status registers can be
useful for debugging.
9.6.1.4 Interrupt Status Register 1
Address:
$FE04
Bit 7
6
5
4
3
2
1
Bit 0
Read:
IF6
IF5
IF4
IF3
IF2
IF1
0
0
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 9-12. Interrupt Status Register 1 (INT1)
IF6–IF1 — Interrupt Flags 6–1
These flags indicate the presence of interrupt requests from the
sources shown in Table 9-3.
1 = Interrupt request present
0 = No interrupt request present
Bit 0 and Bit 1 — Always read 0
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
145
System Integration Module (SIM)
Table 9-3. Vector Addresses
Priority
INT Flag
Lowest
IF17
IF16
IF15
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
IF6
IF5
IF4
IF3
IF2
IF1
—
Highest
—
Address
Vector
$FFDA
Real Time Clock Vector (High)
$FFDB
Real Time Clock Vector (Low)
$FFDC
ADC Conversion Complete Vector (High)
$FFDD
ADC Conversion Complete Vector (Low)
$FFDE
Keyboard Vector (High)
$FFDF
Keyboard Vector (Low)
$FFE0
SCI Transmit Vector (High)
$FFE1
SCI Transmit Vector (Low)
$FFE2
SCI Receive Vector (High)
$FFE3
SCI Receive Vector (Low)
$FFE4
SCI Error Vector (High)
$FFE5
SCI Error Vector (Low)
$FFE6
SPI Receive Vector (High)
$FFE7
SPI Receive Vector (Low)
$FFE8
SPI Transmit Vector (High)
$FFE9
SPI Transmit Vector (Low)
$FFEA
TIM2 Overflow Vector (High)
$FFEB
TIM2 Overflow Vector (Low)
$FFEC
TIM2 Channel 1 Vector (High)
$FFED
TIM2 Channel 1 Vector (Low)
$FFEE
TIM2 Channel 0 Vector (High)
$FFEF
TIM2 Channel 0 Vector (Low)
$FFF0
TIM1 Overflow Vector (High)
$FFF1
TIM1 Overflow Vector (Low)
$FFF2
TIM1 Channel 1 Vector (High)
$FFF3
TIM1 Channel 1 Vector (Low)
$FFF4
TIM1 Channel 0 Vector (High)
$FFF5
TIM1 Channel 0 Vector (Low)
$FFF6
PLL Vector (High)
$FFF7
PLL Vector (Low)
$FFF8
LVI Vector (High)
$FFF9
LVI Vector (Low)
$FFFA
IRQ Vector (High)
$FFFB
IRQ Vector (Low)
$FFFC
SWI Vector (High)
$FFFD
SWI Vector (Low)
$FFFE
Reset Vector (High)
$FFFF
Reset Vector (Low)
Technical Data
146
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
9.6.1.5 Interrupt Status Register 2
Address:
$FE05
Bit 7
6
5
4
3
2
1
Bit 0
Read:
IF14
IF13
IF12
IF11
IF10
IF9
IF8
IF7
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 9-13. Interrupt Status Register 2 (INT2)
IF14–IF7 — Interrupt Flags 14–7
These flags indicate the presence of interrupt requests from the
sources shown in Table 9-3.
1 = Interrupt request present
0 = No interrupt request present
9.6.1.6 Interrupt Status Register 3
Address:
$FE06
Bit 7
6
5
4
3
2
1
Bit 0
Read:
0
0
0
0
0
IF17
IF16
IF15
Write:
R
R
R
R
R
R
R
R
Reset:
0
0
0
0
0
0
0
0
R
= Reserved
Figure 9-14. Interrupt Status Register 3 (INT3)
IF17–IF15 — Interrupt Flags 17–15
These flags indicate the presence of an interrupt request from the
source shown in Table 9-3.
1 = Interrupt request present
0 = No interrupt request present
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
147
System Integration Module (SIM)
9.6.2 Reset
All reset sources always have equal and highest priority and cannot be
arbitrated.
9.6.3 Break Interrupts
The break module can stop normal program flow at a softwareprogrammable break point by asserting its break interrupt output. (See
Section 22. Break Module (BRK).) The SIM puts the CPU into the
break state by forcing it to the SWI vector location. Refer to the break
interrupt subsection of each module to see how each module is affected
by the break state.
9.6.4 Status Flag Protection in Break Mode
The SIM controls whether status flags contained in other modules can
be cleared during break mode. The user can select whether flags are
protected from being cleared by properly initializing the break clear flag
enable bit (BCFE) in the SIM break flag control register (SBFCR).
Protecting flags in break mode ensures that set flags will not be cleared
while in break mode. This protection allows registers to be freely read
and written during break mode without losing status flag information.
Setting the BCFE bit enables the clearing mechanisms. Once cleared in
break mode, a flag remains cleared even when break mode is exited.
Status flags with a 2-step clearing mechanism — for example, a read of
one register followed by the read or write of another — are protected,
even when the first step is accomplished prior to entering break mode.
Upon leaving break mode, execution of the second step will clear the flag
as normal.
Technical Data
148
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
9.7 Low-Power Modes
Executing the WAIT or STOP instruction puts the MCU in a low powerconsumption mode for standby situations. The SIM holds the CPU in a
non-clocked state. The operation of each of these modes is described in
the following subsections. Both STOP and WAIT clear the interrupt mask
(I) in the condition code register, allowing interrupts to occur.
9.7.1 Wait Mode
In wait mode, the CPU clocks are inactive while the peripheral clocks
continue to run. Figure 9-15 shows the timing for wait mode entry.
A module that is active during wait mode can wake up the CPU with an
interrupt if the interrupt is enabled. Stacking for the interrupt begins one
cycle after the WAIT instruction during which the interrupt occurred. In
wait mode, the CPU clocks are inactive. Refer to the wait mode
subsection of each module to see if the module is active or inactive in
wait mode. Some modules can be programmed to be active in wait
mode.
Wait mode also can be exited by a reset or break. A break interrupt
during wait mode sets the SIM break stop/wait bit, SBSW, in the SIM
break status register (SBSR). If the COP disable bit, COPD, in the mask
option register is logic 0, then the computer operating properly module
(COP) is enabled and remains active in wait mode.
IAB
IDB
WAIT ADDR
WAIT ADDR + 1
PREVIOUS DATA
SAME
NEXT OPCODE
SAME
SAME
SAME
R/W
NOTE: Previous data can be operand data or the WAIT opcode, depending on the
last instruction.
Figure 9-15. Wait Mode Entry Timing
Figure 9-16 and Figure 9-17 show the timing for WAIT recovery.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
149
System Integration Module (SIM)
IAB
$6E0B
IDB
$A6
$6E0C
$A6
$A6
$00FF
$01
$0B
$00FE
$00FD
$00FC
$6E
EXITSTOPWAIT
NOTE: EXITSTOPWAIT = RST pin OR CPU interrupt OR break interrupt
Figure 9-16. Wait Recovery from Interrupt or Break
32
CYCLES
IAB
IDB
32
CYCLES
$6E0B
$A6
$A6
RST VCT H RST VCT L
$A6
RST
ICLK
Figure 9-17. Wait Recovery from Internal Reset
9.7.2 Stop Mode
In stop mode, the SIM counter is reset and the system clocks are
disabled. An interrupt request from a module can cause an exit from stop
mode. Stacking for interrupts begins after the selected stop recovery
time has elapsed. Reset or break also causes an exit from stop mode.
The SIM disables the clock generator module output (CGMOUT) in stop
mode, stopping the CPU and peripherals. Stop recovery time is
selectable using the SSREC bit in the configuration register 1
(CONFIG1). If SSREC is set, stop recovery is reduced from the normal
delay of 4096 ICLK cycles down to 32. This is ideal for applications using
canned oscillators that do not require long start-up times from stop
mode.
NOTE:
External crystal applications should use the full stop recovery time by
clearing the SSREC bit.
Technical Data
150
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
A break interrupt during stop mode sets the SIM break stop/wait bit
(SBSW) in the SIM break status register (SBSR).
The SIM counter is held in reset from the execution of the STOP
instruction until the beginning of stop recovery. It is then used to time the
recovery period. Figure 9-18 shows stop mode entry timing.
NOTE:
To minimize stop current, all pins configured as inputs should be driven
to a logic 1 or logic 0.
CPUSTOP
IAB
IDB
STOP ADDR
STOP ADDR + 1
PREVIOUS DATA
SAME
NEXT OPCODE
SAME
SAME
SAME
R/W
NOTE: Previous data can be operand data or the STOP opcode, depending on the last
instruction.
Figure 9-18. Stop Mode Entry Timing
STOP RECOVERY PERIOD
ICLK
INT/BREAK
IAB
STOP +1
STOP + 2
STOP + 2
SP
SP – 1
SP – 2
SP – 3
Figure 9-19. Stop Mode Recovery from Interrupt or Break
9.8 SIM Registers
The SIM has three memory-mapped registers:
•
SIM Break Status Register (SBSR) — $FE00
•
SIM Reset Status Register (SRSR) — $FE01
•
SIM Break Flag Control Register (SBFCR) — $FE03
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
151
System Integration Module (SIM)
9.8.1 SIM Break Status Register
The SIM break status register (SBSR) contains a flag to indicate that a
break caused an exit from stop mode or wait mode.
Address:
Read:
Write:
$FE00
Bit 7
6
5
4
3
2
R
R
R
R
R
R
Reset:
1
SBSW
Note
Bit 0
R
0
Note: Writing a logic 0 clears SBSW.
R
= Reserved
Figure 9-20. SIM Break Status Register (SBSR)
SBSW — Break Wait Bit
This status bit is set when a break interrupt causes an exit from wait
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears
SBSW.
1 = Stop mode or wait mode was exited by break interrupt
0 = Stop mode or wait mode was not exited by break interrupt
SBSW can be read within the break interrupt routine. The user can
modify the return address on the stack by subtracting 1 from it. The
following code is an example.
This code works if the H register has been pushed onto the stack in the break
service routine software. This code should be executed at the end of the break
service routine software.
HIBYTE
EQU
LOBYTE
EQU
If not SBSW, do RTI
BRCLR
SBSW,SBSR, RETURN
; See if wait mode or stop mode was exited by
; break.
TST
LOBYTE,SP
;If RETURNLO is not zero,
BNE
DOLO
;then just decrement low byte.
DEC
HIBYTE,SP
;Else deal with high byte, too.
DOLO
DEC
LOBYTE,SP
;Point to WAIT/STOP opcode.
RETURN
PULH
RTI
;Restore H register.
Technical Data
152
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
System Integration Module (SIM)
9.8.2 SIM Reset Status Register
This register contains six flags that show the source of the last reset
provided all previous reset status bits have been cleared. Clear the SIM
reset status register by reading it. A power-on reset sets the POR bit and
clears all other bits in the register.
Address:
Read:
$FE01
Bit 7
6
5
4
3
2
1
Bit 0
POR
PIN
COP
ILOP
ILAD
0
LVI
0
1
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 9-21. SIM Reset Status Register (SRSR)
POR — Power-On Reset Bit
1 = Last reset caused by POR circuit
0 = Read of SRSR
PIN — External Reset Bit
1 = Last reset caused by external reset pin (RST)
0 = POR or read of SRSR
COP — Computer Operating Properly Reset Bit
1 = Last reset caused by COP counter
0 = POR or read of SRSR
ILOP — Illegal Opcode Reset Bit
1 = Last reset caused by an illegal opcode
0 = POR or read of SRSR
ILAD — Illegal Address Reset Bit (opcode fetches only)
1 = Last reset caused by an opcode fetch from an illegal address
0 = POR or read of SRSR
LVI — Low-Voltage Inhibit Reset Bit
1 = Last reset caused by the LVI circuit
0 = POR or read of SRSR
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
System Integration Module (SIM)
153
System Integration Module (SIM)
9.8.3 SIM Break Flag Control Register
The SIM break control register contains a bit that enables software to
clear status bits while the MCU is in a break state.
Address:
Read:
Write:
Reset:
$FE03
Bit 7
6
5
4
3
2
1
Bit 0
BCFE
R
R
R
R
R
R
R
0
R
= Reserved
Figure 9-22. SIM Break Flag Control Register (SBFCR)
BCFE — Break Clear Flag Enable Bit
This read/write bit enables software to clear status bits by accessing
status registers while the MCU is in a break state. To clear status bits
during the break state, the BCFE bit must be set.
1 = Status bits clearable during break
0 = Status bits not clearable during break
Technical Data
154
MC68HC908LJ12 — Rev. 2.1
System Integration Module (SIM)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 10. Monitor ROM (MON)
10.1 Contents
10.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157
10.4.1 Entering Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.4.2 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.4.3 Break Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
10.4.4 Baud Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
10.4.5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
10.5
Security. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
10.6 ROM-Resident Routines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.6.1 PRGRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.6.2 ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175
10.6.3 LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
10.6.4 MON_PRGRNGE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.6.5 MON_ERARNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
10.6.6 MON_LDRNGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
10.6.7 EE_WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.6.8 EE_READ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
155
Monitor ROM (MON)
10.2 Introduction
This section describes the monitor ROM (MON) and the monitor mode
entry methods. The monitor ROM allows complete testing of the MCU
through a single-wire interface with a host computer. Monitor mode entry
can be achieved without use of the higher test voltage, VTST, as long as
vector addresses $FFFE and $FFFF are blank, thus reducing the
hardware requirements for in-circuit programming.
In addition, to simply user coding, routines are also stored in the monitor
ROM area for FLASH memory program /erase and EEPROM emulation.
10.3 Features
Features of the monitor ROM include:
•
Normal user-mode pin functionality
•
One pin dedicated to serial communication between monitor ROM
and host computer
•
Standard mark/space non-return-to-zero (NRZ) communication
with host computer
•
Execution of code in RAM or FLASH
•
FLASH memory security feature1
•
FLASH memory programming interface
•
Enhanced PLL (phase-locked loop) option to allow use of external
32.768-kHz crystal to generate internal frequency of 2.4576 MHz
•
960 bytes monitor ROM code size
($FC00–$FDFF and $FE10–$FFCE)
•
Monitor mode entry without high voltage, VTST, if reset vector is
blank ($FFFE and $FFFF contain $FF)
•
Standard monitor mode entry if high voltage, VTST, is applied to
IRQ
•
Resident routines for in-circuit programming and EEPROM
emulation
1. No security feature is absolutely secure. However, Freescale’s strategy is to make reading or
copying the FLASH difficult for unauthorized users.
Technical Data
156
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.4 Functional Description
The monitor ROM receives and executes commands from a host
computer. Figure 10-1 shows an example circuit used to enter monitor
mode and communicate with a host computer via a standard RS-232
interface.
Simple monitor commands can access any memory address. In monitor
mode, the MCU can execute code downloaded into RAM by a host
computer while most MCU pins retain normal operating mode functions.
All communication between the host computer and the MCU is through
the PTA0 pin. A level-shifting and multiplexing interface is required
between PTA0 and the host computer. PTA0 is used in a wired-OR
configuration and requires a pullup resistor.
The monitor code allows enabling the PLL to generate the internal clock,
provided the reset vector is blank, when the device is being clocked by
a low-frequency crystal. This entry method, which is enabled when IRQ
is held low out of reset, is intended to support serial communication/
programming at 9600 baud in monitor mode by stepping up the external
frequency (assumed to be 32.768 kHz) by a fixed amount to generate
the desired internal frequency (2.4576 MHz). Since this feature is
enabled only when IRQ is held low out of reset, it cannot be used when
the reset vector is non-zero because entry into monitor mode in this case
requires VTST on IRQ.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
157
Monitor ROM (MON)
68HC908LJ12
RST
0.1 µF
VTST
(SEE NOTE 3)
RESET VECTORS
$FFFE
10 kΩ
(SEE NOTES 2
AND 3)
C
SW2
0.033 µF
SW3
(SEE NOTE 2)
C
+
3
MC145407
+
D
10 MΩ
10 µF
10 µF
18
C
32.768 kHz XTAL
4
10 µF
17
330 kΩ
+
+
2
19
DB-25
2
5
16
3
6
15
10 µF
VDD
0.01 µF
CGMXFC
10 kΩ
6–30 pF
20
IRQ
D
EXTERNAL OSCILLATOR
MUST BE USED FOR
MONITOR MODE ENTRY
WHEN IRQ = VTST
1
$FFFF
OSC1
OSC2
SW4
(SEE NOTE 2)
VSS
D
6–30 pF
VREFL
VDD
VDD
VDDA
VREFH
0.1 µF
7
VDD
1
MC74HC125
2
3
6
5
4
VDD
14
10 kΩ
PTA0
PTC1
VDD
VDD
7
A
(SEE NOTE 1)
SW1
B
PTA1
PTA2
Notes:
1. For monitor mode entry when IRQ = VTST:
SW1: Position A — Bus clock = CGMXCLK ÷ 4 or CGMPCLK ÷ 4
SW1: Position B — Bus clock = CGMXCLK ÷ 2
2. SW2, SW3, and SW4: Position C — Enter monitor mode using external oscillator.
SW2, SW3, and SW4: Position D — Enter monitor mode using external XTAL and internal PLL.
3. See 23.6 5.0V DC Electrical Characteristics for IRQ voltage level requirements.
Figure 10-1. Monitor Mode Circuit
Technical Data
158
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.4.1 Entering Monitor Mode
Table 10-1 shows the pin conditions for entering monitor mode. As
specified in the table, monitor mode may be entered after a POR and will
allow communication at 9600 baud provided one of the following sets of
conditions is met:
1. If $FFFE and $FFFF do not contain $FF (programmed state):
– The external clock is 4.9152 MHz with PTC1 low or
9.8304 MHz with PTC1 high
– IRQ = VTST (PLL off)
2. If $FFFE and $FFFF both contain $FF (erased state):
– The external clock is 9.8304 MHz
– IRQ = VDD (this can be implemented through the internal IRQ
pullup; PLL off)
3. If $FFFE and $FFFF both contain $FF (erased state):
– The external clock is 32.768 kHz (crystal)
– IRQ = VSS (this setting initiates the PLL to boost the external
32.768 kHz to an internal bus frequency of 2.4576 MHz)
If VTST is applied to IRQ and PTC1 is low upon monitor mode entry
(above condition set 1), the bus frequency is a divide-by-two of the input
clock. If PTC1 is high with VTST applied to IRQ upon monitor mode entry,
the bus frequency will be a divide-by-four of the input clock. Holding the
PTC1 pin low when entering monitor mode causes a bypass of a divideby-two stage at the oscillator only if VTST is applied to IRQ. In this event,
the CGMOUT frequency is equal to the CGMXCLK frequency, and the
OSC1 input directly generates internal bus clocks. In this case, the
OSC1 signal must have a 50% duty cycle at maximum bus frequency.
If entering monitor mode without high voltage on IRQ (above condition
set 2 or 3, where applied voltage is either VDD or VSS), then all port A pin
requirements and conditions, including the PTC1 frequency divisor
selection, are not in effect. This is to reduce circuit requirements when
performing in-circuit programming.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
159
Monitor ROM (MON)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
IRQ
RST
Address
$FFFE/
$FFFF
PTA2
PTA1
PTA0(1)
PTC1
External
Clock(2)
Bus
Frequency
PLL
COP
Baud
Rate
X
GND
X
X
X
X
X
X
0
X
Disabled
0
No operation until
reset goes high
VTST(3)
VDD
or
VTST
X
0
1
1
0
4.9152
MHz
2.4576
MHz
OFF
Disabled
9600
PTA1 and PTA2
voltages only
required if
IRQ = VTST;
PTC1 determines
frequency divider
VTST(3)
VDD
or
VTST
X
0
1
1
1
9.8304
MHz
2.4576
MHz
OFF
Disabled
9600
PTA1 and PTA2
voltages only
required if
IRQ = VTST;
PTC1 determines
frequency divider
VDD
VDD
Blank
"$FFFF"
X
X
1
X
9.8304
MHz
2.4576
MHz
OFF
Disabled
9600
External frequency
always divided by 4
GND
VDD
Blank
"$FFFF"
X
X
1
X
32.768
kHz
2.4576
MHz
ON
Disabled
9600
PLL enabled
(BCS set)
in monitor code
VDD
or
GND
VTST
Blank
"$FFFF"
X
X
X
X
X
—
OFF
Enabled
—
Enters user
mode — will
encounter an illegal
address reset
VDD
or
GND
VDD
or
VTST
Not Blank
X
X
X
X
X
—
OFF
Enabled
—
Enters user mode
Comment
Notes:
1. PTA0 = 1 if serial communication; PTA0 = 0 if parallel communication
2. External clock is derived by a 32.768 kHz crystal or a 4.9152/9.8304 MHz off-chip oscillator
3. Monitor mode entry by IRQ = VTST, a 4.9152/9.8304 MHz off-chip oscillator must be used. The MCU internal crystal oscillator circuit is bypassed.
Monitor ROM (MON)
Technical Data
160
Table 10-1. Monitor Mode Signal Requirements and Options
Monitor ROM (MON)
NOTE:
If the reset vector is blank and monitor mode is entered, the chip will see
an additional reset cycle after the initial POR reset. Once the part has
been programmed, the traditional method of applying a voltage, VTST, to
IRQ must be used to enter monitor mode.
The COP module is disabled in monitor mode based on these
conditions:
•
If monitor mode was entered as a result of the reset vector being
blank (above condition set 2 or 3), the COP is always disabled
regardless of the state of IRQ or RST.
•
If monitor mode was entered with VTST on IRQ (condition set 1),
then the COP is disabled as long as VTST is applied to either IRQ
or RST.
The second condition states that as long as VTST is maintained on the
IRQ pin after entering monitor mode, or if VTST is applied to RST after
the initial reset to get into monitor mode (when VTST was applied to IRQ),
then the COP will be disabled. In the latter situation, after VTST is applied
to the RST pin, VTST can be removed from the IRQ pin in the interest of
freeing the IRQ for normal functionality in monitor mode.
Figure 10-2 shows a simplified diagram of the monitor mode entry when
the reset vector is blank and just 1 × VDD voltage is applied to the IRQ
pin. An external oscillator of 9.8304 MHz is required for a baud rate of
9600, as the internal bus frequency is automatically set to the external
frequency divided by four.
Enter monitor mode with pin configuration shown in Figure 10-1 by
pulling RST low and then high. The rising edge of RST latches monitor
mode. Once monitor mode is latched, the values on the specified pins
can change.
Once out of reset, the MCU waits for the host to send eight security
bytes. (See 10.5 Security.) After the security bytes, the MCU sends a
break signal (10 consecutive logic 0s) to the host, indicating that it is
ready to receive a command.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
161
Monitor ROM (MON)
POR RESET
IS VECTOR
BLANK?
NO
NORMAL USER
MODE
YES
MONITOR MODE
EXECUTE
MONITOR
CODE
POR
TRIGGERED?
NO
YES
Figure 10-2. Low-Voltage Monitor Mode Entry Flowchart
In monitor mode, the MCU uses different vectors for reset, SWI
(software interrupt), and break interrupt than those for user mode. The
alternate vectors are in the $FE page instead of the $FF page and allow
code execution from the internal monitor firmware instead of user code.
NOTE:
Exiting monitor mode after it has been initiated by having a blank reset
vector requires a power-on reset (POR). Pulling RST low will not exit
monitor mode in this situation.
Table 10-2 summarizes the differences between user mode and monitor
mode vectors.
Table 10-2. Mode Differences (Vectors)
Functions
Modes
Reset
Vector
High
Reset
Vector
Low
Break
Vector
High
Break
Vector
Low
SWI
Vector
High
SWI
Vector
Low
User
$FFFE
$FFFF
$FFFC
$FFFD
$FFFC
$FFFD
Monitor
$FEFE
$FEFF
$FEFC
$FEFD
$FEFC
$FEFD
Technical Data
162
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.4.2 Data Format
Communication with the monitor ROM is in standard non-return-to-zero
(NRZ) mark/space data format. Transmit and receive baud rates must
be identical.
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
BIT 6
NEXT
START
STOP
BIT
BIT
BIT 7
Figure 10-3. Monitor Data Format
10.4.3 Break Signal
A start bit (logic 0) followed by nine logic 0 bits is a break signal. When
the monitor receives a break signal, it drives the PTA0 pin high for the
duration of two bits and then echoes back the break signal.
MISSING STOP BIT
2-STOP BIT DELAY BEFORE ZERO ECHO
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
Figure 10-4. Break Transaction
10.4.4 Baud Rate
The communication baud rate is controlled by the crystal frequency and
the state of the PTC1 pin (when IRQ is set to VTST) upon entry into
monitor mode. When PTC1 is high, the divide by ratio is 1024. If the
PTC1 pin is at logic 0 upon entry into monitor mode, the divide by ratio
is 512.
If monitor mode was entered with VDD on IRQ, then the divide by ratio is
set at 1024, regardless of PTC1. If monitor mode was entered with VSS
on IRQ, then the internal PLL steps up the external frequency, presumed
to be 32.768 kHz, to 2.4576 MHz. These latter two conditions for monitor
mode entry require that the reset vector is blank.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
163
Monitor ROM (MON)
Table 10-3 lists external frequencies required to achieve a standard
baud rate of 9600 BPS. Other standard baud rates can be accomplished
using proportionally higher or lower frequency generators. If using a
crystal as the clock source, be aware of the upper frequency limit that the
internal clock module can handle. See Section 23. Electrical
Specifications for this limit.
Table 10-3. Monitor Baud Rate Selection
External
Frequency
IRQ
PTC1
Internal
Frequency
Baud Rate
(BPS)
4.9152 MHz
VTST
0
2.4576 MHz
9600
9.8304 MHz
VTST
1
2.4576 MHz
9600
9.8304 MHz
VDD
X
2.4576 MHz
9600
32.768 kHz
VSS
X
2.4576 MHz
9600
10.4.5 Commands
The monitor ROM firmware uses these commands:
•
READ (read memory)
•
WRITE (write memory)
•
IREAD (indexed read)
•
IWRITE (indexed write)
•
READSP (read stack pointer)
•
RUN (run user program)
The monitor ROM firmware echoes each received byte back to the PTA0
pin for error checking. An 11-bit delay at the end of each command
allows the host to send a break character to cancel the command. A
delay of two bit times occurs before each echo and before READ,
IREAD, or READSP data is returned. The data returned by a read
command appears after the echo of the last byte of the command.
NOTE:
Wait one bit time after each echo before sending the next byte.
Technical Data
164
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
FROM HOST
4
ADDRESS
HIGH
READ
READ
4
1
ADDRESS
HIGH
1
ADDRESS
LOW
4
ADDRESS
LOW
DATA
1
3, 2
4
ECHO
RETURN
Notes:
1 = Echo delay, 2 bit times
2 = Data return delay, 2 bit times
3 = Cancel command delay, 11 bit times
4 = Wait 1 bit time before sending next byte.
Figure 10-5. Read Transaction
FROM HOST
3
ADDRESS
HIGH
WRITE
WRITE
1
3
ADDRESS
HIGH
1
ADDRESS
LOW
3
ADDRESS
LOW
1
DATA
3
DATA
1
2, 3
ECHO
Notes:
1 = Echo delay, 2 bit times
2 = Cancel command delay, 11 bit times
3 = Wait 1 bit time before sending next byte.
Figure 10-6. Write Transaction
A brief description of each monitor mode command is given in
Table 10-4 through Table 10-9.
Table 10-4. READ (Read Memory) Command
Description
Read byte from memory
Operand
2-byte address in high-byte:low-byte order
Data
Returned
Returns contents of specified address
Opcode
$4A
Command Sequence
SENT TO
MONITOR
READ
READ
ADDRESS
HIGH
ADDRESS
HIGH
ECHO
ADDRESS
LOW
DATA
RETURN
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
ADDRESS
LOW
Technical Data
Monitor ROM (MON)
165
Monitor ROM (MON)
Table 10-5. WRITE (Write Memory) Command
Description
Write byte to memory
Operand
2-byte address in high-byte:low-byte order;
low byte followed by data byte
Data
Returned
None
Opcode
$49
Command Sequence
FROM
HOST
WRITE
ADDRESS
HIGH
WRITE
ADDRESS
HIGH
ADDRESS
LOW
ADDRESS
LOW
DATA
DATA
ECHO
Table 10-6. IREAD (Indexed Read) Command
Description
Read next 2 bytes in memory from last address accessed
Operand
2-byte address in high byte:low byte order
Data
Returned
Returns contents of next two addresses
Opcode
$1A
Command Sequence
FROM
HOST
IREAD
IREAD
ECHO
Technical Data
166
DATA
DATA
RETURN
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
Table 10-7. IWRITE (Indexed Write) Command
Description
Write to last address accessed + 1
Operand
Single data byte
Data
Returned
None
Opcode
$19
Command Sequence
FROM
HOST
IWRITE
IWRITE
DATA
DATA
ECHO
A sequence of IREAD or IWRITE commands can access a block of
memory sequentially over the full 64k-byte memory map.
Table 10-8. READSP (Read Stack Pointer) Command
Description
Reads stack pointer
Operand
None
Data
Returned
Returns incremented stack pointer value (SP + 1) in
high-byte:low-byte order
Opcode
$0C
Command Sequence
FROM
HOST
READSP
READSP
ECHO
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
SP
HIGH
SP
LOW
RETURN
Technical Data
Monitor ROM (MON)
167
Monitor ROM (MON)
Table 10-9. RUN (Run User Program) Command
Description
Executes PULH and RTI instructions
Operand
None
Data
Returned
None
Opcode
$28
Command Sequence
FROM
HOST
RUN
RUN
ECHO
The MCU executes the SWI and PSHH instructions when it enters
monitor mode. The RUN command tells the MCU to execute the PULH
and RTI instructions. Before sending the RUN command, the host can
modify the stacked CPU registers to prepare to run the host program.
The READSP command returns the incremented stack pointer value,
SP + 1. The high and low bytes of the program counter are at addresses
SP + 5 and SP + 6.
SP
HIGH BYTE OF INDEX REGISTER
SP + 1
CONDITION CODE REGISTER
SP + 2
ACCUMULATOR
SP + 3
LOW BYTE OF INDEX REGISTER
SP + 4
HIGH BYTE OF PROGRAM COUNTER SP + 5
LOW BYTE OF PROGRAM COUNTER SP + 6
SP + 7
Figure 10-7. Stack Pointer at Monitor Mode Entry
Technical Data
168
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.5 Security
A security feature discourages unauthorized reading of FLASH locations
while in monitor mode. The host can bypass the security feature at
monitor mode entry by sending eight security bytes that match the bytes
at locations $FFF6–$FFFD. Locations $FFF6–$FFFD contain userdefined data.
NOTE:
Do not leave locations $FFF6–$FFFD blank. For security reasons,
program locations $FFF6–$FFFD even if they are not used for vectors.
During monitor mode entry, the MCU waits after the power-on reset for
the host to send the eight security bytes on pin PTA0. If the received
bytes match those at locations $FFF6–$FFFD, the host bypasses the
security feature and can read all FLASH locations and execute code
from FLASH. Security remains bypassed until a power-on reset occurs.
If the reset was not a power-on reset, security remains bypassed and
security code entry is not required. (See Figure 10-8.)
VDD
4096 + 32 ICLK CYCLES
RST
COMMAND
BYTE 8
BYTE 2
BYTE 1
256 BUS CYCLES (MINIMUM)
FROM HOST
PTA0
4
BREAK
2
1
COMMAND ECHO
NOTES:
1 = Echo delay, 2 bit times.
2 = Data return delay, 2 bit times.
4 = Wait 1 bit time before sending next byte.
1
BYTE 8 ECHO
BYTE 1 ECHO
FROM MCU
1
BYTE 2 ECHO
4
1
Figure 10-8. Monitor Mode Entry Timing
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
169
Monitor ROM (MON)
Upon power-on reset, if the received bytes of the security code do not
match the data at locations $FFF6–$FFFD, the host fails to bypass the
security feature. The MCU remains in monitor mode, but reading a
FLASH location returns an invalid value and trying to execute code from
FLASH causes an illegal address reset. After receiving the eight security
bytes from the host, the MCU transmits a break character, signifying that
it is ready to receive a command.
NOTE:
The MCU does not transmit a break character until after the host sends
the eight security bits.
To determine whether the security code entered is correct, check to see
if bit 6 of RAM address $40 is set. If it is, then the correct security code
has been entered and FLASH can be accessed.
If the security sequence fails, the device should be reset by a power-on
reset and brought up in monitor mode to attempt another entry. After
failing the security sequence, the FLASH module can also be mass
erased by executing an erase routine that was downloaded into internal
RAM. The mass erase operation clears the security code locations so
that all eight security bytes become $FF (blank).
Technical Data
170
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.6 ROM-Resident Routines
Eight routines stored in the monitor ROM area (thus ROM-resident) are
provided for FLASH memory manipulation. Six of the eight routines are
intended to simply FLASH program, erase, and load operations. The
other two routines are intended to simply the use of the FLASH memory
as EEPROM. Table 10-10 shows a summary of the ROM-resident
routines.
Table 10-10. Summary of ROM-Resident Routines
Routine Name
Routine Description
Call
Address
Stack Used
(bytes)
PRGRNGE
Program a range of locations
$FC06
14
ERARNGE
Erase a page or the entire array
$FCBE
9
Loads data from a range of locations
$FF30
9
MON_PRGRNGE
Program a range of locations in
monitor mode
$FF28
16
MON_ERARNGE
Erase a page or the entire array in
monitor mode
$FF2C
11
MON_LDRNGE
Loads data from a range of locations
in monitor mode
$FF24
11
EE_WRITE
Emulated EEPROM write. Data size
ranges from 2 to 15 bytes at a time.
$FC00
17
EE_READ
Emulated EEPROM read. Data size
ranges from 2 to 15 bytes at a time.
$FC03
15
LDRNGE
The routines are designed to be called as stand-alone subroutines in the
user program or monitor mode. The parameters that are passed to a
routine are in the form of a contiguous data block, stored in RAM. The
index register (H:X) is loaded with the address of the first byte of the data
block (acting as a pointer), and the subroutine is called (JSR). Using the
start address as a pointer, multiple data blocks can be used, any area of
RAM be used. A data block has the control and data bytes in a defined
order, as shown in Figure 10-9.
During the software execution, it does not consume any dedicated RAM
location, the run-time heap will extend the system stack, all other RAM
location will not be affected.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
171
Monitor ROM (MON)
R
FILE_PTR
$XXXX
A
M
BUS SPEED (BUS_SPD)
ADDRESS AS POINTER
DATA SIZE (DATASIZE)
START ADDRESS HIGH (ADDRH)
START ADDRESS LOW (ADDRL)
DATA 0
DATA
BLOCK
DATA 1
DATA
ARRAY
DATA N
Figure 10-9. Data Block Format for ROM-Resident Routines
The control and data bytes are described below.
•
Bus speed — This one byte indicates the operating bus speed of
the MCU. The value of this byte should be equal to 4 times the bus
speed. E.g., for a 4MHz bus, the value is 16 ($10). This control
byte is useful where the MCU clock source is switched between
the PLL clock and the crystal clock.
•
Data size — This one byte indicates the number of bytes in the
data array that are to be manipulated. The maximum data array
size is 255. Routines EE_WRITE and EE_READ are restricted to
manipulate a data array between 2 to 15 bytes. Whereas routines
ERARNGE and MON_ERARNGE do not manipulate a data array,
thus, this data size byte has no meaning.
•
Start address — These two bytes, high byte followed by low byte,
indicate the start address of the FLASH memory to be
manipulated.
•
Data array — This data array contains data that are to be
manipulated. Data in this array are programmed to FLASH
memory by the programming routines: PRGRNGE,
MON_PRGRNGE, EE_WRITE. For the read routines: LDRNGE,
MON_LDRNGE, and EE_READ, data is read from FLASH and
stored in this array.
Technical Data
172
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.6.1 PRGRNGE
PRGRNGE is used to program a range of FLASH locations with data
loaded into the data array.
Table 10-11. PRGRNGE Routine
Routine Name
PRGRNGE
Routine Description
Program a range of locations
Calling Address
$FC06
Stack Used
14 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Start address high (ADDRH)
Start address (ADDRL)
Data 1 (DATA1)
:
Data N (DATAN)
The start location of the FLASH to be programmed is specified by the
address ADDRH:ADDRL and the number of bytes from this location is
specified by DATASIZE. The maximum number of bytes that can be
programmed in one routine call is 255 bytes (max. DATASIZE is 255).
ADDRH:ADDRL do not need to be at a page boundary, the routine
handles any boundary misalignment during programming. A check to
see that all bytes in the specified range are erased is not performed by
this routine prior programming. Nor does this routine do a verification
after programming, so there is no return confirmation that programming
was successful. User must assure that the range specified is first
erased.
The coding example below is to program 64 bytes of data starting at
FLASH location $EF00, with a bus speed of 4.9152 MHz. The coding
assumes the data block is already loaded in RAM, with the address
pointer, FILE_PTR, pointing to the first byte of the data block.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
173
Monitor ROM (MON)
ORG
RAM
:
FILE_PTR:
BUS_SPD
DATASIZE
START_ADDR
DATAARRAY
DS.B
DS.B
DS.W
DS.B
1
1
1
64
PRGRNGE
FLASH_START
EQU
EQU
$FC06
$EF00
;
;
;
;
Indicates 4x bus frequency
Data size to be programmed
FLASH start address
Reserved data array
ORG
FLASH
INITIALISATION:
MOV
#20,
BUS_SPD
MOV
#64,
DATASIZE
LDHX
#FLASH_START
STHX
START_ADDR
RTS
MAIN:
BSR
INITIALISATION
:
:
LDHX
FILE_PTR
JSR
PRGRNGE
Technical Data
174
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.6.2 ERARNGE
ERARNGE is used to erase a range of locations in FLASH.
Table 10-12. ERARNGE Routine
Routine Name
ERARNGE
Routine Description
Erase a page or the entire array
Calling Address
$FCBE
Stack Used
9 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Starting address (ADDRH)
Starting address (ADDRL)
There are two sizes of erase ranges: a page or the entire array. The
ERARNGE will erase the page (128 consecutive bytes) in FLASH
specified by the address ADDRH:ADDRL. This address can be any
address within the page. Calling ERARNGE with ADDRH:ADDRL equal
to $FFFF will erase the entire FLASH array (mass erase). Therefore,
care must be taken when calling this routine to prevent an accidental
mass erase.
The ERARNGE routine do not use a data array. The DATASIZE byte is
a dummy byte that is also not used.
The coding example below is to perform a page erase, from
$EF00–$EF7F. The Initialization subroutine is the same as the coding
example for PRGRNGE (see 10.6.1 PRGRNGE).
ERARNGE
MAIN:
EQU
BSR
:
:
LDHX
JSR
:
$FCBE
INITIALISATION
FILE_PTR
ERARNGE
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
175
Monitor ROM (MON)
10.6.3 LDRNGE
LDRNGE is used to load the data array in RAM with data from a range
of FLASH locations.
Table 10-13. LDRNGE Routine
Routine Name
LDRNGE
Routine Description
Loads data from a range of locations
Calling Address
$FF30
Stack Used
9 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Starting address (ADDRH)
Starting address (ADDRL)
Data 1
:
Data N
The start location of FLASH from where data is retrieved is specified by
the address ADDRH:ADDRL and the number of bytes from this location
is specified by DATASIZE. The maximum number of bytes that can be
retrieved in one routine call is 255 bytes. The data retrieved from FLASH
is loaded into the data array in RAM. Previous data in the data array will
be overwritten. User can use this routine to retrieve data from FLASH
that was previously programmed.
The coding example below is to retrieve 64 bytes of data starting from
$EF00 in FLASH. The Initialization subroutine is the same as the coding
example for PRGRNGE (see 10.6.1 PRGRNGE).
LDRNGE
MAIN:
EQU
BSR
:
:
LDHX
JSR
:
$FF30
INITIALIZATION
FILE_PTR
LDRNGE
Technical Data
176
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.6.4 MON_PRGRNGE
In monitor mode, MON_PRGRNGE is used to program a range of
FLASH locations with data loaded into the data array.
Table 10-14. MON_PRGRNGE Routine
Routine Name
MON_PRGRNGE
Routine Description
Program a range of locations, in monitor mode
Calling Address
$FC28
Stack Used
16 bytes
Data Block Format
Bus speed
Data size
Starting address (high byte)
Starting address (low byte)
Data 1
:
Data N
The MON_PRGRNGE routine is designed to be used in monitor mode.
It performs the same function as the PRGRNGE routine (see 10.6.1
PRGRNGE), except that MON_PRGRNGE returns to the main program
via an SWI instruction. After a MON_PRGRNGE call, the SWI instruction
will return the control back to the monitor code.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
177
Monitor ROM (MON)
10.6.5 MON_ERARNGE
In monitor mode, ERARNGE is used to erase a range of locations in
FLASH.
Table 10-15. MON_ERARNGE Routine
Routine Name
MON_ERARNGE
Routine Description
Erase a page or the entire array, in monitor mode
Calling Address
$FF2C
Stack Used
11 bytes
Data Block Format
Bus speed
Data size
Starting address (high byte)
Starting address (low byte)
The MON_ERARNGE routine is designed to be used in monitor mode.
It performs the same function as the ERARNGE routine (see 10.6.2
ERARNGE), except that MON_ERARNGE returns to the main program
via an SWI instruction. After a MON_ERARNGE call, the SWI instruction
will return the control back to the monitor code.
Technical Data
178
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.6.6 MON_LDRNGE
In monitor mode, LDRNGE is used to load the data array in RAM with
data from a range of FLASH locations.
Table 10-16. ICP_LDRNGE Routine
Routine Name
MON_LDRNGE
Routine Description
Loads data from a range of locations, in monitor mode
Calling Address
$FF24
Stack Used
11 bytes
Data Block Format
Bus speed
Data size
Starting address (high byte)
Starting address (low byte)
Data 1
:
Data N
The MON_LDRNGE routine is designed to be used in monitor mode. It
performs the same function as the LDRNGE routine (see 10.6.3
LDRNGE), except that MON_LDRNGE returns to the main program via
an SWI instruction. After a MON_LDRNGE call, the SWI instruction will
return the control back to the monitor code.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
179
Monitor ROM (MON)
10.6.7 EE_WRITE
EE_WRITE is used to write a set of data from the data array to FLASH.
Table 10-17. EE_WRITE Routine
Routine Name
EE_WRITE
Routine Description
Emulated EEPROM write. Data size ranges from 2 to 15
bytes at a time.
Calling Address
$FC00
Stack Used
17 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)(1)
Starting address (ADDRH)(2)
Starting address (ADDRL)(1)
Data 1
:
Data N
Notes:
1. The minimum data size is 2 bytes. The maximum data size is 15 bytes.
2. The start address must be a page boundary start address, e.g. $xx00 or $xx80.
The start location of the FLASH to be programmed is specified by the
address ADDRH:ADDRL and the number of bytes in the data array is
specified by DATASIZE. The minimum number of bytes that can be
programmed in one routine call is 2 bytes, the maximum is 15 bytes.
ADDRH:ADDRL must always be the start of boundary address (the page
start address: $XX00 or $0080) and DATASIZE must be the same size
when accessing the same page.
In some applications, the user may want to repeatedly store and read a
set of data from an area of non-volatile memory. This is easily possible
when using an EEPROM array. As the write and erase operations can
be executed on a byte basis. For FLASH memory, the minimum erase
size is the page — 128 bytes per page for MC68HC908LJ12. If the data
array size is less than the page size, writing and erasing to the same
page cannot fully utilize the page. Unused locations in the page will be
wasted. The EE_WRITE routine is designed to emulate the properties
similar to the EEPROM. Allowing a more efficient use of the FLASH page
for data storage.
Technical Data
180
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
When the user dedicates a page of FLASH for data storage, and the size
of the data array defined, each call of the EE_WRTIE routine will
automatically transfer the data in the data array (in RAM) to the next
blank block of locations in the FLASH page. Once a page is filled up, the
EE_WRITE routine automatically erases the page, and starts reuse the
page again. In the 128-byte page, an 8-byte control block is used by the
routine to monitor the utilization of the page. In effect, only 120 bytes are
used for data storage. (see Figure 10-10). The page control operations
are transparent to the user.
F L A S H
PAGE BOUNDARY
CONTROL: 8 BYTES
$XX00 OR $XX80
DATA ARRAY
DATA ARRAY
DATA ARRAY
ONE PAGE = 128 BYTES
PAGE BOUNDARY
Figure 10-10. EE_WRITE FLASH Memory Usage
When using this routine to store a 2-byte data array, the FLASH page
can be programmed 60 times before the an erase is required. In effect,
the write/erase endurance is increased by 60 times. When a 15-byte
data array is used, the write/erase endurance is increased by 8 times.
Due to the FLASH page size limitation, the data array is limited from 2
bytes to 15 bytes.
The coding example below uses the $EF00–$EE7F page for data
storage. The data array size is 15 bytes, and the bus speed is
4.9152 MHz. The coding assumes the data block is already loaded in
RAM, with the address pointer, FILE_PTR, pointing to the first byte of the
data block.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
181
Monitor ROM (MON)
ORG
RAM
:
FILE_PTR:
BUS_SPD
DATASIZE
START_ADDR
DATAARRAY
DS.B
DS.B
DS.W
DS.B
1
1
1
15
EE_WRITE
FLASH_START
EQU
EQU
$FC00
$EF00
;
;
;
;
Indicates 4x bus frequency
Data size to be programmed
FLASH starting address
Reserved data array
ORG
FLASH
INITIALISATION:
MOV
#20,
BUS_SPD
MOV
#15,
DATASIZE
LDHX
#FLASH_START
STHX
START_ADDR
RTS
MAIN:
BSR
INITIALISATION
:
:
LHDX
FILE_PTR
JSR
EE_WRITE
NOTE:
The EE_WRITE routine is unable to check for incorrect data blocks,
such as the FLASH page boundary address and data size. It is the
responsibility of the user to ensure the starting address indicated in the
data block is at the FLASH page boundary and the data size is 2 to 15.
If the FLASH page is already programmed with a data array with a
different size, the EE_WRITE call will be ignored.
Technical Data
182
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Monitor ROM (MON)
10.6.8 EE_READ
EE_READ is used to load the data array in RAM with a set of data from
FLASH.
Table 10-18. EE_READ Routine
Routine Name
EE_READ
Routine Description
Emulated EEPROM read. Data size ranges from 2 to 15
bytes at a time.
Calling Address
$FC03
Stack Used
15 bytes
Data Block Format
Bus speed (BUS_SPD)
Data size (DATASIZE)
Starting address (ADDRH)(1)
Starting address (ADDRL)(1)
Data 1
:
Data N
Notes:
1. The start address must be a page boundary start address, e.g. $xx00 or $xx80.
The EE_READ routine reads data stored by the EE_WRITE routine. An
EE_READ call will retrieve the last data written to a FLASH page and
loaded into the data array in RAM. Same as EE_WRITE, the data size
indicated by DATASIZE is 2 to 15, and the start address
ADDRH:ADDRL must the FLASH page boundary address.
The coding example below uses the data stored by the EE_WRITE
coding example (see 10.6.7 EE_WRITE). It loads the 15-byte data set
stored in the $EF00–$EE7F page to the data array in RAM. The
initialization subroutine is the same as the coding example for
EE_WRITE (see 10.6.7 EE_WRITE).
EE_READ
EQU
$FC03
MAIN:
BSR
:
:
LDHX
JSR
:
INITIALIZATION
FILE_PTR
EE_READ
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Monitor ROM (MON)
183
Monitor ROM (MON)
NOTE:
The EE_READ routine is unable to check for incorrect data blocks, such
as the FLASH page boundary address and data size. It is the
responsibility of the user to ensure the starting address indicated in the
data block is at the FLASH page boundary and the data size is 2 to 15.
If the FLASH page is programmed with a data array with a different size,
the EE_READ call will be ignored.
Technical Data
184
MC68HC908LJ12 — Rev. 2.1
Monitor ROM (MON)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 11. Timer Interface Module (TIM)
11.1 Contents
11.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
11.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
11.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
11.5.1 TIM Counter Prescaler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
11.5.2 Input Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
11.5.3 Output Compare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
11.5.3.1
Unbuffered Output Compare . . . . . . . . . . . . . . . . . . . . . 192
11.5.3.2
Buffered Output Compare . . . . . . . . . . . . . . . . . . . . . . .193
11.5.4 Pulse Width Modulation (PWM) . . . . . . . . . . . . . . . . . . . . . 193
11.5.4.1
Unbuffered PWM Signal Generation . . . . . . . . . . . . . . . 194
11.5.4.2
Buffered PWM Signal Generation . . . . . . . . . . . . . . . . . 195
11.5.4.3
PWM Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
11.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
11.7 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
11.7.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
11.7.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .198
11.8
TIM During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 198
11.9
I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.10 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
11.10.1 TIM Status and Control Register . . . . . . . . . . . . . . . . . . . . 200
11.10.2 TIM Counter Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
11.10.3 TIM Counter Modulo Registers . . . . . . . . . . . . . . . . . . . . . 203
11.10.4 TIM Channel Status and Control Registers . . . . . . . . . . . . 204
11.10.5 TIM Channel Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
185
Timer Interface Module (TIM)
11.2 Introduction
This section describes the timer interface (TIM) module. The TIM is a
two-channel timer that provides a timing reference with input capture,
output compare, and pulse-width-modulation functions. Figure 11-1 is a
block diagram of the TIM.
This particular MCU has two timer interface modules which are denoted
as TIM1 and TIM2.
11.3 Features
Features of the TIM include:
•
Two input capture/output compare channels:
– Rising-edge, falling-edge, or any-edge input capture trigger
– Set, clear, or toggle output compare action
•
Buffered and unbuffered pulse-width-modulation (PWM) signal
generation
•
Programmable TIM clock input with 7-frequency internal bus clock
prescaler selection
•
Free-running or modulo up-count operation
•
Toggle any channel pin on overflow
•
TIM counter stop and reset bits
Technical Data
186
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
11.4 Pin Name Conventions
The text that follows describes both timers, TIM1 and TIM2. The TIM
input/output (I/O) pin names are T[1,2]CH0 (timer channel 0) and
T[1,2]CH1 (timer channel 1), where “1” is used to indicate TIM1 and “2”
is used to indicate TIM2. The two TIMs share four I/O pins with four I/O
port pins. The full names of the TIM I/O pins are listed in
Table 11-1. The generic pin names appear in the text that follows.
Table 11-1. Pin Name Conventions
TIM Generic Pin Names:
Full TIM
Pin Names:
NOTE:
T[1,2]CH0
T[1,2]CH1
TIM1
PTB2/T1CH0
PTB3/T1CH1
TIM2
PTB4/T2CH0
PTB5/T2CH1
References to either timer 1 or timer 2 may be made in the following text
by omitting the timer number. For example, TCH0 may refer generically
to T1CH0 and T2CH0, and TCH1 may refer to T1CH1 and T2CH1.
11.5 Functional Description
Figure 11-1 shows the structure of the TIM. The central component of
the TIM is the 16-bit TIM counter that can operate as a free-running
counter or a modulo up-counter. The TIM counter provides the timing
reference for the input capture and output compare functions. The TIM
counter modulo registers, TMODH:TMODL, control the modulo value of
the TIM counter. Software can read the TIM counter value at any time
without affecting the counting sequence.
The two TIM channels (per timer) are programmable independently as
input capture or output compare channels.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
187
Timer Interface Module (TIM)
PRESCALER SELECT
INTERNAL
BUS CLOCK
PRESCALER
TSTOP
PS2
TRST
PS1
PS0
16-BIT COUNTER
TOF
TOIE
INTERRUPT
LOGIC
16-BIT COMPARATOR
TMODH:TMODL
TOV0
ELS0B
CHANNEL 0
ELS0A
CH0MAX
16-BIT COMPARATOR
TCH0H:TCH0L
PORT
LOGIC
T[1,2]CH0
CH0F
16-BIT LATCH
CH0IE
MS0A
INTERRUPT
LOGIC
MS0B
INTERNAL BUS
TOV1
ELS1B
CHANNEL 1
ELS1A
CH1MAX
16-BIT COMPARATOR
TCH1H:TCH1L
PORT
LOGIC
T[1,2]CH1
CH1F
16-BIT LATCH
MS1A
CH1IE
INTERRUPT
LOGIC
Figure 11-1. TIM Block Diagram
Figure 11-2 summarizes the timer registers.
NOTE:
References to either timer 1 or timer 2 may be made in the following text
by omitting the timer number. For example, TSC may generically refer to
both T1SC and T2SC.
Technical Data
188
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
Addr.
$0020
$0021
$0022
$0023
$0024
Register Name
$0027
6
5
TOIE
TSTOP
4
3
0
0
2
1
Bit 0
PS2
PS1
PS0
Read:
Timer 1 Status and
Control Register Write:
(T1SC)
Reset:
TOF
0
0
1
0
0
0
0
0
Read:
Timer 1 Counter
Register High Write:
(T1CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 1 Counter
Register Low Write:
(T1CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
2
1
Bit 0
Read:
Timer 1 Counter Modulo
Register High Write:
(T1MODH)
Reset:
Read:
Timer 1 Counter Modulo
Register Low Write:
(T1MODL)
Reset:
Read:
Timer 1 Channel 0 Status
$0025
and Control Register Write:
(T1SC0)
Reset:
$0026
Bit 7
Read:
Timer 1 Channel 0
Register High Write:
(T1CH0H)
Reset:
Read:
Timer 1 Channel 0
Register Low Write:
(T1CH0L)
Reset:
Read:
Timer 1 Channel 1 Status
$0028
and Control Register Write:
(T1SC1)
Reset:
0
CH0F
0
TRST
Indeterminate after reset
Bit 7
6
5
4
3
Indeterminate after reset
CH1F
0
0
CH1IE
0
0
0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
= Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 1 of 3)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
189
Timer Interface Module (TIM)
Addr.
$0029
$002A
$002B
Register Name
Read:
Timer 1 Channel 1
Register High Write:
(T1CH1H)
Reset:
Read:
Timer 1 Channel 1
Register Low Write:
(T1CH1L)
Reset:
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
2
1
Bit 0
PS2
PS1
PS0
Indeterminate after reset
Bit 7
6
5
4
3
Indeterminate after reset
0
0
TOIE
TSTOP
0
0
1
0
0
0
0
0
Read:
Timer 2 Counter
Register High Write:
(T2CNTH)
Reset:
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Read:
Timer 2 Counter
Register Low Write:
(T2CNTL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
Read:
Timer 2 Counter Modulo
Register High Write:
(T2MODH)
Reset:
Read:
Timer 2 Counter Modulo
Register Low Write:
(T2MODL)
Reset:
Read:
Timer 2 Channel 0 Status
$0030
and Control Register Write:
(T2SC0)
Reset:
$0031
5
TOF
$002D
$002F
6
Read:
Timer 2 Status and
Control Register Write:
(T2SC)
Reset:
$002C
$002E
Bit 7
Read:
Timer 2 Channel 0
Register High Write:
(T2CH0H)
Reset:
0
CH0F
0
TRST
Indeterminate after reset
= Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 2 of 3)
Technical Data
190
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
Addr.
$0032
Register Name
Read:
Timer 2 Channel 0
Register Low Write:
(T2CH0L)
Reset:
Read:
Timer 2 Channel 1 Status
$0033
and Control Register Write:
(T2SC1)
Reset:
$0034
$0035
Read:
Timer 2 Channel 1
Register High Write:
(T2CH1H)
Reset:
Read:
Timer 2 Channel 1
Register Low Write:
(T2CH1L)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Indeterminate after reset
CH1F
0
CH1IE
0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
0
0
0
Bit 15
14
13
12
11
10
9
Bit 8
2
1
Bit 0
Indeterminate after reset
Bit 7
6
5
4
3
Indeterminate after reset
= Unimplemented
Figure 11-2. TIM I/O Register Summary (Sheet 3 of 3)
11.5.1 TIM Counter Prescaler
The TIM clock source can be one of the seven prescaler outputs. The
prescaler generates seven clock rates from the internal bus clock. The
prescaler select bits, PS[2:0], in the TIM status and control register
select the TIM clock source.
11.5.2 Input Capture
With the input capture function, the TIM can capture the time at which an
external event occurs. When an active edge occurs on the pin of an input
capture channel, the TIM latches the contents of the TIM counter into the
TIM channel registers, TCHxH:TCHxL. The polarity of the active edge is
programmable. Input captures can generate TIM CPU interrupt
requests.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
191
Timer Interface Module (TIM)
11.5.3 Output Compare
With the output compare function, the TIM can generate a periodic pulse
with a programmable polarity, duration, and frequency. When the
counter reaches the value in the registers of an output compare channel,
the TIM can set, clear, or toggle the channel pin. Output compares can
generate TIM CPU interrupt requests.
11.5.3.1 Unbuffered Output Compare
Any output compare channel can generate unbuffered output compare
pulses as described in 11.5.3 Output Compare. The pulses are
unbuffered because changing the output compare value requires writing
the new value over the old value currently in the TIM channel registers.
An unsynchronized write to the TIM channel registers to change an
output compare value could cause incorrect operation for up to two
counter overflow periods. For example, writing a new value before the
counter reaches the old value but after the counter reaches the new
value prevents any compare during that counter overflow period. Also,
using a TIM overflow interrupt routine to write a new, smaller output
compare value may cause the compare to be missed. The TIM may pass
the new value before it is written.
Use the following methods to synchronize unbuffered changes in the
output compare value on channel x:
•
When changing to a smaller value, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current output compare pulse. The interrupt routine has until
the end of the counter overflow period to write the new value.
•
When changing to a larger output compare value, enable TIM
overflow interrupts and write the new value in the TIM overflow
interrupt routine. The TIM overflow interrupt occurs at the end of
the current counter overflow period. Writing a larger value in an
output compare interrupt routine (at the end of the current pulse)
could cause two output compares to occur in the same counter
overflow period.
Technical Data
192
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
11.5.3.2 Buffered Output Compare
Channels 0 and 1 can be linked to form a buffered output compare
channel whose output appears on the TCH0 pin. The TIM channel
registers of the linked pair alternately control the output.
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)
links channel 0 and channel 1. The output compare value in the TIM
channel 0 registers initially controls the output on the TCH0 pin. Writing
to the TIM channel 1 registers enables the TIM channel 1 registers to
synchronously control the output after the TIM overflows. At each
subsequent overflow, the TIM channel registers (0 or 1) that control the
output are the ones written to last. TSC0 controls and monitors the
buffered output compare function, and TIM channel 1 status and control
register (TSC1) is unused. While the MS0B bit is set, the channel 1 pin,
TCH1, is available as a general-purpose I/O pin.
NOTE:
In buffered output compare operation, do not write new output compare
values to the currently active channel registers. User software should
track the currently active channel to prevent writing a new value to the
active channel. Writing to the active channel registers is the same as
generating unbuffered output compares.
11.5.4 Pulse Width Modulation (PWM)
By using the toggle-on-overflow feature with an output compare channel,
the TIM can generate a PWM signal. The value in the TIM counter
modulo registers determines the period of the PWM signal. The channel
pin toggles when the counter reaches the value in the TIM counter
modulo registers. The time between overflows is the period of the PWM
signal.
As Figure 11-3 shows, the output compare value in the TIM channel
registers determines the pulse width of the PWM signal. The time
between overflow and output compare is the pulse width. Program the
TIM to clear the channel pin on output compare if the state of the PWM
pulse is logic 1. Program the TIM to set the pin if the state of the PWM
pulse is logic 0.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
193
Timer Interface Module (TIM)
The value in the TIM counter modulo registers and the selected
prescaler output determines the frequency of the PWM output. The
frequency of an 8-bit PWM signal is variable in 256 increments. Writing
$00FF (255) to the TIM counter modulo registers produces a PWM
period of 256 times the internal bus clock period if the prescaler select
value is $000. See 11.10.1 TIM Status and Control Register.
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
PULSE
WIDTH
TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
Figure 11-3. PWM Period and Pulse Width
The value in the TIM channel registers determines the pulse width of the
PWM output. The pulse width of an 8-bit PWM signal is variable in 256
increments. Writing $0080 (128) to the TIM channel registers produces
a duty cycle of 128/256 or 50%.
11.5.4.1 Unbuffered PWM Signal Generation
Any output compare channel can generate unbuffered PWM pulses as
described in 11.5.4 Pulse Width Modulation (PWM). The pulses are
unbuffered because changing the pulse width requires writing the new
pulse width value over the old value currently in the TIM channel
registers.
An unsynchronized write to the TIM channel registers to change a pulse
width value could cause incorrect operation for up to two PWM periods.
For example, writing a new value before the counter reaches the old
value but after the counter reaches the new value prevents any compare
during that PWM period. Also, using a TIM overflow interrupt routine to
write a new, smaller pulse width value may cause the compare to be
missed. The TIM may pass the new value before it is written.
Technical Data
194
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
Use the following methods to synchronize unbuffered changes in the
PWM pulse width on channel x:
NOTE:
•
When changing to a shorter pulse width, enable channel x output
compare interrupts and write the new value in the output compare
interrupt routine. The output compare interrupt occurs at the end
of the current pulse. The interrupt routine has until the end of the
PWM period to write the new value.
•
When changing to a longer pulse width, enable TIM overflow
interrupts and write the new value in the TIM overflow interrupt
routine. The TIM overflow interrupt occurs at the end of the current
PWM period. Writing a larger value in an output compare interrupt
routine (at the end of the current pulse) could cause two output
compares to occur in the same PWM period.
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
compare also can cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
11.5.4.2 Buffered PWM Signal Generation
Channels 0 and 1 can be linked to form a buffered PWM channel whose
output appears on the TCH0 pin. The TIM channel registers of the linked
pair alternately control the pulse width of the output.
Setting the MS0B bit in TIM channel 0 status and control register (TSC0)
links channel 0 and channel 1. The TIM channel 0 registers initially
control the pulse width on the TCH0 pin. Writing to the TIM channel 1
registers enables the TIM channel 1 registers to synchronously control
the pulse width at the beginning of the next PWM period. At each
subsequent overflow, the TIM channel registers (0 or 1) that control the
pulse width are the ones written to last. TSC0 controls and monitors the
buffered PWM function, and TIM channel 1 status and control register
(TSC1) is unused. While the MS0B bit is set, the channel 1 pin, TCH1,
is available as a general-purpose I/O pin.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
195
Timer Interface Module (TIM)
NOTE:
In buffered PWM signal generation, do not write new pulse width values
to the currently active channel registers. User software should track the
currently active channel to prevent writing a new value to the active
channel. Writing to the active channel registers is the same as
generating unbuffered PWM signals.
11.5.4.3 PWM Initialization
To ensure correct operation when generating unbuffered or buffered
PWM signals, use the following initialization procedure:
1. In the TIM status and control register (TSC):
a. Stop the TIM counter by setting the TIM stop bit, TSTOP.
b. Reset the TIM counter and prescaler by setting the TIM reset
bit, TRST.
2. In the TIM counter modulo registers (TMODH:TMODL), write the
value for the required PWM period.
3. In the TIM channel x registers (TCHxH:TCHxL), write the value for
the required pulse width.
4. In TIM channel x status and control register (TSCx):
a. Write 0:1 (for unbuffered output compare or PWM signals) or
1:0 (for buffered output compare or PWM signals) to the
mode select bits, MSxB:MSxA. (See Table 11-3.)
b. Write 1 to the toggle-on-overflow bit, TOVx.
c. Write 1:0 (to clear output on compare) or 1:1 (to set output on
compare) to the edge/level select bits, ELSxB:ELSxA. The
output action on compare must force the output to the
complement of the pulse width level. (See Table 11-3.)
NOTE:
In PWM signal generation, do not program the PWM channel to toggle
on output compare. Toggling on output compare prevents reliable 0%
duty cycle generation and removes the ability of the channel to selfcorrect in the event of software error or noise. Toggling on output
compare can also cause incorrect PWM signal generation when
changing the PWM pulse width to a new, much larger value.
5. In the TIM status control register (TSC), clear the TIM stop bit,
TSTOP.
Technical Data
196
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
Setting MS0B links channels 0 and 1 and configures them for buffered
PWM operation. The TIM channel 0 registers (TCH0H:TCH0L) initially
control the buffered PWM output. TIM status control register 0 (TSCR0)
controls and monitors the PWM signal from the linked channels.
Clearing the toggle-on-overflow bit, TOVx, inhibits output toggles on TIM
overflows. Subsequent output compares try to force the output to a state
it is already in and have no effect. The result is a 0% duty cycle output.
Setting the channel x maximum duty cycle bit (CHxMAX) and setting the
TOVx bit generates a 100% duty cycle output. (See 11.10.4 TIM
Channel Status and Control Registers.)
11.6 Interrupts
The following TIM sources can generate interrupt requests:
•
TIM overflow flag (TOF) — The TOF bit is set when the TIM
counter reaches the modulo value programmed in the TIM counter
modulo registers. The TIM overflow interrupt enable bit, TOIE,
enables TIM overflow CPU interrupt requests. TOF and TOIE are
in the TIM status and control register.
•
TIM channel flags (CH1F:CH0F) — The CHxF bit is set when an
input capture or output compare occurs on channel x. Channel x
TIM CPU interrupt requests are controlled by the channel x
interrupt enable bit, CHxIE. Channel x TIM CPU interrupt requests
are enabled when CHxIE = 1. CHxF and CHxIE are in the TIM
channel x status and control register.
11.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
197
Timer Interface Module (TIM)
11.7.1 Wait Mode
The TIM remains active after the execution of a WAIT instruction. In wait
mode, the TIM registers are not accessible by the CPU. Any enabled
CPU interrupt request from the TIM can bring the MCU out of wait mode.
If TIM functions are not required during wait mode, reduce power
consumption by stopping the TIM before executing the WAIT instruction.
11.7.2 Stop Mode
The TIM is inactive after the execution of a STOP instruction. The STOP
instruction does not affect register conditions or the state of the TIM
counter. TIM operation resumes when the MCU exits stop mode after an
external interrupt.
11.8 TIM During Break Interrupts
A break interrupt stops the TIM counter.
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state. (See 9.8.3 SIM Break Flag Control
Register.)
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a 2-step read/write clearing procedure. If software does
the first step on such a bit before the break, the bit cannot change during
the break state as long as BCFE is at logic 0. After the break, doing the
second step clears the status bit.
Technical Data
198
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
11.9 I/O Signals
Port B shares four of its pins with the TIM. The four TIM channel I/O pins
are T1CH0, T1CH1, T2CH0, and T2CH1 as described in 11.4 Pin Name
Conventions.
Each channel I/O pin is programmable independently as an input
capture pin or an output compare pin. T1CH0 and T2CH0 can be
configured as buffered output compare or buffered PWM pins.
11.10 I/O Registers
NOTE:
References to either timer 1 or timer 2 may be made in the following text
by omitting the timer number. For example, TSC may generically refer to
both T1SC AND T2SC.
These I/O registers control and monitor operation of the TIM:
•
TIM status and control register (TSC)
•
TIM counter registers (TCNTH:TCNTL)
•
TIM counter modulo registers (TMODH:TMODL)
•
TIM channel status and control registers (TSC0, TSC1)
•
TIM channel registers (TCH0H:TCH0L, TCH1H:TCH1L)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
199
Timer Interface Module (TIM)
11.10.1 TIM Status and Control Register
The TIM status and control register (TSC):
•
Enables TIM overflow interrupts
•
Flags TIM overflows
•
Stops the TIM counter
•
Resets the TIM counter
•
Prescales the TIM counter clock
Address: T1SC, $0020 and T2SC, $002B
Bit 7
Read:
TOF
Write:
0
Reset:
0
6
5
TOIE
TSTOP
0
1
4
3
0
0
TRST
0
0
2
1
Bit 0
PS2
PS1
PS0
0
0
0
= Unimplemented
Figure 11-4. TIM Status and Control Register (TSC)
TOF — TIM Overflow Flag Bit
This read/write flag is set when the TIM counter reaches the modulo
value programmed in the TIM counter modulo registers. Clear TOF by
reading the TIM status and control register when TOF is set and then
writing a logic 0 to TOF. If another TIM overflow occurs before the
clearing sequence is complete, then writing logic 0 to TOF has no
effect. Therefore, a TOF interrupt request cannot be lost due to
inadvertent clearing of TOF. Reset clears the TOF bit. Writing a
logic 1 to TOF has no effect.
1 = TIM counter has reached modulo value
0 = TIM counter has not reached modulo value
TOIE — TIM Overflow Interrupt Enable Bit
This read/write bit enables TIM overflow interrupts when the TOF bit
becomes set. Reset clears the TOIE bit.
1 = TIM overflow interrupts enabled
0 = TIM overflow interrupts disabled
Technical Data
200
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
TSTOP — TIM Stop Bit
This read/write bit stops the TIM counter. Counting resumes when
TSTOP is cleared. Reset sets the TSTOP bit, stopping the TIM
counter until software clears the TSTOP bit.
1 = TIM counter stopped
0 = TIM counter active
NOTE:
Do not set the TSTOP bit before entering wait mode if the TIM is required
to exit wait mode.
TRST — TIM Reset Bit
Setting this write-only bit resets the TIM counter and the TIM
prescaler. Setting TRST has no effect on any other registers.
Counting resumes from $0000. TRST is cleared automatically after
the TIM counter is reset and always reads as logic 0. Reset clears the
TRST bit.
1 = Prescaler and TIM counter cleared
0 = No effect
NOTE:
Setting the TSTOP and TRST bits simultaneously stops the TIM counter
at a value of $0000.
PS[2:0] — Prescaler Select Bits
These read/write bits select one of the seven prescaler outputs as the
input to the TIM counter as Table 11-2 shows. Reset clears the
PS[2:0] bits.
Table 11-2. Prescaler Selection
PS2
PS1
PS0
0
0
0
Internal bus clock ÷ 1
0
0
1
Internal bus clock ÷ 2
0
1
0
Internal bus clock ÷ 4
0
1
1
Internal bus clock ÷ 8
1
0
0
Internal bus clock ÷ 16
1
0
1
Internal bus clock ÷ 32
1
1
0
Internal bus clock ÷ 64
1
1
1
Not available
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
TIM Clock Source
Technical Data
Timer Interface Module (TIM)
201
Timer Interface Module (TIM)
11.10.2 TIM Counter Registers
The two read-only TIM counter registers contain the high and low bytes
of the value in the TIM counter. Reading the high byte (TCNTH) latches
the contents of the low byte (TCNTL) into a buffer. Subsequent reads of
TCNTH do not affect the latched TCNTL value until TCNTL is read.
Reset clears the TIM counter registers. Setting the TIM reset bit (TRST)
also clears the TIM counter registers.
NOTE:
If you read TCNTH during a break interrupt, be sure to unlatch TCNTL
by reading TCNTL before exiting the break interrupt. Otherwise, TCNTL
retains the value latched during the break.
Address: T1CNTH, $0021 and T2CNTH, $002C
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 11-5. TIM Counter Registers High (TCNTH)
Address: T1CNTL, $0022 and T2CNTL, $002D
Read:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 11-6. TIM Counter Registers Low (TCNTL)
Technical Data
202
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
11.10.3 TIM Counter Modulo Registers
The read/write TIM modulo registers contain the modulo value for the
TIM counter. When the TIM counter reaches the modulo value, the
overflow flag (TOF) becomes set, and the TIM counter resumes counting
from $0000 at the next timer clock. Writing to the high byte (TMODH)
inhibits the TOF bit and overflow interrupts until the low byte (TMODL) is
written. Reset sets the TIM counter modulo registers.
Address: T1MODH, $0023 and T2MODH, $002E
Read:
Write:
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
1
1
1
1
1
1
1
1
Figure 11-7. TIM Counter Modulo Register High (TMODH)
Address: T1MODL, $0024 and T2MODL, $002F
Read:
Write:
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
1
1
1
1
1
1
1
1
Figure 11-8. TIM Counter Modulo Register Low (TMODL)
NOTE:
Reset the TIM counter before writing to the TIM counter modulo registers.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
203
Timer Interface Module (TIM)
11.10.4 TIM Channel Status and Control Registers
Each of the TIM channel status and control registers:
•
Flags input captures and output compares
•
Enables input capture and output compare interrupts
•
Selects input capture, output compare, or PWM operation
•
Selects high, low, or toggling output on output compare
•
Selects rising edge, falling edge, or any edge as the active input
capture trigger
•
Selects output toggling on TIM overflow
•
Selects 0% and 100% PWM duty cycle
•
Selects buffered or unbuffered output compare/PWM operation
Address: T1SC0, $0025 and T2SC0, $0030
Bit 7
Read:
CH0F
Write:
0
Reset:
0
6
5
4
3
2
1
Bit 0
CH0IE
MS0B
MS0A
ELS0B
ELS0A
TOV0
CH0MAX
0
0
0
0
0
0
0
Figure 11-9. TIM Channel 0 Status and Control Register (TSC0)
Address: T1SC1, $0028 and T2SC1, $0033
Bit 7
Read:
CH1F
Write:
0
Reset:
0
6
CH1IE
0
5
0
0
4
3
2
1
Bit 0
MS1A
ELS1B
ELS1A
TOV1
CH1MAX
0
0
0
0
0
= Unimplemented
Figure 11-10. TIM Channel 1 Status and Control Register (TSC1)
Technical Data
204
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
CHxF — Channel x Flag Bit
When channel x is an input capture channel, this read/write bit is set
when an active edge occurs on the channel x pin. When channel x is
an output compare channel, CHxF is set when the value in the TIM
counter registers matches the value in the TIM channel x registers.
When TIM CPU interrupt requests are enabled (CHxIE = 1), clear
CHxF by reading TIM channel x status and control register with CHxF
set and then writing a logic 0 to CHxF. If another interrupt request
occurs before the clearing sequence is complete, then writing logic 0
to CHxF has no effect. Therefore, an interrupt request cannot be lost
due to inadvertent clearing of CHxF.
Reset clears the CHxF bit. Writing a logic 1 to CHxF has no effect.
1 = Input capture or output compare on channel x
0 = No input capture or output compare on channel x
CHxIE — Channel x Interrupt Enable Bit
This read/write bit enables TIM CPU interrupt service requests on
channel x.
Reset clears the CHxIE bit.
1 = Channel x CPU interrupt requests enabled
0 = Channel x CPU interrupt requests disabled
MSxB — Mode Select Bit B
This read/write bit selects buffered output compare/PWM operation.
MSxB exists only in the TIM1 channel 0 and TIM2 channel 0 status
and control registers.
Setting MS0B disables the channel 1 status and control register and
reverts TCH1 to general-purpose I/O.
Reset clears the MSxB bit.
1 = Buffered output compare/PWM operation enabled
0 = Buffered output compare/PWM operation disabled
MSxA — Mode Select Bit A
When ELSxB:ELSxA ≠ 0:0, this read/write bit selects either input
capture operation or unbuffered output compare/PWM operation.
See Table 11-3.
1 = Unbuffered output compare/PWM operation
0 = Input capture operation
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
205
Timer Interface Module (TIM)
When ELSxB:ELSxA = 0:0, this read/write bit selects the initial output
level of the TCHx pin. See Table 11-3. Reset clears the MSxA bit.
1 = Initial output level low
0 = Initial output level high
NOTE:
Before changing a channel function by writing to the MSxB or MSxA bit,
set the TSTOP and TRST bits in the TIM status and control register
(TSC).
ELSxB and ELSxA — Edge/Level Select Bits
When channel x is an input capture channel, these read/write bits
control the active edge-sensing logic on channel x.
When channel x is an output compare channel, ELSxB and ELSxA
control the channel x output behavior when an output compare
occurs.
When ELSxB and ELSxA are both clear, channel x is not connected
to an I/O port, and pin TCHx is available as a general-purpose I/O pin.
Table 11-3 shows how ELSxB and ELSxA work. Reset clears the
ELSxB and ELSxA bits.
Table 11-3. Mode, Edge, and Level Selection
MSxB:MSxA
ELSxB:ELSxA
X0
00
Mode
Configuration
Pin under port control;
initial output level high
Output preset
X1
00
Pin under port control;
initial output level low
00
01
Capture on rising edge only
00
10
00
11
01
01
01
10
01
11
1X
01
1X
10
1X
11
Input capture
Capture on rising or
falling edge
Output
compare or
PWM
Buffered
output
compare or
buffered PWM
Technical Data
206
Capture on falling edge only
Toggle output on compare
Clear output on compare
Set output on compare
Toggle output on compare
Clear output on compare
Set output on compare
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Timer Interface Module (TIM)
NOTE:
Before enabling a TIM channel register for input capture operation, make
sure that the TCHx pin is stable for at least two bus clocks. User software
should also clear CHxF before setting CHxIE to avoid any false
interrupts.
TOVx — Toggle On Overflow Bit
When channel x is an output compare channel, this read/write bit
controls the behavior of the channel x output when the TIM counter
overflows. When channel x is an input capture channel, TOVx has no
effect. Reset clears the TOVx bit.
1 = Channel x pin toggles on TIM counter overflow
0 = Channel x pin does not toggle on TIM counter overflow
NOTE:
When TOVx is set, a TIM counter overflow takes precedence over a
channel x output compare if both occur at the same time.
CHxMAX — Channel x Maximum Duty Cycle Bit
When the TOVx bit is at logic 1, setting the CHxMAX bit forces the
duty cycle of buffered and unbuffered PWM signals to 100%. As
Figure 11-11 shows, the CHxMAX bit takes effect in the cycle after it
is set or cleared. The output stays at the 100% duty cycle level until
the cycle after CHxMAX is cleared.
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
OVERFLOW
PERIOD
TCHx
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
OUTPUT
COMPARE
CHxMAX
Figure 11-11. CHxMAX Latency
11.10.5 TIM Channel Registers
These read/write registers contain the captured TIM counter value of the
input capture function or the output compare value of the output
compare function. The state of the TIM channel registers after reset is
unknown.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Timer Interface Module (TIM)
207
Timer Interface Module (TIM)
In input capture mode (MSxB:MSxA = 0:0), reading the high byte of the
TIM channel x registers (TCHxH) inhibits input captures until the low
byte (TCHxL) is read.
In output compare mode (MSxB:MSxA ≠ 0:0), writing to the high byte of
the TIM channel x registers (TCHxH) inhibits output compares until the
low byte (TCHxL) is written.
Address: T1CH0H, $0026 and T2CH0H, $0031
Read:
Write:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Reset:
Indeterminate after reset
Figure 11-12. TIM Channel 0 Register High (TCH0H)
Address: T1CH0L, $0027 and T2CH0L $0032
Read:
Write:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Reset:
Indeterminate after reset
Figure 11-13. TIM Channel 0 Register Low (TCH0L)
Address: T1CH1H, $0029 and T2CH1H, $0034
Read:
Write:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
Reset:
Indeterminate after reset
Figure 11-14. TIM Channel 1 Register High (TCH1H)
Address: T1CH1L, $002A and T2CH1L, $0035
Read:
Write:
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
Indeterminate after reset
Figure 11-15. TIM Channel 1 Register Low (TCH1L)
Technical Data
208
MC68HC908LJ12 — Rev. 2.1
Timer Interface Module (TIM)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 12. Real Time Clock (RTC)
12.1 Contents
12.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
12.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .212
12.4.1 Time Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
12.4.2 Calendar Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .214
12.4.3 Alarm Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
12.4.4 Timebase Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
12.4.5 Chronograph Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
12.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
12.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .215
12.6 RTC Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
12.6.1 RTC Control Register 1 (RTCCR1) . . . . . . . . . . . . . . . . . . 216
12.6.2 RTC Control Register 2 (RTCCR2) . . . . . . . . . . . . . . . . . . 218
12.6.3 RTC Status Register (RTCSR). . . . . . . . . . . . . . . . . . . . . . 219
12.6.4 Alarm Minute and Hour Registers (ALMR and ALHR) . . . . 222
12.6.5 Second Register (SECR) . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.6.6 Minute Register (MINR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
12.6.7 Hour Register (HRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.6.8 Day Register (DAYR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
12.6.9 Month Register (MTHR) . . . . . . . . . . . . . . . . . . . . . . . . . . .225
12.6.10 Year Register (YRR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
12.6.11 Day-Of-Week Register (DOWR) . . . . . . . . . . . . . . . . . . . . 226
12.6.12 Chronograph Data Register (CHRR) . . . . . . . . . . . . . . . . . 226
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
209
Real Time Clock (RTC)
12.2 Introduction
This section describes the real time clock (RTC) module. The RTC
provides real time clock and calendar functions with automatic leap year
adjustments. Other functions include alarm interrupt, periodic interrupts,
and a chronograph timer.
12.3 Features
Features of the RTC module include:
•
Counter registers for:
– Second
– Minute
– Hour
– Day
– Day-of-week
– Month
– Year
Addr.
$0042
$0043
•
Day counter with automatic month and leap year adjustment
•
1/100 seconds chronograph counter
•
Seven periodic interrupts
•
Alarm interrupt
Register Name
Read:
RTC Control Register 1
Write:
(RTCCR1)
Reset:
Read:
RTC Control Register 2
Write:
(RTCCR2)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
ALMIE
CHRIE
DAYIE
HRIE
MINIE
SECIE
TB1IE
TB2IE
0
0
0
0
0
0
0
0
0
0
R
CHRCLR
CHRE
RTCE
XTL2
XTL1
XTL0
0
0
0
0
0
0
0
= Unimplemented
0
0
R
= Reserved
Figure 12-1. RTC I/O Register Summary
Technical Data
210
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
$0044
$0045
$0046
$0047
$0048
$0049
$004A
$004B
$004C
$004D
$004E
Read:
RTC Status Register
Write:
(RTCSR)
Reset:
ALMF
CHRF
DAYF
HRF
MINF
SECF
TB1F
TB2F
0
0
0
0
0
0
0
0
Read:
Alarm Minute Register
Write:
(ALMR)
Reset:
0
0
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
0
0
Read:
Alarm Hour Register
Write:
(ALHR)
Reset:
0
0
0
AH4
AH3
AH2
AH1
AH0
0
0
0
0
0
0
0
0
Read:
Second Register
Write:
(SECR)
Reset:
0
0
SEC5
SEC4
SEC3
SEC2
SEC1
SEC0
0
0
0
0
0
0
0
0
Read:
Minute Register
Write:
(MINR)
Reset:
0
0
MIN5
MIN4
MIN3
MIN2
MIN1
MIN0
0
0
0
0
0
0
0
0
Read:
Hour Register
Write:
(HRR)
Reset:
0
0
0
HR4
HR3
HR2
HR1
HR0
0
0
0
0
0
0
0
0
Read:
Day Register
Write:
(DAYR)
Reset:
0
0
0
DAY4
DAY3
DAY2
DAY1
DAY0
0
0
0
0
0
0
0
1
Read:
Month Register
Write:
(MTHR)
Reset:
0
0
0
0
MTH3
MTH2
MTH1
MTH0
0
0
0
0
0
0
0
1
YR7
YR6
YR5
YR4
YR3
YR2
YR1
YR0
0
0
0
0
0
0
0
0
0
0
0
0
0
DOW2
DOW1
DOW0
0
0
0
0
0
0
0
0
0
CHR6
CHR5
CHR4
CHR3
CHR2
CHR1
CHR0
0
0
0
0
0
0
0
0
Read:
Year Register
Write:
(YRR)
Reset:
Read:
Day-Of-Week Register
Write:
(DOWR)
Reset:
Chronograph Data Read:
Register Write:
(CHRR)
Reset:
= Unimplemented
R
= Reserved
Figure 12-1. RTC I/O Register Summary
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
211
Real Time Clock (RTC)
12.4 Functional Description
The RTC module provides clock indications in seconds, minutes, and
hours; calendar indications in day-of-week, day-of-month, month, and
year; with automatic adjustment for month and leap year. Reading the
clock and calendar registers return the current time and date. Writing to
these registers set the time and date, and the counters will continue to
count from the new settings.
The alarm interrupt is set for the hour and minute. When the hour and
minute counters matches the time set in the alarm hour and minute
registers, the alarm flag is set. The alarm can be configured to generate
a CPU interrupt request.
A 1/100 seconds chronograph counter is provided for timing
applications. This counter can be independently enabled or disabled,
and cleared at any time.
RTC module interrupts include the alarm interrupt and seven periodic
interrupts from the clock counters.
For proper RTC module operation, one of the following oscillator
frequencies (CGMXCLK) must be used:
•
32.768 kHz
•
32.000 kHz
•
38.400 kHz
•
64.000 kHz
•
76.800 kHz
Configuring the XTL[2:0] bits in the RTC control register 2 selects the
appropriate prescalers and dividers to divide CGMXCLK down to the
basic 1Hz clock for driving the clock counters.
Figure 12-2 shows the structure of the RTC module.
Technical Data
212
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
XTL[2:0]
CGMXCLK
÷ 64
÷ 256
÷4
÷ 320
÷5
VALID CGMXCLK
FREQUENCIES:
÷ 384
÷6
XTL[2:0] = 000 => X = A
XTL[2:0] = 000 => X = B
000
X
÷ 32
A
÷ 25
B
SL
010
X
011
÷2
38.400 kHz
64.000 kHz
÷2
76.800 kHz
÷ 640
÷ 768
÷2
2 Hz
32.768 kHz
32.000 kHz
÷2
TB1F
100/110
TB1IE
4 Hz
101/111
TB2F
TB2IE
× 25
32
100 Hz / 128 Hz
RTCE
CHRF
CHRIE
CHRONOGRAPH COUNTER
×1
CHRE
CHRCLR
CHRONOGRAPH DATA REGISTER
1 Hz
SECF
SECIE
SECOND COUNTER REGISTER
ALARM MINUTE REGISTER
INTERRUPT
LOGIC
MINF
MINIE
COMPARATOR
INTERNAL BUS
MINUTE COUNTER REGISTER
HRF
ALARM HOUR REGISTER
HRIE
COMPARATOR
ALMF
ALMIE
HOUR COUNTER REGISTER
DAYF
DAY-OF-WEEK COUNTER REGISTER
DAYIE
DAY COUNTER REGISTER
MONTH COUNTER REGISTER
YEAR COUNTER REGISTER
Figure 12-2. RTC Block Diagram
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
213
Real Time Clock (RTC)
12.4.1 Time Functions
Real time clock functions are provided by the second, minute, and hour
counter registers. All three clock counters are able to generate interrupts
on every counter increment, providing periodic interrupts for the second
(SECF), minute (MINF), and hour (HRF). A CPU interrupt request is
generated if the corresponding enable bit (SECIE, MINIE, and HRIE) is
also set.
12.4.2 Calendar Functions
Calendar functions are provided by the day, day-of-week, month, and
year counter registers. The roll over of the day counter is automatically
adjusted for the month and leap years. The setting for the year counter
ranges from 1901 to 2099.
The day flag (DAYF) is set on every increment of the day counter. A CPU
interrupt request is generated if the day interrupt enable bit (DAYIE) is
also set.
12.4.3 Alarm Functions
An alarm function is provided for the minute and hour counters. When
minute counter matches the value stored in the alarm minute register,
and the hour counter matches the value stored in the alarm hour register,
the alarm flag (ALMF) will be set. A CPU interrupt request is generated
if the alarm interrupt enable bit (ALMIE) is also set.
12.4.4 Timebase Interrupts
In addition to the second, minute, hour, and day periodic interrupts
generated by the clock functions, the divider circuits generates a 2Hz
and a 4Hz periodic interrupt. These are indicated by the TB1F and TB2F
flags. A CPU interrupt request is generated if the corresponding enable
bits (TB1IE and TB2IE) is also set.
Technical Data
214
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
12.4.5 Chronograph Functions
A 100Hz resolution chronograph counter can be enabled by setting the
CHRE bit. The chronograph counter will automatically roll over to zero
when the counter reaches 99. If 32.768kHz CGMXCLK is used, the
chronograph counter resolution becomes 128Hz. With either 100Hz or
128Hz resolution, the counter value is converted to 100Hz, before it is
saved in the chronograph data register. Therefore, each chronograph
data register increment represents 10ms.
12.5 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
12.5.1 Wait Mode
The RTC module continues normal operation in wait mode. Any enabled
CPU interrupt request from the RTC can bring the MCU out of wait
mode. If the RTC is not required to bring the MCU out of wait mode,
power down the RTC by clearing the RTCE bit before executing the
WAIT instruction.
12.5.2 Stop Mode
For continuous RTC operation in stop mode, the oscillator stop mode
enable bit (STOP_XCLKEN in CONFIG2 register) must be set before
executing the STOP instruction. When STOP_XCLKEN is set,
CGMXCLK continues to drive the RTC module, and any enabled CPU
interrupt request from the RTC can bring the MCU out of stop mode.
If STOP_XCLKEN bit is cleared, the RTC module is inactive after the
execution of a STOP instruction. The STOP instruction does not affect
RTC register states. RTC module operation resumes after an external
interrupt. To further reduce power consumption, the RTC module should
be powered-down by clearing the RTCE bit before executing the STOP
instruction.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
215
Real Time Clock (RTC)
12.6 RTC Registers
The RTC module has thirteen memory-mapped registers:
•
RTC control register 1 (RTCCR1)
•
RTC control register 2 (RTCCR2)
•
RTC status register (RTCSR)
•
Alarm minute and hour registers (ALMR and ALHR)
•
Second register (SECR)
•
Minute register (MINR)
•
Hour register (HRR)
•
Day register (DAY)
•
Month register (MTHR)
•
Year register (YRR)
•
Day of the week register (DOWR)
•
Chronograph data register (CHRR)
12.6.1 RTC Control Register 1 (RTCCR1)
The RTC control register 1 (RTCCR1) contains the eight interrupt enable
bits for RTC interrupt functions.
Address:
Read:
Write:
Reset:
$0042
ALMIE
CHRIE
DAYIE
HRIE
MINIE
SECIE
TB1IE
TB2IE
0
0
0
0
0
0
0
0
Figure 12-3. RTC Control Register 1 (RTCCR1)
ALMIE — Alarm Interrupt Enable
This read/write bit enables the alarm flag, ALMF, to generate CPU
interrupt requests. Reset clears the ALMIE bit.
1 = ALMF enabled to generate CPU interrupt
0 = ALMF not enabled to generate CPU interrupt
Technical Data
216
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
CHRIE — Chronograph Interrupt Enable
This read/write bit enables the chronograph flag, CHRF, to generate
CPU interrupt requests. Reset clears the CHRIE bit.
1 = CHRF enabled to generate CPU interrupt
0 = CHRF not enabled to generate CPU interrupt
DAYIE — Day Interrupt Enable
This read/write bit enables the day flag, DAYF, to generate CPU
interrupt requests. Reset clears the DAYIE bit.
1 = DAYF enabled to generate CPU interrupt
0 = DAYF not enabled to generate CPU interrupt
HRIE — Hour Interrupt Enable
This read/write bit enables the hour flag, HRF, to generate CPU
interrupt requests. Reset clears the HRIE bit.
1 = HRF enabled to generate CPU interrupt
0 = HRF not enabled to generate CPU interrupt
MINIE — Minute Interrupt Enable
This read/write bit enables the minute flag, MINF, to generate CPU
interrupt requests. Reset clears the MINIE bit.
1 = MINF enabled to generate CPU interrupt
0 = MINF not enabled to generate CPU interrupt
SECIE — Second Interrupt Enable
This read/write bit enables the second flag, SECF, to generate CPU
interrupt requests. Reset clears the SECIE bit.
1 = SECF enabled to generate CPU interrupt
0 = SECF not enabled to generate CPU interrupt
TB1IE — Timebase 1 Interrupt Enable
This read/write bit enables the timebase1 flag, TB1F, to generate
CPU interrupt requests. Reset clears the TB1IE bit.
1 = TB1F enabled to generate CPU interrupt
0 = TB1F not enabled to generate CPU interrupt
TB2IE — Timebase 2 Interrupt Enable
This read/write bit enables the timebase2 flag, TB2F, to generate
CPU interrupt requests. Reset clears the TB2IE bit.
1 = TB2F enabled to generate CPU interrupt
0 = TB2F not enabled to generate CPU interrupt
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
217
Real Time Clock (RTC)
12.6.2 RTC Control Register 2 (RTCCR2)
The RTC control register 2 (RTCCR2) contains control and clock
selection bits for RTC operation.
Address:
$0043
Read:
0
0
Write:
R
CHRCLR
Reset:
0
0
CHRE
RTCE
0
0
= Unimplemented
0
0
R
XTL2
XTL1
XTL0
0
0
0
= Reserved
Figure 12-4. RTC Control Register 2 (RTCCR2)
CHRCLR — Chronograph counter clear
Setting this write-only bit resets the chronograph counter. Setting
CHRCLR has no effect on any other registers. Counting resumes
from $00. CHRCLR is cleared automatically after the chronograph
counter is reset and always reads as logic 0. Reset clears the
CHRCLR bit.
1 = Chronograph counter cleared
0 = No effect
CHRE — Chronograph Enable
This read/write bit enables the chronograph counter, the value in the
chronograph data register increments by 1 in every 1/100 seconds.
When the chronograph counter is disabled (CHRE = 0), the value in
the chronograph data register is held at the count value. Reset clears
the CHRE bit.
1 = Chronograph counter enabled
0 = Chronograph counter disabled
RTCE — Real Time Clock Enable
This read/write bit enables the entire RTC module, allowing all RTC
and chronograph operations. Disabling the RTC module does not
affect the contents in the RTC registers. Reset clears the RTCE bit.
1 = RTC module enabled
0 = RTC module disabled
Technical Data
218
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
XTL[2:0] — Crystal Frequency Select Bits
These three bits set the prescalers/dividers for proper operation of the
RTC module for various crystal (CGMXCLK) input frequencies. The
XTL[2:0] bits can only be written once after reset, subsequent writes
to these bits will have no effect on its content. Table 12-1 shows the
XTL[2:0] settings for various CGMXCLK frequencies. Reset clear the
XTL[2:0] bits.
Table 12-1. CGMXCLK Frequency for RTC Input Reference
CGMXCLK(1)
XTL2
XTL1
XTL0
32.768 kHz
0
0
0
Reserved
0
0
1
32.000 kHz
0
1
0
38.400 kHz
0
1
1
64.000 kHz
1
X
0
76.800 kHz
1
X
1
Notes:
1. Using crystal frequencies other than these specified will cause incorrect timings in the RTC
module.
12.6.3 RTC Status Register (RTCSR)
The RTC status register contains eight status flags. When a flag is set
and the corresponding interrupt enable bit is also set, a CPU interrupt
request is generated.
Address:
$0044
Read:
ALMF
CHRF
DAYF
HRF
MINF
SECF
TB1F
TB2F
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 12-5. RTC Status Register (RTCSR)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
219
Real Time Clock (RTC)
ALMF — Alarm Flag
This clearable, read-only bit is set when the value in the RTC hour and
minute counters matches the value in the alarm hour and alarm
minute registers. When the ALMIE bit in RTCCR1 is set, ALMF
generates a CPU interrupt request. In normal operation, clear the
ALMF bit by reading RTCSR with ALMF set and then reading the
alarm hour register (ALHR). Reset clears ALMF.
1 = RTC hour and minute counters matches the
alarm hour and minute registers
0 = No matching between hour and minute counters and alarm
hour and minute registers
CHRF — Chronograph Flag
This clearable, read-only bit is set on every tick of the chronograph
counter (every counter count). The tick is on every 1/100 or 1/128
seconds (see 12.4.5 Chronograph Functions). When the CHRIE bit
in RTCCR1 is set, CHRF generates a CPU interrupt request. In
normal operation, clear the CHRF bit by reading RTCSR with CHRF
set and then reading the chronograph data register (CHRR). Reset
clears CHRF.
1 = A chronograph counter tick has occurred
0 = No chronograph counter tick has occurred
DAYF — Day Flag
This clearable, read-only bit is set on every increment of the day
counter. When the DAYIE bit in RTCCR1 is set, DAYF generates a
CPU interrupt request. In normal operation, clear the DAYF bit by
reading RTCSR with DAYF set and then reading the day register
(DAYR). Reset clears DAYF.
1 = Day counter incremented
0 = No day counter incremented
HRF — Hour Flag
This clearable, read-only bit is set on every increment of the hour
counter. When the HRIE bit in RTCCR1 is set, HRF generates a CPU
interrupt request. In normal operation, clear the HRF bit by reading
RTCSR with HRF set and then reading the hour register (HRR). Reset
clears HRF.
1 = Hour counter incremented
0 = No hour counter incremented
Technical Data
220
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
MINF — Minute Flag
This clearable, read-only bit is set on every increment of the minute
counter. When the MINIE bit in RTCCR1 is set, MINF generates a
CPU interrupt request. In normal operation, clear the MINF bit by
reading RTCSR with MINF set and then reading the minute register
(MINR). Reset clears MINF.
1 = Minute counter incremented
0 = No minute counter incremented
SECF — Second Flag
This clearable, read-only bit is set on every increment of the second
counter. When the SECIE bit in RTCCR1 is set, SECF generates a
CPU interrupt request. In normal operation, clear the SECF bit by
reading RTCSR with SECF set and then reading the second register
(SECR). Reset clears SECF.
1 = Second counter incremented
0 = No second counter incremented
TB1F — Timebase 1 Flag
This clearable, read-only bit is set on every tick of the timebase 1
counter (every 0.5 seconds). When the TB1IE bit in RTCCR1 is set,
TB1F generates a CPU interrupt request. In normal operation, clear
the TB1F bit by reading RTCSR with TB1F set and then reading the
chronograph register (CHRR). Reset clears TB1F.
1 = A timebase 1 tick (0.5s) has occurred
0 = No timebase 1 tick has occurred
TB2F — Timebase 2 Flag
This clearable, read-only bit is set on every tick of the timebase 2
counter (every 0.25 seconds). When the TB2IE bit in RTCCR1 is set,
TB2F generates a CPU interrupt request. In normal operation, clear
the TB2F bit by reading RTCSR with TB2F set and then reading the
chronograph register (CHRR). Reset clears TB2F.
1 = A timebase 2 tick (0.25s) has occurred
0 = No timebase 2 tick has occurred
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
221
Real Time Clock (RTC)
12.6.4 Alarm Minute and Hour Registers (ALMR and ALHR)
These read/write registers contain the alarm minute and hour values for
the hour and minute alarm function. When the hour counter matches the
value in the alarm hour register (ALHR) and the minute counter matches
the value in the alarm minute register (ALMR), the alarm flag, ALMF, is
set. When ALMF is set and the alarm interrupt enable bit, ALMIE, is also
set, a CPU interrupt request is generated.
Address:
Read:
$0045
0
0
0
0
Write:
Reset:
AM5
AM4
AM3
AM2
AM1
AM0
0
0
0
0
0
0
= Unimplemented
Figure 12-6. Alarm Minute Register (ALMR)
NOTE:
Writing values other than 0 to 59, to ALMR is possible, but the alarm flag
will never be set.
Address:
Read:
$0046
0
0
0
0
0
0
Write:
Reset:
AH4
AH3
AH2
AH1
AH0
0
0
0
0
0
= Unimplemented
Figure 12-7. Alarm Hour Register (ALHR)
NOTE:
Writing values other than 0 to 23, to ALHR is possible, but the alarm flag
will never be set.
Technical Data
222
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
12.6.5 Second Register (SECR)
This read/write register contains the current value of the second counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the second counter and the
counter continues to count from this new value.
The second counter rolls over to 0 ($00) after reaching 59 ($4B). Writing
a value other than 0 to 59 to this register has no effect.
Address:
$0047
Read:
0
0
0
0
Write:
Reset:
SEC5
SEC4
SEC3
SEC2
SEC1
SEC0
0
0
0
0
0
0
= Unimplemented
Figure 12-8. Second Register (SECR)
12.6.6 Minute Register (MINR)
This read/write register contains the current value of the minute counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the minute counter and the
counter continues to count from this new value.
The minute counter rolls over to 0 ($00) after reaching 59 ($4B). Writing
a value other than 0 to 59 to this register has no effect.
Address:
Read:
$0048
0
0
0
0
Write:
Reset:
MIN5
MIN4
MIN3
MIN2
MIN1
MIN0
0
0
0
0
0
0
= Unimplemented
Figure 12-9. Minute Register (MINR)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
223
Real Time Clock (RTC)
12.6.7 Hour Register (HRR)
This read/write register contains the current value of the hour counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the hour counter and the
counter continues to count from this new value.
The hour counter rolls over to 0 ($00) after reaching 23 ($17). Writing a
value other than 0 to 23 to this register has no effect.
Address:
Read:
$0049
0
0
0
0
0
0
Write:
Reset:
HR4
HR3
HR2
HR1
HR0
0
0
0
0
0
= Unimplemented
Figure 12-10. Hour Register (HRR)
12.6.8 Day Register (DAYR)
This read/write register contains the current value of the day-of-month
counter. This register can be read at any time without affecting the
counter count. Writing to this register loads the value to the day counter
and the counter continues to count from this new value.
The day counter rolls over to 1 ($01) after reaching 28 ($1B), 29 ($1C),
30 ($1D), or 31 ($1E), depending on the value in the month and year
registers. Writing a value that is not valid for the month and year to this
register has no effect.
Address:
Read:
$004A
0
0
0
0
0
0
Write:
Reset:
DAY4
DAY3
DAY2
DAY1
DAY0
0
0
0
0
1
= Unimplemented
Figure 12-11. Day Register (DAYR)
Technical Data
224
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Real Time Clock (RTC)
12.6.9 Month Register (MTHR)
This read/write register contains the current value of the month counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the month counter and the
counter continues to count from this new value.
The month counter rolls over to 1 ($01) after reaching 12 ($0B). Writing
a value other than 1 to 12 to this register has no effect.
Address:
Read:
$004B
0
0
0
0
0
0
0
0
Write:
Reset:
MTH3
MTH2
MTH1
MTH0
0
0
0
1
= Unimplemented
Figure 12-12. Month Register (MTHR)
12.6.10 Year Register (YRR)
This read/write register contains the current value of the year counter.
This register can be read at any time without affecting the counter count.
Writing to this register loads the value to the year counter and the
counter continues to count from this new value.
The value stored in this register is a two’s complement representation of
the year, relative to 2000. For example, the year 2008 is represented
by 8 ($08), and the year 1979 is presented by –11 ($F5). The range of
this register is only valid for –99 to +99. Writing a value other than –99
to +99 to this register has no effect.
Address:
Read:
Write:
Reset:
$004C
YR7
YR6
YR5
YR4
YR3
YR2
YR1
YR0
0
0
0
0
0
0
0
0
Figure 12-13. Year Register (YRR)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Real Time Clock (RTC)
225
Real Time Clock (RTC)
12.6.11 Day-Of-Week Register (DOWR)
This read/write register contains the current value of the day-of-week
counter. This register can be read at any time without affecting the
counter count. Writing to this register loads the value to the day-of-week
counter and the counter continues to count from this new value.
The day-of-week counter value rolls over to 0 ($00) after reaching 6
($06). Writing a value other than 0 to 6 to this register has no effect.
Address:
Read:
$004D
0
0
0
0
0
0
0
0
0
0
Write:
Reset:
DOW2
DOW1
DOW0
0
0
0
= Unimplemented
Figure 12-14. Day-Of-Week Register (DOWR)
12.6.12 Chronograph Data Register (CHRR)
This read-only chronograph data register contains the value in the
chronograph counter. Reset clears the chronograph data register.
Setting the chronograph counter reset bit (CHRCLR) also clears the
chronograph data register.
The chronograph data register has a resolution of 1/100 seconds
(10ms). The chronograph counter value rolls over to $00 after reaching
$63.
Address:
Read:
$004E
0
CHR6
CHR5
CHR4
CHR3
CHR2
CHR1
CHR0
0
0
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 12-15. Chronograph Data Register (CHRR)
Technical Data
226
MC68HC908LJ12 — Rev. 2.1
Real Time Clock (RTC)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 13. Infrared Serial Communications
Interface Module (IRSCI)
13.1 Contents
13.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
13.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
13.4
Pin Name Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
13.5
IRSCI Module Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
13.6 Infrared Functional Description. . . . . . . . . . . . . . . . . . . . . . . . 232
13.6.1 Infrared Transmit Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 233
13.6.2 Infrared Receive Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 233
13.7 SCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . .234
13.7.1 Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
13.7.2 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
13.7.2.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.7.2.2
Character Transmission . . . . . . . . . . . . . . . . . . . . . . . . . 237
13.7.2.3
Break Characters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.7.2.4
Idle Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
13.7.2.5
Transmitter Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . .239
13.7.3 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.7.3.1
Character Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
13.7.3.2
Character Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
13.7.3.3
Data Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
13.7.3.4
Framing Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
13.7.3.5
Baud Rate Tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . .243
13.7.3.6
Receiver Wakeup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
13.7.3.7
Receiver Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.7.3.8
Error Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
13.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
13.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
13.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .248
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
227
Infrared Serial Communications
13.9
SCI During Break Module Interrupts. . . . . . . . . . . . . . . . . . . .249
13.10 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.10.1 PTB0/TxD (Transmit Data). . . . . . . . . . . . . . . . . . . . . . . . . 249
13.10.2 PTB1/RxD (Receive Data) . . . . . . . . . . . . . . . . . . . . . . . . . 249
13.11 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
13.11.1 SCI Control Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
13.11.2 SCI Control Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
13.11.3 SCI Control Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
13.11.4 SCI Status Register 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
13.11.5 SCI Status Register 2 (SCS2) . . . . . . . . . . . . . . . . . . . . . . 262
13.11.6 SCI Data Register (SCDR). . . . . . . . . . . . . . . . . . . . . . . . . 263
13.11.7 SCI Baud Rate Register (SCBR) . . . . . . . . . . . . . . . . . . . . 264
13.11.8 SCI Infrared Control Register . . . . . . . . . . . . . . . . . . . . . . . 267
13.2 Introduction
This section describes the infrared serial communications interface
(IRSCI) module which allows high-speed asynchronous
communications with peripheral devices and other MCUs. This IRSCI
consists of an SCI module for conventional SCI functions and a software
programmable infrared encoder/decoder sub-module for
encoding/decoding the serial data for connection to infrared LEDs in
remote control applications.
NOTE:
Technical Data
228
References to DMA (direct-memory access) and associated functions
are only valid if the MCU has a DMA module. This MCU does not have
the DMA function. Any DMA-related register bits should be left in their
reset state for normal MCU operation.
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.3 Features
Features of the SCI module include the following:
•
Full duplex operation
•
Standard mark/space non-return-to-zero (NRZ) format
•
Programmable 8-bit or 9-bit character length
•
Separately enabled transmitter and receiver
•
Separate receiver and transmitter CPU interrupt requests
•
Two receiver wakeup methods:
– Idle line wakeup
– Address mark wakeup
•
Interrupt-driven operation with eight interrupt flags:
– Transmitter empty
– Transmission complete
– Receiver full
– Idle receiver input
– Receiver overrun
– Noise error
– Framing error
– Parity error
•
Receiver framing error detection
•
Hardware parity checking
•
1/16 bit-time noise detection
Features of the infrared (IR) sub-module include the following:
•
IR sub-module enable/disable for infrared SCI or conventional SCI
on TxD and RxD pins
•
Software selectable infrared modulation/demodulation
(3/16, 1/16 or 1/32 width pulses)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
229
Infrared Serial Communications
Addr.
$0013
$0014
$0015
$0016
$0017
$0018
$0019
$001A
Register Name
Bit 7
Read:
LOOPS
SCI Control Register 1
Write:
(SCC1)
Reset:
0
Read:
SCI Control Register 2
Write:
(SCC2)
Reset:
6
ENSCI
5
0
4
3
2
1
Bit 0
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
0
0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
T8
DMARE
DMATE
ORIE
NEIE
FEIE
PEIE
Read:
SCI Control Register 3
Write:
(SCC3)
Reset:
R8
U
U
0
0
0
0
0
0
Read:
SCI Status Register 1
Write:
(SCS1)
Reset:
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
1
1
0
0
0
0
0
0
BKF
RPF
Read:
SCI Status Register 2
Write:
(SCS2)
Reset:
Read:
SCI Data Register
Write:
(SCDR)
Reset:
Read:
SCI Baud Rate Register
Write:
(SCBR)
Reset:
Read:
SCI Infrared Control
Register Write:
(SCIRCR)
Reset:
0
0
0
0
0
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
Unaffected by reset
CKS
0
R
0
0
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
0
0
0
0
R
TNP1
TNP0
IREN
0
0
0
0
0
0
0
= Unimplemented
R = Reserved
U = Unaffected
Figure 13-1. IRSCI I/O Registers Summary
Technical Data
230
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.4 Pin Name Conventions
The generic names of the IRSCI I/O pins are:
•
RxD (receive data)
•
TxD (transmit data)
IRSCI I/O (input/output) lines are implemented by sharing parallel I/O
port pins. The full name of an IRSCI input or output reflects the name of
the shared port pin. Table 13-1 shows the full names and the generic
names of the IRSCI I/O pins.
The generic pin names appear in the text of this section.
Table 13-1. Pin Name Conventions
Generic Pin Names:
RxD
TxD
Full Pin Names:
PTB1/RxD
PTB0/TxD
13.5 IRSCI Module Overview
The IRSCI consists of a serial communications interface (SCI) and a
infrared interface sub-module as shown in Figure 13-2.
INTERNAL BUS
SCI_TxD
CGMXCLK
BUS CLOCK
SERIAL
COMMUNICATIONS
INTERFACE MODULE
(SCI)
SCI_R32XCLK
SCI_R16XCLK
TxD
INFRARED
SUB-MODULE
SCI_RxD
RxD
Figure 13-2. IRSCI Block Diagram
The SCI module provides serial data transmission and reception, with a
programmable baud rate clock based on the bus clock or the
CGMXCLK.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
231
Infrared Serial Communications
The infrared sub-module receives two clock sources from the SCI
module: SCI_R16XCLK and SCI_R32XCLK. Both reference clocks are
used to generate the narrow pulses during data transmission.
The SCI_R16XCLK and SCI_R32XCLK are internal clocks with
frequencies that are 16 and 32 times the baud rate respectively. Both
SCI_R16XCLK and SCI_R32XCLK clocks are used for transmitting
data. The SCI_R16XCLK clock is used only for receiving data.
NOTE:
For proper SCI function (transmit or receive), the bus clock MUST be
programmed to at least 32 times that of the selected baud rate.
When the infrared sub-module is disabled, signals on the TxD and RxD
pins pass through unchanged to the SCI module.
13.6 Infrared Functional Description
Figure 13-3 shows the structure of the infrared sub-module.
TNP[1:0]
TRANSMIT
ENCODER
SCI_TxD
IREN
IR_TxD
MUX
TxD
SCI_R32XCLK
SCI_R16XCLK
IR_RxD
SCI_RxD
RECEIVE
DECODER
RxD
MUX
Figure 13-3. Infrared Sub-Module Diagram
The infrared sub-module provides the capability of transmitting narrow
pulses to an infrared LED and receiving narrow pulses and transforming
them to serial bits, which are sent to the SCI module. The infrared submodule receives two clocks from the SCI. One of these two clocks is
selected as the base clock to generate the 3/16, 1/16, or 1/32 bit width
narrow pulses during transmission.
Technical Data
232
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
The sub-module consists of two main blocks: the transmit encoder and
the receive decoder. When transmitting data, the SCI data stream is
encoded by the infrared sub-module. For every "0" bit, a narrow "low"
pulse is transmitted; no pulse is transmitted for "1" bits. When receiving
data, the infrared pulses should be detected using an infrared photo
diode for conversion to CMOS voltage levels before connecting to the
RxD pin for the infrared decoder. The SCI data stream is reconstructed
by stretching the "0" pulses.
13.6.1 Infrared Transmit Encoder
The infrared transmit encoder converts the "0" bits in the serial data
stream from the SCI module to narrow "low" pulses, to the TxD pin. The
narrow pulse is sent with a duration of 1/32, 1/16, or 3/16 of a data bit
width. When two consecutive zeros are sent, the two consecutive narrow
pulses will be separated by a time equal to a data bit width.
DATA BIT WIDTH DETERMINED BY BAUD RATE
SCI DATA
INFRARED
SCI DATA
PULSE WIDTH = 1/32, 1/16, OR 3/16 DATA BIT WIDTH
Figure 13-4. Infrared SCI Data Example
13.6.2 Infrared Receive Decoder
The infrared receive decoder converts low narrow pulses from the RxD
pin to standard SCI data bits. The reference clock, SCI_R16XCLK,
clocks a four bit internal counter which counts from 0 to 15. An incoming
pulse starts the internal counter and a "0" is sent out to the IR_RxD
output. Subsequent incoming pulses are ignored when the counter count
is between 0 and 7; IR_RxD remains "0". Once the counter passes 7, an
incoming pulse will reset the counter; IR_RxD remains "0". When the
counter reaches 15, the IR_RxD output returns to "1", the counter stops
and waits for further pulses. A pulse is interpreted as jitter if it arrives
shortly after the counter reaches 15; IR_RxD remains "1".
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
233
Infrared Serial Communications
13.7 SCI Functional Description
Figure 13-5 shows the structure of the SCI.
INTERNAL BUS
SCI DATA
REGISTER
ERROR
INTERRUPT
CONTROL
RECEIVER
INTERRUPT
CONTROL
DMA
INTERRUPT
CONTROL
RECEIVE
SHIFT REGISTER
SCI_RxD
TRANSMITTER
INTERRUPT
CONTROL
SCI DATA
REGISTER
TRANSMIT
SHIFT REGISTER
SCTIE
SCI_TxD
R8
TCIE
T8
SCRIE
ILIE
DMARE
TE
SCTE
RE
DMATE
TC
RWU
SBK
SCRF
OR
ORIE
IDLE
NF
NEIE
FE
FEIE
PE
PEIE
LOOPS
LOOPS
CKS
FLAG
CONTROL
RECEIVE
CONTROL
WAKEUP
CONTROL
ENSCI
ENSCI
TRANSMIT
CONTROL
BKF
M
RPF
WAKE
ILTY
CGMXCLK
BUS CLOCK
A SL
X
B
BAUD RATE
GENERATOR
SL = 0 => X = A
SL = 1 => X = B
SCI_R32XCLK
SCI_R16XCLK
÷16
PEN
PTY
DATA SELECTION
CONTROL
Figure 13-5. SCI Module Block Diagram
Technical Data
234
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
The SCI allows full-duplex, asynchronous, NRZ serial communication
between the MCU and remote devices, including other MCUs. The
transmitter and receiver of the SCI operate independently, although they
use the same baud rate generator. During normal operation, the CPU
monitors the status of the SCI, writes the data to be transmitted, and
processes received data.
NOTE:
For SCI operations, the IR sub-module is transparent to the SCI module.
Data at going out of the SCI transmitter and data going into the SCI
receiver is always in SCI format. It makes no difference to the SCI
module whether the IR sub-module is enabled or disabled.
NOTE:
This SCI module is a standard HC08 SCI module with the following
modifications:
•
A control bit, CKS, is added to the SCI baud rate control register
to select between two input clocks for baud rate clock generation
•
The TXINV bit is removed from the SCI control register 1
13.7.1 Data Format
The SCI uses the standard non-return-to-zero mark/space data format
illustrated in Figure 13-6.
8-BIT DATA FORMAT
BIT M IN SCC1 CLEAR
START
BIT
START
BIT
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
PARITY
BIT
BIT 6
BIT 7
9-BIT DATA FORMAT
BIT M IN SCC1 SET
BIT 0
BIT 1
BIT 2
BIT 3
BIT 4
BIT 5
STOP
BIT
NEXT
START
BIT
PARITY
BIT
BIT 6
BIT 7
BIT 8
STOP
BIT
NEXT
START
BIT
Figure 13-6. SCI Data Formats
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
235
Infrared Serial Communications
13.7.2 Transmitter
Figure 13-7 shows the structure of the SCI transmitter.
The baud rate clock source for the SCI can be selected by the CKS bit,
in the SCI baud rate register (see 13.11.7 SCI Baud Rate Register
(SCBR)).
CKS
÷ 16
SCI DATA REGISTER
SCP1
SCP0
11-BIT
TRANSMIT
SHIFT REGISTER
SCR1
H
SCR2
7
6
5
4
3
2
1
0
L
SCI_TxD
MSB
PEN
PTY
PARITY
GENERATION
T8
DMATE
DMATE
SCTIE
SCTE
DMATE
SCTE
SCTIE
TC
TCIE
BREAK
ALL 0s
M
PREAMBLE
ALL 1s
TRANSMITTER DMA SERVICE REQUEST
TRANSMITTER CPU INTERRUPT REQUEST
SCR0
8
START
BAUD
DIVIDER
LOAD FROM SCDR
SL = 0 => X = A
SL = 1 => X = B
PRESCALER
SHIFT ENABLE
A SL
X
B
STOP
CGMXCLK
BUS CLOCK
INTERNAL BUS
TRANSMITTER
CONTROL LOGIC
SCTE
SBK
LOOPS
SCTIE
ENSCI
TC
TE
TCIE
Figure 13-7. SCI Transmitter
Technical Data
236
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.7.2.1 Character Length
The transmitter can accommodate either 8-bit or 9-bit data. The state of
the M bit in SCI control register 1 (SCC1) determines character length.
When transmitting 9-bit data, bit T8 in SCI control register 3 (SCC3) is
the ninth bit (bit 8).
13.7.2.2 Character Transmission
During an SCI transmission, the transmit shift register shifts a character
out to the TxD pin. The SCI data register (SCDR) is the write-only buffer
between the internal data bus and the transmit shift register. To initiate
an SCI transmission:
1. Enable the SCI by writing a logic 1 to the enable SCI bit (ENSCI)
in SCI control register 1 (SCC1).
2. Enable the transmitter by writing a logic 1 to the transmitter enable
bit (TE) in SCI control register 2 (SCC2).
3. Clear the SCI transmitter empty bit by first reading SCI status
register 1 (SCS1) and then writing to the SCDR.
4. Repeat step 3 for each subsequent transmission.
At the start of a transmission, transmitter control logic automatically
loads the transmit shift register with a preamble of logic 1s. After the
preamble shifts out, control logic transfers the SCDR data into the
transmit shift register. A logic 0 start bit automatically goes into the least
significant bit position of the transmit shift register. A logic 1 stop bit goes
into the most significant bit position.
The SCI transmitter empty bit, SCTE, in SCS1 becomes set when the
SCDR transfers a byte to the transmit shift register. The SCTE bit
indicates that the SCDR can accept new data from the internal data bus.
If the SCI transmit interrupt enable bit, SCTIE, in SCC2 is also set, the
SCTE bit generates a transmitter interrupt request.
When the transmit shift register is not transmitting a character, the TxD
pin goes to the idle condition, logic 1. If at any time software clears the
ENSCI bit in SCI control register 1 (SCC1), the transmitter and receiver
relinquish control of the port pins.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
237
Infrared Serial Communications
13.7.2.3 Break Characters
Writing a logic 1 to the send break bit, SBK, in SCC2 loads the transmit
shift register with a break character. A break character contains all logic
0s and has no start, stop, or parity bit. Break character length depends
on the M bit in SCC1. As long as SBK is at logic 1, transmitter logic
continuously loads break characters into the transmit shift register. After
software clears the SBK bit, the shift register finishes transmitting the
last break character and then transmits at least one logic 1. The
automatic logic 1 at the end of a break character guarantees the
recognition of the start bit of the next character.
The SCI recognizes a break character when a start bit is followed by
eight or nine logic 0 data bits and a logic 0 where the stop bit should be.
Receiving a break character has the following effects on SCI registers:
•
Sets the framing error bit (FE) in SCS1
•
Sets the SCI receiver full bit (SCRF) in SCS1
•
Clears the SCI data register (SCDR)
•
Clears the R8 bit in SCC3
•
Sets the break flag bit (BKF) in SCS2
•
May set the overrun (OR), noise flag (NF), parity error (PE), or
reception in progress flag (RPF) bits
13.7.2.4 Idle Characters
An idle character contains all logic 1s and has no start, stop, or parity bit.
Idle character length depends on the M bit in SCC1. The preamble is a
synchronizing idle character that begins every transmission.
If the TE bit is cleared during a transmission, the TxD pin becomes idle
after completion of the transmission in progress. Clearing and then
setting the TE bit during a transmission queues an idle character to be
sent after the character currently being transmitted.
Technical Data
238
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
NOTE:
When queueing an idle character, return the TE bit to logic 1 before the
stop bit of the current character shifts out to the TxD pin. Setting TE after
the stop bit appears on TxD causes data previously written to the SCDR
to be lost.
Toggle the TE bit for a queued idle character when the SCTE bit
becomes set and just before writing the next byte to the SCDR.
13.7.2.5 Transmitter Interrupts
The following conditions can generate CPU interrupt requests from the
SCI transmitter:
•
SCI transmitter empty (SCTE) — The SCTE bit in SCS1 indicates
that the SCDR has transferred a character to the transmit shift
register. SCTE can generate a transmitter CPU interrupt request.
Setting the SCI transmit interrupt enable bit, SCTIE, in SCC2
enables the SCTE bit to generate transmitter CPU interrupt
requests.
•
Transmission complete (TC) — The TC bit in SCS1 indicates that
the transmit shift register and the SCDR are empty and that no
break or idle character has been generated. The transmission
complete interrupt enable bit, TCIE, in SCC2 enables the TC bit to
generate transmitter CPU interrupt requests.
13.7.3 Receiver
Figure 13-8 shows the structure of the SCI receiver.
13.7.3.1 Character Length
The receiver can accommodate either 8-bit or 9-bit data. The state of the
M bit in SCI control register 1 (SCC1) determines character length.
When receiving 9-bit data, bit R8 in SCI control register 2 (SCC2) is the
ninth bit (bit 8). When receiving 8-bit data, bit R8 is a copy of the eighth
bit (bit 7).
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
239
Infrared Serial Communications
INTERNAL BUS
SCR1
SCR0
PRESCALER
SL = 0 => X = A
SL = 1 => X = B
BAUD
DIVIDER
÷ 16
DATA
RECOVERY
SCI_RxD
BKF
CPU INTERRUPT REQUEST
11-BIT
RECEIVE SHIFT REGISTER
H
8
7
6
5
M
WAKE
ILTY
PEN
PTY
4
3
2
1
0
L
ALL 0s
RPF
ERROR CPU INTERRUPT REQUEST
DMA SERVICE REQUEST
SCI DATA REGISTER
START
SCP0
STOP
A SL
X
B
SCR2
ALL 1s
CGMXCLK
BUS CLOCK
SCP1
MSB
CKS
SCRF
WAKEUP
LOGIC
RWU
IDLE
R8
PARITY
CHECKING
IDLE
ILIE
DMARE
ILIE
SCRF
SCRIE
DMARE
SCRIE
SCRF
SCRIE
DMARE
DMARE
OR
OR
ORIE
ORIE
NF
NF
NEIE
NEIE
FE
FE
FEIE
FEIE
PE
PE
PEIE
PEIE
Figure 13-8. SCI Receiver Block Diagram
Technical Data
240
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.7.3.2 Character Reception
During an SCI reception, the receive shift register shifts characters in
from the RxD pin. The SCI data register (SCDR) is the read-only buffer
between the internal data bus and the receive shift register.
After a complete character shifts into the receive shift register, the data
portion of the character transfers to the SCDR. The SCI receiver full bit,
SCRF, in SCI status register 1 (SCS1) becomes set, indicating that the
received byte can be read. If the SCI receive interrupt enable bit, SCRIE,
in SCC2 is also set, the SCRF bit generates a receiver CPU interrupt
request.
13.7.3.3 Data Sampling
The receiver samples the RxD pin at the RT clock rate. The RT clock is
an internal signal with a frequency 16 times the baud rate. To adjust for
baud rate mismatch, the RT clock is resynchronized at the following
times (see Figure 13-9):
•
After every start bit
•
After the receiver detects a data bit change from logic 1 to logic 0
(after the majority of data bit samples at RT8, RT9, and RT10
returns a valid logic 1 and the majority of the next RT8, RT9, and
RT10 samples returns a valid logic 0)
START BIT
SCI_RxD
START BIT
QUALIFICATION
SAMPLES
START BIT
VERIFICATION
LSB
DATA
SAMPLING
RT4
RT3
RT2
RT1
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
RT5
RT4
RT3
RT2
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT1
RT CLOCK
STATE
RT1
RT
CLOCK
RT CLOCK
RESET
Figure 13-9. Receiver Data Sampling
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
241
Infrared Serial Communications
To locate the start bit, data recovery logic does an asynchronous search
for a logic 0 preceded by three logic 1s. When the falling edge of a
possible start bit occurs, the RT clock begins to count to 16.
To verify the start bit and to detect noise, data recovery logic takes
samples at RT3, RT5, and RT7. Table 13-2 summarizes the results of
the start bit verification samples.
Table 13-2. Start Bit Verification
RT3, RT5, and RT7
Samples
Start Bit
Verification
Noise Flag
000
Yes
0
001
Yes
1
010
Yes
1
011
No
0
100
Yes
1
101
No
0
110
No
0
111
No
0
If start bit verification is not successful, the RT clock is reset and a new
search for a start bit begins.
To determine the value of a data bit and to detect noise, recovery logic
takes samples at RT8, RT9, and RT10. Table 13-3 summarizes the
results of the data bit samples.
Table 13-3. Data Bit Recovery
Technical Data
242
RT8, RT9, and RT10
Samples
Data Bit
Determination
Noise Flag
000
0
0
001
0
1
010
0
1
011
1
1
100
0
1
101
1
1
110
1
1
111
1
0
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
NOTE:
The RT8, RT9, and RT10 samples do not affect start bit verification. If
any or all of the RT8, RT9, and RT10 start bit samples are logic 1s
following a successful start bit verification, the noise flag (NF) is set and
the receiver assumes that the bit is a start bit.
To verify a stop bit and to detect noise, recovery logic takes samples at
RT8, RT9, and RT10. Table 13-4 summarizes the results of the stop bit
samples.
Table 13-4. Stop Bit Recovery
RT8, RT9, and RT10
Samples
Framing
Error Flag
Noise Flag
000
1
0
001
1
1
010
1
1
011
0
1
100
1
1
101
0
1
110
0
1
111
0
0
13.7.3.4 Framing Errors
If the data recovery logic does not detect a logic 1 where the stop bit
should be in an incoming character, it sets the framing error bit, FE, in
SCS1. The FE flag is set at the same time that the SCRF bit is set. A
break character that has no stop bit also sets the FE bit.
13.7.3.5 Baud Rate Tolerance
A transmitting device may be operating at a baud rate below or above
the receiver baud rate. Accumulated bit time misalignment can cause
one of the three stop bit data samples to fall outside the actual stop bit.
Then a noise error occurs. If more than one of the samples is outside the
stop bit, a framing error occurs. In most applications, the baud rate
tolerance is much more than the degree of misalignment that is likely to
occur.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
243
Infrared Serial Communications
As the receiver samples an incoming character, it resynchronizes the RT
clock on any valid falling edge within the character. Resynchronization
within characters corrects misalignments between transmitter bit times
and receiver bit times.
Slow Data Tolerance
Figure 13-10 shows how much a slow received character can be
misaligned without causing a noise error or a framing error. The slow
stop bit begins at RT8 instead of RT1 but arrives in time for the stop bit
data samples at RT8, RT9, and RT10.
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
RT6
STOP
RT5
RT4
RT3
RT2
RECEIVER
RT CLOCK
RT1
MSB
DATA
SAMPLES
Figure 13-10. Slow Data
For an 8-bit character, data sampling of the stop bit takes the receiver
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.
With the misaligned character shown in Figure 13-10, the receiver
counts 154 RT cycles at the point when the count of the transmitting
device is 9 bit times × 16 RT cycles + 3 RT cycles = 147 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a slow 8-bit character with no errors is
154 – 147 × 100 = 4.54%
-------------------------154
For a 9-bit character, data sampling of the stop bit takes the receiver
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.
With the misaligned character shown in Figure 13-10, the receiver
counts 170 RT cycles at the point when the count of the transmitting
device is 10 bit times × 16 RT cycles + 3 RT cycles = 163 RT cycles.
Technical Data
244
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
The maximum percent difference between the receiver count and the
transmitter count of a slow 9-bit character with no errors is
170 – 163 × 100 = 4.12%
-------------------------170
Fast Data Tolerance
Figure 13-11 shows how much a fast received character can be
misaligned without causing a noise error or a framing error. The fast stop
bit ends at RT10 instead of RT16 but is still there for the stop bit data
samples at RT8, RT9, and RT10.
RT16
RT15
RT14
RT13
RT12
RT11
RT10
RT9
RT8
RT7
IDLE OR NEXT CHARACTER
RT6
RT5
RT4
RT3
RT2
RECEIVER
RT CLOCK
RT1
STOP
DATA
SAMPLES
Figure 13-11. Fast Data
For an 8-bit character, data sampling of the stop bit takes the receiver
9 bit times × 16 RT cycles + 10 RT cycles = 154 RT cycles.
With the misaligned character shown in Figure 13-11, the receiver
counts 154 RT cycles at the point when the count of the transmitting
device is 10 bit times × 16 RT cycles = 160 RT cycles.
The maximum percent difference between the receiver count and the
transmitter count of a fast 8-bit character with no errors is
·
154 – 160 × 100 = 3.90%
-------------------------154
For a 9-bit character, data sampling of the stop bit takes the receiver
10 bit times × 16 RT cycles + 10 RT cycles = 170 RT cycles.
With the misaligned character shown in Figure 13-11, the receiver
counts 170 RT cycles at the point when the count of the transmitting
device is 11 bit times × 16 RT cycles = 176 RT cycles.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
245
Infrared Serial Communications
The maximum percent difference between the receiver count and the
transmitter count of a fast 9-bit character with no errors is
170 – 176 × 100 = 3.53%
-------------------------170
13.7.3.6 Receiver Wakeup
So that the MCU can ignore transmissions intended only for other
receivers in multiple-receiver systems, the receiver can be put into a
standby state. Setting the receiver wakeup bit, RWU, in SCC2 puts the
receiver into a standby state during which receiver interrupts are
disabled.
Depending on the state of the WAKE bit in SCC1, either of two
conditions on the RxD pin can bring the receiver out of the standby state:
NOTE:
Technical Data
246
•
Address mark — An address mark is a logic 1 in the most
significant bit position of a received character. When the WAKE bit
is set, an address mark wakes the receiver from the standby state
by clearing the RWU bit. The address mark also sets the SCI
receiver full bit, SCRF. Software can then compare the character
containing the address mark to the user-defined address of the
receiver. If they are the same, the receiver remains awake and
processes the characters that follow. If they are not the same,
software can set the RWU bit and put the receiver back into the
standby state.
•
Idle input line condition — When the WAKE bit is clear, an idle
character on the RxD pin wakes the receiver from the standby
state by clearing the RWU bit. The idle character that wakes the
receiver does not set the receiver idle bit, IDLE, or the SCI receiver
full bit, SCRF. The idle line type bit, ILTY, determines whether the
receiver begins counting logic 1s as idle character bits after the
start bit or after the stop bit.
Clearing the WAKE bit after the RxD pin has been idle may cause the
receiver to wake up immediately.
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.7.3.7 Receiver Interrupts
The following sources can generate CPU interrupt requests from the SCI
receiver:
•
SCI receiver full (SCRF) — The SCRF bit in SCS1 indicates that
the receive shift register has transferred a character to the SCDR.
SCRF can generate a receiver interrupt request. Setting the SCI
receive interrupt enable bit, SCRIE, in SCC2 enables the SCRF bit
to generate receiver CPU interrupts.
•
Idle input (IDLE) — The IDLE bit in SCS1 indicates that 10 or 11
consecutive logic 1s shifted in from the RxD pin. The idle line
interrupt enable bit, ILIE, in SCC2 enables the IDLE bit to generate
CPU interrupt requests.
13.7.3.8 Error Interrupts
The following receiver error flags in SCS1 can generate CPU interrupt
requests:
•
Receiver overrun (OR) — The OR bit indicates that the receive
shift register shifted in a new character before the previous
character was read from the SCDR. The previous character
remains in the SCDR, and the new character is lost. The overrun
interrupt enable bit, ORIE, in SCC3 enables OR to generate SCI
error CPU interrupt requests.
•
Noise flag (NF) — The NF bit is set when the SCI detects noise on
incoming data or break characters, including start, data, and stop
bits. The noise error interrupt enable bit, NEIE, in SCC3 enables
NF to generate SCI error CPU interrupt requests.
•
Framing error (FE) — The FE bit in SCS1 is set when a logic 0
occurs where the receiver expects a stop bit. The framing error
interrupt enable bit, FEIE, in SCC3 enables FE to generate SCI
error CPU interrupt requests.
•
Parity error (PE) — The PE bit in SCS1 is set when the SCI
detects a parity error in incoming data. The parity error interrupt
enable bit, PEIE, in SCC3 enables PE to generate SCI error CPU
interrupt requests.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
247
Infrared Serial Communications
13.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
13.8.1 Wait Mode
The SCI module remains active after the execution of a WAIT
instruction. In wait mode, the SCI module registers are not accessible by
the CPU. Any enabled CPU interrupt request from the SCI module can
bring the MCU out of wait mode.
If SCI module functions are not required during wait mode, reduce power
consumption by disabling the module before executing the WAIT
instruction.
Refer to 9.7 Low-Power Modes for information on exiting wait mode.
13.8.2 Stop Mode
The SCI module is inactive after the execution of a STOP instruction.
The STOP instruction does not affect SCI register states. SCI module
operation resumes after an external interrupt.
Because the internal clock is inactive during stop mode, entering stop
mode during an SCI transmission or reception results in invalid data.
Refer to 9.7 Low-Power Modes for information on exiting stop mode.
Technical Data
248
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.9 SCI During Break Module Interrupts
The system integration module (SIM) controls whether status bits in other
modules can be cleared during interrupts generated by the break
module. The BCFE bit in the SIM break flag control register (SBFCR)
enables software to clear status bits during the break state.
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a two-step read/write clearing procedure. If software
does the first step on such a bit before the break, the bit cannot change
during the break state as long as BCFE is at logic 0. After the break,
doing the second step clears the status bit.
13.10 I/O Signals
The two IRSCI I/O pins are:
•
PTB0/TxD — Transmit data
•
PTB1/RxD — Receive data
13.10.1 PTB0/TxD (Transmit Data)
The PTB0/TxD pin is the serial data (standard or infrared) output from
the SCI transmitter. The IRSCI shares the PTB0/TxD pin with port B.
When the IRSCI is enabled, the PTB0/TxD pin is an output regardless of
the state of the DDRB0 bit in data direction register B (DDRB). TxD pin
has high current (15mA) sink capability when the LEDB0 bit is set in the
port B LED control register ($000C).
13.10.2 PTB1/RxD (Receive Data)
The PTB1/RxD pin is the serial data input to the IRSCI receiver. The
IRSCI shares the PTB1/RxD pin with port B. When the IRSCI is enabled,
the PTB1/RxD pin is an input regardless of the state of the DDRB1 bit in
data direction register B (DDRB).
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
249
Infrared Serial Communications
Table 13-5 shows a summary of I/O pin functions when the SCI is
enabled.
Table 13-5. SCI Pin Functions (Standard and Infrared)
SCC1
[ENSCI]
SCIRCR
[IREN]
SCC2
[TE]
SCC2
[RE]
1
0
0
0
Hi-Z(1)
Input ignored (terminate externally)
1
0
0
1
Hi-Z(1)
Input sampled, pin should idle high
1
0
1
0
Output SCI (idle high)
Input ignored (terminate externally)
1
0
1
1
Output SCI (idle high)
Input sampled, pin should idle high
1
1
0
0
Hi-Z(1)
Input ignored (terminate externally)
1
1
0
1
Hi-Z(1)
Input sampled, pin should idle high
1
1
1
0
Output IR SCI (idle high)
Input ignored (terminate externally)
1
1
1
1
Output IR SCI (idle high)
Input sampled, pin should idle high
0
X
X
X
Pins under port control (standard I/O port)
TxD Pin
RxD Pin
Notes:
1. After completion of transmission in progress.
13.11 I/O Registers
The following I/O registers control and monitor SCI operation:
Technical Data
250
•
SCI control register 1 (SCC1)
•
SCI control register 2 (SCC2)
•
SCI control register 3 (SCC3)
•
SCI status register 1 (SCS1)
•
SCI status register 2 (SCS2)
•
SCI data register (SCDR)
•
SCI baud rate register (SCBR)
•
SCI infrared control register (SCIRCR)
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.11.1 SCI Control Register 1
SCI control register:
•
Enables loop mode operation
•
Enables the SCI
•
Controls output polarity
•
Controls character length
•
Controls SCI wakeup method
•
Controls idle character detection
•
Enables parity function
•
Controls parity type
Address:
Read:
Write:
Reset:
$0013
Bit 7
6
LOOPS
ENSCI
0
0
5
0
0
4
3
2
1
Bit 0
M
WAKE
ILTY
PEN
PTY
0
0
0
0
0
Figure 13-12. SCI Control Register 1 (SCC1)
LOOPS — Loop Mode Select Bit
This read/write bit enables loop mode operation for the SCI only. In
loop mode the RxD pin is disconnected from the SCI, and the
transmitter output goes into the receiver input. Both the transmitter
and the receiver must be enabled to use loop mode. The infrared
encoder/decoder is not in the loop. Reset clears the LOOPS bit.
1 = Loop mode enabled
0 = Normal operation enabled
ENSCI — Enable SCI Bit
This read/write bit enables the SCI and the SCI baud rate generator.
Clearing ENSCI sets the SCTE and TC bits in SCI status register 1
and disables transmitter interrupts. Reset clears the ENSCI bit.
1 = SCI enabled
0 = SCI disabled
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
251
Infrared Serial Communications
M — Mode (Character Length) Bit
This read/write bit determines whether SCI characters are eight or
nine bits long. (See Table 13-6.) The ninth bit can serve as an extra
stop bit, as a receiver wakeup signal, or as a parity bit. Reset clears
the M bit.
1 = 9-bit SCI characters
0 = 8-bit SCI characters
WAKE — Wakeup Condition Bit
This read/write bit determines which condition wakes up the SCI: a
logic 1 (address mark) in the most significant bit position of a received
character or an idle condition on the RxD pin. Reset clears the WAKE
bit.
1 = Address mark wakeup
0 = Idle line wakeup
ILTY — Idle Line Type Bit
This read/write bit determines when the SCI starts counting logic 1s
as idle character bits. The counting begins either after the start bit or
after the stop bit. If the count begins after the start bit, then a string of
logic 1s preceding the stop bit may cause false recognition of an idle
character. Beginning the count after the stop bit avoids false idle
character recognition, but requires properly synchronized
transmissions. Reset clears the ILTY bit.
1 = Idle character bit count begins after stop bit
0 = Idle character bit count begins after start bit
PEN — Parity Enable Bit
This read/write bit enables the SCI parity function. (See Table 13-6.)
When enabled, the parity function inserts a parity bit in the most
significant bit position. (See Figure 13-6.) Reset clears the PEN bit.
1 = Parity function enabled
0 = Parity function disabled
Technical Data
252
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
PTY — Parity Bit
This read/write bit determines whether the SCI generates and checks
for odd parity or even parity. (See Table 13-6.) Reset clears the PTY
bit.
1 = Odd parity
0 = Even parity
NOTE:
Changing the PTY bit in the middle of a transmission or reception can
generate a parity error.
Table 13-6. Character Format Selection
Control Bits
Character Format
M
PEN:PTY
Start
Bits
Data
Bits
Parity
Stop
Bits
Character
Length
0
0X
1
8
None
1
10 bits
1
0X
1
9
None
1
11 bits
0
10
1
7
Even
1
10 bits
0
11
1
7
Odd
1
10 bits
1
10
1
8
Even
1
11 bits
1
11
1
8
Odd
1
11 bits
13.11.2 SCI Control Register 2
SCI control register 2:
•
Enables the following CPU interrupt requests:
– Enables the SCTE bit to generate transmitter CPU interrupt
requests
– Enables the TC bit to generate transmitter CPU interrupt
requests
– Enables the SCRF bit to generate receiver CPU interrupt
requests
– Enables the IDLE bit to generate receiver CPU interrupt
requests
•
Enables the transmitter
•
Enables the receiver
•
Enables SCI wakeup
•
Transmits SCI break characters
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
253
Infrared Serial Communications
Address:
Read:
Write:
Reset:
$0014
Bit 7
6
5
4
3
2
1
Bit 0
SCTIE
TCIE
SCRIE
ILIE
TE
RE
RWU
SBK
0
0
0
0
0
0
0
0
Figure 13-13. SCI Control Register 2 (SCC2)
SCTIE — SCI Transmit Interrupt Enable Bit
This read/write bit enables the SCTE bit to generate SCI transmitter
CPU interrupt requests. Reset clears the SCTIE bit.
1 = SCTE enabled to generate CPU interrupt
0 = SCTE not enabled to generate CPU interrupt
TCIE — Transmission Complete Interrupt Enable Bit
This read/write bit enables the TC bit to generate SCI transmitter CPU
interrupt requests. Reset clears the TCIE bit.
1 = TC enabled to generate CPU interrupt requests
0 = TC not enabled to generate CPU interrupt requests
SCRIE — SCI Receive Interrupt Enable Bit
This read/write bit enables the SCRF bit to generate SCI receiver
CPU interrupt requests. Reset clears the SCRIE bit.
1 = SCRF enabled to generate CPU interrupt
0 = SCRF not enabled to generate CPU interrupt
ILIE — Idle Line Interrupt Enable Bit
This read/write bit enables the IDLE bit to generate SCI receiver CPU
interrupt requests. Reset clears the ILIE bit.
1 = IDLE enabled to generate CPU interrupt requests
0 = IDLE not enabled to generate CPU interrupt requests
TE — Transmitter Enable Bit
Setting this read/write bit begins the transmission by sending a
preamble of 10 or 11 logic 1s from the transmit shift register to the
TxD pin. If software clears the TE bit, the transmitter completes any
transmission in progress before the TxD returns to the idle condition
Technical Data
254
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
(logic 1). Clearing and then setting TE during a transmission queues
an idle character to be sent after the character currently being
transmitted. Reset clears the TE bit.
1 = Transmitter enabled
0 = Transmitter disabled
NOTE:
Writing to the TE bit is not allowed when the enable SCI bit (ENSCI) is
clear. ENSCI is in SCI control register 1.
RE — Receiver Enable Bit
Setting this read/write bit enables the receiver. Clearing the RE bit
disables the receiver but does not affect receiver interrupt flag bits.
Reset clears the RE bit.
1 = Receiver enabled
0 = Receiver disabled
NOTE:
Writing to the RE bit is not allowed when the enable SCI bit (ENSCI) is
clear. ENSCI is in SCI control register 1.
RWU — Receiver Wakeup Bit
This read/write bit puts the receiver in a standby state during which
receiver interrupts are disabled. The WAKE bit in SCC1 determines
whether an idle input or an address mark brings the receiver out of the
standby state and clears the RWU bit. Reset clears the RWU bit.
1 = Standby state
0 = Normal operation
SBK — Send Break Bit
Setting and then clearing this read/write bit transmits a break
character followed by a logic 1. The logic 1 after the break character
guarantees recognition of a valid start bit. If SBK remains set, the
transmitter continuously transmits break characters with no logic 1s
between them. Reset clears the SBK bit.
1 = Transmit break characters
0 = No break characters being transmitted
NOTE:
Do not toggle the SBK bit immediately after setting the SCTE bit.
Toggling SBK before the preamble begins causes the SCI to send a
break character instead of a preamble.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
255
Infrared Serial Communications
13.11.3 SCI Control Register 3
SCI control register 3:
•
Stores the ninth SCI data bit received and the ninth SCI data bit to
be transmitted
•
Enables the following interrupts:
– Receiver overrun interrupts
– Noise error interrupts
– Framing error interrupts
– Parity error interrupts
Address:
$0015
Bit 7
Read:
R8
Write:
Reset:
U
6
5
4
3
2
1
Bit 0
T8
DMARE
DMATE
ORIE
NEIE
FEIE
PEIE
U
0
0
0
0
0
0
= Unimplemented
U = Unaffected
Figure 13-14. SCI Control Register 3 (SCC3)
R8 — Received Bit 8
When the SCI is receiving 9-bit characters, R8 is the read-only ninth
bit (bit 8) of the received character. R8 is received at the same time
that the SCDR receives the other 8 bits.
When the SCI is receiving 8-bit characters, R8 is a copy of the eighth
bit (bit 7). Reset has no effect on the R8 bit.
T8 — Transmitted Bit 8
When the SCI is transmitting 9-bit characters, T8 is the read/write
ninth bit (bit 8) of the transmitted character. T8 is loaded into the
transmit shift register at the same time that the SCDR is loaded into
the transmit shift register. Reset has no effect on the T8 bit.
Technical Data
256
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
DMARE — DMA Receive Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to
DMARE or DMATE may adversely affect MCU performance.
1 = DMA not enabled to service SCI receiver DMA service requests
generated by the SCRF bit (SCI receiver CPU interrupt
requests enabled)
0 = DMA not enabled to service SCI receiver DMA service requests
generated by the SCRF bit (SCI receiver CPU interrupt
requests enabled)
DMATE — DMA Transfer Enable Bit
CAUTION:
The DMA module is not included on this MCU. Writing a logic 1 to
DMARE or DMATE may adversely affect MCU performance.
1 = SCTE DMA service requests enabled; SCTE CPU interrupt
requests disabled
0 = SCTE DMA service requests disabled; SCTE CPU interrupt
requests enabled
ORIE — Receiver Overrun Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the receiver overrun bit, OR. Reset clears ORIE.
1 = SCI error CPU interrupt requests from OR bit enabled
0 = SCI error CPU interrupt requests from OR bit disabled
NEIE — Receiver Noise Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the noise error bit, NE. Reset clears NEIE.
1 = SCI error CPU interrupt requests from NE bit enabled
0 = SCI error CPU interrupt requests from NE bit disabled
FEIE — Receiver Framing Error Interrupt Enable Bit
This read/write bit enables SCI error CPU interrupt requests
generated by the framing error bit, FE. Reset clears FEIE.
1 = SCI error CPU interrupt requests from FE bit enabled
0 = SCI error CPU interrupt requests from FE bit disabled
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
257
Infrared Serial Communications
PEIE — Receiver Parity Error Interrupt Enable Bit
This read/write bit enables SCI receiver CPU interrupt
requests generated by the parity error bit, PE. (See 13.11.4 SCI
Status Register 1.) Reset clears PEIE.
1 = SCI error CPU interrupt requests from PE bit enabled
0 = SCI error CPU interrupt requests from PE bit disabled
13.11.4 SCI Status Register 1
SCI status register 1 contains flags to signal these conditions:
•
Transfer of SCDR data to transmit shift register complete
•
Transmission complete
•
Transfer of receive shift register data to SCDR complete
•
Receiver input idle
•
Receiver overrun
•
Noisy data
•
Framing error
•
Parity error
Address:
Read:
$0016
Bit 7
6
5
4
3
2
1
Bit 0
SCTE
TC
SCRF
IDLE
OR
NF
FE
PE
1
1
0
0
0
0
0
0
Write:
Reset:
= Unimplemented
Figure 13-15. SCI Status Register 1 (SCS1)
SCTE — SCI Transmitter Empty Bit
This clearable, read-only bit is set when the SCDR transfers a
character to the transmit shift register. SCTE can generate an SCI
transmitter CPU interrupt request. When the SCTIE bit in SCC2 is set,
SCTE generates an SCI transmitter CPU interrupt request. In normal
Technical Data
258
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
operation, clear the SCTE bit by reading SCS1 with SCTE set and
then writing to SCDR. Reset sets the SCTE bit.
1 = SCDR data transferred to transmit shift register
0 = SCDR data not transferred to transmit shift register
TC — Transmission Complete Bit
This read-only bit is set when the SCTE bit is set, and no data,
preamble, or break character is being transmitted. TC generates an
SCI transmitter CPU interrupt request if the TCIE bit in SCC2 is also
set. TC is automatically cleared when data, preamble or break is
queued and ready to be sent. There may be up to 1.5 transmitter
clocks of latency between queueing data, preamble, and break and
the transmission actually starting. Reset sets the TC bit.
1 = No transmission in progress
0 = Transmission in progress
SCRF — SCI Receiver Full Bit
This clearable, read-only bit is set when the data in the receive shift
register transfers to the SCI data register. SCRF can generate an SCI
receiver CPU interrupt request. When the SCRIE bit in SCC2 is set,
SCRF generates a CPU interrupt request. In normal operation, clear
the SCRF bit by reading SCS1 with SCRF set and then reading the
SCDR. Reset clears SCRF.
1 = Received data available in SCDR
0 = Data not available in SCDR
IDLE — Receiver Idle Bit
This clearable, read-only bit is set when 10 or 11 consecutive logic 1s
appear on the receiver input. IDLE generates an SCI error CPU
interrupt request if the ILIE bit in SCC2 is also set. Clear the IDLE bit
by reading SCS1 with IDLE set and then reading the SCDR. After the
receiver is enabled, it must receive a valid character that sets the
SCRF bit before an idle condition can set the IDLE bit. Also, after the
IDLE bit has been cleared, a valid character must again set the SCRF
bit before an idle condition can set the IDLE bit. Reset clears the IDLE
bit.
1 = Receiver input idle
0 = Receiver input active (or idle since the IDLE bit was cleared)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
259
Infrared Serial Communications
OR — Receiver Overrun Bit
This clearable, read-only bit is set when software fails to read the
SCDR before the receive shift register receives the next character.
The OR bit generates an SCI error CPU interrupt request if the ORIE
bit in SCC3 is also set. The data in the shift register is lost, but the data
already in the SCDR is not affected. Clear the OR bit by reading SCS1
with OR set and then reading the SCDR. Reset clears the OR bit.
1 = Receive shift register full and SCRF = 1
0 = No receiver overrun
Software latency may allow an overrun to occur between reads of
SCS1 and SCDR in the flag-clearing sequence. Figure 13-16 shows
the normal flag-clearing sequence and an example of an overrun
caused by a delayed flag-clearing sequence. The delayed read of
SCDR does not clear the OR bit because OR was not set when SCS1
was read. Byte 2 caused the overrun and is lost. The next flagclearing sequence reads byte 3 in the SCDR instead of byte 2.
In applications that are subject to software latency or in which it is
important to know which byte is lost due to an overrun, the flagclearing routine can check the OR bit in a second read of SCS1 after
reading the data register.
NF — Receiver Noise Flag Bit
This clearable, read-only bit is set when the SCI detects noise on the
RxD pin. NF generates an NF CPU interrupt request if the NEIE bit in
SCC3 is also set. Clear the NF bit by reading SCS1 and then reading
the SCDR. Reset clears the NF bit.
1 = Noise detected
0 = No noise detected
FE — Receiver Framing Error Bit
This clearable, read-only bit is set when a logic 0 is accepted as the
stop bit. FE generates an SCI error CPU interrupt request if the FEIE
bit in SCC3 also is set. Clear the FE bit by reading SCS1 with FE set
and then reading the SCDR. Reset clears the FE bit.
1 = Framing error detected
0 = No framing error detected
Technical Data
260
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
BYTE 1
BYTE 2
BYTE 3
SCRF = 0
SCRF = 1
SCRF = 0
SCRF = 1
SCRF = 0
SCRF = 1
NORMAL FLAG CLEARING SEQUENCE
BYTE 4
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 0
READ SCDR
BYTE 1
READ SCDR
BYTE 2
READ SCDR
BYTE 3
BYTE 1
BYTE 2
BYTE 3
SCRF = 0
OR = 0
SCRF = 1
OR = 1
SCRF = 0
OR = 1
SCRF = 1
SCRF = 1
OR = 1
DELAYED FLAG CLEARING SEQUENCE
BYTE 4
READ SCS1
SCRF = 1
OR = 0
READ SCS1
SCRF = 1
OR = 1
READ SCDR
BYTE 1
READ SCDR
BYTE 3
Figure 13-16. Flag Clearing Sequence
PE — Receiver Parity Error Bit
This clearable, read-only bit is set when the SCI detects a parity error
in incoming data. PE generates a PE CPU interrupt request if the
PEIE bit in SCC3 is also set. Clear the PE bit by reading SCS1 with
PE set and then reading the SCDR. Reset clears the PE bit.
1 = Parity error detected
0 = No parity error detected
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
261
Infrared Serial Communications
13.11.5 SCI Status Register 2 (SCS2)
SCI status register 2 contains flags to signal the following conditions:
•
Break character detected
•
Incoming data
Address:
$0017
Bit 7
6
5
4
3
2
Read:
1
Bit 0
BKF
RPF
0
0
Write:
Reset:
0
0
0
0
0
0
= Unimplemented
Figure 13-17. SCI Status Register 2 (SCS2)
BKF — Break Flag Bit
This clearable, read-only bit is set when the SCI detects a break
character on the RxD pin. In SCS1, the FE and SCRF bits are also
set. In 9-bit character transmissions, the R8 bit in SCC3 is cleared.
BKF does not generate a CPU interrupt request. Clear BKF by
reading SCS2 with BKF set and then reading the SCDR. Once
cleared, BKF can become set again only after logic 1s again appear
on the RxD pin followed by another break character. Reset clears the
BKF bit.
1 = Break character detected
0 = No break character detected
RPF — Reception in Progress Flag Bit
This read-only bit is set when the receiver detects a logic 0 during the
RT1 time period of the start bit search. RPF does not generate an
interrupt request. RPF is reset after the receiver detects false start bits
(usually from noise or a baud rate mismatch) or when the receiver
detects an idle character. Polling RPF before disabling the SCI
module or entering stop mode can show whether a reception is in
progress.
1 = Reception in progress
0 = No reception in progress
Technical Data
262
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.11.6 SCI Data Register (SCDR)
The SCI data register is the buffer between the internal data bus and the
receive and transmit shift registers. Reset has no effect on data in the
SCI data register.
Address:
$0018
Bit 7
6
5
4
3
2
1
Bit 0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Reset:
Unaffected by reset
Figure 13-18. SCI Data Register (SCDR)
R7/T7–R0/T0 — Receive/Transmit Data Bits
Reading the SCDR accesses the read-only received data bits,
R7–R0. Writing to the SCDR writes the data to be transmitted, T7–T0.
Reset has no effect on SCDR.
NOTE:
Do not use read/modify/write instructions on the SCI data register.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
263
Infrared Serial Communications
13.11.7 SCI Baud Rate Register (SCBR)
The baud rate register selects the baud rate for both the receiver and the
transmitter.
Address:
$0019
Bit 7
Read:
Write:
Reset:
CKS
0
6
0
5
4
3
2
1
Bit 0
SCP1
SCP0
R
SCR2
SCR1
SCR0
0
0
0
0
0
0
R
= Reserved
0
= Unimplemented
Figure 13-19. SCI Baud Rate Register (SCBR)
CKS — Baud Clock Input Select
This read/write bit selects the source clock for the baud rate
generator. Reset clears the CKS bit, selecting CGMXCLK.
1 = Bus clock drives the baud rate generator
0 = CGMXCLK drives the baud rate generator
SCP1 and SCP0 — SCI Baud Rate Prescaler Bits
These read/write bits select the baud rate prescaler divisor as shown
in Table 13-7. Reset clears SCP1 and SCP0.
Table 13-7. SCI Baud Rate Prescaling
SCP1 and SCP0
Prescaler Divisor (PD)
00
1
01
3
10
4
11
13
SCR2–SCR0 — SCI Baud Rate Select Bits
These read/write bits select the SCI baud rate divisor as shown in
Table 13-8. Reset clears SCR2–SCR0.
Technical Data
264
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Table 13-8. SCI Baud Rate Selection
SCR2, SCR1, and SCR0
Baud Rate Divisor (BD)
000
1
001
2
010
4
011
8
100
16
101
32
110
64
111
128
Use this formula to calculate the SCI baud rate:
SCI clock source
baud rate = --------------------------------------------16 × PD × BD
where:
SCI clock source = fBUS or CGMXCLK
(selected by CKS bit)
PD = prescaler divisor
BD = baud rate divisor
Table 13-9 shows the SCI baud rates that can be generated with a
4.9152-MHz bus clock when fBUS is selected as SCI clock source.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
265
Infrared Serial Communications
Table 13-9. SCI Baud Rate Selection Examples
SCP1 and
SCP0
Prescaler
Divisor (PD)
SCR2, SCR1,
and SCR0
Baud Rate
Divisor (BD)
Baud Rate
(fBUS = 4.9152 MHz)
00
1
000
1
—
00
1
001
2
—
00
1
010
4
76800
00
1
011
8
38400
00
1
100
16
19200
00
1
101
32
9600
00
1
110
64
4800
00
1
111
128
2400
01
3
000
1
—
01
3
001
2
51200
01
3
010
4
25600
01
3
011
8
12800
01
3
100
16
6400
01
3
101
32
3200
01
3
110
64
1600
01
3
111
128
800
10
4
000
1
76800
10
4
001
2
38400
10
4
010
4
19200
10
4
011
8
9600
10
4
100
16
4800
10
4
101
32
2400
10
4
110
64
1200
10
4
111
128
600
11
13
000
1
23632
11
13
001
2
11816
11
13
010
4
5908
11
13
011
8
2954
11
13
100
16
1477
11
13
101
32
739
11
13
110
64
369
11
13
111
128
185
Technical Data
266
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
13.11.8 SCI Infrared Control Register
The infrared control register contains the control bits for the infrared submodule.
•
Enables the infrared sub-module
•
Selects the infrared transmitter narrow pulse width
Address:
$001A
Bit 7
Read:
Write:
Reset:
R
0
6
5
4
0
0
0
0
0
0
= Unimplemented
3
2
1
Bit 0
R
TNP1
TNP0
IREN
0
0
0
0
R
= Reserved
Figure 13-20. SCI Infrared Control Register (SCIRCR)
TNP1 and TNP0 — Transmitter Narrow Pulse Bits
These read/write bits select the infrared transmitter narrow pulse
width as shown in Table 13-10. Reset clears TNP1 and TNP0.
Table 13-10. Infrared Narrow Pulse Selection
TNP1 and TNP0
Prescaler Divisor (PD)
00
SCI transmits a 3/16 narrow pulse
01
SCI transmits a 1/16 narrow pulse
10
SCI transmits a 1/32 narrow pulse
11
IREN — Infrared Enable Bit
This read/write bit enables the infrared sub-module for encoding and
decoding the SCI data stream. When this bit is clear, the infrared submodule is disabled. Reset clears the IREN bit.
1 = infrared sub-module enabled
0 = infrared sub-module disabled
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Infrared Serial Communications Interface Module (IRSCI)
Technical Data
267
Infrared Serial Communications
Technical Data
268
MC68HC908LJ12 — Rev. 2.1
Infrared Serial Communications Interface Module (IRSCI)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 14. Serial Peripheral Interface Module (SPI)
14.1 Contents
14.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
14.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
14.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 271
14.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .271
14.5.1 Master Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
14.5.2 Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
14.6 Transmission Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .275
14.6.1 Clock Phase and Polarity Controls. . . . . . . . . . . . . . . . . . . 275
14.6.2 Transmission Format When CPHA = 0 . . . . . . . . . . . . . . . 276
14.6.3 Transmission Format When CPHA = 1 . . . . . . . . . . . . . . . 278
14.6.4 Transmission Initiation Latency . . . . . . . . . . . . . . . . . . . . . 279
14.7
Queuing Transmission Data . . . . . . . . . . . . . . . . . . . . . . . . . . 281
14.8 Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
14.8.1 Overflow Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
14.8.2 Mode Fault Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
14.9
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .286
14.10 Resetting the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
14.11 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
14.11.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
14.11.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
14.12 SPI During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14.13 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
14.13.1 MISO (Master In/Slave Out) . . . . . . . . . . . . . . . . . . . . . . . . 291
14.13.2 MOSI (Master Out/Slave In) . . . . . . . . . . . . . . . . . . . . . . . . 291
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
269
Serial Peripheral Interface Module (SPI)
14.13.3 SPSCK (Serial Clock). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.13.4 SS (Slave Select) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
14.13.5 CGND (Clock Ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
14.14 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
14.14.1 SPI Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
14.14.2 SPI Status and Control Register . . . . . . . . . . . . . . . . . . . . 296
14.14.3 SPI Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
14.2 Introduction
This section describes the serial peripheral interface (SPI) module,
which allows full-duplex, synchronous, serial communications with
peripheral devices.
14.3 Features
Features of the SPI module include the following:
•
Full-duplex operation
•
Master and slave modes
•
Double-buffered operation with separate transmit and receive
registers
•
Four master mode frequencies (maximum = bus frequency ÷ 2)
•
Maximum slave mode frequency = bus frequency
•
Serial clock with programmable polarity and phase
•
Two separately enabled interrupts:
– SPRF (SPI receiver full)
– SPTE (SPI transmitter empty)
•
Mode fault error flag with CPU interrupt capability
•
Overflow error flag with CPU interrupt capability
•
Programmable wired-OR mode
•
I2C (inter-integrated circuit) compatibility
•
I/O (input/output) port bit(s) software configurable with pullup
device(s) if configured as input port bit(s)
Technical Data
270
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
14.4 Pin Name Conventions and I/O Register Addresses
The text that follows describes the SPI. The SPI I/O pin names are SS
(slave select), SPSCK (SPI serial clock), CGND (clock ground), MOSI
(master out slave in), and MISO (master in/slave out). The SPI shares
four I/O pins with four parallel I/O ports.
The full names of the SPI I/O pins are shown in Table 14-1. The generic
pin names appear in the text that follows.
Table 14-1. Pin Name Conventions
SPI Generic
Pin Names:
MISO
MOSI
SS
Full SPI
Pin Names: SPI PTD1/MISO PTD2/MOSI PTD0/SS
SPSCK
CGND
PTD3/SPSCK
VSS
Figure 14-1 summarizes the SPI I/O registers.
=
Addr.
Register Name
$0010
Read:
SPI Control Register
Write:
(SPCR)
Reset:
$0011
$0012
Read:
SPI Status and Control
Register Write:
(SPSCR)
Reset:
Read:
SPI Data Register
Write:
(SPDR)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
SPRIE
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
0
1
0
1
0
0
0
OVRF
MODF
SPTE
MODFEN
SPR1
SPR0
SPRF
ERRIE
0
0
0
0
1
0
0
0
R7
R6
R5
R4
R3
R2
R1
R0
T7
T6
T5
T4
T3
T2
T1
T0
Unaffected by reset
= Unimplemented
R
= Reserved
Figure 14-1. SPI I/O Register Summary
14.5 Functional Description
Figure 14-2 shows the structure of the SPI module.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
271
Serial Peripheral Interface Module (SPI)
INTERNAL BUS
TRANSMIT DATA REGISTER
CGMOUT ÷ 2
FROM SIM
SHIFT REGISTER
7
6
5
4
3
2
1
MISO
0
÷2
MOSI
÷8
CLOCK
DIVIDER ÷ 32
RECEIVE DATA REGISTER
PIN
CONTROL
LOGIC
÷ 128
SPMSTR
SPE
CLOCK
SELECT
SPR1
SPSCK
M
CLOCK
LOGIC
S
SS
SPR0
SPMSTR
RESERVED
MODFEN
TRANSMITTER CPU INTERRUPT REQUEST
RESERVED
CPHA
CPOL
SPWOM
ERRIE
SPI
CONTROL
SPTIE
SPRIE
RECEIVER/ERROR CPU INTERRUPT REQUEST
R
SPE
SPRF
SPTE
OVRF
MODF
Figure 14-2. SPI Module Block Diagram
The SPI module allows full-duplex, synchronous, serial communication
between the MCU and peripheral devices, including other MCUs.
Software can poll the SPI status flags or SPI operation can be interruptdriven.
The following paragraphs describe the operation of the SPI module.
Technical Data
272
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
14.5.1 Master Mode
The SPI operates in master mode when the SPI master bit, SPMSTR, is
set.
NOTE:
Configure the SPI modules as master or slave before enabling them.
Enable the master SPI before enabling the slave SPI. Disable the slave
SPI before disabling the master SPI. (See 14.14.1 SPI Control
Register.)
Only a master SPI module can initiate transmissions. Software begins
the transmission from a master SPI module by writing to the transmit
data register. If the shift register is empty, the byte immediately transfers
to the shift register, setting the SPI transmitter empty bit, SPTE. The byte
begins shifting out on the MOSI pin under the control of the serial clock.
(See Figure 14-3.)
MASTER MCU
SHIFT REGISTER
SLAVE MCU
MISO
MISO
MOSI
MOSI
SPSCK
BAUD RATE
GENERATOR
SS
SHIFT REGISTER
SPSCK
VDD
SS
Figure 14-3. Full-Duplex Master-Slave Connections
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
273
Serial Peripheral Interface Module (SPI)
The SPR1 and SPR0 bits control the baud rate generator and determine
the speed of the shift register. (See 14.14.2 SPI Status and Control
Register.) Through the SPSCK pin, the baud rate generator of the
master also controls the shift register of the slave peripheral.
As the byte shifts out on the MOSI pin of the master, another byte shifts
in from the slave on the master’s MISO pin. The transmission ends when
the receiver full bit, SPRF, becomes set. At the same time that SPRF
becomes set, the byte from the slave transfers to the receive data
register. In normal operation, SPRF signals the end of a transmission.
Software clears SPRF by reading the SPI status and control register with
SPRF set and then reading the SPI data register. Writing to the SPI data
register clears the SPTE bit.
14.5.2 Slave Mode
The SPI operates in slave mode when the SPMSTR bit is clear. In slave
mode, the SPSCK pin is the input for the serial clock from the master
MCU. Before a data transmission occurs, the SS pin of the slave SPI
must be at logic 0. SS must remain low until the transmission is
complete. (See 14.8.2 Mode Fault Error.)
In a slave SPI module, data enters the shift register under the control of
the serial clock from the master SPI module. After a byte enters the shift
register of a slave SPI, it transfers to the receive data register, and the
SPRF bit is set. To prevent an overflow condition, slave software then
must read the receive data register before another full byte enters the
shift register.
The maximum frequency of the SPSCK for an SPI configured as a slave
is the bus clock speed (which is twice as fast as the fastest master
SPSCK clock that can be generated). The frequency of the SPSCK for
an SPI configured as a slave does not have to correspond to any SPI
baud rate. The baud rate only controls the speed of the SPSCK
generated by an SPI configured as a master. Therefore, the frequency
of the SPSCK for an SPI configured as a slave can be any frequency
less than or equal to the bus speed.
Technical Data
274
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
When the master SPI starts a transmission, the data in the slave shift
register begins shifting out on the MISO pin. The slave can load its shift
register with a new byte for the next transmission by writing to its transmit
data register. The slave must write to its transmit data register at least
one bus cycle before the master starts the next transmission. Otherwise,
the byte already in the slave shift register shifts out on the MISO pin.
Data written to the slave shift register during a transmission remains in
a buffer until the end of the transmission.
When the clock phase bit (CPHA) is set, the first edge of SPSCK starts
a transmission. When CPHA is clear, the falling edge of SS starts a
transmission. (See 14.6 Transmission Formats.)
NOTE:
SPSCK must be in the proper idle state before the slave is enabled to
prevent SPSCK from appearing as a clock edge.
14.6 Transmission Formats
During an SPI transmission, data is simultaneously transmitted (shifted
out serially) and received (shifted in serially). A serial clock synchronizes
shifting and sampling on the two serial data lines. A slave select line
allows selection of an individual slave SPI device; slave devices that are
not selected do not interfere with SPI bus activities. On a master SPI
device, the slave select line can optionally be used to indicate multiplemaster bus contention.
14.6.1 Clock Phase and Polarity Controls
Software can select any of four combinations of serial clock (SPSCK)
phase and polarity using two bits in the SPI control register (SPCR). The
clock polarity is specified by the CPOL control bit, which selects an
active high or low clock and has no significant effect on the transmission
format.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
275
Serial Peripheral Interface Module (SPI)
The clock phase (CPHA) control bit selects one of two fundamentally
different transmission formats. The clock phase and polarity should be
identical for the master SPI device and the communicating slave device.
In some cases, the phase and polarity are changed between
transmissions to allow a master device to communicate with peripheral
slaves having different requirements.
NOTE:
Before writing to the CPOL bit or the CPHA bit, disable the SPI by
clearing the SPI enable bit (SPE).
14.6.2 Transmission Format When CPHA = 0
Figure 14-4 shows an SPI transmission in which CPHA is logic 0. The
figure should not be used as a replacement for data sheet parametric
information.
Two waveforms are shown for SPSCK: one for CPOL = 0 and another
for CPOL = 1. The diagram may be interpreted as a master or slave
timing diagram since the serial clock (SPSCK), master in/slave out
(MISO), and master out/slave in (MOSI) pins are directly connected
between the master and the slave. The MISO signal is the output from
the slave, and the MOSI signal is the output from the master. The SS line
is the slave select input to the slave. The slave SPI drives its MISO
output only when its slave select input (SS) is at logic 0, so that only the
selected slave drives to the master. The SS pin of the master is not
shown but is assumed to be inactive. The SS pin of the master must be
high or must be reconfigured as general-purpose I/O not affecting the
SPI. (See 14.8.2 Mode Fault Error.) When CPHA = 0, the first SPSCK
edge is the MSB capture strobe. Therefore, the slave must begin driving
its data before the first SPSCK edge, and a falling edge on the SS pin is
used to start the slave data transmission. The slave’s SS pin must be
toggled back to high and then low again between each byte transmitted
as shown in Figure 14-5.
Technical Data
276
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
SPSCK CYCLE #
FOR REFERENCE
1
2
3
4
5
6
7
8
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
SPSCK; CPOL = 0
SPSCK; CPOL =1
MOSI
FROM MASTER
MISO
FROM SLAVE
MSB
SS; TO SLAVE
CAPTURE STROBE
Figure 14-4. Transmission Format (CPHA = 0)
MISO/MOSI
BYTE 1
BYTE 2
BYTE 3
MASTER SS
SLAVE SS
CPHA = 0
SLAVE SS
CPHA = 1
Figure 14-5. CPHA/SS Timing
When CPHA = 0 for a slave, the falling edge of SS indicates the
beginning of the transmission. This causes the SPI to leave its idle state
and begin driving the MISO pin with the MSB of its data. Once the
transmission begins, no new data is allowed into the shift register from
the transmit data register. Therefore, the SPI data register of the slave
must be loaded with transmit data before the falling edge of SS. Any data
written after the falling edge is stored in the transmit data register and
transferred to the shift register after the current transmission.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
277
Serial Peripheral Interface Module (SPI)
14.6.3 Transmission Format When CPHA = 1
Figure 14-6 shows an SPI transmission in which CPHA is logic 1. The
figure should not be used as a replacement for data sheet parametric
information. Two waveforms are shown for SPSCK: one for CPOL = 0
and another for CPOL = 1. The diagram may be interpreted as a master
or slave timing diagram since the serial clock (SPSCK), master in/slave
out (MISO), and master out/slave in (MOSI) pins are directly connected
between the master and the slave. The MISO signal is the output from
the slave, and the MOSI signal is the output from the master. The SS line
is the slave select input to the slave. The slave SPI drives its MISO
output only when its slave select input (SS) is at logic 0, so that only the
selected slave drives to the master. The SS pin of the master is not
shown but is assumed to be inactive. The SS pin of the master must be
high or must be reconfigured as general-purpose I/O not affecting the
SPI. (See 14.8.2 Mode Fault Error.) When CPHA = 1, the master
begins driving its MOSI pin on the first SPSCK edge. Therefore, the
slave uses the first SPSCK edge as a start transmission signal. The SS
pin can remain low between transmissions. This format may be
preferable in systems having only one master and only one slave driving
the MISO data line.
SPSCK CYCLE #
FOR REFERENCE
1
2
3
4
5
6
7
8
MOSI
FROM MASTER
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
LSB
MISO
FROM SLAVE
MSB
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
SPSCK; CPOL = 0
SPSCK; CPOL =1
LSB
SS; TO SLAVE
CAPTURE STROBE
Figure 14-6. Transmission Format (CPHA = 1)
Technical Data
278
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the
beginning of the transmission. This causes the SPI to leave its idle state
and begin driving the MISO pin with the MSB of its data. Once the
transmission begins, no new data is allowed into the shift register from
the transmit data register. Therefore, the SPI data register of the slave
must be loaded with transmit data before the first edge of SPSCK. Any
data written after the first edge is stored in the transmit data register and
transferred to the shift register after the current transmission.
14.6.4 Transmission Initiation Latency
When the SPI is configured as a master (SPMSTR = 1), writing to the
SPDR starts a transmission. CPHA has no effect on the delay to the start
of the transmission, but it does affect the initial state of the SPSCK
signal. When CPHA = 0, the SPSCK signal remains inactive for the first
half of the first SPSCK cycle. When CPHA = 1, the first SPSCK cycle
begins with an edge on the SPSCK line from its inactive to its active
level. The SPI clock rate (selected by SPR1:SPR0) affects the delay
from the write to SPDR and the start of the SPI transmission. (See
Figure 14-7.) The internal SPI clock in the master is a free-running
derivative of the internal MCU clock. To conserve power, it is enabled
only when both the SPE and SPMSTR bits are set. SPSCK edges occur
halfway through the low time of the internal MCU clock. Since the SPI
clock is free-running, it is uncertain where the write to the SPDR occurs
relative to the slower SPSCK. This uncertainty causes the variation in
the initiation delay shown in Figure 14-7. This delay is no longer than a
single SPI bit time. That is, the maximum delay is two MCU bus cycles
for DIV2, eight MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32,
and 128 MCU bus cycles for DIV128.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
279
Serial Peripheral Interface Module (SPI)
WRITE
TO SPDR
INITIATION DELAY
BUS
CLOCK
MOSI
MSB
BIT 6
1
2
BIT 5
SPSCK
CPHA = 1
SPSCK
CPHA = 0
SPSCK CYCLE
NUMBER
3
INITIATION DELAY FROM WRITE SPDR TO TRANSFER BEGIN








WRITE
TO SPDR
BUS
CLOCK
EARLIEST
LATEST
WRITE
TO SPDR
SPSCK = INTERNAL CLOCK ÷ 2;
2 POSSIBLE START POINTS
BUS
CLOCK
EARLIEST
WRITE
TO SPDR
SPSCK = INTERNAL CLOCK ÷ 8;
8 POSSIBLE START POINTS
LATEST
SPSCK = INTERNAL CLOCK ÷ 32;
32 POSSIBLE START POINTS
LATEST
SPSCK = INTERNAL CLOCK ÷ 128;
128 POSSIBLE START POINTS
LATEST
BUS
CLOCK
EARLIEST
WRITE
TO SPDR
BUS
CLOCK
EARLIEST
Figure 14-7. Transmission Start Delay (Master)
Technical Data
280
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
14.7 Queuing Transmission Data
The double-buffered transmit data register allows a data byte to be
queued and transmitted. For an SPI configured as a master, a queued
data byte is transmitted immediately after the previous transmission has
completed. The SPI transmitter empty flag (SPTE) indicates when the
transmit data buffer is ready to accept new data. Write to the transmit
data register only when the SPTE bit is high. Figure 14-8 shows the
timing associated with doing back-to-back transmissions with the SPI
(SPSCK has CPHA: CPOL = 1:0).
WRITE TO SPDR
SPTE
1
3
2
8
5
10
SPSCK
CPHA:CPOL = 1:0
MOSI
MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT BIT BIT BIT LSB MSB BIT BIT BIT
6 5 4
6 5 4 3 2 1
6 5 4 3 2 1
BYTE 1
BYTE 2
BYTE 3
4
SPRF
9
6
READ SPSCR
11
7
READ SPDR
12
1 CPU WRITES BYTE 1 TO SPDR, CLEARING SPTE BIT.
7 CPU READS SPDR, CLEARING SPRF BIT.
2 BYTE 1 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
8 CPU WRITES BYTE 3 TO SPDR, QUEUEING BYTE
3 AND CLEARING SPTE BIT.
9 SECOND INCOMING BYTE TRANSFERS FROM SHIFT
REGISTER TO RECEIVE DATA REGISTER, SETTING
SPRF BIT.
10 BYTE 3 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
11 CPU READS SPSCR WITH SPRF BIT SET.
3 CPU WRITES BYTE 2 TO SPDR, QUEUEING BYTE 2
AND CLEARING SPTE BIT.
FIRST INCOMING BYTE TRANSFERS FROM SHIFT
REGISTER TO RECEIVE DATA REGISTER, SETTING
SPRF BIT.
5 BYTE 2 TRANSFERS FROM TRANSMIT DATA
REGISTER TO SHIFT REGISTER, SETTING SPTE BIT.
6 CPU READS SPSCR WITH SPRF BIT SET.
4
12 CPU READS SPDR, CLEARING SPRF BIT.
Figure 14-8. SPRF/SPTE CPU Interrupt Timing
The transmit data buffer allows back-to-back transmissions without the
slave precisely timing its writes between transmissions as in a system
with a single data buffer. Also, if no new data is written to the data buffer,
the last value contained in the shift register is the next data word to be
transmitted.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
281
Serial Peripheral Interface Module (SPI)
For an idle master or idle slave that has no data loaded into its transmit
buffer, the SPTE is set again no more than two bus cycles after the
transmit buffer empties into the shift register. This allows the user to
queue up a 16-bit value to send. For an already active slave, the load of
the shift register cannot occur until the transmission is completed. This
implies that a back-to-back write to the transmit data register is not
possible. The SPTE indicates when the next write can occur.
14.8 Error Conditions
The following flags signal SPI error conditions:
•
Overflow (OVRF) — Failing to read the SPI data register before
the next full byte enters the shift register sets the OVRF bit. The
new byte does not transfer to the receive data register, and the
unread byte still can be read. OVRF is in the SPI status and control
register.
•
Mode fault error (MODF) — The MODF bit indicates that the
voltage on the slave select pin (SS) is inconsistent with the mode
of the SPI. MODF is in the SPI status and control register.
14.8.1 Overflow Error
The overflow flag (OVRF) becomes set if the receive data register still
has unread data from a previous transmission when the capture strobe
of bit 1 of the next transmission occurs. The bit 1 capture strobe occurs
in the middle of SPSCK cycle 7. (See Figure 14-4 and Figure 14-6.) If
an overflow occurs, all data received after the overflow and before the
OVRF bit is cleared does not transfer to the receive data register and
does not set the SPI receiver full bit (SPRF). The unread data that
transferred to the receive data register before the overflow occurred can
still be read. Therefore, an overflow error always indicates the loss of
data. Clear the overflow flag by reading the SPI status and control
register and then reading the SPI data register.
OVRF generates a receiver/error CPU interrupt request if the error
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF
Technical Data
282
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
interrupts share the same CPU interrupt vector. (See Figure 14-11.) It is
not possible to enable MODF or OVRF individually to generate a
receiver/error CPU interrupt request. However, leaving MODFEN low
prevents MODF from being set.
If the CPU SPRF interrupt is enabled and the OVRF interrupt is not,
watch for an overflow condition. Figure 14-9 shows how it is possible to
miss an overflow. The first part of Figure 14-9 shows how it is possible
to read the SPSCR and SPDR to clear the SPRF without problems.
However, as illustrated by the second transmission example, the OVRF
bit can be set in between the time that SPSCR and SPDR are read.
BYTE 1
BYTE 2
BYTE 3
BYTE 4
1
4
6
8
SPRF
OVRF
READ
SPSCR
2
READ
SPDR
5
3
1
BYTE 1 SETS SPRF BIT.
2
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
CPU READS BYTE 1 IN SPDR,
CLEARING SPRF BIT.
BYTE 2 SETS SPRF BIT.
3
4
7
5
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
6
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
7
CPU READS BYTE 2 IN SPDR, CLEARING SPRF BIT,
BUT NOT OVRF BIT.
8
BYTE 4 FAILS TO SET SPRF BIT BECAUSE
OVRF BIT IS NOT CLEARED. BYTE 4 IS LOST.
Figure 14-9. Missed Read of Overflow Condition
In this case, an overflow can be missed easily. Since no more SPRF
interrupts can be generated until this OVRF is serviced, it is not obvious
that bytes are being lost as more transmissions are completed. To
prevent this, either enable the OVRF interrupt or do another read of the
SPSCR following the read of the SPDR. This ensures that the OVRF
was not set before the SPRF was cleared and that future transmissions
can set the SPRF bit. Figure 14-10 illustrates this process. Generally, to
avoid this second SPSCR read, enable the OVRF to the CPU by setting
the ERRIE bit.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
283
Serial Peripheral Interface Module (SPI)
BYTE 1
SPI RECEIVE
COMPLETE
BYTE 2
5
1
BYTE 3
7
BYTE 4
11
SPRF
OVRF
READ
SPSCR
2
READ
SPDR
4
6
3
1
BYTE 1 SETS SPRF BIT.
2
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
CPU READS BYTE 1 IN SPDR,
CLEARING SPRF BIT.
3
9
8
12
10
14
13
8
CPU READS BYTE 2 IN SPDR,
CLEARING SPRF BIT.
9
CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
10 CPU READS BYTE 2 SPDR,
CLEARING OVRF BIT.
4
CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
11 BYTE 4 SETS SPRF BIT.
5
BYTE 2 SETS SPRF BIT.
12 CPU READS SPSCR.
6
CPU READS SPSCR WITH SPRF BIT SET
AND OVRF BIT CLEAR.
13 CPU READS BYTE 4 IN SPDR,
CLEARING SPRF BIT.
7
BYTE 3 SETS OVRF BIT. BYTE 3 IS LOST.
14 CPU READS SPSCR AGAIN
TO CHECK OVRF BIT.
Figure 14-10. Clearing SPRF When OVRF Interrupt Is Not Enabled
14.8.2 Mode Fault Error
Setting the SPMSTR bit selects master mode and configures the
SPSCK and MOSI pins as outputs and the MISO pin as an input.
Clearing SPMSTR selects slave mode and configures the SPSCK and
MOSI pins as inputs and the MISO pin as an output. The mode fault bit,
MODF, becomes set any time the state of the slave select pin, SS, is
inconsistent with the mode selected by SPMSTR.
To prevent SPI pin contention and damage to the MCU, a mode fault
error occurs if:
•
The SS pin of a slave SPI goes high during a transmission
•
The SS pin of a master SPI goes low at any time
For the MODF flag to be set, the mode fault error enable bit (MODFEN)
must be set. Clearing the MODFEN bit does not clear the MODF flag but
does prevent MODF from being set again after MODF is cleared.
Technical Data
284
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
MODF generates a receiver/error CPU interrupt request if the error
interrupt enable bit (ERRIE) is also set. The SPRF, MODF, and OVRF
interrupts share the same CPU interrupt vector. (See Figure 14-11.) It is
not possible to enable MODF or OVRF individually to generate a
receiver/error CPU interrupt request. However, leaving MODFEN low
prevents MODF from being set.
In a master SPI with the mode fault enable bit (MODFEN) set, the mode
fault flag (MODF) is set if SS goes to logic 0. A mode fault in a master
SPI causes the following events to occur:
NOTE:
•
If ERRIE = 1, the SPI generates an SPI receiver/error CPU
interrupt request.
•
The SPE bit is cleared.
•
The SPTE bit is set.
•
The SPI state counter is cleared.
•
The data direction register of the shared I/O port regains control of
port drivers.
To prevent bus contention with another master SPI after a mode fault
error, clear all SPI bits of the data direction register of the shared I/O port
before enabling the SPI.
When configured as a slave (SPMSTR = 0), the MODF flag is set if SS
goes high during a transmission. When CPHA = 0, a transmission begins
when SS goes low and ends once the incoming SPSCK goes back to its
idle level following the shift of the eighth data bit. When CPHA = 1, the
transmission begins when the SPSCK leaves its idle level and SS is
already low. The transmission continues until the SPSCK returns to its
idle level following the shift of the last data bit. (See 14.6 Transmission
Formats.)
NOTE:
Setting the MODF flag does not clear the SPMSTR bit. The SPMSTR bit
has no function when SPE = 0. Reading SPMSTR when MODF = 1
shows the difference between a MODF occurring when the SPI is a
master and when it is a slave.
When CPHA = 0, a MODF occurs if a slave is selected (SS is at logic 0)
and later unselected (SS is at logic 1) even if no SPSCK is sent to that
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
285
Serial Peripheral Interface Module (SPI)
slave. This happens because SS at logic 0 indicates the start of the
transmission (MISO driven out with the value of MSB) for CPHA = 0.
When CPHA = 1, a slave can be selected and then later unselected with
no transmission occurring. Therefore, MODF does not occur since a
transmission was never begun.
In a slave SPI (MSTR = 0), the MODF bit generates an SPI
receiver/error CPU interrupt request if the ERRIE bit is set. The MODF
bit does not clear the SPE bit or reset the SPI in any way. Software can
abort the SPI transmission by clearing the SPE bit of the slave.
NOTE:
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a high
impedance state. Also, the slave SPI ignores all incoming SPSCK
clocks, even if it was already in the middle of a transmission.
To clear the MODF flag, read the SPSCR with the MODF bit set and then
write to the SPCR register. This entire clearing mechanism must occur
with no MODF condition existing or else the flag is not cleared.
14.9 Interrupts
Four SPI status flags can be enabled to generate CPU interrupt
requests.
Table 14-2. SPI Interrupts
Flag
Request
SPTE
Transmitter empty
SPI transmitter CPU interrupt request
(SPTIE = 1, SPE = 1)
SPRF
Receiver full
SPI receiver CPU interrupt request
(SPRIE = 1)
OVRF
Overflow
SPI receiver/error interrupt request (ERRIE = 1)
MODF
Mode fault
SPI receiver/error interrupt request (ERRIE = 1)
Technical Data
286
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
Reading the SPI status and control register with SPRF set and then
reading the receive data register clears SPRF. The clearing mechanism
for the SPTE flag is always just a write to the transmit data register.
The SPI transmitter interrupt enable bit (SPTIE) enables the SPTE flag
to generate transmitter CPU interrupt requests, provided that the SPI is
enabled (SPE = 1).
The SPI receiver interrupt enable bit (SPRIE) enables the SPRF bit to
generate receiver CPU interrupt requests, regardless of the state of the
SPE bit. (See Figure 14-11.)
The error interrupt enable bit (ERRIE) enables both the MODF and
OVRF bits to generate a receiver/error CPU interrupt request.
The mode fault enable bit (MODFEN) can prevent the MODF flag from
being set so that only the OVRF bit is enabled by the ERRIE bit to
generate receiver/error CPU interrupt requests.
NOT AVAILABLE
SPTE
SPTIE
SPE
SPI TRANSMITTER
CPU INTERRUPT REQUEST
R
NOT AVAILABLE
SPRIE
SPRF
SPI RECEIVER/ERROR
CPU INTERRUPT REQUEST
ERRIE
MODF
OVRF
Figure 14-11. SPI Interrupt Request Generation
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
287
Serial Peripheral Interface Module (SPI)
The following sources in the SPI status and control register can generate
CPU interrupt requests:
•
SPI receiver full bit (SPRF) — The SPRF bit becomes set every
time a byte transfers from the shift register to the receive data
register. If the SPI receiver interrupt enable bit, SPRIE, is also set,
SPRF generates an SPI receiver/error CPU interrupt request.
•
SPI transmitter empty (SPTE) — The SPTE bit becomes set every
time a byte transfers from the transmit data register to the shift
register. If the SPI transmit interrupt enable bit, SPTIE, is also set,
SPTE generates an SPTE CPU interrupt request.
14.10 Resetting the SPI
Any system reset completely resets the SPI. Partial resets occur
whenever the SPI enable bit (SPE) is low. Whenever SPE is low, the
following occurs:
•
The SPTE flag is set.
•
Any transmission currently in progress is aborted.
•
The shift register is cleared.
•
The SPI state counter is cleared, making it ready for a new
complete transmission.
•
All the SPI port logic is defaulted back to being general-purpose
I/O.
These items are reset only by a system reset:
•
All control bits in the SPCR register
•
All control bits in the SPSCR register (MODFEN, ERRIE, SPR1,
and SPR0)
•
The status flags SPRF, OVRF, and MODF
By not resetting the control bits when SPE is low, the user can clear SPE
between transmissions without having to set all control bits again when
SPE is set back high for the next transmission.
Technical Data
288
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
By not resetting the SPRF, OVRF, and MODF flags, the user can still
service these interrupts after the SPI has been disabled. The user can
disable the SPI by writing 0 to the SPE bit. The SPI can also be disabled
by a mode fault occurring in an SPI that was configured as a master with
the MODFEN bit set.
14.11 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
14.11.1 Wait Mode
The SPI module remains active after the execution of a WAIT instruction.
In wait mode the SPI module registers are not accessible by the CPU.
Any enabled CPU interrupt request from the SPI module can bring the
MCU out of wait mode.
If SPI module functions are not required during wait mode, reduce power
consumption by disabling the SPI module before executing the WAIT
instruction.
To exit wait mode when an overflow condition occurs, enable the OVRF
bit to generate CPU interrupt requests by setting the error interrupt
enable bit (ERRIE). (See 14.9 Interrupts.)
14.11.2 Stop Mode
The SPI module is inactive after the execution of a STOP instruction.
The STOP instruction does not affect register conditions. SPI operation
resumes after an external interrupt. If stop mode is exited by reset, any
transfer in progress is aborted, and the SPI is reset.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
289
Serial Peripheral Interface Module (SPI)
14.12 SPI During Break Interrupts
The system integration module (SIM) controls whether status bits in
other modules can be cleared during the break state. The BCFE bit in
the SIM break flag control register (SBFCR) enables software to clear
status bits during the break state. (See Section 9. System Integration
Module (SIM).)
To allow software to clear status bits during a break interrupt, write a
logic 1 to the BCFE bit. If a status bit is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect status bits during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), software can read and write
I/O registers during the break state without affecting status bits. Some
status bits have a 2-step read/write clearing procedure. If software does
the first step on such a bit before the break, the bit cannot change during
the break state as long as BCFE is at logic 0. After the break, doing the
second step clears the status bit.
Since the SPTE bit cannot be cleared during a break with the BCFE bit
cleared, a write to the transmit data register in break mode does not
initiate a transmission nor is this data transferred into the shift register.
Therefore, a write to the SPDR in break mode with the BCFE bit cleared
has no effect.
14.13 I/O Signals
The SPI module has five I/O pins and shares four of them with a parallel
I/O port. They are:
•
MISO — Data received
•
MOSI — Data transmitted
•
SPSCK — Serial clock
•
SS — Slave select
•
CGND — Clock ground (internally connected to VSS)
Technical Data
290
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
The SPI has limited inter-integrated circuit (I2C) capability (requiring
software support) as a master in a single-master environment. To
communicate with I2C peripherals, MOSI becomes an open-drain output
when the SPWOM bit in the SPI control register is set. In I2C
communication, the MOSI and MISO pins are connected to a
bidirectional pin from the I2C peripheral and through a pullup resistor to
VDD.
14.13.1 MISO (Master In/Slave Out)
MISO is one of the two SPI module pins that transmits serial data. In full
duplex operation, the MISO pin of the master SPI module is connected
to the MISO pin of the slave SPI module. The master SPI simultaneously
receives data on its MISO pin and transmits data from its MOSI pin.
Slave output data on the MISO pin is enabled only when the SPI is
configured as a slave. The SPI is configured as a slave when its
SPMSTR bit is logic 0 and its SS pin is at logic 0. To support a multipleslave system, a logic 1 on the SS pin puts the MISO pin in a highimpedance state.
When enabled, the SPI controls data direction of the MISO pin
regardless of the state of the data direction register of the shared I/O
port.
14.13.2 MOSI (Master Out/Slave In)
MOSI is one of the two SPI module pins that transmits serial data. In fullduplex operation, the MOSI pin of the master SPI module is connected
to the MOSI pin of the slave SPI module. The master SPI simultaneously
transmits data from its MOSI pin and receives data on its MISO pin.
When enabled, the SPI controls data direction of the MOSI pin
regardless of the state of the data direction register of the shared I/O
port.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
291
Serial Peripheral Interface Module (SPI)
14.13.3 SPSCK (Serial Clock)
The serial clock synchronizes data transmission between master and
slave devices. In a master MCU, the SPSCK pin is the clock output. In a
slave MCU, the SPSCK pin is the clock input. In full-duplex operation,
the master and slave MCUs exchange a byte of data in eight serial clock
cycles.
When enabled, the SPI controls data direction of the SPSCK pin
regardless of the state of the data direction register of the shared I/O
port.
14.13.4 SS (Slave Select)
The SS pin has various functions depending on the current state of the
SPI. For an SPI configured as a slave, the SS is used to select a slave.
For CPHA = 0, the SS is used to define the start of a transmission. (See
14.6 Transmission Formats.) Since it is used to indicate the start of a
transmission, the SS must be toggled high and low between each byte
transmitted for the CPHA = 0 format. However, it can remain low
between transmissions for the CPHA = 1 format. See Figure 14-12.
MISO/MOSI
BYTE 1
BYTE 2
BYTE 3
MASTER SS
SLAVE SS
CPHA = 0
SLAVE SS
CPHA = 1
Figure 14-12. CPHA/SS Timing
When an SPI is configured as a slave, the SS pin is always configured
as an input. It cannot be used as a general-purpose I/O regardless of the
state of the MODFEN control bit. However, the MODFEN bit can still
prevent the state of the SS from creating a MODF error. (See 14.14.2
SPI Status and Control Register.)
NOTE:
A logic 1 voltage on the SS pin of a slave SPI puts the MISO pin in a highimpedance state. The slave SPI ignores all incoming SPSCK clocks,
even if it was already in the middle of a transmission.
Technical Data
292
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
When an SPI is configured as a master, the SS input can be used in
conjunction with the MODF flag to prevent multiple masters from driving
MOSI and SPSCK. (See 14.8.2 Mode Fault Error.) For the state of the
SS pin to set the MODF flag, the MODFEN bit in the SPSCK register
must be set. If the MODFEN bit is low for an SPI master, the SS pin can
be used as a general-purpose I/O under the control of the data direction
register of the shared I/O port. With MODFEN high, it is an input-only pin
to the SPI regardless of the state of the data direction register of the
shared I/O port.
The CPU can always read the state of the SS pin by configuring the
appropriate pin as an input and reading the port data register. (See
Table 14-3.)
Table 14-3. SPI Configuration
SPE
SPMSTR
MODFEN
SPI Configuration
State of SS Logic
0
X(1)
X
Not enabled
General-purpose I/O;
SS ignored by SPI
1
0
X
Slave
Input-only to SPI
1
1
0
Master without MODF
General-purpose I/O;
SS ignored by SPI
1
1
1
Master with MODF
Input-only to SPI
Note 1. X = Don’t care
14.13.5 CGND (Clock Ground)
CGND is the ground return for the serial clock pin, SPSCK, and the
ground for the port output buffers. It is internally connected to VSS as
shown in Table 14-1.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
293
Serial Peripheral Interface Module (SPI)
14.14 I/O Registers
Three registers control and monitor SPI operation:
•
SPI control register (SPCR)
•
SPI status and control register (SPSCR)
•
SPI data register (SPDR)
14.14.1 SPI Control Register
The SPI control register:
•
Enables SPI module interrupt requests
•
Configures the SPI module as master or slave
•
Selects serial clock polarity and phase
•
Configures the SPSCK, MOSI, and MISO pins as open-drain
outputs
•
Enables the SPI module
Address: $0010
Read:
Write:
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
SPRIE
R
SPMSTR
CPOL
CPHA
SPWOM
SPE
SPTIE
0
0
1
0
1
0
0
0
= Unimplemented
R
= Reserved
Figure 14-13. SPI Control Register (SPCR)
SPRIE — SPI Receiver Interrupt Enable Bit
This read/write bit enables CPU interrupt requests generated by the
SPRF bit. The SPRF bit is set when a byte transfers from the shift
register to the receive data register. Reset clears the SPRIE bit.
1 = SPRF CPU interrupt requests enabled
0 = SPRF CPU interrupt requests disabled
Technical Data
294
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
SPMSTR — SPI Master Bit
This read/write bit selects master mode operation or slave mode
operation. Reset sets the SPMSTR bit.
1 = Master mode
0 = Slave mode
CPOL — Clock Polarity Bit
This read/write bit determines the logic state of the SPSCK pin
between transmissions. (See Figure 14-4 and Figure 14-6.) To
transmit data between SPI modules, the SPI modules must have
identical CPOL values. Reset clears the CPOL bit.
CPHA — Clock Phase Bit
This read/write bit controls the timing relationship between the serial
clock and SPI data. (See Figure 14-4 and Figure 14-6.) To transmit
data between SPI modules, the SPI modules must have identical
CPHA values. When CPHA = 0, the SS pin of the slave SPI module
must be set to logic 1 between bytes. (See Figure 14-12.) Reset sets
the CPHA bit.
SPWOM — SPI Wired-OR Mode Bit
This read/write bit disables the pullup devices on pins SPSCK, MOSI,
and MISO so that those pins become open-drain outputs.
1 = Wired-OR SPSCK, MOSI, and MISO pins
0 = Normal push-pull SPSCK, MOSI, and MISO pins
SPE — SPI Enable
This read/write bit enables the SPI module. Clearing SPE causes a
partial reset of the SPI. (See 14.10 Resetting the SPI.) Reset clears
the SPE bit.
1 = SPI module enabled
0 = SPI module disabled
SPTIE— SPI Transmit Interrupt Enable
This read/write bit enables CPU interrupt requests generated by the
SPTE bit. SPTE is set when a byte transfers from the transmit data
register to the shift register. Reset clears the SPTIE bit.
1 = SPTE CPU interrupt requests enabled
0 = SPTE CPU interrupt requests disabled
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
295
Serial Peripheral Interface Module (SPI)
14.14.2 SPI Status and Control Register
The SPI status and control register contains flags to signal these
conditions:
•
Receive data register full
•
Failure to clear SPRF bit before next byte is received (overflow
error)
•
Inconsistent logic level on SS pin (mode fault error)
•
Transmit data register empty
The SPI status and control register also contains bits that perform these
functions:
•
Enable error interrupts
•
Enable mode fault error detection
•
Select master SPI baud rate
Address: $0011
Bit 7
Read:
SPRF
Write:
Reset:
0
6
ERRIE
0
5
4
3
OVRF
MODF
SPTE
0
0
1
2
1
Bit 0
MODFEN
SPR1
SPR0
0
0
0
= Unimplemented
Figure 14-14. SPI Status and Control Register (SPSCR)
SPRF — SPI Receiver Full Bit
This clearable, read-only flag is set each time a byte transfers from
the shift register to the receive data register. SPRF generates a CPU
interrupt request if the SPRIE bit in the SPI control register is set also.
During an SPRF CPU interrupt, the CPU clears SPRF by reading the
SPI status and control register with SPRF set and then reading the
SPI data register. Reset clears the SPRF bit.
1 = Receive data register full
0 = Receive data register not full
Technical Data
296
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
ERRIE — Error Interrupt Enable Bit
This read/write bit enables the MODF and OVRF bits to generate
CPU interrupt requests. Reset clears the ERRIE bit.
1 = MODF and OVRF can generate CPU interrupt requests
0 = MODF and OVRF cannot generate CPU interrupt requests
OVRF — Overflow Bit
This clearable, read-only flag is set if software does not read the byte
in the receive data register before the next full byte enters the shift
register. In an overflow condition, the byte already in the receive data
register is unaffected, and the byte that shifted in last is lost. Clear the
OVRF bit by reading the SPI status and control register with OVRF set
and then reading the receive data register. Reset clears the OVRF bit.
1 = Overflow
0 = No overflow
MODF — Mode Fault Bit
This clearable, read-only flag is set in a slave SPI if the SS pin goes
high during a transmission with the MODFEN bit set. In a master SPI,
the MODF flag is set if the SS pin goes low at any time with the
MODFEN bit set. Clear the MODF bit by reading the SPI status and
control register (SPSCR) with MODF set and then writing to the SPI
control register (SPCR). Reset clears the MODF bit.
1 = SS pin at inappropriate logic level
0 = SS pin at appropriate logic level
SPTE — SPI Transmitter Empty Bit
This clearable, read-only flag is set each time the transmit data
register transfers a byte into the shift register. SPTE generates an
SPTE CPU interrupt request if the SPTIE bit in the SPI control register
is set also.
NOTE:
Do not write to the SPI data register unless the SPTE bit is high.
During an SPTE CPU interrupt, the CPU clears the SPTE bit by
writing to the transmit data register.
Reset sets the SPTE bit.
1 = Transmit data register empty
0 = Transmit data register not empty
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
297
Serial Peripheral Interface Module (SPI)
MODFEN — Mode Fault Enable Bit
This read/write bit, when set to 1, allows the MODF flag to be set. If
the MODF flag is set, clearing the MODFEN does not clear the MODF
flag. If the SPI is enabled as a master and the MODFEN bit is low,
then the SS pin is available as a general-purpose I/O.
If the MODFEN bit is set, then this pin is not available as a generalpurpose I/O. When the SPI is enabled as a slave, the SS pin is not
available as a general-purpose I/O regardless of the value of
MODFEN. (See 14.13.4 SS (Slave Select).)
If the MODFEN bit is low, the level of the SS pin does not affect the
operation of an enabled SPI configured as a master. For an enabled
SPI configured as a slave, having MODFEN low only prevents the
MODF flag from being set. It does not affect any other part of SPI
operation. (See 14.8.2 Mode Fault Error.)
SPR1 and SPR0 — SPI Baud Rate Select Bits
In master mode, these read/write bits select one of four baud rates as
shown in Table 14-4. SPR1 and SPR0 have no effect in slave mode.
Reset clears SPR1 and SPR0.
Table 14-4. SPI Master Baud Rate Selection
SPR1 and SPR0
Baud Rate Divisor (BD)
00
2
01
8
10
32
11
128
Use this formula to calculate the SPI baud rate:
CGMOUT
Baud rate = -------------------------2 × BD
where:
CGMOUT = base clock output of the clock generator module (CGM)
BD = baud rate divisor
Technical Data
298
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Serial Peripheral Interface Module (SPI)
14.14.3 SPI Data Register
The SPI data register consists of the read-only receive data register and
the write-only transmit data register. Writing to the SPI data register
writes data into the transmit data register. Reading the SPI data register
reads data from the receive data register. The transmit data and receive
data registers are separate registers that can contain different values.
(See Figure 14-2.)
Address: $0012
Bit 7
6
5
4
3
2
1
Bit 0
Read:
R7
R6
R5
R4
R3
R2
R1
R0
Write:
T7
T6
T5
T4
T3
T2
T1
T0
Reset:
Unaffected by reset
Figure 14-15. SPI Data Register (SPDR)
R7–R0/T7–T0 — Receive/Transmit Data Bits
NOTE:
Do not use read-modify-write instructions on the SPI data register since
the register read is not the same as the register written.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Serial Peripheral Interface Module (SPI)
299
Serial Peripheral Interface Module (SPI)
Technical Data
300
MC68HC908LJ12 — Rev. 2.1
Serial Peripheral Interface Module (SPI)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 15. Analog-to-Digital Converter (ADC)
15.1 Contents
15.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
15.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
15.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .303
15.4.1 ADC Port I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
15.4.2 Voltage Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .305
15.4.3 Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
15.4.4 Continuous Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
15.4.5 Result Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
15.4.6 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
15.5
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308
15.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
15.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308
15.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .308
15.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
15.7.1 ADC Voltage In (VADIN) . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
15.7.2 ADC Analog Power Pin (VDDA) . . . . . . . . . . . . . . . . . . . . . 309
15.7.3 ADC Voltage Reference High Pin (VREFH). . . . . . . . . . . . . 309
15.7.4 ADC Voltage Reference Low Pin (VREFL) . . . . . . . . . . . . . 309
15.8 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
15.8.1 ADC Status and Control Register. . . . . . . . . . . . . . . . . . . .310
15.8.2 ADC Data Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
15.8.3 ADC Clock Control Register. . . . . . . . . . . . . . . . . . . . . . . . 314
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
301
Analog-to-Digital Converter (ADC)
15.2 Introduction
This section describes the analog-to-digital convert (ADC). The ADC is
a 6-channel 10-bit linear successive approximation ADC.
15.3 Features
Features of the ADC module include:
•
Six Channels with Multiplexed Input
•
High impedance buffered input
•
Linear Successive Approximation with monotonicity
•
10-Bit Resolution
•
Single or Continuous Conversion
•
Conversion Complete Flag Or Conversion Complete Interrupt
•
Selectable ADC Clock
•
Conversion result justification
– 8-bit truncated mode
– Right justified mode
– Left justified mode
– Left justified sign mode
Technical Data
302
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Analog-to-Digital Converter (ADC)
Addr.
$003C
$003D
$003E
Register Name
Bit 7
5
4
3
2
1
Bit 0
AIEN
ADCO
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
Read:
ADC Status and Control
Register Write:
(ADSCR)
Reset:
COCO
0
0
0
1
1
1
1
1
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
ADC Data Register Low
(ADRL) Write:
ADx
ADx
ADx
ADx
ADx
ADx
ADx
ADx
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
ADIV2
ADIV1
ADIV0
ADICLK
MODE1
MODE0
0
0
0
0
0
0
0
1
Reset:
$003F
6
Read:
ADC Clock Register
(ADCLK) Write:
Reset:
= Unimplemented
R
R
0
0
= Reserved
Figure 15-1. ADC I/O Register Summary
15.4 Functional Description
The ADC provides six pins for sampling external sources at pins
PTA4/ADC0–PTA7/ADC3 and PTB6/ADC4–PTB7/ADC5. An analog
multiplexer allows the single ADC converter to select one of nine ADC
channels as ADC voltage in (VADIN). VADIN is converted by the
successive approximation register-based analog-to-digital converter.
When the conversion is completed, ADC places the result in the ADC
data register, high and low byte (ADRH and ADRL), and sets a flag or
generates an interrupt.
Figure 15-2 shows the structure of the ADC module.
15.4.1 ADC Port I/O Pins
PTA4–PTA7 and PTB6–PTB7 are general-purpose I/O pins that are
shared with the ADC channels. The channel select bits, ADCH[4:0],
define which ADC channel/port pin will be used as the input signal. The
ADC overrides the port I/O logic by forcing that pin as input to the ADC.
The remaining ADC channels/port pins are controlled by the port I/O
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
303
Analog-to-Digital Converter (ADC)
logic and can be used as general-purpose I/O pins. Writes to the port
data register or data direction register will not have any affect on the port
pin that is selected by the ADC. Read of a port pin which is in use by the
ADC will return the pin condition if the corresponding DDR bit is at logic
0. If the DDR bit is at logic 1, the value in the port data latch is read.
INTERNAL
DATA BUS
READ DDRAx/DDRBx
WRITE DDRAx/DDRBx
RESET
WRITE PTAx/PTBx
DISABLE
DDRAx/DDRBx
PTAx/PTBx
PTAx/PTBx
READ PTAx/PTBx
ADC0–ADC5
(6 CHANNELS)
DISABLE
ADC DATA REGISTERS
ADRH
ADRL
VREFH
VREFL
INTERRUPT
LOGIC
AIEN
ADC
VOLTAGE IN
(VADIN)
CONVERSION
COMPLETE
ADC
ADC CLOCK
COCO
CGMXCLK
BUS CLOCK
1.2V
BANDGAP
REFERENCE
CHANNEL
SELECT
ADCH[4:0]
CLOCK
GENERATOR
ADIV[2:0]
ADICLK
Figure 15-2. ADC Block Diagram
Technical Data
304
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Analog-to-Digital Converter (ADC)
15.4.2 Voltage Conversion
When the input voltage to the ADC equals VREFH, the ADC converts the
signal to $3FF (full scale). If the input voltage equals VREFL, the ADC
converts it to $000. Input voltages between VREFH and VREFL are
straight-line linear conversions. All other input voltages will result in
$3FF if greater than VREFH and $000 if less than VREFL.
NOTE:
Input voltage should not exceed the analog supply voltages.
15.4.3 Conversion Time
Conversion starts after a write to the ADSCR. A conversion is between
16 and 17 ADC clock cycles, therefore:
Conversion time =
16 to17 ADC cycles
ADC frequency
Number of bus cycles = conversion time × bus frequency
The ADC conversion time is determined by the clock source chosen and
the divide ratio selected. The clock source is either the bus clock or
CGMXCLK and is selectable by the ADICLK bit located in the ADC clock
register. The divide ratio is selected by the ADIV[2:0] bits.
For example, if a 4MHz CGMXCLK is selected as the ADC input clock
source, with a divide-by-2 prescale, and the bus speed is set at 8MHz:
Conversion time =
16 to 17 ADC cycles
= 8 to 8.5 µs
4MHz ÷ 2
Number of bus cycles = 8µs x 8MHz = 64 to 68 cycles
NOTE:
The ADC frequency must be between fADIC minimum and fADIC
maximum to meet ADC specifications. See 23.6 5.0V DC Electrical
Characteristics.
Since an ADC cycle may be comprised of several bus cycles (eight in the
previous example) and the start of a conversion is initiated by a bus cycle
write to the ADSCR, from zero to four additional bus cycles may occur
before the start of the initial ADC cycle. This results in a fractional ADC
cycle and is represented as the 17th cycle.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
305
Analog-to-Digital Converter (ADC)
15.4.4 Continuous Conversion
In the continuous conversion mode, the ADC continuously converts the
selected channel, filling the ADC data register (ADRH:ADRL) with new
data after each conversion. Data from the previous conversion will be
overwritten whether that data has been read or not. Conversions will
continue until the ADCO bit is cleared. The COCO bit is set after each
conversion and can be cleared by writing to the ADC status and control
register or reading of the ADRL data register.
15.4.5 Result Justification
The conversion result may be formatted in four different ways.
•
Left justified
•
Right justified
•
Left justified sign data mode
•
8-bit truncation
All four of these modes are controlled using MODE0 and MODE1 bits
located in the ADC clock control register (ADCLK).
Left justification will place the eight most significant bits (MSB) in the
ADC data register high (ADRH). This may be useful if the result is to be
treated as an 8-bit result where the least significant two bits, located in
the ADC data register low (ADRL) can be ignored. However, ADRL must
be read after ADRH or else the interlocking will prevent all new
conversions from being stored.
Right justification will place only the two MSBs in the corresponding ADC
data register high (ADRH) and the eight LSB bits in ADC data register
low (ADRL). This mode of operation typically is used when a 10-bit
unsigned result is desired.
Left justified sign data mode is similar to left justified mode with one
exception. The MSB of the 10-bit result, AD9 located in ADRH is
complemented. This mode of operation is useful when a result,
represented as a signed magnitude from mid-scale, is needed.
Technical Data
306
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Analog-to-Digital Converter (ADC)
Finally, 8-bit truncation mode will place the eight MSBs in ADC data
register low (ADRL). The two LSBs are dropped. This mode of operation
is used when compatibility with 8-bit ADC designs are required. No
interlocking between ADRH and ADRL is present.
NOTE:
Quantization error is affected when only the most significant eight bits
are used as a result. See Figure 15-3.
8-BIT 10-BIT
RESULT RESULT
IDEAL 8-BIT CHARACTERISTIC
WITH QUANTIZATION = ±1/2
10-BIT TRUNCATED
TO 8-BIT RESULT
003
00B
00A
009
002
IDEAL 10-BIT CHARACTERISTIC
WITH QUANTIZATION = ±1/2
008
007
006
005
001
004
WHEN TRUNCATION IS USED,
ERROR FROM IDEAL 8-BIT = 3/8 LSB
DUE TO NON-IDEAL QUANTIZATION.
003
002
001
000
000
1/2
2 1/2
1 1/2
1/2
4 1/2
3 1/2
6 1/2
5 1/2
8 1/2
7 1/2
1 1/2
9 1/2
2 1/2
INPUT VOLTAGE
REPRESENTED AS 10-BIT
INPUT VOLTAGE
REPRESENTED AS 8-BIT
Figure 15-3. 8-Bit Truncation Mode Error
15.4.6 Monotonicity
The conversion process is monotonic and has no missing codes.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
307
Analog-to-Digital Converter (ADC)
15.5 Interrupts
When the AIEN bit is set, the ADC module is capable of generating a
CPU interrupt after each ADC conversion. A CPU interrupt is generated
if the COCO bit is at logic 0. The COCO bit is not used as a conversion
complete flag when interrupts are enabled. The interrupt vector is
defined in Table 2-1 . Vector Addresses.
15.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
15.6.1 Wait Mode
The ADC continues normal operation in wait mode. Any enabled CPU
interrupt request from the ADC can bring the MCU out of wait mode. If
the ADC is not required to bring the MCU out of wait mode, power down
the ADC by setting the ADCH[4:0] bits to logic 1’s before executing the
WAIT instruction.
15.6.2 Stop Mode
The ADC module is inactive after the execution of a STOP instruction.
Any pending conversion is aborted. ADC conversions resume when the
MCU exits stop mode. Allow one conversion cycle to stabilize the analog
circuitry before attempting a new ADC conversion after exiting stop
mode.
15.7 I/O Signals
The ADC module has nine channels, six channels are shared with port A
and port C I/O pins; two channels are the ADC voltage reference inputs,
VREFH and VREFL; and one channel is the 1.2V bandgap reference
voltage.
Technical Data
308
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Analog-to-Digital Converter (ADC)
15.7.1 ADC Voltage In (VADIN)
VADIN is the input voltage signal from one of the nine channels to the
ADC module.
15.7.2 ADC Analog Power Pin (VDDA)
The ADC analog portion uses VDDA as its power pin. Connect the VDDA
pin to the same voltage potential as VDD. External filtering may be
necessary to ensure clean VDDA for good results.
NOTE:
Route VDDA carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
15.7.3 ADC Voltage Reference High Pin (VREFH)
VREFH is the power supply for setting the reference voltage VREFH.
Connect the VREFH pin to the same voltage potential as VDDA. There will
be a finite current associated with VREFH (see Section 23. Electrical
Specifications).
NOTE:
Route VREFH carefully for maximum noise immunity and place bypass
capacitors as close as possible to the package.
15.7.4 ADC Voltage Reference Low Pin (VREFL)
VREFL is the lower reference supply for the ADC. Connect the VREFL pin
to the same voltage potential as VSSA. There will be a finite current
associated with VREFL (see Section 23. Electrical Specifications).
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
309
Analog-to-Digital Converter (ADC)
15.8 I/O Registers
These I/O registers control and monitor operation of the ADC:
•
ADC status and control register, ADSCR
•
ADC data register, ADRH:ADRL
•
ADC clock register, ADCLK
15.8.1 ADC Status and Control Register
This section describes the function of the ADC status and control
register (ADSCR). Writing ADSCR aborts the current conversion and
initiates a new conversion.
Address:
$003C
Read:
COCO
Write:
Reset:
0
AIEN
ADCO
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
0
0
1
1
1
1
1
= Unimplemented
Figure 15-4. ADC Status and Control Register (ADSCR)
COCO — Conversions Complete Bit
When the AIEN bit is a logic 0, the COCO is a read-only bit which is
set each time a conversion is completed. This bit is cleared whenever
the ADSCR is written, or whenever the ADC clock control register is
written, or whenever the ADC data register low, ADRL, is read.
If the AIEN bit is logic 1, the COCO bit always read as logic 0, CPU to
service the ADC interrupt will be generated at the end if an ADC
conversion. Reset clears the COCO bit.
1 = Conversion completed (AIEN = 0)
0 = Conversion not completed (AIEN = 0)/CPU interrupt (AIEN=1)
AIEN — ADC Interrupt Enable Bit
When this bit is set, an interrupt is generated at the end of an ADC
conversion. The interrupt signal is cleared when the data register,
ADR0, is read or the ADSCR is written. Reset clears the AIEN bit.
1 = ADC interrupt enabled
0 = ADC interrupt disabled
Technical Data
310
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Analog-to-Digital Converter (ADC)
ADCO — ADC Continuous Conversion Bit
When set, the ADC will convert samples continuously and update the
ADC data register at the end of each conversion. Only one conversion
is allowed when this bit is cleared. Reset clears the ADCO bit.
1 = Continuous ADC conversion
0 = One ADC conversion
ADCH[4:0] — ADC Channel Select Bits
ADCH[4:0] form a 5-bit field which is used to select one of the ADC
channels when not in auto-scan mode. The five channel select bits
are detailed in Table 15-1.
NOTE:
Care should be taken when using a port pin as both an analog and a
digital input simultaneously to prevent switching noise from corrupting
the analog signal.
NOTE:
Recovery from the disabled state requires one conversion cycle to
stabilize.
Table 15-1. MUX Channel Select
ADCH4
ADCH3
ADCH2
ADCH1
ADCH0
ADC Channel
Input Select
0
0
0
0
0
ADC0
PTA4
0
0
0
0
1
ADC1
PTA5
0
0
0
1
0
ADC2
PTA6
0
0
0
1
1
ADC3
PTA7
0
0
1
0
0
ADC4
PTB6
0
0
1
0
1
ADC5
PTB7
0
0
1
1
0
ADC6
1.2V Bandgap reference
0
0
1
1
1
↓
↓
↓
↓
↓
Reserved
1
1
1
0
0
ADC7
↓
ADC28
1
1
1
0
1
ADC29
VREFH (see Note 2)
1
1
1
1
0
ADC30
VREFL (see Note 2)
1
1
1
1
1
ADC powered-off
NOTES:
1. If any reserved channels are selected, the resulting ADC conversion will be unknown.
2. The voltage levels supplied from internal reference nodes as specified in the table are used to verify the operation of
the ADC converter both in production test and for user applications.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
311
Analog-to-Digital Converter (ADC)
15.8.2 ADC Data Register
The ADC data register consist of a pair of 8-bit registers: high byte
(ADRH), and low byte (ADRL). This pair form a 16-bit register to store
the 10-bit ADC result for the selected ADC result justification mode.
In 8-bit truncated mode, the ADRL holds the eight most significant bits
(MSBs) of the 10-bit result. The ADRL is updated each time an ADC
conversion completes. In 8-bit truncated mode, ADRL contains no
interlocking with ADRH. (See Figure 15-5 . ADRH and ADRL in 8-Bit
Truncated Mode.)
Addr.
$003D
$003E
Register Name
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-5. ADRH and ADRL in 8-Bit Truncated Mode
In right justified mode the ADRH holds the two MSBs, and the ADRL
holds the eight least significant bits (LSBs), of the 10-bit result. ADRH
and ADRL are updated each time a single channel ADC conversion
completes. Reading ADRH latches the contents of ADRL. Until ADRL is
read all subsequent ADC results will be lost.
(See Figure 15-6 . ADRH and ADRL in Right Justified Mode.)
Addr.
$003D
$003E
Register Name
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
AD9
AD8
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-6. ADRH and ADRL in Right Justified Mode
Technical Data
312
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Analog-to-Digital Converter (ADC)
In left justified mode the ADRH holds the eight most significant bits
(MSBs), and the ADRL holds the two least significant bits (LSBs), of the
10-bit result. The ADRH and ADRL are updated each time a single
channel ADC conversion completes. Reading ADRH latches the
contents of ADRL. Until ADRL is read all subsequent ADC results will be
lost. (See Figure 15-7 . ADRH and ADRL in Left Justified Mode.)
Addr.
$003D
$003E
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
AD1
AD0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-7. ADRH and ADRL in Left Justified Mode
In left justified sign mode the ADRH holds the eight MSBs with the MSB
complemented, and the ADRL holds the two least significant bits (LSBs),
of the 10-bit result. The ADRH and ADRL are updated each time a single
channel ADC conversion completes. Reading ADRH latches the
contents of ADRL. Until ADRL is read all subsequent ADC results will be
lost. (See Figure 15-8 . ADRH and ADRL in Left Justified Sign Data
Mode.)
Addr.
$003D
$003E
Register Name
Bit 7
6
5
4
3
2
1
Bit 0
Read:
ADC Data Register High
Write:
(ADRH)
Reset:
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Read:
ADC Data Register Low
Write:
(ADRL)
Reset:
AD1
AD0
0
0
0
0
0
0
R
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0
Figure 15-8. ADRH and ADRL in Left Justified Sign Data Mode
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
313
Analog-to-Digital Converter (ADC)
15.8.3 ADC Clock Control Register
The ADC clock control register (ADCLK) selects the clock frequency for
the ADC.
Address:
Read:
Write:
Reset:
$003F
ADIV2
ADIV1
ADIV0
ADICLK
MODE1
MODE0
0
0
0
0
0
1
= Unimplemented
R
0
0
R
0
0
= Reserved
Figure 15-9. ADC Clock Control Register (ADICLK)
ADIV[2:0] — ADC Clock Prescaler Bits
ADIV2, ADIV1, and ADIV0 form a 3-bit field which selects the divide
ratio used by the ADC to generate the internal ADC clock.
Table 15-2 shows the available clock configurations. The ADC clock
should be set to between 32kHz and 2MHz.
Table 15-2. ADC Clock Divide Ratio
ADIV2
ADIV1
ADIV0
ADC Clock Rate
0
0
0
ADC input clock ÷ 1
0
0
1
ADC input clock ÷ 2
0
1
0
ADC input clock ÷ 4
0
1
1
ADC input clock ÷ 8
1
X
X
ADC input clock ÷ 16
X = don’t care
ADICLK — ADC Input Clock Select Bit
ADICLK selects either bus clock or CGMXCLK as the input clock
source to generate the internal ADC clock. Reset selects CGMXCLK
as the ADC clock source.
Technical Data
314
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Analog-to-Digital Converter (ADC)
If the external clock (CGMXCLK) is equal to or greater than 1MHz,
CGMXCLK can be used as the clock source for the ADC. If
CGMXCLK is less than 1MHz, use the PLL-generated bus clock as
the clock source. As long as the internal ADC clock is at fADIC, correct
operation can be guaranteed.
1 = Internal bus clock
0 = External clock, CGMXCLK
CGMXCLK or bus frequency
ADIV[2:0]
fADIC =
MODE1 and MODE0 — Modes of Result Justification
MODE1 and MODE0 selects between four modes of operation. The
manner in which the ADC conversion results will be placed in the ADC
data registers is controlled by these modes of operation. Reset
returns right-justified mode.
Table 15-3. ADC Mode Select
MODE1
MODE0
ADC Clock Rate
0
0
8-bit truncated mode
0
1
Right justified mode
1
0
Left justified mode
1
1
Left justified sign data mode
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Analog-to-Digital Converter (ADC)
315
Analog-to-Digital Converter (ADC)
Technical Data
316
MC68HC908LJ12 — Rev. 2.1
Analog-to-Digital Converter (ADC)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 16. Liquid Crystal Display Driver (LCD)
16.1 Contents
16.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
16.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
16.4
Pin Name Conventions and I/O Register Addresses . . . . . . . 318
16.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320
16.5.1 LCD Duty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
16.5.2 LCD Voltages (VLCD, VLCD1, VLCD2, VLCD3) . . . . . . . . . . . 323
16.5.3 LCD Cycle Frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
16.5.4 Fast Charge and Low Current . . . . . . . . . . . . . . . . . . . . . . 324
16.5.5 Contrast Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
16.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
16.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325
16.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325
16.7 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
16.7.1 BP0–BP3 (Backplane Drivers) . . . . . . . . . . . . . . . . . . . . . . 326
16.7.2 FP0–FP26 (Frontplane Drivers) . . . . . . . . . . . . . . . . . . . . . 328
16.8
Seven Segment Display Connection . . . . . . . . . . . . . . . . . . . 332
16.9 I/O Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
16.9.1 LCD Control Register (LCDCR) . . . . . . . . . . . . . . . . . . . . . 335
16.9.2 LCD Clock Register (LCDCLK) . . . . . . . . . . . . . . . . . . . . . 337
16.9.3 LCD Data Registers (LDAT1–LDAT14) . . . . . . . . . . . . . . . 339
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
317
Liquid Crystal Display Driver (LCD)
16.2 Introduction
This section describes the liquid crystal display (LCD) driver module.
The LCD driver module can drive a maximum of 27 frontplanes and 4
backplanes, depending on the LCD duty selected.
16.3 Features
Features of the LCD driver module include the following:
•
Software programmable driver segment configurations:
– 26 frontplanes × 4 backplanes (104 segments)
– 27 frontplanes × 3 backplanes (81 segments)
– 27 frontplanes × 1 backplane (27 segments)
•
LCD bias voltages generated by internal resistor ladder
•
Software programmable contrast control
16.4 Pin Name Conventions and I/O Register Addresses
Three dedicated I/O pins are for the backplanes, BP0–BP2, eighteen
dedicated I/O pins are for the frontplanes, FP1–FP18, and the eight
frontplanes, FP19–FP26, are shared with port C pins. FP0 and BP3
shares the same pin and configured by the DUTY[1:0] bits in the LCD
clock register.
The full names of the LCD output pins are shown in Table 16-1. The
generic pin names appear in the text that follows.
Table 16-1. Pin Name Conventions
LCD Generic Pin Name
Full MCU Pin Name
Pin Selected for LCD Function by:
FP0/BP3
FP0/BP3
—
BP0–BP2
BP0–BP2
—
FP1–FP18
FP1–FP18
—
FP19–FP22
PTC0/FP19–PTC3/FP22
PCEL in CONFIG2
FP23–FP26
PTC4/FP23–PTC7/FP26
PCEH in CONFIG2
Technical Data
318
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
Addr.
$004F
$0051
$0052
$0053
$0054
$0055
$0056
$0057
$0058
$0059
Register Name
Bit 7
Read:
LCD Clock Register
Write:
(LCDCLK)
Reset:
Read:
LCD Control Register
Write:
(LCDCR)
Reset:
Read:
LCD Data Register 1
Write:
(LDAT1)
Reset:
Read:
LCD Data Register 2
Write:
(LDAT2)
Reset:
Read:
LCD Data Register 3
Write:
(LDAT3)
Reset:
Read:
LCD Data Register 4
Write:
(LDAT4)
Reset:
Read:
LCD Data Register 5
Write:
(LDAT5)
Reset:
Read:
LCD Data Register 6
Write:
(LDAT6)
Reset:
Read:
LCD Data Register 7
Write:
(LDAT7)
Reset:
Read:
LCD Data Register 8
Write:
(LDAT8)
Reset:
0
6
5
4
3
2
1
Bit 0
FCCTL1
FCCTL0
DUTY1
DUTY0
LCLK2
LCLK1
LCLK0
0
0
0
0
0
0
0
FC
LC
LCCON3
LCCON2
LCCON1
LCCON0
0
0
LCDE
0
0
0
0
0
0
0
0
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
U
U
U
U
U
U
U
U
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
U
U
U
U
U
U
U
U
F5B3
F5B2
F5B1
F5B0
F4B3
F4B2
F4B1
F4B0
U
U
U
U
U
U
U
U
F7B3
F7B2
F7B1
F7B0
F6B3
F6B2
F6B1
F6B0
U
U
U
U
U
U
U
U
F9B3
F9B2
F9B1
F9B0
F8B3
F8B2
F8B1
F8B0
U
U
U
U
U
U
U
U
F11B3
F11B2
F11B1
F11B0
F10B3
F10B2
F10B1
F10B0
U
U
U
U
U
U
U
U
F13B3
F13B2
F13B1
F13B0
F12B3
F12B2
F12B1
F12B0
U
U
U
U
U
U
U
U
F15B3
F15B2
F15B1
F15B0
F14B3
F14B2
F14B1
F14B0
U
U
U
U
U
U
U
U
U = Unaffected
= Unimplemented
Figure 16-1. LCD I/O Register Summary
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
319
Liquid Crystal Display Driver (LCD)
$005A
$005B
$005C
$005D
$005E
$005F
Read:
LCD Data Register 9
Write:
(LDAT9)
Reset:
Read:
LCD Data Register 10
Write:
(LDAT10)
Reset:
Read:
LCD Data Register 11
Write:
(LDAT11)
Reset:
Read:
LCD Data Register 12
Write:
(LDAT12)
Reset:
Read:
LCD Data Register 13
Write:
(LDAT13)
Reset:
Read:
LCD Data Register 14
Write:
(LDAT14)
Reset:
F17B3
F17B2
F17B1
F17B0
F16B3
F16B2
F16B1
F16B0
U
U
U
U
U
U
U
U
F19B3
F19B2
F19B1
F19B0
F18B3
F18B2
F18B1
F18B0
U
U
U
U
U
U
U
U
F21B3
F21B2
F21B1
F21B0
F20B3
F20B2
F20B1
F20B0
U
U
U
U
U
U
U
U
F23B3
F23B2
F23B1
F23B0
F22B3
F22B2
F22B1
F22B0
U
U
U
U
U
U
U
U
F25B3
F25B2
F25B1
F25B0
F24B3
F24B2
F24B1
F24B0
U
U
U
U
U
U
U
U
F26B3
F26B2
F26B1
F26B0
U
U
U
U
U
U = Unaffected
U
U
U
= Unimplemented
Figure 16-1. LCD I/O Register Summary
16.5 Functional Description
Figure 16-2 shows a block diagram of the LCD driver module, and
Figure 16-3 shows a simplified schematic of the LCD system.
The LCD driver module uses a 1/3 biasing method. The LCD power is
supplied by MCU power supply VDD. Voltages VLCD1, VLCD2, and VLCD3
are generated by an internal resistor ladder.
The LCD data registers, LDAT1–LDAT14, control the LCD segments’
ON/OFF, with each data register controlling two frontplanes. When a
logic 1 is written to a FxBx bit in the data register, the corresponding
frontplane-backplane segment will turn ON. When a logic 0 is written, the
the segment will turn OFF.
Technical Data
320
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
FP18
FP17
FP16
FP15
FP14
FP13
FP12
FP11
FP10
FP9
FP8
FP7
FP6
FP5
When the LCD driver module is disabled (LCDE = 0), the LCD display
will be OFF, all backplane and frontplane drivers have the same
potential as VDD. The resistor ladder is disconnected from VDD to reduce
power consumption.
LCD FRONTPLANE DRIVER AND DATA LATCH
FP4
PTC0/FP19
FP2
PTC1/FP20
1/3
FP0/BP3
LCDE (LCDC)
BACKPLANE
BP2
BP1
BP0
DRIVER
1/4
STATE
CONTROL
1/1 1/3 1/4
INTERNAL BUS
FP1
PORT-C LOGIC
FP3
PTC2/FP21
PTC3/FP22
PTC4/FP23
PTC5/FP24
PTC6/FP25
PTC7/FP26
Figure 16-2. LCD Block Diagram
16.5.1 LCD Duty
The setting of the LCD output waveform duty is dependent on the
number of backplane drivers required. Three LCD duties are available:
•
Static duty — BP0 is used only
•
1/3 duty — BP0, BP1, and BP3 are used
•
1/4 duty — BP0, BP1, BP2, and BP3 are used
When the LCD driver module is enabled the backplane waveforms for
the selected duty are driven out of the backplane pins. The backplane
waveforms are periodic and are shown are shown in Figure 16-6,
Figure 16-5, and Figure 16-7.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
321
FP0
Liquid Crystal Display Driver (LCD)
RFP
FP1
RFP
FP24
RFP
BP0
RBP
BP1
RBP
VLCD (from VDD)
VLCD
RLCD
RLCD
RLCD
VLCD1
VLCD2
VLCD3
Vbias
Freescale Semiconductor
MC68HC908LJ12 — Rev. 2.1
VR
BIAS
CONTROL
LCCON[3:0]
Figure 16-3. Simplified LCD Schematic (1/3 Duty, 1/3 Bias)
BP2
RBP
Liquid Crystal Display Driver (LCD)
Technical Data
322
LCD
Liquid Crystal Display Driver (LCD)
16.5.2 LCD Voltages (VLCD, VLCD1, VLCD2, VLCD3)
The voltage VLCD is connected directly to VDD. VLCD1, VLCD2, and VLCD3
are internal bias voltages for the LCD driver waveforms. They are
derived from VLCD using a resistor ladder (see Figure 16-3).
The relative potential of the LCD voltages are:
•
VLCD = VDD
•
VLCD1 = 2/3 × (VLCD – Vbias)
•
VLCD2 = 1/3 × (VLCD – Vbias)
•
VLCD3 = Vbias
The VLCD3 bias voltage, Vbias, is controlled by the LCD contrast control
bits, LCCON[2:0].
16.5.3 LCD Cycle Frame
The LCD driver module uses the CGMXCLK (see Section 7. Oscillator
(OSC)) as the input reference clock. This clock is divided to produce the
LCD waveform base clock, LCDCLK, by configuring the LCLK[2:0] bits
in the LCD clock register. The LCDCLK clocks the backplane and the
frontplane output waveforms.
The LCD cycle frame is determined by the equation:
LCD CYCLE FRAME =
1
LCD WAVEFORM BASE CLOCK × DUTY
For example, for 1/3 duty and 256Hz waveform base clock:
LCD CYCLE FRAME =
1
256 × (1/3)
= 11.72 ms
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
323
Liquid Crystal Display Driver (LCD)
16.5.4 Fast Charge and Low Current
The default value for each of the bias resistors (see Figure 16-3), RLCD,
in the resistor ladder is approximately 37kΩ at VLCD = 3V. The relatively
high current drain through the 37kΩ resistor ladder may not be suitable
for some LCD panel connections. Lowering this current is possible by
setting the LC bit in the LCD control register, switching the RLCD value
to 146kΩ.
Although the lower current drain is desirable, but in some LCD panel
connections, the higher current is required to drive the capacitive load of
the LCD panel. In most cases, the higher current is only required when
the LCD waveforms change state (the rising and falling edges in the LCD
output waveforms). The fast charge option is designed to have the high
current for the switching and the low current for the steady state. Setting
the FC bit in the LCD control register selects the fast charge option. The
RLCD value is set to 37kΩ (for high current) for a fraction of time for each
LCD waveform switching edge, and then back to 146kΩ for the steady
state period. The duration of the fast charge time is set by configuring the
FCCTL[1:0] bits in the LCD clock register, and can be LCDCLK/32,
LCDCLK/64, or LCDCLK/128. Figure 16-4 shows the fast charge clock
relative to the BP0 waveform.
LCDCLK
LCD WAVEFORM
EXAMPLE: BP0
FAST CHARGE CLOCK
HIGH CURRENT SELECTED BEFORE SWITCHING EDGE,
PERIOD IS DEFINED BY FCCTL[1:0]
Figure 16-4. Fast Charge Timing
Technical Data
324
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
16.5.5 Contrast Control
The contrast of the connected LCD panel can be adjusted by configuring
the LCCON[3:0] bits in the LCD control register. The LCCON[3:0] bits
provide a 16-step contrast control, which adjusts the bias voltage in the
resistor ladder for LCD voltage VLCD3. The relative voltages, VLCD1 and
VLCD2, are altered according. For example, setting LCCON[3:0] = $F,
the relative panel potential voltage (VLCD – VLCD3) is reduced from
maximum 3.3V to approximate 2.45V.
16.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
16.6.1 Wait Mode
The LCD driver module continues normal operation in wait mode. If the
LCD is not required in wait mode, power down the LCD module by
clearing the LCDE bit before executing the WAIT instruction.
16.6.2 Stop Mode
For continuous LCD module operation in stop mode, the oscillator stop
mode enable bit (STOP_XCLKEN in CONFIG2 register) must be set
before executing the STOP instruction. When STOP_XCLKEN is set,
CGMXCLK continues to drive the LCD module.
If STOP_XCLKEN bit is cleared, the LCD module is inactive after the
execution of a STOP instruction. The STOP instruction does not affect
LCD register states. LCD module operation resumes after an external
interrupt. To further reduce power consumption, the LCD module should
be powered-down by clearing the LCDE bit before executing the STOP
instruction.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
325
Liquid Crystal Display Driver (LCD)
16.7 I/O Signals
The LCD driver module has thirty (30) output pins and shares eight of
them with port C I/O pins.
•
FP0/BP3 (multiplexed; selected as FP0 or BP3 by DUTY[1:0])
•
BP0–BP2
•
FP1–FP26 (FP19–FP26 shared with port C)
16.7.1 BP0–BP3 (Backplane Drivers)
BP0–BP3 are the backplane driver output pins. These are connected to
the backplane of the LCD panel. Depending on the LCD duty selected,
the voltage waveforms in Figure 16-6, Figure 16-5, and Figure 16-7
appear on the backplane pins.
BP3 pin is only used when 1/4 duty is selected. The pin becomes FP0
for static and 1/3 duty operations.
DUTY = 1/3
1FRAME
VLCD
VLCD1
VLCD2
BP0
VLCD3
BP1
VLCD
VLCD1
VLCD2
VLCD3
BP2
VLCD
VLCD1
VLCD2
VLCD3
NOTES:
1. BP3 is not used.
2. At 1/3 duty, 1FRAME has three times the cycle of LCD waveform base clock.
Figure 16-5. 1/3 Duty LCD Backplane Driver Waveforms
Technical Data
326
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
DUTY = STATIC
1FRAME
VLCD
VLCD1
VLCD2
BP0
VLCD3
NOTES:
1. BP1, BP2, and BP3 are not used.
2. At static duty, 1FRAME is equal to the cycle of LCD waveform base clock.
Figure 16-6. Static LCD Backplane Driver Waveform
DUTY = 1/4
1FRAME
VLCD
VLCD1
VLCD2
BP0
VLCD3
BP1
VLCD
VLCD1
VLCD2
VLCD3
BP2
VLCD
VLCD1
VLCD2
VLCD3
BP3
VLCD
VLCD1
VLCD2
VLCD3
Figure 16-7. 1/4 Duty LCD Backplane Driver Waveforms
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
327
Liquid Crystal Display Driver (LCD)
16.7.2 FP0–FP26 (Frontplane Drivers)
FP0–FP26 are the frontplane driver output pins. These are connected to
the frontplane of the LCD panel. Depending on LCD duty selected and
the contents in the LCD data registers, the voltage waveforms in Figure
16-8, Figure 16-9, and Figure 16-10 appear on the frontplane pins.
FP19–FP26 are shared with port C I/O pins. These pins are configured
for standard I/O or LCD use by the PCEL and PCEH bits in CONFIG2
register.
DUTY = STATIC
1FRAME
DATA LATCH: 1 = ON, 0 = OFF
FPx OUTPUT
VLCD
VLCD1
VLCD2
FxB0
—
—
—
0
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
FxB0
—
—
—
1
Figure 16-8. Static LCD Frontplane Driver Waveforms
Technical Data
328
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
DUTY = 1/3
DATA LATCH: 1 = ON, 0 = OFF
—
FxB2
FxB1
FxB0
0
0
0
FPx OUTPUT
1FRAME
VLCD
VLCD1
VLCD2
VLCD3
—
—
—
—
—
—
—
FxB2
FxB1
FxB0
0
0
1
FxB2
FxB1
FxB0
0
1
0
FxB2
FxB1
FxB0
1
0
0
FxB2
FxB1
FxB0
0
1
1
FxB2
FxB1
FxB0
1
1
0
FxB2
FxB1
FxB0
1
0
1
FxB2
FxB1
FxB0
1
1
1
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
VLCD
VLCD1
VLCD2
VLCD3
.
Figure 16-9. 1/3 Duty LCD Frontplane Driver Waveforms
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
329
Liquid Crystal Display Driver (LCD)
DUTY = 1/4
DATA LATCH: 1 = ON, 0 = OFF
1FRAME
FxB3
FxB2
FxB1
FxB0
0
0
0
0
FPx OUTPUT
VLCD
VLCD1
VLCD2
VLCD3
FxB3
FxB2
FxB1
FxB0
0
0
0
1
FxB3
FxB2
FxB1
FxB0
0
0
1
0
FxB3
FxB2
FxB1
FxB0
0
0
1
1
FxB3
FxB2
FxB1
FxB0
0
1
0
0
FxB3
FxB2
FxB1
FxB0
0
1
0
1
FxB3
FxB2
FxB1
FxB0
0
1
1
0
FxB3
FxB2
FxB1
FxB0
0
1
1
1
Figure 16-10. 1/4 Duty LCD Frontplane Driver Waveforms
Technical Data
330
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
DUTY = 1/4
DATA LATCH: 1 = ON, 0 = OFF
1FRAME
FxB3
FxB2
FxB1
FxB0
1
0
0
0
FPx OUTPUT
VLCD
VLCD1
VLCD2
VLCD3
FxB3
FxB2
FxB1
FxB0
1
0
0
1
FxB3
FxB2
FxB1
FxB0
1
0
1
0
FxB3
FxB2
FxB1
FxB0
1
0
1
1
FxB3
FxB2
FxB1
FxB0
1
1
0
0
FxB3
FxB2
FxB1
FxB0
1
1
0
1
FxB3
FxB2
FxB1
FxB0
1
1
1
0
FxB3
FxB2
FxB1
FxB0
1
1
1
1
Figure 16-11. 1/4 Duty LCD Frontplane Driver Waveforms (continued)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
331
Liquid Crystal Display Driver (LCD)
16.8 Seven Segment Display Connection
The following shows an example for connecting a 7-segment LCD
display to the LCD driver.
The example uses 1/3 duty cycle, with pins BP0, BP1, BP2, FP0, FP1,
and FP2 connected as shown in Figure 16-12. The output waveforms
are shown in Figure 16-13.
FP CONNECTION
a
f
e
g
d
BP CONNECTION
a
b
f
c
e
BP0 (a, b COMMONED)
b
g
BP1 (c, f, g COMMONED)
c
d
BP2 (d, e COMMONED)
FP2 (b, c COMMONED)
FP1 (a, d, g COMMONED)
FP0 (e, f COMMONED)
The segment assignments for each bit in the data registers are:
LDAT1
$0052
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
—
d
g
a
—
e
f
—
FP1
LDAT2
$0053
FP0
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
—
—
—
—
—
—
c
b
FP2
To display the character "4": LDAT1 = X010X01X, LDAT2 = XXXXXX11
a
LDAT1
$0052
X
0
1
0
X
0
1
X
LDAT2
$0053
X
X
X
X
X
X
1
1
f
e
g
d
b
c
X = don’t care
Figure 16-12. 7-Segment Display Example
Technical Data
332
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
DUTY = 1/3
1FRAME
VLCD
VLCD1
VLCD2
BP0
VLCD3
—
—
—
F0B2
F0B1
F0B0
0
1
0
F1B2
F1B1
F1B0
0
1
0
F2B2
F2B1
F2B0
0
1
1
BP1
VLCD
VLCD1
VLCD2
VLCD3
BP2
VLCD
VLCD1
VLCD2
VLCD3
FP0
VLCD
VLCD1
VLCD2
VLCD3
FP1
VLCD
VLCD1
VLCD2
VLCD3
FP2
VLCD
VLCD1
VLCD2
VLCD3
Figure 16-13. BP0–BP2 and FP0–FP2 Output Waveforms for
7-Segment Display Example
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
333
Liquid Crystal Display Driver (LCD)
The voltage waveform across the "f" segment of the LCD (between BP1
and FP0) is illustrated in Figure 16-14. As shown in the waveform, the
voltage peaks reach the LCD-ON voltage, VLCD, therefore, the segment
will be ON.
+VLCD
+VLCD1
+VLCD2
BP1–FP0
0
–VLCD2
–VLCD1
–VLCD
Figure 16-14. "f" Segment Voltage Waveform
The voltage waveform across the "e" segment of the LCD (between BP2
and FP0) is illustrated in Figure 16-15. As shown in the waveform, the
voltage peaks do not reach the LCD-ON voltage, VLCD, therefore, the
segment will be OFF.
+VLCD
+VLCD1
+VLCD2
0
–VLCD2
–VLCD1
–VLCD
BP2–FP0
Figure 16-15. "e" Segment Voltage Waveform
Technical Data
334
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
16.9 I/O Registers
Sixteen (16) registers control LCD driver module operation:
•
LCD control register (LCDCR)
•
LCD clock register (LCDCLK)
•
LCD data registers (LDAT1–LDAT14)
16.9.1 LCD Control Register (LCDCR)
The LCD control register (LCDCR):
•
Enables the LCD driver module
•
Selects bias resistor value and fast-charge control
•
Selects LCD contrast
Address:
$0051
Bit 7
Read:
Write:
Reset:
LCDE
0
6
0
0
5
4
3
2
1
Bit 0
FC
LC
LCCON3
LCCON2
LCCON1
LCCON0
0
0
0
0
0
0
= Unimplemented
Figure 16-16. LCD Control Register (LCDCR)
LCDE — LCD Enable
This read/write bit enables the LCD driver module; the backplane and
frontplane drive LCD waveforms out of BPx and FPx pins. Reset
clears the LCDE bit.
1 = LCD driver module enabled
0 = LCD driver module disabled
FC — Fast Charge
LC — Low Current
These read/write bits are used to select the value of the resistors in
resistor ladder for LCD voltages. Reset clears the FC and LC bits.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
335
Liquid Crystal Display Driver (LCD)
Table 16-2. Resistor Ladder Selection
FC
LC
Action
X
0
Each resistor is approximately 37 kΩ (default)
0
1
Each resistor is approximately 146 kΩ
1
1
Fast charge mode
LCCON[3:0] — LCD Contrast Control
These read/write bits select the bias voltage, Vbias. This voltage
controls the contrast of the LCD. Maximum contrast is set when
LCCON[3:0] = 0000; minimum contrast is when LCCON[3:0] = 1111.
Table 16-3. LCD Bias Voltage Control
LCCON3
LCCON2
LCCON1
LCCON0
Bias Voltage
(% of VDD)
0
0
0
0
0.6%
0
0
0
1
2.9%
0
0
1
0
5.2%
0
0
1
1
7.4%
0
1
0
0
9.6%
0
1
0
1
11.6%
0
1
1
0
13.5%
0
1
1
1
15.3%
1
0
0
0
17.2%
1
0
0
1
18.8%
1
0
1
0
20.5%
1
0
1
1
22.0%
1
1
0
0
23.6%
1
1
0
1
25.0%
1
1
1
0
26.4%
1
1
1
1
27.7%
Technical Data
336
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
16.9.2 LCD Clock Register (LCDCLK)
The LCD clock register (LCDCLK):
•
Selects the fast charge duty cycle
•
Selects LCD driver duty cycle
•
Selects LCD waveform base clock
Address:
$004F
Bit 7
Read:
0
Write:
Reset:
6
5
4
3
2
1
Bit 0
FCCTL1
FCCTL0
DUTY1
DUTY0
LCLK2
LCLK1
LCLK0
0
0
0
0
0
0
0
0
= Unimplemented
Figure 16-17. LCD Clock Register (LCDCLK)
FCCTL[1:0] — Fast Charge Duty Cycle Select
These read/write bits select the duty cycle of the fast charge duration.
Reset clears these bits. (See 16.5.4 Fast Charge and Low Current)
Table 16-4. Fast Charge Duty Cycle Selection
FCCTL1:FCCTL0
Fast Charge Duty Cycle
00
In each LCDCLK/2 period, each bias resistor is reduced to
37 kΩ for a duration of LCDCLK/32.
01
In each LCDCLK/2 period, each bias resistor is reduced to
37 kΩ for a duration of LCDCLK/64.
10
In each LCDCLK/2 period, each bias resistor is reduced to
37 kΩ for a duration of LCDCLK/128.
11
Not used
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
337
Liquid Crystal Display Driver (LCD)
DUTY[1:0] — Duty Cycle Select
These read/write bits select the duty cycle of the LCD driver output
waveforms. The multiplexed FP0/BP3 pin is controlled by the duty
cycle selected. Reset clears these bits.
Table 16-5. LCD Duty Cycle Selection
DUTY1:DUTY0
Description
00
Static selected; FP0/BP3 pin function as FP0.
01
1/3 duty cycle selected; FP0/BP3 pin functions as FP0.
10
1/4 duty cycle selected; FP0/BP3 pin functions as BP3.
11
Not used
LCLK[2:0] — LCD Waveform Base Clock Select
These read/write bits selects the LCD waveform base clock. Reset
clears these bits.
Table 16-6. LCD Waveform Base Clock Selection
LCLK2
LCLK1
LCLK0
Divide
Ratio
LCD Waveform Base
Clock Frequency
LCDCLK (Hz)
LCD Frame Rate
fXTAL(1) =
32.768kHz
LCD Frame Rate
fXTAL =
4.9152MHz
fXTAL =
32.768kHz
fXTAL =
4.9152MHz
1/3
duty
1/4
duty
1/3
duty
1/4
duty
0
0
0
128
256
—
85.3
64
—
—
0
0
1
256
128
—
42.7
32
—
—
0
1
0
512
64
—
21.3
16
—
—
0
1
1
1024
32
—
10.7
8
—
—
1
0
0
16384
—
300
—
—
100
75
1
0
1
32768
—
150
—
—
50
37.5
1
1
0
65536
—
75
—
—
25
18.75
1
1
1
Reserved
Notes:
1. fXTAL is the same as CGMXCLK (see Section 7. Oscillator (OSC)).
Technical Data
338
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Liquid Crystal Display Driver (LCD)
16.9.3 LCD Data Registers (LDAT1–LDAT14)
The fourteen (14) LCD data registers enable and disable the drive to the
corresponding LCD segments.
Addr.
Register Name
$0052
Read:
LCD Data Register 1
Write:
(LDAT1)
Reset:
$0053
$0054
$0055
$0056
$0057
$0058
$0059
$005A
Read:
LCD Data Register 2
Write:
(LDAT2)
Reset:
Read:
LCD Data Register 3
Write:
(LDAT3)
Reset:
Read:
LCD Data Register 4
Write:
(LDAT4)
Reset:
Read:
LCD Data Register 5
Write:
(LDAT5)
Reset:
Read:
LCD Data Register 6
Write:
(LDAT6)
Reset:
Read:
LCD Data Register 7
Write:
(LDAT7)
Reset:
Read:
LCD Data Register 8
Write:
(LDAT8)
Reset:
Read:
LCD Data Register 9
Write:
(LDAT9)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
F1B3
F1B2
F1B1
F1B0
F0B3
F0B2
F0B1
F0B0
U
U
U
U
U
U
U
U
F3B3
F3B2
F3B1
F3B0
F2B3
F2B2
F2B1
F2B0
U
U
U
U
U
U
U
U
F5B3
F5B2
F5B1
F5B0
F4B3
F4B2
F4B1
F4B0
U
U
U
U
U
U
U
U
F7B3
F7B2
F7B1
F7B0
F6B3
F6B2
F6B1
F6B0
U
U
U
U
U
U
U
U
F9B3
F9B2
F9B1
F9B0
F8B3
F8B2
F8B1
F8B0
U
U
U
U
U
U
U
U
F11B3
F11B2
F11B1
F11B0
F10B3
F10B2
F10B1
F10B0
U
U
U
U
U
U
U
U
F13B3
F13B2
F13B1
F13B0
F12B3
F12B2
F12B1
F12B0
U
U
U
U
U
U
U
U
F15B3
F15B2
F15B1
F15B0
F14B3
F14B2
F14B1
F14B0
U
U
U
U
U
U
U
U
F17B3
F17B2
F17B1
F17B0
F16B3
F16B2
F16B1
F16B0
U
U
U
U
U
U
U
U
U = Unaffected
= Unimplemented
Figure 16-18. LCD Data Registers 1–14 (LDAT1–LDAT14)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Liquid Crystal Display Driver (LCD)
339
Liquid Crystal Display Driver (LCD)
$005B
$005C
$005D
$005E
$005F
Read:
LCD Data Register 10
Write:
(LDAT10)
Reset:
Read:
LCD Data Register 11
Write:
(LDAT11)
Reset:
Read:
LCD Data Register 12
Write:
(LDAT12)
Reset:
Read:
LCD Data Register 13
Write:
(LDAT13)
Reset:
Read:
LCD Data Register 14
Write:
(LDAT14)
Reset:
F19B3
F19B2
F19B1
F19B0
F18B3
F18B2
F18B1
F18B0
U
U
U
U
U
U
U
U
F21B3
F21B2
F21B1
F21B0
F20B3
F20B2
F20B1
F20B0
U
U
U
U
U
U
U
U
F23B3
F23B2
F23B1
F23B0
F22B3
F22B2
F22B1
F22B0
U
U
U
U
U
U
U
U
F25B3
F25B2
F25B1
F25B0
F24B3
F24B2
F24B1
F24B0
U
U
U
U
U
U
U
U
F26B3
F26B2
F26B1
F26B0
U
U
U
U
U
U = Unaffected
U
U
U
= Unimplemented
Figure 16-18. LCD Data Registers 1–14 (LDAT1–LDAT14)
Technical Data
340
MC68HC908LJ12 — Rev. 2.1
Liquid Crystal Display Driver (LCD)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 17. Input/Output (I/O) Ports
17.1 Contents
17.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
17.3 Port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
17.3.1 Port A Data Register (PTA) . . . . . . . . . . . . . . . . . . . . . . . . 344
17.3.2 Data Direction Register A (DDRA) . . . . . . . . . . . . . . . . . . . 345
17.4 Port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
17.4.1 Port B Data Register (PTB) . . . . . . . . . . . . . . . . . . . . . . . . 347
17.4.2 Data Direction Register B (DDRB) . . . . . . . . . . . . . . . . . . . 348
17.4.3 Port B LED Control Register (LEDB) . . . . . . . . . . . . . . . . . 350
17.5 Port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
17.5.1 Port C Data Register (PTC) . . . . . . . . . . . . . . . . . . . . . . . . 351
17.5.2 Data Direction Register C (DDRC). . . . . . . . . . . . . . . . . . . 352
17.6 Port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
17.6.1 Port D Data Register (PTD) . . . . . . . . . . . . . . . . . . . . . . . . 354
17.6.2 Data Direction Register D (DDRD). . . . . . . . . . . . . . . . . . . 355
17.2 Introduction
Thirty-two (32) bidirectional input-output (I/O) pins form four parallel
ports. All I/O pins are programmable as inputs or outputs.
NOTE:
Connect any unused I/O pins to an appropriate logic level, either VDD or
VSS. Although the I/O ports do not require termination for proper
operation, termination reduces excess current consumption and the
possibility of electrostatic damage.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
341
Input/Output (I/O) Ports
Addr.
Register Name
$0000
Read:
Port A Data Register
Write:
(PTA)
Reset:
$0001
$0002
$0003
Read:
Port B Data Register
Write:
(PTB)
Reset:
Read:
Port C Data Register
Write:
(PTC)
Reset:
Read:
Port D Data Register
Write:
(PTD)
Reset:
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
PTB2
PTB1
PTB0
PTC2
PTC1
PTC0
PTD2
PTD1
PTD0
Unaffected by reset
PTB7
PTC7
PTB4
PTB3
PTC6
PTC5
PTC4
PTC3
Unaffected by reset
PTD7
PTD6
PTD5
PTD4
PTD3
Unaffected by reset
Read:
DDRB7
Data Direction Register B
$0005
Write:
(DDRB)
Reset:
0
Read:
DDRC7
Data Direction Register C
$0006
Write:
(DDRC)
Reset:
0
Read:
DDRD7
Data Direction Register D
$0007
Write:
(DDRD)
Reset:
0
$000C
PTB5
Unaffected by reset
Read:
DDRA7
Data Direction Register A
$0004
Write:
(DDRA)
Reset:
0
Read:
Port-B LED Control
Register Write:
(LEDB)
Reset:
PTB6
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
LEDB5
LEDB4
LEDB3
LEDB2
LEDB1
LEDB0
0
0
0
0
0
0
0
0
0
0
Figure 17-1. I/O Port Register Summary
Technical Data
342
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Input/Output (I/O) Ports
Table 17-1. Port Control Register Bits Summary
Port
Bit
DDR
0
DDRA0
1
DDRA1
Module Control
Module
KBI
Register
Control Bit
Pin
KBIE0
PTA0/KBI0
KBIE1
PTA1/KBI1
KBIER ($001C)
2
DDRA2
KBIE2
PTA2/KBI2
3
DDRA3
KBIE3
PTA3/KBI3
4
DDRA4
5
DDRA5
A
PTA4/ATD0
PTA5/ATD1
ADC
ADSCR ($003C)
ADCH[4:0]
6
DDRA6
PTA6/ATD2
7
DDRA7
PTA7/ATD3
0
DDRB0
PTB0/TxD
SCI
1
DDRB1
2
DDRB2
SCC1 ($0013)
ENSCI
PTB1/RxD
T1SC0 ($0025)
ELS0B:ELS0A
PTB2/T1CH0
T1SC1 ($0028)
ELS1B:ELS1A
PTB3/T1CH1
T2SC0 ($0030)
ELS0B:ELS0A
PTB4/T2CH0
T2SC1 ($0033)
ELS1B:ELS1A
PTB5/T2CH1
ADSCR ($003C)
ADCH[4:0]
TIM1
3
DDRB3
4
DDRB4
B
TIM2
5
DDRB5
6
DDRB6
PTB6/ATD4
ADC
7
DDRB7
PTB7/ATD5
0
DDRC0
PTC0/FP19
1
DDRC1
PTC1/FP20
PCEL
2
DDRC2
3
DDRC3
C
PTC2/FP21
PTC3/FP22
LCD
4
DDRC4
5
DDRC5
CONFIG2 ($001D)
PTC4/FP23
PTC5/FP24
PCEH
6
DDRC6
PTC6/FP25
7
DDRC7
PTC7/FP26
0
DDRD0
PTD0/SS
1
DDRD1
PTD1/MISO
SPI
SPCR ($0010)
SPE
2
DDRD2
PTD2/MOSI
3
DDRD3
PTD3/SPSCK
4
DDRD4
5
DDRD5
D
KBI
KBIE4
PTD4/KBI4
KBIE5
PTD5/KBI5
KBIER ($001C)
6
DDRD6
KBIE6
PTD6/KBI6
7
DDRD7
KBIE7
PTD7/KBI7
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
343
Input/Output (I/O) Ports
17.3 Port A
Port A is an 8-bit special function port that shares four of its port pins with
the analog-to-digital converter (ADC) module and four of its port pins
with the keyboard interrupt module (KBI).
17.3.1 Port A Data Register (PTA)
The port A data register contains a data latch for each of the eight port A
pins.
Address:
Read:
Write:
$0000
Bit 7
6
5
4
3
2
1
Bit 0
PTA7
PTA6
PTA5
PTA4
PTA3
PTA2
PTA1
PTA0
KBI2
KBI1
KBI0
Reset:
Alternative Function:
Unaffected by Reset
ADC3
ADC2
ADC1
ADC0
KBI3
Figure 17-2. Port A Data Register (PTA)
PTA[7:0] — Port A Data Bits
These read/write bits are software programmable. Data direction of
each port A pin is under the control of the corresponding bit in data
direction register A. Reset has no effect on port A data.
KBI[3:0] — Keyboard interrupt channels 0 to 3
KBI[3:0] are input pins to the keyboard interrupt module. The
corresponding control bits, KBIE[3:0], in the keyboard interrupt enable
register, KBIER, select which port pins will be used as a keyboard
interrupt input and overrides any control from the port I/O logic. See
Section 19. Keyboard Interrupt Module (KBI).
Technical Data
344
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Input/Output (I/O) Ports
ADC[3:0] — ADC channels 3 to 0
ADC[3:0] are pins used for the input channels to the analog-to-digital
converter module. The channel select bits, ADCH[4:0], in the ADC
status and control register define which port pin will be used as an
ADC input and overrides any control from the port I/O logic. See
Section 15. Analog-to-Digital Converter (ADC).
NOTE:
Care must be taken when reading port A while applying analog voltages
to ADC[3:0] pins. If the appropriate ADC channel is not enabled,
excessive current drain may occur if analog voltages are applied to the
PTAx/ADCx pin, while PTA is read as a digital input. Those ports not
selected as analog input channels are considered digital I/O ports.
17.3.2 Data Direction Register A (DDRA)
Data direction register A determines whether each port A pin is an input
or an output. Writing a logic 1 to a DDRA bit enables the output buffer for
the corresponding port A pin; a logic 0 disables the output buffer.
Address:
Read:
Write:
Reset:
$0004
Bit 7
6
5
4
3
2
1
Bit 0
DDRA7
DDRA6
DDRA5
DDRA4
DDRA3
DDRA2
DDRA1
DDRA0
0
0
0
0
0
0
0
0
Figure 17-3. Data Direction Register A (DDRA)
DDRA[7:0] — Data Direction Register A Bits
These read/write bits control port A data direction. Reset clears
DDRA[7:0], configuring all port A pins as inputs.
1 = Corresponding port A pin configured as output
0 = Corresponding port A pin configured as input
NOTE:
Avoid glitches on port A pins by writing to the port A data register before
changing data direction register A bits from 0 to 1. Figure 17-4 shows
the port A I/O logic.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
345
Input/Output (I/O) Ports
READ DDRA ($0004)
INTERNAL DATA BUS
WRITE DDRA ($0004)
RESET
DDRAx
WRITE PTA ($0000)
PTAx
PTAx
READ PTA ($0000)
Figure 17-4. Port A I/O Circuit
When DDRAx is a logic 1, reading address $0000 reads the PTAx data
latch. When DDRAx is a logic 0, reading address $0000 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 17-2 summarizes the operation of the port A pins.
Table 17-2. Port A Pin Functions
Accesses to DDRA
DDRA
Bit
PTA Bit
0
X(1)
1
X
Accesses to PTA
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRA[7:0]
Pin
PTA[7:0](3)
Output
DDRA[7:0]
PTA[7:0]
PTA[7:0]
Notes:
1. X = don’t care.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
Technical Data
346
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Input/Output (I/O) Ports
17.4 Port B
Port B is a 8-bit special function port that shares two of its port pins with
the infrared serial communication interface (IRSCI) module, two of its
port pins with the timer interface module 1 (TIM1) module, two of its port
pins with the timer interface module 2 (TIM2), and two of its port pins with
the ADC module.
Port pins PTB0–PTB5 can be configured for direct LED drive.
17.4.1 Port B Data Register (PTB)
The port B data register contains a data latch for each of the eight port B
pins.
NOTE:
Bit 4–bit 7 of PTB are not available in a 52-pin LQFP.
Address:
Read:
Write:
$0001
Bit 7
6
5
4
3
2
1
Bit 0
PTB7
PTB6
PTB5
PTB4
PTB3
PTB2
PTB1
PTB0
T1CH0
RxD
TxD
Reset:
Alternative Function:
Additional Function:
Unaffected by reset
ADC5
ADC4
T2CH1
T2CH0
T1CH1
LED drive LED drive LED drive LED drive LED drive LED drive
Figure 17-5. Port B Data Register (PTB)
PTB[7:0] — Port B Data Bits
These read/write bits are software programmable. Data direction of
each port B pin is under the control of the corresponding bit in data
direction register B. Reset has no effect on port B data.
TxD, RxD — SCI Data I/O Pins
The TxD and RxD pins are the transmit data output and receive data
input for the IRSCI module. The enable SCI bit, ENSCI, in the SCI
control register 1 enables the PTB0/TxD and PTB1/RxD pins as SCI
TxD and RxD pins and overrides any control from the port I/O. See
Section 13. Infrared Serial Communications Interface Module
(IRSCI).
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
347
Input/Output (I/O) Ports
T1CH[1:0] — Timer 1 Channel I/O Bits
The T1CH1 and T1CH0 pins are the TIM1 input capture/output
compare pins. The edge/level select bits, ELSxB:ELSxA, determine
whether the PTB2/T1CH0 and PTB3/T1CH1 pins are timer channel
I/O pins or general-purpose I/O pins. See Section 11. Timer
Interface Module (TIM).
T2CH[1:0] — Timer 2 Channel I/O Bits
The T2CH1 and T2CH0 pins are the TIM1 input capture/output
compare pins. The edge/level select bits, ELSxB:ELSxA, determine
whether the PTB4/T2CH0 and PTB5/T2CH1 pins are timer channel
I/O pins or general-purpose I/O pins. See Section 11. Timer
Interface Module (TIM).
ADC[5:4] — ADC channels 5 and 4
ADC[5:4] are pins used for the input channels to the analog-to-digital
converter module. The channel select bits, ADCH[4:0], in the ADC
status and control register define which port pin will be used as an
ADC input and overrides any control from the port I/O logic. See
Section 15. Analog-to-Digital Converter (ADC).
NOTE:
Care must be taken when reading port B while applying analog voltages
to ADC[5:4] pins. If the appropriate ADC channel is not enabled,
excessive current drain may occur if analog voltages are applied to the
PTBx/ADCx pin, while PTB is read as a digital input. Those ports not
selected as analog input channels are considered digital I/O ports.
LED drive — Direct LED Drive Pins
PTB0–PTB5 pins can be configured for direct LED drive. See 17.4.3
Port B LED Control Register (LEDB).
17.4.2 Data Direction Register B (DDRB)
Data direction register B determines whether each port B pin is an input
or an output. Writing a logic 1 to a DDRB bit enables the output buffer for
the corresponding port B pin; a logic 0 disables the output buffer.
Technical Data
348
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Input/Output (I/O) Ports
NOTE:
For those devices packaged in a 52-pin LQFP, PTB4–PTB7 are not
connected. DDRB4–DDRB7 should be set to a 1 to configure
PTB4–PTB7 as outputs.
Address:
Read:
Write:
Reset:
$0005
Bit 7
6
5
4
3
2
1
Bit 0
DDRB7
DDRB6
DDRB5
DDRB4
DDRB3
DDRB2
DDRB1
DDRB0
0
0
0
0
0
0
0
0
Figure 17-6. Data Direction Register B (DDRB)
DDRB[7:0] — Data Direction Register B Bits
These read/write bits control port B data direction. Reset clears
DDRB[7:0], configuring all port B pins as inputs.
1 = Corresponding port B pin configured as output
0 = Corresponding port B pin configured as input
NOTE:
Avoid glitches on port B pins by writing to the port B data register before
changing data direction register B bits from 0 to 1. Figure 17-7 shows
the port B I/O logic.
READ DDRB ($0005)
INTERNAL DATA BUS
WRITE DDRB ($0005)
RESET
DDRBx
WRITE PTB ($0001)
PTBx
PTBx
READ PTB ($0001)
Figure 17-7. Port B I/O Circuit
When DDRBx is a logic 1, reading address $0001 reads the PTBx data
latch. When DDRBx is a logic 0, reading address $0001 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
349
Input/Output (I/O) Ports
Table 17-3 summarizes the operation of the port B pins.
Table 17-3. Port B Pin Functions
Accesses to DDRB
DDRB
Bit
PTB Bit
0
X(1)
1
X
Accesses to PTB
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRB[7:0]
Pin
PTB[7:0](3)
Output
DDRB[7:0]
PTB[7:0]
PTB[7:0]
Notes:
1. X = don’t care.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
17.4.3 Port B LED Control Register (LEDB)
The port-B LED control register (LEDB) controls the direct LED drive
capability on PTB5–PTB0 pins. Each bit is individually configurable and
requires that the data direction register, DDRB, bit be configured as an
output.
When the IRSCI is enabled, setting the LEDB0 bit also enables high
current (15mA) sink capability for the TxD pin.
Address:
Read:
$000C
Bit 7
6
0
0
0
0
Write:
Reset:
5
4
3
2
1
Bit 0
LEDB5
LEDB4
LEDB3
LEDB2
LEDB1
LEDB0
0
0
0
0
0
0
Figure 17-8. Port B LED Control Register (LEDB)
LEDB[5:0] — Port B LED Drive Enable Bits
These read/write bits are software programmable to enable the direct
LED drive on an output port pin.
1 = Corresponding port B pin configured for direct LED drive:
15mA current sinking capability on PTB[1:0], and
8mA current sinking capability on PTB[5:2]
0 = Corresponding port B pin configured for standard drive
Technical Data
350
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Input/Output (I/O) Ports
17.5 Port C
Port C is an 8-bit special function port that shares all of its port pins with
the liquid crystal display (LCD) driver module.
17.5.1 Port C Data Register (PTC)
The port C data register contains a data latch for each of the eight port C
pins.
Address:
Read:
Write:
$0002
Bit 7
6
5
4
3
2
1
Bit 0
PTC7
PTC6
PTC5
PTC4
PTC3
PTC2
PTC1
PTC0
FP21
FP20
FP19
Reset:
Alternative Function:
Unaffected by reset
FP26
FP25
FP24
FP23
FP22
Figure 17-9. Port C Data Register (PTC)
PTC[7:0] — Port C Data Bits
These read/write bits are software programmable. Data direction of
each port C pin is under the control of the corresponding bit in data
direction register C. Reset has no effect on port C data.
FP[26:19] — LCD Driver Frontplanes 26–19
FP[26:19] are pins used for the frontplane output of the LCD driver
module. The enable bits, PCEH and PCEL, in the CONFIG2 register,
determine whether the PTC7/FP26–PTC4/FP23 and
PTC3/FP22–PTC0/FP19 pins are LCD frontplane driver pins or
general-purpose I/O pins. See Section 16. Liquid Crystal Display
Driver (LCD).
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
351
Input/Output (I/O) Ports
17.5.2 Data Direction Register C (DDRC)
Data direction register C determines whether each port C pin is an input
or an output. Writing a logic 1 to a DDRC bit enables the output buffer for
the corresponding port C pin; a logic 0 disables the output buffer.
Address:
Read:
Write:
Reset:
$0006
Bit 7
6
5
4
3
2
1
Bit 0
DDRC7
DDRC6
DDRC5
DDRC4
DDRC3
DDRC2
DDRC1
DDRC0
0
0
0
0
0
0
0
0
Figure 17-10. Data Direction Register B (DDRB)
DDRC[7:0] — Data Direction Register C Bits
These read/write bits control port C data direction. Reset clears
DDRC[7:0], configuring all port C pins as inputs.
1 = Corresponding port C pin configured as output
0 = Corresponding port C pin configured as input
NOTE:
Avoid glitches on port C pins by writing to the port C data register before
changing data direction register C bits from 0 to 1. Figure 17-11 shows
the port C I/O logic.
READ DDRC ($0006)
INTERNAL DATA BUS
WRITE DDRC ($0006)
RESET
DDRCx
WRITE PTC ($0002)
PTCx
PTCx
READ PTC ($0002)
Figure 17-11. Port C I/O Circuit
Technical Data
352
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Input/Output (I/O) Ports
When DDRCx is a logic 1, reading address $0002 reads the PTCx data
latch. When DDRCx is a logic 0, reading address $0002 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 17-4 summarizes the operation of the port C pins.
Table 17-4. Port C Pin Functions
Accesses to DDRC
DDRC
Bit
PTC Bit
0
X(1)
1
X
Accesses to PTC
I/O Pin Mode
Read/Write
Read
Write
Input, Hi-Z(2)
DDRC[7:0]
Pin
PTC[7:0](3)
Output
DDRC[7:0]
PTC[7:0]
PTC[7:0]
Notes:
1. X = don’t care; except PTC2.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect input.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
353
Input/Output (I/O) Ports
17.6 Port D
Port D is an 8-bit special function port that shares four of its pins with
serial peripheral interface (SPI) module and four of its pins with the
keyboard interrupt module (KBI).
NOTE:
Port D is not available in a 52-pin LQFP.
17.6.1 Port D Data Register (PTD)
The port D data register contains a data latch for each of the eight port D
pins.
NOTE:
Bit 0–bit 7 of PTD are not available in a 52-pin LQFP.
Address:
Read:
Write:
$0003
Bit 7
6
5
4
3
2
1
Bit 0
PTD7
PTD6
PTD5
PTD4
PTD3
PTD2
PTD1
PTD0
MOSI
MISO
SS
Reset:
Alternative Function:
Unaffected by reset
KBI7
KBI6
KBI5
KBI4
SPSCK
Figure 17-12. Port D Data Register (PTD)
PTD[7:0] — Port D Data Bits
These read/write bits are software programmable. Data direction of
each port D pin is under the control of the corresponding bit in data
direction register D. Reset has no effect on port D data.
SS, MISO, MOSI, and SPSCK — SPI functional pins
These are the chip select, master-input-slave-output, master-outputslave-input and clock pins for the SPI module. The SPI enable bit,
SPE, in the SPI control register, SPCR, enables these pins as the SPI
functional pins and overrides any control from port I/O logic. See
Section 14. Serial Peripheral Interface Module (SPI).
Technical Data
354
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Input/Output (I/O) Ports
KBI[7:4] — Keyboard Interrupt Pins
KBI[7:4] are input pins to the keyboard interrupt module. The
corresponding control bits, KBIE[7:4], in the keyboard interrupt enable
register, KBIER, select which port pins will be used as a keyboard
interrupt input and overrides any control from the port I/O logic. See
Section 19. Keyboard Interrupt Module (KBI)
17.6.2 Data Direction Register D (DDRD)
Data direction register D determines whether each port D pin is an input
or an output. Writing a logic 1 to a DDRD bit enables the output buffer for
the corresponding port D pin; a logic 0 disables the output buffer.
NOTE:
For those devices packaged in a 52-pin LQFP, PTD0–PTD7 are not
connected. DDRD0–DDRD7 should be set to a 1 to configure
PTD0–PTD7 as outputs.
Address:
Read:
Write:
Reset:
$0007
Bit 7
6
5
4
3
2
1
Bit 0
DDRD7
DDRD6
DDRD5
DDRD4
DDRD3
DDRD2
DDRD1
DDRD0
0
0
0
0
0
0
0
0
Figure 17-13. Data Direction Register D (DDRD)
DDRD[7:0] — Data Direction Register D Bits
These read/write bits control port D data direction. Reset clears
DDRD[7:0], configuring all port D pins as inputs.
1 = Corresponding port D pin configured as output
0 = Corresponding port D pin configured as input
NOTE:
Avoid glitches on port D pins by writing to the port D data register before
changing data direction register D bits from 0 to 1. Figure 17-14 shows
the port D I/O logic.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Input/Output (I/O) Ports
355
Input/Output (I/O) Ports
READ DDRD ($0007)
INTERNAL DATA BUS
WRITE DDRD ($0007)
DDRDx
RESET
WRITE PTD ($0003)
PTDx
PTDx
READ PTD ($0003)
Figure 17-14. Port D I/O Circuit
When DDRDx is a logic 1, reading address $0003 reads the PTDx data
latch. When DDRDx is a logic 0, reading address $0003 reads the
voltage level on the pin. The data latch can always be written, regardless
of the state of its data direction bit.
Table 17-5 summarizes the operation of the port D pins.
Table 17-5. Port D Pin Functions
DDRD
Bit
PTD Bit
I/O Pin
Mode
Accesses
to DDRD
Accesses to PTD
Read/Write
Read
Write
0
X(1)
Input, Hi-Z(2)
DDRD[7:0]
Pin
PTD[7:0](3)
1
X
Output
DDRD[7:0]
PTD[7:0]
PTD[7:0]
Notes:
1. X = don’t care.
2. Hi-Z = high impedance.
3. Writing affects data register, but does not affect the input.
Technical Data
356
MC68HC908LJ12 — Rev. 2.1
Input/Output (I/O) Ports
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 18. External Interrupt (IRQ)
18.1 Contents
18.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
18.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
18.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .358
18.4.1 IRQ Pin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
18.5
IRQ Module During Break Interrupts . . . . . . . . . . . . . . . . . . . 361
18.6
IRQ Status and Control Register (INTSCR) . . . . . . . . . . . . . . 361
18.2 Introduction
The external interrupt (IRQ) module provides a maskable interrupt input.
18.3 Features
Features of the IRQ module include the following:
•
A dedicated external interrupt pin (IRQ)
•
IRQ interrupt control bits
•
Hysteresis buffer
•
Programmable edge-only or edge and level interrupt sensitivity
•
Automatic interrupt acknowledge
•
Internal pullup resistor
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
External Interrupt (IRQ)
357
External Interrupt (IRQ)
18.4 Functional Description
A logic 0 applied to the external interrupt pin can latch a CPU interrupt
request. Figure 18-1 shows the structure of the IRQ module.
Interrupt signals on the IRQ pin are latched into the IRQ latch. An
interrupt latch remains set until one of the following actions occurs:
•
Vector fetch — A vector fetch automatically generates an interrupt
acknowledge signal that clears the IRQ latch.
•
Software clear — Software can clear the interrupt latch by writing
to the acknowledge bit in the interrupt status and control register
(INTSCR). Writing a logic 1 to the ACK bit clears the IRQ latch.
•
Reset — A reset automatically clears the interrupt latch.
The external interrupt pin is falling-edge-triggered and is softwareconfigurable to be either falling-edge or low-level-triggered. The MODE
bit in the INTSCR controls the triggering sensitivity of the IRQ pin.
When the interrupt pin is edge-triggered only, the CPU interrupt request
remains set until a vector fetch, software clear, or reset occurs.
When the interrupt pin is both falling-edge and low-level-triggered, the
CPU interrupt request remains set until both of the following occur:
•
Vector fetch or software clear
•
Return of the interrupt pin to logic 1
The vector fetch or software clear may occur before or after the interrupt
pin returns to logic 1. As long as the pin is low, the interrupt request
remains pending. A reset will clear the latch and the MODE control bit,
thereby clearing the interrupt even if the pin stays low.
When set, the IMASK bit in the INTSCR mask all external interrupt
requests. A latched interrupt request is not presented to the interrupt
priority logic unless the IMASK bit is clear.
NOTE:
The interrupt mask (I) in the condition code register (CCR) masks all
interrupt requests, including external interrupt requests.
Technical Data
358
MC68HC908LJ12 — Rev. 2.1
External Interrupt (IRQ)
Freescale Semiconductor
External Interrupt (IRQ)
RESET
ACK
TO CPU FOR
BIL/BIH
INSTRUCTIONS
INTERNAL ADDRESS BUS
VECTOR
FETCH
DECODER
VDD
VDD
INTERNAL
PULLUP
DEVICE
IRQF
D
CLR
Q
IRQ
IRQ
INTERRUPT
REQUEST
SYNCHRONIZER
CK
IMASK
MODE
TO MODE
SELECT
LOGIC
HIGH
VOLTAGE
DETECT
Figure 18-1. IRQ Module Block Diagram
Addr.
$001E
Register Name
IRQ Status and Control
Register
(INTSCR)
Read:
Bit 7
6
5
4
3
2
0
0
0
0
IRQF
0
ACK
Write:
Reset:
0
0
0
0
0
0
1
Bit 0
IMASK
MODE
0
0
= Unimplemented
Table 18-1. IRQ I/O Port Register Summary
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
External Interrupt (IRQ)
359
External Interrupt (IRQ)
18.4.1 IRQ Pin
A logic 0 on the IRQ pin can latch an interrupt request into the IRQ latch.
A vector fetch, software clear, or reset clears the IRQ latch.
If the MODE bit is set, the IRQ pin is both falling-edge-sensitive and lowlevel-sensitive. With MODE set, both of the following actions must occur
to clear IRQ:
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the latch. Software may
generate the interrupt acknowledge signal by writing a logic 1 to
the ACK bit in the interrupt status and control register (INTSCR).
The ACK bit is useful in applications that poll the IRQ pin and
require software to clear the IRQ latch. Writing to the ACK bit prior
to leaving an interrupt service routine can also prevent spurious
interrupts due to noise. Setting ACK does not affect subsequent
transitions on the IRQ pin. A falling edge that occurs after writing
to the ACK bit latches another interrupt request. If the IRQ mask
bit, IMASK, is clear, the CPU loads the program counter with the
vector address at locations $FFFA and $FFFB.
•
Return of the IRQ pin to logic 1 — As long as the IRQ pin is at
logic 0, IRQ remains active.
The vector fetch or software clear and the return of the IRQ pin to logic 1
may occur in any order. The interrupt request remains pending as long
as the IRQ pin is at logic 0. A reset will clear the latch and the MODE
control bit, thereby clearing the interrupt even if the pin stays low.
If the MODE bit is clear, the IRQ pin is falling-edge-sensitive only. With
MODE clear, a vector fetch or software clear immediately clears the IRQ
latch.
The IRQF bit in the INTSCR register can be used to check for pending
interrupts. The IRQF bit is not affected by the IMASK bit, which makes it
useful in applications where polling is preferred.
Use the BIH of BIL instruction to read the logic level on the IRQ pin.
NOTE:
When using the level-sensitive interrupt trigger, avoid false interrupts by
masking interrupt requests in the interrupt routine.
Technical Data
360
MC68HC908LJ12 — Rev. 2.1
External Interrupt (IRQ)
Freescale Semiconductor
External Interrupt (IRQ)
18.5 IRQ Module During Break Interrupts
The system integration module (SIM) controls whether the IRQ latch can
be cleared during the break state. The BCFE bit in the break flag control
register (BFCR) enables software to clear the latches during the break
state. (See Section 22. Break Module (BRK).)
To allow software to clear the IRQ latch during a break interrupt, write a
logic 1 to the BCFE bit. If a latch is cleared during the break state, it
remains cleared when the MCU exits the break state.
To protect the latches during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), writing to the ACK bit in the
IRQ status and control register during the break state has no effect on
the IRQ latch.
18.6 IRQ Status and Control Register (INTSCR)
The IRQ Status and Control Register (INTSCR) controls and monitors
operation of the IRQ module. The INTSCR has the following functions:
•
Shows the state of the IRQ flag
•
Clears the IRQ latch
•
Masks IRQ and interrupt request
•
Controls triggering sensitivity of the IRQ interrupt pin
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
External Interrupt (IRQ)
361
External Interrupt (IRQ)
Address:
Read:
$001E
Bit 7
6
5
4
3
2
0
0
0
0
IRQF
0
Write:
Reset:
ACK
0
0
0
0
0
0
1
Bit 0
IMASK
MODE
0
0
= Unimplemented
Figure 18-2. IRQ Status and Control Register (INTSCR)
IRQF — IRQ Flag Bit
This read-only status bit is high when the IRQ interrupt is pending.
1 = IRQ interrupt pending
0 = IRQ interrupt not pending
ACK — IRQ Interrupt Request Acknowledge Bit
Writing a logic 1 to this write-only bit clears the IRQ latch. ACK always
reads as logic 0. Reset clears ACK.
IMASK — IRQ Interrupt Mask Bit
Writing a logic 1 to this read/write bit disables IRQ interrupt requests.
Reset clears IMASK.
1 = IRQ interrupt requests disabled
0 = IRQ interrupt requests enabled
MODE — IRQ Edge/Level Select Bit
This read/write bit controls the triggering sensitivity of the IRQ pin.
Reset clears MODE.
1 = IRQ interrupt requests on falling edges and low levels
0 = IRQ interrupt requests on falling edges only
Technical Data
362
MC68HC908LJ12 — Rev. 2.1
External Interrupt (IRQ)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 19. Keyboard Interrupt Module (KBI)
19.1 Contents
19.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
19.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
19.4
I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
19.5 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .365
19.5.1 Keyboard Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
19.6 Keyboard Interrupt Registers . . . . . . . . . . . . . . . . . . . . . . . . . 367
19.6.1 Keyboard Status and Control Register. . . . . . . . . . . . . . . . 368
19.6.2 Keyboard Interrupt Enable Register . . . . . . . . . . . . . . . . . . 369
19.7
Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
19.8
Wait Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
19.9
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
19.10 Keyboard Module During Break Interrupts . . . . . . . . . . . . . . . 370
19.2 Introduction
The keyboard interrupt module (KBI) provides eight independently
maskable external interrupts which are accessible via PTA0–PTA3 and
PTD4–PTD7. When a port pin is enabled for keyboard interrupt function,
an internal 30kΩ pullup device is also enabled on the pin.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Keyboard Interrupt Module (KBI)
363
Keyboard Interrupt Module (KBI)
19.3 Features
Features of the keyboard interrupt module include the following:
•
Eight keyboard interrupt pins with pullup devices
•
Separate keyboard interrupt enable bits and one keyboard
interrupt mask
•
Programmable edge-only or edge- and level- interrupt sensitivity
•
Exit from low-lower modes
Addr.
Register Name
$001B
Read:
Keyboard Status and
Control Register Write:
(KBSCR)
Reset:
$001C
Read:
Keyboard Interrupt
Enable Register Write:
(KBIER)
Reset:
Bit 7
6
5
4
3
2
0
0
0
0
KEYF
0
ACKK
1
Bit 0
IMASKK
MODEK
0
0
0
0
0
0
0
0
KBIE7
KBIE6
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
= Unimplemented
Figure 19-1. KBI I/O Register Summary
19.4 I/O Pins
The eight keyboard interrupt pins are shared with standard port I/O pins.
The full name of the KBI pins are listed in Table 19-1. The generic pin
name appear in the text that follows.
Table 19-1. Pin Name Conventions
KBI
Generic Pin Name
Full MCU Pin Name
Pin Selected for KBI Function by
KBIEx Bit in KBIER
KBI0–KBI3
PTA0/KBI0–PTA3/KBI3
KBIE0–KBIE3
KBI4–KBI7
PTD4/KBI4–PTD7/KBI7
KBIE4–KBIE7
Technical Data
364
MC68HC908LJ12 — Rev. 2.1
Keyboard Interrupt Module (KBI)
Freescale Semiconductor
Keyboard Interrupt Module (KBI)
19.5 Functional Description
INTERNAL BUS
KBI0
ACKK
VDD
.
KBIE0
TO PULLUP ENABLE
D
.
CLR
VECTOR FETCH
DECODER
KEYF
RESET
Q
SYNCHRONIZER
CK
.
KEYBOARD
INTERRUPT FF
KBI7
KEYBOARD
INTERRUPT
REQUEST
IMASKK
MODEK
KBIE7
TO PULLUP ENABLE
Figure 19-2. Keyboard Interrupt Block Diagram
Writing to the KBIE7–KBIE0 bits in the keyboard interrupt enable register
independently enables or disables a port A or port D pin as a keyboard
interrupt pin. Enabling a keyboard interrupt pin in port A or port D also
enables its internal pull-up device. A logic 0 applied to an enabled
keyboard interrupt pin latches a keyboard interrupt request.
A keyboard interrupt is latched when one or more keyboard pins goes
low after all were high. The MODEK bit in the keyboard status and
control register controls the triggering mode of the keyboard interrupt.
•
If the keyboard interrupt is edge-sensitive only, a falling edge on a
keyboard pin does not latch an interrupt request if another
keyboard pin is already low. To prevent losing an interrupt request
on one pin because another pin is still low, software can disable
the latter pin while it is low.
•
If the keyboard interrupt is falling edge- and low level-sensitive, an
interrupt request is present as long as any keyboard pin is low.
If the MODEK bit is set, the keyboard interrupt pins are both falling edgeand low level-sensitive, and both of the following actions must occur to
clear a keyboard interrupt request:
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Keyboard Interrupt Module (KBI)
365
Keyboard Interrupt Module (KBI)
•
Vector fetch or software clear — A vector fetch generates an
interrupt acknowledge signal to clear the interrupt request.
Software may generate the interrupt acknowledge signal by
writing a logic 1 to the ACKK bit in the keyboard status and control
register KBSCR. The ACKK bit is useful in applications that poll
the keyboard interrupt pins and require software to clear the
keyboard interrupt request. Writing to the ACKK bit prior to leaving
an interrupt service routine can also prevent spurious interrupts
due to noise. Setting ACKK does not affect subsequent transitions
on the keyboard interrupt pins. A falling edge that occurs after
writing to the ACKK bit latches another interrupt request. If the
keyboard interrupt mask bit, IMASKK, is clear, the CPU loads the
program counter with the vector address at locations $FFDF and
$FFDE.
•
Return of all enabled keyboard interrupt pins to logic 1 — As long
as any enabled keyboard interrupt pin is at logic 0, the keyboard
interrupt remains set.
The vector fetch or software clear and the return of all enabled keyboard
interrupt pins to logic 1 may occur in any order.
If the MODEK bit is clear, the keyboard interrupt pin is falling-edgesensitive only. With MODEK clear, a vector fetch or software clear
immediately clears the keyboard interrupt request.
Reset clears the keyboard interrupt request and the MODEK bit, clearing
the interrupt request even if a keyboard interrupt pin stays at logic 0.
The keyboard flag bit (KEYF) in the keyboard status and control register
can be used to see if a pending interrupt exists. The KEYF bit is not
affected by the keyboard interrupt mask bit (IMASKK) which makes it
useful in applications where polling is preferred.
To determine the logic level on a keyboard interrupt pin, use the data
direction register to configure the pin as an input and read the data
register.
NOTE:
Setting a keyboard interrupt enable bit (KBIEx) forces the corresponding
keyboard interrupt pin to be an input, overriding the data direction
register. However, the data direction register bit must be a logic 0 for
software to read the pin.
Technical Data
366
MC68HC908LJ12 — Rev. 2.1
Keyboard Interrupt Module (KBI)
Freescale Semiconductor
Keyboard Interrupt Module (KBI)
19.5.1 Keyboard Initialization
When a keyboard interrupt pin is enabled, it takes time for the internal
pull-up to reach a logic 1. Therefore a false interrupt can occur as soon
as the pin is enabled.
To prevent a false interrupt on keyboard initialization:
1. Mask keyboard interrupts by setting the IMASKK bit in the
keyboard status and control register.
2. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.
3. Write to the ACKK bit in the keyboard status and control register
to clear any false interrupts.
4. Clear the IMASKK bit.
An interrupt signal on an edge-triggered pin can be acknowledged
immediately after enabling the pin. An interrupt signal on an edge- and
level-triggered interrupt pin must be acknowledged after a delay that
depends on the external load.
Another way to avoid a false interrupt:
1. Configure the keyboard pins as outputs by setting the appropriate
DDR bits in data direction register.
2. Write logic 1s to the appropriate data register bits.
3. Enable the KBI pins by setting the appropriate KBIEx bits in the
keyboard interrupt enable register.
19.6 Keyboard Interrupt Registers
Two registers control the operation of the keyboard interrupt module:
•
Keyboard status and control register
•
Keyboard interrupt enable register
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Keyboard Interrupt Module (KBI)
367
Keyboard Interrupt Module (KBI)
19.6.1 Keyboard Status and Control Register
•
Flags keyboard interrupt requests
•
Acknowledges keyboard interrupt requests
•
Masks keyboard interrupt requests
•
Controls keyboard interrupt triggering sensitivity
Address:
Read:
$001B
Bit 7
6
5
4
3
2
0
0
0
0
KEYF
0
Write:
Reset:
ACKK
0
0
0
0
0
0
1
Bit 0
IMASKK
MODEK
0
0
= Unimplemented
Figure 19-3. Keyboard Status and Control Register (KBSCR)
KEYF — Keyboard Flag Bit
This read-only bit is set when a keyboard interrupt is pending.
Reset clears the KEYF bit.
1 = Keyboard interrupt pending
0 = No keyboard interrupt pending
ACKK — Keyboard Acknowledge Bit
Writing a logic 1 to this write-only bit clears the keyboard interrupt
request. ACKK always reads as logic 0. Reset clears ACKK.
IMASKK — Keyboard Interrupt Mask Bit
Writing a logic 1 to this read/write bit prevents the output of the
keyboard interrupt mask from generating interrupt requests. Reset
clears the IMASKK bit.
1 = Keyboard interrupt requests masked
0 = Keyboard interrupt requests not masked
MODEK — Keyboard Triggering Sensitivity Bit
This read/write bit controls the triggering sensitivity of the keyboard
interrupt pins. Reset clears MODEK.
1 = Keyboard interrupt requests on falling edges and low levels
0 = Keyboard interrupt requests on falling edges only
Technical Data
368
MC68HC908LJ12 — Rev. 2.1
Keyboard Interrupt Module (KBI)
Freescale Semiconductor
Keyboard Interrupt Module (KBI)
19.6.2 Keyboard Interrupt Enable Register
The keyboard interrupt enable register individually enables or disables
the PTA0/KBI0–PTA3/KBI3 and PTD4/KBI4–PTD7/KBI7 pins to operate
as a keyboard interrupt pin.
Address:
Read:
Write:
Reset:
$001C
Bit 7
6
5
4
3
2
1
Bit 0
KBIE7
KBIE6
KBIE5
KBIE4
KBIE3
KBIE2
KBIE1
KBIE0
0
0
0
0
0
0
0
0
Figure 19-4. Keyboard Interrupt Enable Register (KBIER)
KBIE7–KBIE0 — Keyboard Interrupt Enable Bits
Each of these read/write bits enables the corresponding keyboard
interrupt pin to latch interrupt requests. Reset clears the keyboard
interrupt enable register.
1 = KBIx pin enabled as keyboard interrupt pin
0 = KBIx pin not enabled as keyboard interrupt pin
19.7 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
19.8 Wait Mode
The keyboard interrupt module remains active in wait mode. Clearing the
IMASKK bit in the keyboard status and control register enables keyboard
interrupt requests to bring the MCU out of wait mode.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Keyboard Interrupt Module (KBI)
369
Keyboard Interrupt Module (KBI)
19.9 Stop Mode
The keyboard interrupt module remains active in stop mode. Clearing
the IMASKK bit in the keyboard status and control register enables
keyboard interrupt requests to bring the MCU out of stop mode.
19.10 Keyboard Module During Break Interrupts
The system integration module (SIM) controls whether the keyboard
interrupt latch can be cleared during the break state. The BCFE bit in the
SIM break flag control register (BFCR) enables software to clear status
bits during the break state.
To allow software to clear the keyboard interrupt latch during a break
interrupt, write a logic 1 to the BCFE bit. If a latch is cleared during the
break state, it remains cleared when the MCU exits the break state.
To protect the latch during the break state, write a logic 0 to the BCFE
bit. With BCFE at logic 0 (its default state), writing to the keyboard
acknowledge bit (ACKK) in the keyboard status and control register
during the break state has no effect.
Technical Data
370
MC68HC908LJ12 — Rev. 2.1
Keyboard Interrupt Module (KBI)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 20. Computer Operating Properly (COP)
20.1 Contents
20.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
20.3
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .372
20.4 I/O Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.1 ICLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.2 STOP Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.3 COPCTL Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .373
20.4.4 Power-On Reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
20.4.5 Internal Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
20.4.6 Reset Vector Fetch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
20.4.7 COPD (COP Disable). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
20.4.8 COPRS (COP Rate Select) . . . . . . . . . . . . . . . . . . . . . . . . 374
20.5
COP Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
20.6
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375
20.7
Monitor Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .375
20.8 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
20.8.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
20.8.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .376
20.9
COP Module During Break Mode . . . . . . . . . . . . . . . . . . . . . . 376
20.2 Introduction
The computer operating properly (COP) module contains a free-running
counter that generates a reset if allowed to overflow. The COP module
helps software recover from runaway code. Prevent a COP reset by
clearing the COP counter periodically. The COP module can be disabled
through the COPD bit in the configuration register 1 (CONFIG1).
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Computer Operating Properly (COP)
371
Computer Operating Properly (COP)
20.3 Functional Description
Figure 20-1 shows the structure of the COP module.
RESET STATUS REGISTER
COP TIMEOUT
CLEAR STAGES 5–12
STOP INSTRUCTION
INTERNAL RESET SOURCES
RESET VECTOR FETCH
RESET CIRCUIT
12-BIT COP PRESCALER
CLEAR ALL STAGES
ICLK
COPCTL WRITE
COP CLOCK
6-BIT COP COUNTER
COPEN (FROM SIM)
COP DISABLE
(COPD FROM CONFIG1)
RESET
COPCTL WRITE
CLEAR
COP COUNTER
COP RATE SEL
(COPRS FROM CONFIG1)
Figure 20-1. COP Block Diagram
The COP counter is a free-running 6-bit counter preceded by a 12-bit
prescaler counter. If not cleared by software, the COP counter overflows
and generates an asynchronous reset after 218 – 24 or 213 – 24 ICLK
cycles, depending on the state of the COP rate select bit, COPRS, in the
CONFIG1 register. With a 213 – 24 ICLK cycle overflow option, a 47-kHz
ICLK gives a COP timeout period of 174ms. Writing any value to location
$FFFF before an overflow occurs prevents a COP reset by clearing the
COP counter and stages 12 through 5 of the prescaler.
NOTE:
Service the COP immediately after reset and before entering or after
exiting STOP Mode to guarantee the maximum time before the first COP
counter overflow.
Technical Data
372
MC68HC908LJ12 — Rev. 2.1
Computer Operating Properly (COP)
Freescale Semiconductor
Computer Operating Properly (COP)
A COP reset pulls the RST pin low for 32 ICLK cycles and sets the COP
bit in the SIM reset status register (SRSR).
In monitor mode, the COP is disabled if the RST pin or the IRQ1 is held
at VTST. During the break state, VTST on the RST pin disables the COP.
NOTE:
Place COP clearing instructions in the main program and not in an
interrupt subroutine. Such an interrupt subroutine could keep the COP
from generating a reset even while the main program is not working
properly.
20.4 I/O Signals
The following paragraphs describe the signals shown in Figure 20-1.
20.4.1 ICLK
ICLK is the internal oscillator output signal. ICLK frequency is
approximately equal to 47-kHz. See Section 23. Electrical
Specifications for ICLK parameters.
20.4.2 STOP Instruction
The STOP instruction clears the COP prescaler.
20.4.3 COPCTL Write
Writing any value to the COP control register (COPCTL) (see 20.5 COP
Control Register) clears the COP counter and clears bits 12 through 5
of the prescaler. Reading the COP control register returns the low byte
of the reset vector.
20.4.4 Power-On Reset
The power-on reset (POR) circuit clears the COP prescaler 4096 ICLK
cycles after power-up.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Computer Operating Properly (COP)
373
Computer Operating Properly (COP)
20.4.5 Internal Reset
An internal reset clears the COP prescaler and the COP counter.
20.4.6 Reset Vector Fetch
A reset vector fetch occurs when the vector address appears on the data
bus. A reset vector fetch clears the COP prescaler.
20.4.7 COPD (COP Disable)
The COPD signal reflects the state of the COP disable bit (COPD) in the
CONFIG1 register. (See Figure 20-2 and Section 5. Configuration
Registers (CONFIG).)
20.4.8 COPRS (COP Rate Select)
The COPRS signal reflects the state of the COP rate select bit (COPRS)
in the CONFIG1 register.
Address:
$001F
Bit 7
Read:
Write:
Reset:
COPRS
0
6
5
4
LVISTOP LVIRSTD LVIPWRD
0
0
1
3
0
0
2
1
Bit 0
SSREC
STOP
COPD
0
0
0
= Unimplemented
Figure 20-2. Configuration Register 1 (CONFIG1)
COPRS — COP Rate Select
COPRS selects the COP time-out period. Reset clears COPRS.
1 = COP time out period = 213 – 24 ICLK cycles
0 = COP time out period = 218 – 24 ICLK cycles
COPD — COP Disable Bit
COPD disables the COP module.
1 = COP module disabled
0 = COP module enabled
Technical Data
374
MC68HC908LJ12 — Rev. 2.1
Computer Operating Properly (COP)
Freescale Semiconductor
Computer Operating Properly (COP)
20.5 COP Control Register
The COP control register is located at address $FFFF and overlaps the
reset vector. Writing any value to $FFFF clears the COP counter and
starts a new timeout period. Reading location $FFFF returns the low
byte of the reset vector.
Address:
$FFFF
Bit 7
6
5
4
3
Read:
Low byte of reset vector
Write:
Clear COP counter
Reset:
Unaffected by reset
2
1
Bit 0
Figure 20-3. COP Control Register (COPCTL)
20.6 Interrupts
The COP does not generate CPU interrupt requests.
20.7 Monitor Mode
When monitor mode is entered with VTST on the IRQ pin, the COP is
disabled as long as VTST remains on the IRQ pin or the RST pin. When
monitor mode is entered by having blank reset vectors and not having
VTST on the IRQ pin, the COP is automatically disabled until a POR
occurs.
20.8 Low-Power Modes
The WAIT and STOP instructions put the MCU in low
power-consumption standby modes.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Computer Operating Properly (COP)
375
Computer Operating Properly (COP)
20.8.1 Wait Mode
The COP remains active during wait mode. To prevent a COP reset
during wait mode, periodically clear the COP counter in a CPU interrupt
routine.
20.8.2 Stop Mode
Stop mode turns off the ICLK input to the COP and clears the COP
prescaler. Service the COP immediately before entering or after exiting
stop mode to ensure a full COP timeout period after entering or exiting
stop mode.
To prevent inadvertently turning off the COP with a STOP instruction, a
configuration option is available that disables the STOP instruction.
When the STOP bit in the configuration register has the STOP
instruction is disabled, execution of a STOP instruction results in an
illegal opcode reset.
20.9 COP Module During Break Mode
The COP is disabled during a break interrupt when VTST is present on
the RST pin.
Technical Data
376
MC68HC908LJ12 — Rev. 2.1
Computer Operating Properly (COP)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 21. Low-Voltage Inhibit (LVI)
21.1 Contents
21.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
21.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
21.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .378
21.4.1 Interrupt LVI Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
21.4.2 Forced Reset Operation . . . . . . . . . . . . . . . . . . . . . . . . . . .380
21.4.3 Voltage Hysteresis Protection . . . . . . . . . . . . . . . . . . . . . . 380
21.4.4 LVI Trip Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
21.5
LVI Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
21.6 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
21.6.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382
21.6.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .382
21.2 Introduction
This section describes the low-voltage inhibit (LVI) module, which
monitors the voltage on the VDD pin and can force a reset when the VDD
voltage falls below the LVI trip falling voltage, VTRIPF.
21.3 Features
Features of the LVI module include:
•
Programmable LVI interrupt and reset
•
Selectable LVI trip voltage
•
Programmable stop mode operation
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Low-Voltage Inhibit (LVI)
377
Low-Voltage Inhibit (LVI)
Addr.
Register Name
Bit 7
6
Read: LVIOUT
Low-Voltage Inhibit Status
$FE0F
Register Write:
(LVISR)
Reset:
0
LVIIE
5
4
3
2
1
Bit 0
LVIIF
0
0
0
0
0
0
0
0
0
LVIIAK
0
0
0
= Unimplemented
Figure 21-1. LVI I/O Register Summary
21.4 Functional Description
Figure 21-2 shows the structure of the LVI module.
VDD
STOP INSTRUCTION
LVISTOP
FROM CONFIG1
DEFAULT
DISABLED
FROM CONFIG1
LVIRSTD
LVIPWRD
FROM CONFIG1
VDD > VTRIPR = 0
LOW VDD
DETECTOR
LVI RESET
VDD ≤ VTRIPF = 1
FROM LVISR
LVIIE
LVISEL[1:0]
FROM CONFIG2
LVI
INTERRUPT
REQUEST
EDGE
DETECT
LATCH CLR
LVIOUT
LVIIACK
LVIIF
TO LVISR
FROM LVISR
TO LVISR
Figure 21-2. LVI Module Block Diagram
The LVI is disabled out of reset. The LVI module contains a bandgap
reference circuit and comparator. Clearing the LVI power disable bit,
LVIPWRD, enables the LVI to monitor VDD voltage. Clearing the LVI
reset disable bit, LVIRSTD, enables the LVI module to generate a reset
when VDD falls below a voltage, VTRIPF. Setting the LVI enable in stop
mode bit, LVISTOP, enables the LVI to operate in stop mode.
Technical Data
378
MC68HC908LJ12 — Rev. 2.1
Low-Voltage Inhibit (LVI)
Freescale Semiconductor
Low-Voltage Inhibit (LVI)
The LVI trip point selection bits, LVISEL[1:0], select the trip point
voltage, VTRIPF, to be configured for 5V or 3.3V operation. The actual
trip points are shown in Section 23. Electrical Specifications.
Setting LVI interrupt enable bit, LVIIE, enables LVI interrupts whenever
the LVIOUT bit toggles (from logic 0 to logic 1, or from logic 1 to logic 0).
NOTE:
After a power-on reset (POR) the user must configure the LVISEL[1:0}
bits for 3.3V or 5V operation before enabling the LVI module (by clearing
the LVIPWRD bit in CONFIG1 register).
NOTE:
If the user requires 3.3V mode and enables the LVI module after
configuring the LVISEL[1;0] bits to 3.3V operation mode while the VDD
supply is not above the VTRIPF for 3.3V mode, the MCU will immediately
go into reset. The LVI in this case will hold the MCU in reset until either
VDD goes above the rising 3.3V trip point, VTRIPR, which will release
reset or VDD decreases to approximately 0V which will re-trigger the
power-on reset.
LVISTOP, LVIPWRD, LVIRSTD, and LVISEL[1:0] are in the
configuration registers. See Section 5. Configuration Registers
(CONFIG) for details of the LVI’s configuration bits. Once an LVI reset
occurs, the MCU remains in reset until VDD rises above a voltage,
VTRIPR, which causes the MCU to exit reset. See 9.4.2.5 Low-Voltage
Inhibit (LVI) Reset for details of the interaction between the SIM and the
LVI. The output of the comparator controls the state of the LVIOUT flag
in the LVI status register (LVISR). The LVIIE, LVIIF, and LVIIAK bits in
the LVISR control LVI interrupt functions.
An LVI reset also drives the RST pin low to provide low-voltage
protection to external peripheral devices.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Low-Voltage Inhibit (LVI)
379
Low-Voltage Inhibit (LVI)
21.4.1 Interrupt LVI Operation
In applications that can operate at VDD levels below the VTRIPF level,
software can monitor VDD by polling the LVIOUT bit, or by setting the LVI
interrupt enable bit, LVIIE, to enable interrupt requests. In the
configuration register 1 (CONFIG1), the LVIPWRD bit must be at logic 0
to enable the LVI module, and the LVIRSTD bit must be at logic 1 to
disable LVI resets.
The LVI interrupt flag, LVIIF, is set whenever the LVIOUT bit changes
state (toggles). When LVIF is set, a CPU interrupt request is generated
if the LVIIE is also set. In the LVI interrupt service subroutine, LVIIF bit
can be cleared by writing a logic 1 to the LVI interrupt acknowledge bit,
LVIIAK.
21.4.2 Forced Reset Operation
In applications that require VDD to remain above the VTRIPF level,
enabling LVI resets allows the LVI module to reset the MCU when VDD
falls below the VTRIPF level. In the configuration register 1 (CONFIG1),
the LVIPWRD and LVIRSTD bits must be at logic 0 to enable the LVI
module and to enable LVI resets.
If LVIIE is set to enable LVI interrupts when LVIRSTD is cleared, LVI
reset has a higher priority over LVI interrupt. In this case, when VDD falls
below the VTRIPF level, an LVI reset will occur, and the LVIIE bit will be
cleared.
21.4.3 Voltage Hysteresis Protection
Once the LVI has triggered (by having VDD fall below VTRIPF), the LVI
will maintain a reset condition until VDD rises above the rising trip point
voltage, VTRIPR. This prevents a condition in which the MCU is
continually entering and exiting reset if VDD is approximately equal to
VTRIPF. VTRIPR is greater than VTRIPF by the hysteresis voltage, VHYS.
Technical Data
380
MC68HC908LJ12 — Rev. 2.1
Low-Voltage Inhibit (LVI)
Freescale Semiconductor
Low-Voltage Inhibit (LVI)
21.4.4 LVI Trip Selection
The trip point selection bits, LVISEL[1:0], in the CONFIG2 register select
whether the LVI is configured for 5V or 3.3 V operation. (See Section 5.
Configuration Registers (CONFIG).)
NOTE:
The MCU is guaranteed to operate at a minimum supply voltage. The trip
point (VTRIPF [5 V] or VTRIPF [3.3 V]) may be lower than this. (See
Section 23. Electrical Specifications for the actual trip point voltages.)
21.5 LVI Status Register
The LVI status register (LVISR) controls LVI interrupt functions and
indicates if the VDD voltage was detected below the VTRIPF level.
Address:
$FE0F
Bit 7
Read:
LVIOUT
Write:
Reset:
0
6
LVIIE
0
5
4
3
2
1
Bit 0
LVIIF
0
0
0
0
0
0
0
0
0
LVIIAK
0
0
= Unimplemented
Table 21-1. LVI Status Register (LVISR)
LVIOUT — LVI Output Bit
This read-only flag becomes set when the VDD voltage falls below the
VTRIPF trip voltage (see Table 21-2). Reset clears the LVIOUT bit.
Table 21-2. LVIOUT Bit Indication
VDD
LVIOUT
VDD > VTRIPR
0
VDD < VTRIPF
1
VTRIPF < VDD < VTRIPR
Previous value
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Low-Voltage Inhibit (LVI)
381
Low-Voltage Inhibit (LVI)
LVIIE — LVI Interrupt Enable Bit
This read/write bit enables the LVIIF bit to generate CPU interrupt
requests. Reset clears the LVIIE bit.
1 = LVIIF can generate CPU interrupt requests
0 = LVIIF cannot generate CPU interrupt requests
LVIIF — LVI Interrupt Flag
This clearable, read-only flag is set whenever the LVIOUT bit toggles.
Reset clears the LVIIF bit.
1 = LVIOUT has toggled
0 = LVIOUT has not toggled
LVIIAK — LVI Interrupt Acknowledge Bit
Writing a logic 1 to this write-only bit clears the LVI interrupt flag,
LVIIF. LVIIAK always reads as logic 0.
1 = Clears LVIIF bit
0 = No effect
21.6 Low-Power Modes
The STOP and WAIT instructions put the MCU in low powerconsumption standby modes.
21.6.1 Wait Mode
If enabled, the LVI module remains active in wait mode. If enabled to
generate resets or interrupts, the LVI module can generate a reset or an
interrupt and bring the MCU out of wait mode.
21.6.2 Stop Mode
If enabled in stop mode (LVISTOP = 1), the LVI module remains active
in stop mode. If enabled to generate resets or interrupts, the LVI module
can generate a reset or an interrupt and bring the MCU out of stop mode.
NOTE:
If enabled to generate both resets and interrupts, there will be no LVI
interrupts, as resets have a higher priority.
Technical Data
382
MC68HC908LJ12 — Rev. 2.1
Low-Voltage Inhibit (LVI)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 22. Break Module (BRK)
22.1 Contents
22.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
22.3
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
22.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .384
22.4.1 Flag Protection During Break Interrupts . . . . . . . . . . . . . . . 386
22.4.2 CPU During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . .386
22.4.3 TIM1 and TIM2 During Break Interrupts. . . . . . . . . . . . . . . 386
22.4.4 COP During Break Interrupts . . . . . . . . . . . . . . . . . . . . . . . 386
22.5 Low-Power Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
22.5.1 Wait Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .386
22.5.2 Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .387
22.6 Break Module Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
22.6.1 Break Status and Control Register. . . . . . . . . . . . . . . . . . . 387
22.6.2 Break Address Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 388
22.6.3 SIM Break Status Register . . . . . . . . . . . . . . . . . . . . . . . . . 388
22.6.4 SIM Break Flag Control Register . . . . . . . . . . . . . . . . . . . . 390
22.2 Introduction
This section describes the break module. The break module can
generate a break interrupt that stops normal program flow at a defined
address to enter a background program.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Break Module (BRK)
383
Break Module (BRK)
22.3 Features
Features of the break module include:
•
Accessible input/output (I/O) registers during the break interrupt
•
CPU-generated break interrupts
•
Software-generated break interrupts
•
COP disabling during break interrupts
22.4 Functional Description
When the internal address bus matches the value written in the break
address registers, the break module issues a breakpoint signal to the
CPU. The CPU then loads the instruction register with a software
interrupt instruction (SWI) after completion of the current CPU
instruction. The program counter vectors to $FFFC and $FFFD ($FEFC
and $FEFD in monitor mode).
The following events can cause a break interrupt to occur:
•
A CPU-generated address (the address in the program counter)
matches the contents of the break address registers.
•
Software writes a logic 1 to the BRKA bit in the break status and
control register.
When a CPU-generated address matches the contents of the break
address registers, the break interrupt begins after the CPU completes its
current instruction. A return-from-interrupt instruction (RTI) in the break
routine ends the break interrupt and returns the MCU to normal
operation. Figure 22-1 shows the structure of the break module.
Technical Data
384
MC68HC908LJ12 — Rev. 2.1
Break Module (BRK)
Freescale Semiconductor
Break Module (BRK)
IAB15–IAB8
BREAK ADDRESS REGISTER HIGH
8-BIT COMPARATOR
IAB15–IAB0
BREAK
CONTROL
8-BIT COMPARATOR
BREAK ADDRESS REGISTER LOW
IAB7–IAB0
Figure 22-1. Break Module Block Diagram
Addr.
Register Name
Read:
SIM Break Status Register
$FE00
Write:
(SBSR)
Reset:
$FE03
$FE0C
$FE0D
Read:
SIM Break Flag Control
Register Write:
(SBFCR)
Reset:
Read:
Break Address
Register High Write:
(BRKH)
Reset:
Read:
Break Address
Register Low Write:
(BRKL)
Reset:
Read:
Break Status and Control
$FE0E
Register Write:
(BRKSCR)
Reset:
Note: Writing a logic 0 clears SBSW.
Bit 7
6
5
4
3
2
R
R
R
R
R
R
1
SBSW
Note
Bit 0
R
0
BCFE
R
R
R
R
R
R
R
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
BRKE
BRKA
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented
R
= Reserved
Figure 22-2. Break Module I/O Register Summary
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Break Module (BRK)
385
Break Module (BRK)
22.4.1 Flag Protection During Break Interrupts
The BCFE bit in the SIM break flag control register (SBFCR) enables
software to clear status bits during the break state.
22.4.2 CPU During Break Interrupts
The CPU starts a break interrupt by:
•
Loading the instruction register with the SWI instruction
•
Loading the program counter with $FFFC and $FFFD
($FEFC and $FEFD in monitor mode)
The break interrupt begins after completion of the CPU instruction in
progress. If the break address register match occurs on the last cycle of
a CPU instruction, the break interrupt begins immediately.
22.4.3 TIM1 and TIM2 During Break Interrupts
A break interrupt stops the timer counters.
22.4.4 COP During Break Interrupts
The COP is disabled during a break interrupt when VTST is present on
the RST pin.
22.5 Low-Power Modes
The WAIT and STOP instructions put the MCU in low powerconsumption standby modes.
22.5.1 Wait Mode
If enabled, the break module is active in wait mode. In the break routine,
the user can subtract one from the return address on the stack if SBSW
is set (see Section 9. System Integration Module (SIM)). Clear the
SBSW bit by writing logic 0 to it.
Technical Data
386
MC68HC908LJ12 — Rev. 2.1
Break Module (BRK)
Freescale Semiconductor
Break Module (BRK)
22.5.2 Stop Mode
A break interrupt causes exit from stop mode and sets the SBSW bit in
the break status register.
22.6 Break Module Registers
These registers control and monitor operation of the break module:
•
Break status and control register (BRKSCR)
•
Break address register high (BRKH)
•
Break address register low (BRKL)
•
SIM break status register (SBSR)
•
SIM break flag control register (SBFCR)
22.6.1 Break Status and Control Register
The break status and control register (BRKSCR) contains break module
enable and status bits.
Address:
Read:
Write:
Reset:
$FE0E
Bit 7
6
BRKE
BRKA
0
0
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
0
0
0
0
= Unimplemented
Figure 22-3. Break Status and Control Register (BRKSCR)
BRKE — Break Enable Bit
This read/write bit enables breaks on break address register matches.
Clear BRKE by writing a logic 0 to bit 7. Reset clears the BRKE bit.
1 = Breaks enabled on 16-bit address match
0 = Breaks disabled on 16-bit address match
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Break Module (BRK)
387
Break Module (BRK)
BRKA — Break Active Bit
This read/write status and control bit is set when a break address
match occurs. Writing a logic 1 to BRKA generates a break interrupt.
Clear BRKA by writing a logic 0 to it before exiting the break routine.
Reset clears the BRKA bit.
1 = (When read) Break address match
0 = (When read) No break address match
22.6.2 Break Address Registers
The break address registers (BRKH and BRKL) contain the high and low
bytes of the desired breakpoint address. Reset clears the break address
registers.
Address:
Read:
Write:
Reset:
$FE0C
Bit 7
6
5
4
3
2
1
Bit 0
Bit 15
14
13
12
11
10
9
Bit 8
0
0
0
0
0
0
0
0
Figure 22-4. Break Address Register High (BRKH)
Address:
Read:
Write:
Reset:
$FE0D
Bit 7
6
5
4
3
2
1
Bit 0
Bit 7
6
5
4
3
2
1
Bit 0
0
0
0
0
0
0
0
0
Figure 22-5. Break Address Register Low (BRKL)
22.6.3 SIM Break Status Register
The SIM break status register (SBSR) contains a flag to indicate that a
break caused an exit from wait mode. The flag is useful in applications
requiring a return to wait mode after exiting from a break interrupt.
Technical Data
388
MC68HC908LJ12 — Rev. 2.1
Break Module (BRK)
Freescale Semiconductor
Break Module (BRK)
Address:
Read:
Write:
$FE00
Bit 7
6
5
4
3
2
R
R
R
R
R
R
Reset:
1
SBSW
Note
Bit 0
R
0
Note: Writing a logic 0 clears SBSW.
R
= Reserved
Figure 22-6. SIM Break Status Register (SBSR)
SBSW — Break Wait Bit
This status bit is set when a break interrupt causes an exit from wait
mode or stop mode. Clear SBSW by writing a logic 0 to it. Reset clears
SBSW.
1 = Stop mode or wait mode was exited by break interrupt
0 = Stop mode or wait mode was not exited by break interrupt
SBSW can be read within the break interrupt routine. The user can
modify the return address on the stack by subtracting 1 from it. The
following code is an example.
; This code works if the H register has been pushed onto the stack in the break
; service routine software. This code should be executed at the end of the break
; service routine software.
HIBYTE
EQU
5
LOBYTE
EQU
6
;
If not SBSW, do RTI
BRCLR
SBSW,SBSR, RETURN
; See if wait mode or stop mode was exited by
; break.
TST
LOBYTE,SP
;If RETURNLO is not zero,
BNE
DOLO
;then just decrement low byte.
DEC
HIBYTE,SP
;Else deal with high byte, too.
DOLO
DEC
LOBYTE,SP
;Point to WAIT/STOP opcode.
RETURN
PULH
RTI
;Restore H register.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Break Module (BRK)
389
Break Module (BRK)
22.6.4 SIM Break Flag Control Register
The SIM break flag control register (SBFCR) contains a bit that enables
software to clear status bits while the MCU is in a break state.
Address:
Read:
Write:
Reset:
$FE03
Bit 7
6
5
4
3
2
1
Bit 0
BCFE
R
R
R
R
R
R
R
0
R
= Reserved
Figure 22-7. SIM Break Flag Control Register (SBFCR)
BCFE — Break Clear Flag Enable Bit
This read/write bit enables software to clear status bits by accessing
status registers while the MCU is in a break state. To clear status bits
during the break state, the BCFE bit must be set.
1 = Status bits clearable during break
0 = Status bits not clearable during break
Technical Data
390
MC68HC908LJ12 — Rev. 2.1
Break Module (BRK)
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 23. Electrical Specifications
23.1 Contents
23.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
23.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 392
23.4
Functional Operating Range. . . . . . . . . . . . . . . . . . . . . . . . . . 393
23.5
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
23.6
5.0V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 394
23.7
3.3V DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . 396
23.8
5.0V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
23.9
3.3V Control Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
23.10 5.0V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 398
23.11 3.3V Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 398
23.12 5.0V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .399
23.13 3.3V ADC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .400
23.14 Timer Interface Module Characteristics . . . . . . . . . . . . . . . . . 401
23.15 CGM Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . 401
23.16 5.0V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
23.17 3.3V SPI Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
23.18 FLASH Memory Characteristics . . . . . . . . . . . . . . . . . . . . . . . 406
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Electrical Specifications
391
Electrical Specifications
23.2 Introduction
This section contains electrical and timing specifications.
23.3 Absolute Maximum Ratings
Maximum ratings are the extreme limits to which the MCU can be
exposed without permanently damaging it.
NOTE:
This device is not guaranteed to operate properly at the maximum
ratings. Refer to 23.6 5.0V DC Electrical Characteristics for
guaranteed operating conditions.
Table 23-1. Absolute Maximum Ratings(1)
Characteristic
Symbol
Value
Unit
Supply voltage
VDD
–0.3 to +6.0
V
Input voltage
All pins (except IRQ)
IRQ pin
VIN
VSS –0.3 to VDD +0.3
VSS –0.3 to 8.5
V
I
±25
mA
Maximum current out of VSS
IMVSS
100
mA
Maximum current into VDD
IMVDD
100
mA
Storage temperature
TSTG
–55 to +150
°C
Maximum current per pin
excluding VDD and VSS
Notes:
1. Voltages referenced to VSS.
NOTE:
This device contains circuitry to protect the inputs against damage due
to high static voltages or electric fields; however, it is advised that normal
precautions be taken to avoid application of any voltage higher than
maximum-rated voltages to this high-impedance circuit. For proper
operation, it is recommended that VIN and VOUT be constrained to the
range VSS ≤ (VIN or VOUT) ≤ VDD. Reliability of operation is enhanced if
unused inputs are connected to an appropriate logic voltage level (for
example, either VSS or VDD.)
Technical Data
392
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Electrical Specifications
23.4 Functional Operating Range
Table 23-2. Operating Range
Characteristic
Operating temperature range
Operating voltage range
Symbol
Value
Unit
TA
– 40 to +85
°C
VDD
3.3V ± 10%
5.0V ± 10%
V
23.5 Thermal Characteristics
Table 23-3. Thermal Characteristics
Characteristic
Symbol
Value
Unit
Thermal resistance
52-pin LQFP
64-pin LQFP
64-pin QFP
θJA
85
80
70
°C/W
I/O pin power dissipation
PI/O
User determined
W
Power dissipation(1)
PD
PD = (IDD × VDD) + PI/O =
K/(TJ + 273 °C)
W
Constant(2)
K
Average junction temperature
TJ
PD x (TA + 273 °C)
+ PD2 × θJA
W/°C
TA + (PD × θJA)
°C
Notes:
1. Power dissipation is a function of temperature.
2. K constant unique to the device. K can be determined for a known TA and measured PD.
With this value of K, PD and TJ can be determined for any value of TA.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Electrical Specifications
393
Electrical Specifications
23.6 5.0V DC Electrical Characteristics
Table 23-4. 5.0V DC Electrical Characteristics
Characteristic(1)
Symbol
Min
Typ(2)
Max
Unit
Output high voltage (ILOAD = –2.0 mA)
All ports
VOH
VDD –0.8
—
—
V
Output low voltage
(ILOAD = 1.6mA) All ports
(ILOAD = 8.0 mA) PTB2–PTB5
(ILOAD = 15.0 mA) PTB0/TxD–PTB1
VOL
—
—
0.4
V
Input high voltage
All ports, RST, IRQ, OSC1
VIH
0.7 × VDD
—
VDD
V
Input low voltage
All ports, RST, IRQ, OSC1
VIL
VSS
—
0.3 × VDD
V
IDD
—
—
—
—
—
—
—
—
18
15
12
10
mA
mA
mA
mA
—
—
—
—
—
—
—
—
350
50
30
1
µA
µA
µA
µA
VDD supply current
Run(3), fOP = 8 MHz
with all modules on
with ADC on
with ADC off
Wait(4), fOP = 8 MHz (all modules off)
Stop, fOP = 8 kHz
(5)
25°C (with OSC, RTC, LCD(6), LVI on)
25°C (with OSC, RTC, LCD(6) on)
25°C (with OSC, RTC on)
25°C (all modules off)
Digital I/O ports Hi-Z leakage current
All ports, RST
IIL
—
—
± 10
µA
Input current
IRQ
IIN
—
—
±1
µA
Capacitance
Ports (as input or output)
COUT
CIN
—
—
—
—
12
8
pF
POR re-arm voltage(7)
VPOR
0
—
100
mV
POR rise-time ramp rate(8)
RPOR
0.035
—
—
V/ms
Monitor mode entry voltage (at IRQ pin)
VTST
1.5 × VDD
—
8
V
Pullup resistors(9)
PTA0–PTA3, PTD4–PTD7 configured as KBI0–KBI7
RST, IRQ
RPU1
RPU2
—
—
28
28
—
—
kΩ
kΩ
Low-voltage inhibit, trip falling voltage
VTRIPF
4.00
4.32
4.70
V
Low-voltage inhibit, trip rising voltage
VTRIPR
4.00
4.32
4.70
V
Technical Data
394
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Electrical Specifications
Notes:
1. VDD = 4.5 to 5.5 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD.
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD.
5. The 8kHz clock is from a 32kHz clock input at OSC1, for the driving the RTC.
6. LCD driver configured for high current mode.
7. Maximum is highest voltage that POR is guaranteed.
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum
VDD is reached.
9. RPU1 and RPU2 are measured at VDD = 5.0V
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Electrical Specifications
395
Electrical Specifications
23.7 3.3V DC Electrical Characteristics
Table 23-5. 3.3V DC Electrical Characteristics
Characteristic(1)
Symbol
Min
Typ(2)
Max
Unit
Output high voltage (ILOAD = –1.0 mA)
All ports
VOH
VDD –0.4
—
—
V
Output low voltage
(ILOAD = 0.8mA) All ports
(ILOAD = 4.0 mA) PTB2–PTB5
(ILOAD = 10.0 mA) PTB0/TxD–PTB1
VOL
—
—
0.4
V
Input high voltage
All ports, RST, IRQ, OSC1
VIH
0.7 × VDD
—
VDD
V
Input low voltage
All ports, RST, IRQ, OSC1
VIL
VSS
—
0.3 × VDD
V
IDD
—
—
—
—
—
—
—
—
8
6
5
3.5
mA
mA
mA
mA
—
—
—
—
—
—
—
—
280
38
25
1
µA
µA
µA
µA
VDD supply current
Run(3), fOP = 4 MHz
with all modules on
with ADC on
with ADC off
Wait(4), fOP = 4 MHz (all modules off)
Stop, fOP = 8 kHz
(5)
25°C (with OSC, RTC, LCD(6), LVI on)
25°C (with OSC, RTC, LCD(6) on)
25°C (with OSC, RTC on)
25°C (all modules off)
Digital I/O ports Hi-Z leakage current
All ports, RST
IIL
—
—
± 10
µA
Input current
IRQ
IIN
—
—
±1
µA
Capacitance
Ports (as input or output)
COUT
CIN
—
—
—
—
12
8
pF
POR re-arm voltage(7)
VPOR
0
—
100
mV
POR rise-time ramp rate(8)
RPOR
0.02
—
—
V/ms
VHI
1.5 × VDD
—
2 × VDD
V
RPU1
RPU2
—
—
26
28
—
—
kΩ
kΩ
Low-voltage inhibit, trip falling voltage
VTRIPF
2.40
2.57
2.88
V
Low-voltage inhibit, trip rising voltage
VTRIPR
2.46
2.63
2.97
V
Monitor mode entry voltage (at IRQ pin)
Pullup resistors(9)
PTA0–PTA3, PTD4–PTD7 configured as KBI0–KBI7
RST, IRQ
Technical Data
396
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Electrical Specifications
Notes:
1. VDD = 3.0 to 3.6 Vdc, VSS = 0 Vdc, TA = TL to TH, unless otherwise noted.
2. Typical values reflect average measurements at midpoint of voltage range, 25 °C only.
3. Run (operating) IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than
100 pF on all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects run IDD.
4. Wait IDD measured using external square wave clock source. All inputs 0.2 V from rail. No dc loads. Less than 100 pF on
all outputs. CL = 20 pF on OSC2. All ports configured as inputs. OSC2 capacitance linearly affects wait IDD.
5. The 8kHz clock is from a 32kHz clock input at OSC1, for the driving the RTC.
6. LCD driver configured for high current mode.
7. Maximum is highest voltage that POR is guaranteed.
8. If minimum VDD is not reached before the internal POR reset is released, RST must be driven low externally until minimum
VDD is reached.
9. RPU1 and RPU2 are measured at VDD = 3.3V.
23.8 5.0V Control Timing
Table 23-6. 5.0V Control Timing
Characteristic(1)
Symbol
Min
Max
Unit
Internal operating frequency(2)
fOP
—
8
MHz
RST input pulse width low(3)
tIRL
750
—
ns
Notes:
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this
information.
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
23.9 3.3V Control Timing
Table 23-7. 3.3V Control Timing
Characteristic(1)
Symbol
Min
Max
Unit
Internal operating frequency(2)
fOP
—
4
MHz
RST input pulse width low(3)
tIRL
1.5
—
µs
Notes:
1. VSS = 0 Vdc; timing shown with respect to 20% VDD and 70% VDD, unless otherwise noted.
2. Some modules may require a minimum frequency greater than dc for proper operation; see appropriate table for this
information.
3. Minimum pulse width reset is guaranteed to be recognized. It is possible for a smaller pulse width to cause a reset.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Electrical Specifications
397
Electrical Specifications
23.10 5.0V Oscillator Characteristics
Table 23-8. 5.0V Oscillator Specifications
Characteristic
Symbol
Min
Typ
Max
Unit
Internal oscillator clock frequency
fICLK
46k
47k(1)
48k
Hz
External reference clock to OSC1(2)
fOSC
dc
—
20M
Hz
Crystal reference frequency(3)
fXCLK
32.768k
4.9152M
Hz
Crystal load capacitance(4)
CL
—
—
—
Crystal fixed capacitance
C1
—
2 × CL (25p)
—
F
Crystal tuning capacitance
C2
—
2 × CL (25p)
—
F
Feedback bias resistor
RB
—
10M
—
Ω
Series resistor(5)
RS
—
100k
—
Ω
Notes:
1. Typical value reflect average measurements at midpoint of voltage range, 25 °C only.
2. No more than 10% duty cycle deviation from 50%.
3. Fundamental mode crystals only.
4. Consult crystal manufacturer’s data.
5. Not Required for high frequency crystals.
23.11 3.3V Oscillator Characteristics
Table 23-9. 3.3V Oscillator Specifications
Characteristic
Symbol
Min
Typ
Max
Unit
Internal oscillator clock frequency
fICLK
42.8k
43.4k(1)
44k
Hz
External reference clock to OSC1(2)
fOSC
dc
—
16M
Hz
Crystal reference frequency(3)
fXCLK
32.768k
4.9152M
Hz
Crystal load capacitance(4)
CL
—
—
—
Crystal fixed capacitance
C1
—
2 × CL (25p)
—
F
Crystal tuning capacitance
C2
—
2 × CL (25p)
—
F
Feedback bias resistor
RB
—
10M
—
Ω
Series resistor(5)
RS
—
100k
—
Ω
Notes:
1. Typical value reflect average measurements at midpoint of voltage range, 25 °C only.
2. No more than 10% duty cycle deviation from 50%.
3. Fundamental mode crystals only.
4. Consult crystal manufacturer’s data.
5. Not Required for high frequency crystals.
Technical Data
398
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Electrical Specifications
23.12 5.0V ADC Electrical Characteristics
Table 23-10. ADC 5.0V Electrical Characteristics
Characteristic
Symbol
Min
Max
Unit
Supply voltage
VDDA
4.5
5.5
V
VDDA is an dedicated pin and
should be tied to VDD on the
PCB with proper decoupling.
Input range
VADIN
0
VDDA
V
VADIN ≤ VDDA
Resolution
BAD
10
10
bits
Absolute accuracy
AAD
—
± 1.5
LSB
ADC internal clock
fADIC
32 k
2M
Hz
Conversion range
RAD
VREFL
VREFH
V
ADC voltage
reference high
VREFH
—
VDDA + 0.1
V
ADC voltage
reference low
VREFL
VSSA – 0.1
—
V
Conversion time
tADC
16
17
tADIC
cycles
Sample time
tADS
5
—
tADIC
cycles
Monotonically
MAD
Zero input reading
ZADI
000
001
HEX
VADIN = VREFL
Full-scale reading
FADI
3FC
3FF
HEX
VADIN = VREFH
Input capacitance
CADI
—
20
pF
Input impedance
RADI
20M
—
Ω
VREFH/VREFL
IVREF
—
1.6
mA
Includes quantization.
±0.5 LSB = ±1 ADC count.
tADIC = 1/fADIC
VSSA is tied to VSS internally.
Guaranteed
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Notes
Not tested.
Not tested.
Technical Data
Electrical Specifications
399
Electrical Specifications
23.13 3.3V ADC Electrical Characteristics
Table 23-11. ADC 3.3V Electrical Characteristics
Characteristic
Symbol
Min
Max
Unit
Supply voltage
VDDA
3.0
3.6
V
VDDA is an dedicated pin and
should be tied to VDD on the
PCB with proper decoupling.
Input range
VADIN
0
VDDA
V
VADIN ≤ VDDA
Resolution
BAD
10
10
bits
Absolute accuracy
AAD
—
± 1.5
LSB
ADC internal clock
fADIC
32 k
2M
Hz
Conversion range
RAD
VREFL
VREFH
V
ADC voltage
reference high
VREFH
—
VDDA + 0.1
V
ADC voltage
reference low
VREFL
VSSA – 0.1
—
V
Conversion time
tADC
16
17
tADIC
cycles
Sample time
tADS
5
—
tADIC
cycles
Monotonically
MAD
Zero input reading
ZADI
000
001
HEX
VADIN = VREFL
Full-scale reading
FADI
3FC
3FF
HEX
VADIN = VREFH
Input capacitance
CADI
—
20
pF
Not tested.
Input impedance
RADI
20M
—
Ω
Measured at 5V
VREFH/VREFL
IVREF
—
1.6
mA
Includes quantization.
±0.5 LSB = ±1 ADC count.
tADIC = 1/fADIC
VSSA is tied to VSS internally.
Guaranteed
Technical Data
400
Notes
Not tested.
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Electrical Specifications
23.14 Timer Interface Module Characteristics
Characteristic
Input capture pulse width
Symbol
Min
Max
Unit
tTIH, tTIL
1
—
tCYC
23.15 CGM Electrical Specifications
Characteristic
Symbol
Min
Typ
Max
Unit
Reference frequency
fRDV
30
32.768
100
kHz
Range nominal multiplies
fNOM
—
38.4
—
kHz
VCO center-of-range frequency
fVRS
38.4k
—
40.0M
Hz
VCO range linear range multiplier
L
1
—
255
VCO power-of-two-range multiplier
2E
1
—
4
VCO multiply factor
N
1
—
4095
VCO prescale multiplier
2P
1
—
8
Reference divider factor
R
1
1
15
VCO operating frequency
fVCLK
38.4k
—
40.0M
Hz
Manual acquisition time
tLOCK
—
—
50
ms
Automatic lock time
tLOCK
—
—
50
ms
—
fRCLK ×
0.025% ×
2P N/4
Hz
PLL
jitter(1)
fJ
0
Notes:
1. Deviation of average bus frequency over 2ms. N = VCO multiplier.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Electrical Specifications
401
Electrical Specifications
23.16 5.0V SPI Characteristics
Diagram
Number(1)
Characteristic(2)
Symbol
Min
Max
Unit
Operating frequency
Master
Slave
fOP(M)
fOP(S)
fOP/128
dc
fOP/2
fOP
MHz
MHz
1
Cycle time
Master
Slave
tCYC(M)
tCYC(S)
2
1
128
—
tCYC
tCYC
2
Enable lead time
tLead(S)
1
—
tCYC
3
Enable lag time
tLag(S)
1
—
tCYC
4
Clock (SPSCK) high time
Master
Slave
tSCKH(M)
tSCKH(S)
tCYC –25
1/2 tCYC –25
64 tCYC
—
ns
ns
5
Clock (SPSCK) low time
Master
Slave
tSCKL(M)
tSCKL(S)
tCYC –25
1/2 tCYC –25
64 tCYC
—
ns
ns
6
Data setup time (inputs)
Master
Slave
tSU(M)
tSU(S)
30
30
—
—
ns
ns
7
Data hold time (inputs)
Master
Slave
tH(M)
tH(S)
30
30
—
—
ns
ns
8
Access time, slave(3)
CPHA = 0
CPHA = 1
tA(CP0)
tA(CP1)
0
0
40
40
ns
ns
9
Disable time, slave(4)
tDIS(S)
—
40
ns
10
Data valid time, after enable edge
Master
Slave(5)
tV(M)
tV(S)
—
—
50
50
ns
ns
11
Data hold time, outputs, after enable edge
Master
Slave
tHO(M)
tHO(S)
0
0
—
—
ns
ns
Notes:
1. Numbers refer to dimensions in Figure 23-1 and Figure 23-2.
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.
3. Time to data active from high-impedance state
4. Hold time to high-impedance state
5. With 100 pF on all SPI pins
Technical Data
402
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Electrical Specifications
23.17 3.3V SPI Characteristics
Diagram
Number(1)
Characteristic(2)
Symbol
Min
Max
Unit
Operating frequency
Master
Slave
fOP(M)
fOP(S)
fOP/128
dc
fOP/2
fOP
MHz
MHz
1
Cycle time
Master
Slave
tCYC(M)
tCYC(S)
2
1
128
—
tCYC
tCYC
2
Enable lead time
tLead(s)
1
—
tCYC
3
Enable lag time
tLag(s)
1
—
tCYC
4
Clock (SPSCK) high time
Master
Slave
tSCKH(M)
tSCKH(S)
tCYC –35
1/2 tCYC –35
64 tCYC
—
ns
ns
5
Clock (SPSCK) low time
Master
Slave
tSCKL(M)
tSCKL(S)
tCYC –35
1/2 tCYC –35
64 tCYC
—
ns
ns
6
Data setup time (inputs)
Master
Slave
tSU(M)
tSU(S)
40
40
—
—
ns
ns
7
Data hold time (inputs)
Master
Slave
tH(M)
tH(S)
40
40
—
—
ns
ns
8
Access time, slave(3)
CPHA = 0
CPHA = 1
tA(CP0)
tA(CP1)
0
0
50
50
ns
ns
9
Disable time, slave(4)
tDIS(S)
—
50
ns
10
Data valid time, after enable edge
Master
Slave(5)
tV(M)
tV(S)
—
—
60
60
ns
ns
11
Data hold time, outputs, after enable edge
Master
Slave
tHO(M)
tHO(S)
0
0
—
—
ns
ns
Notes:
1. Numbers refer to dimensions in Figure 23-1 and Figure 23-2.
2. All timing is shown with respect to 20% VDD and 70% VDD, unless noted; 100 pF load on all SPI pins.
3. Time to data active from high-impedance state
4. Hold time to high-impedance state
5. With 100 pF on all SPI pins
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Electrical Specifications
403
Electrical Specifications
SS
INPUT
SS PIN OF MASTER HELD HIGH
1
SPSCK OUTPUT
CPOL = 0
NOTE
SPSCK OUTPUT
CPOL = 1
NOTE
5
4
5
4
6
MISO
INPUT
MSB IN
BITS 6–1
11
MOSI
OUTPUT
MASTER MSB OUT
7
LSB IN
10
11
BITS 6–1
MASTER LSB OUT
Note: This first clock edge is generated internally, but is not seen at the SPSCK pin.
a) SPI Master Timing (CPHA = 0)
SS
INPUT
SS PIN OF MASTER HELD HIGH
1
SPSCK OUTPUT
CPOL = 0
5
NOTE
4
SPSCK OUTPUT
CPOL = 1
5
NOTE
4
6
MISO
INPUT
MSB IN
10
MOSI
OUTPUT
BITS 6–1
11
MASTER MSB OUT
7
LSB IN
10
BITS 6–1
MASTER LSB OUT
Note: This last clock edge is generated internally, but is not seen at the SPSCK pin.
b) SPI Master Timing (CPHA = 1)
Figure 23-1. SPI Master Timing
Technical Data
404
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Electrical Specifications
SS
INPUT
3
1
SPSCK INPUT
CPOL = 0
5
4
2
SPSCK INPUT
CPOL = 1
5
4
9
8
MISO
INPUT
SLAVE
MSB OUT
6
MOSI
OUTPUT
BITS 6–1
7
NOTE
11
11
10
MSB IN
SLAVE LSB OUT
BITS 6–1
LSB IN
Note: Not defined but normally MSB of character just received
a) SPI Slave Timing (CPHA = 0)
SS
INPUT
1
SPSCK INPUT
CPOL = 0
5
4
2
3
SPSCK INPUT
CPOL = 1
8
MISO
OUTPUT
5
4
10
NOTE
MOSI
INPUT
9
SLAVE
MSB OUT
6
7
BITS 6–1
11
10
MSB IN
SLAVE LSB OUT
BITS 6–1
LSB IN
Note: Not defined but normally LSB of character previously transmitted
b) SPI Slave Timing (CPHA = 1)
Figure 23-2. SPI Slave Timing
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Electrical Specifications
405
Electrical Specifications
23.18 FLASH Memory Characteristics
Table 23-12. FLASH Memory Electrical Characteristics
Characteristic
Data retention voltage
Symbol
Min.
Max.
Unit
VRDR
1.3
—
V
Number of rows per page
2
Rows
Number of bytes per page
128
Bytes
Read bus clock frequency
fRead(1)
32k
8M
Hz
Page erase time
tErase(2)
1
—
ms
Mass erase time
tMErase(3)
4
—
ms
PGM/ERASE to HVEN setup time
tnvs
10
—
µs
High-voltage hold time
tnvh
5
—
µs
High-voltage hold time (mass erase)
tnvhl
100
—
µs
Program hold time
tpgs
5
—
µs
Program time
tProg
30
40
µs
Address/data setup time
tads
—
30
ns
Address/data hold time
tadh
—
30
ns
Recovery time
trcv(4)
1
—
µs
Cumulative HV period
thv(5)
—
25
ms
Row erase endurance(6)
—
10k
—
Cycles
Row program endurance(7)
—
10k
—
Cycles
Data retention time(8)
—
10
—
Years
Notes:
1. fRead is defined as the frequency range for which the FLASH memory can be read.
2. If the page erase time is longer than tErase (Min.), there is no erase-disturb, but it reduces the endurance of the FLASH
memory.
3. If the mass erase time is longer than tMErase (Min.), there is no erase-disturb, but is reduces the endurance of the FLASH
memory.
4. It is defined as the time it needs before the FLASH can be read after turning off the high voltage charge pump, by clearing
HVEN to logic 0.
5. thv is the cumulative high voltage programming time to the same row before next erase, and the same address can not be
programmed twice before next erase.
6. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many
erase/program cycles.
7. The minimum row endurance value specifies each row of the FLASH memory is guaranteed to work for at least this many
erase/program cycle.
8. The FLASH is guaranteed to retain data over the entire operating temperature range for at least the minimum time
specified.
Technical Data
406
MC68HC908LJ12 — Rev. 2.1
Electrical Specifications
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 24. Mechanical Specifications
24.1 Contents
24.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
24.3
52-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 408
24.4
64-Pin Low-Profile Quad Flat Pack (LQFP) . . . . . . . . . . . . . . 409
24.5
64-Pin Quad Flat Pack (QFP). . . . . . . . . . . . . . . . . . . . . . . . . 410
24.2 Introduction
This section gives the dimensions for:
•
52-pin low-profile quad flat pack (case no. 848D)
•
64-pin low-profile quad flat pack (case no. 840F)
•
64-pin quad flat pack (case no. 840B)
The following figures show the latest package drawings at the time of this
publication. To make sure that you have the latest package
specifications, please visit the Freescale website at http://freescale.com.
Follow the World Wide Web on-line instructions to retrieve the current
mechanical specifications.
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Mechanical Specifications
407
Mechanical Specifications
24.3 52-Pin Low-Profile Quad Flat Pack (LQFP)
4X
4X 13 TIPS
0.20 (0.008) H L–M N
0.20 (0.008) T L–M N
–X–
X=L, M, N
52
40
1
CL
39
AB
3X
G
VIEW Y
–L–
–M–
AB
B
B1
13
V
VIEW Y
BASE METAL
F
PLATING
V1
27
14
J
26
U
–N–
A1
0.13 (0.005)
M
D
T L–M
S
N
S
S1
SECTION AB–AB
A
ROTATED 90° CLOCKWISE
S
4X
C
θ2
0.10 (0.004) T
–H–
–T–
SEATING
PLANE
4X
θ3
VIEW AA
0.05 (0.002)
S
W
θ1
C2
2X R
θ
R1
0.25 (0.010)
GAGE PLANE
K
C1
E
VIEW AA
Z
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.
4. DATUMS –L–, –M– AND –N– TO BE DETERMINED
AT DATUM PLANE –H–.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE –T–.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS
0.25 (0.010) PER SIDE. DIMENSIONS A AND B
DO INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE –H–.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46
(0.018). MINIMUM SPACE BETWEEN
PROTRUSION AND ADJACENT LEAD OR
PROTRUSION 0.07 (0.003).
DIM
A
A1
B
B1
C
C1
C2
D
E
F
G
J
K
R1
S
S1
U
V
V1
W
Z
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
10.00 BSC
5.00 BSC
10.00 BSC
5.00 BSC
–––
1.70
0.05
0.20
1.30
1.50
0.20
0.40
0.75
0.45
0.22
0.35
0.65 BSC
0.07
0.20
0.50 REF
0.08
0.20
12.00 BSC
6.00 BSC
0.09
0.16
12.00 BSC
6.00 BSC
0.20 REF
1.00 REF
0°
7°
–––
0°
12° REF
12° REF
INCHES
MIN
MAX
0.394 BSC
0.197 BSC
0.394 BSC
0.197 BSC
–––
0.067
0.002
0.008
0.051
0.059
0.008
0.016
0.018
0.030
0.009
0.014
0.026 BSC
0.003
0.008
0.020 REF
0.003
0.008
0.472 BSC
0.236 BSC
0.004
0.006
0.472 BSC
0.236 BSC
0.008 REF
0.039 REF
0°
7°
–––
0°
12° REF
12° REF
Figure 24-1. 52-Pin Low-Profile Quad Flat Pack (Case No. 848D)
Technical Data
408
MC68HC908LJ12 — Rev. 2.1
Mechanical Specifications
Freescale Semiconductor
Mechanical Specifications
24.4 64-Pin Low-Profile Quad Flat Pack (LQFP)
4X
4X 16 TIPS
0.2 H A–B D
0.2 C A–B D
A2
0.05
S
49
64
(S)
1
48
θ1
A
0.25
B
θ
E
E1
E1/2
VIEW Y
16
E/2
VIEW AA
NOTES:
1. DIMENSIONS AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE DATUM H IS LOCATED AT
BOTTOM OF LEAD AND IS COINCIDENT WITH
THE LEAD WHERE THE LEAD EXITS THE
PLASTIC BODY AT THE BOTTOM OF THE
PARTING LINE.
4. DATUMS A, B AND D TO BE DETERMINED AT
DATUM PLANE DATUM C.
5. DIMENSIONS D AND E TO BE DETERMINED AT
SEATING PLANE DATUM C.
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE
MOLD PROTRUSION. ALLOWABLE PROTRUSION
IS 0.25 PER SIDE.
7. DIMENSION bDOES NOT INCLUDE DAMBAR
PROTRUSION. DAMBAR PROTRUSION SHALL
NOT CAUSE THE b DIMENSION TO EXCEED 0.35.
MINIMUM SPACE BETWEEN PROTRUSION AND
ADJACENT LEAD OR PROTRUSION 0.07.
32
D
D1/2
D/2
D1
D
4X
A
(θ 2)
0.08 C
C
L
(L)
33
17
H
GAGE PLANE
(L2)
A1
3X
2X R R1
4X
SEATING
PLANE
(θ 3)
VIEW AA
BASE METAL
b1
X
X=A, B OR D
c
c1
CL
AB
e/2
AB
60X
VIEW Y
e
PLATING
b
0.08
M
C A–B D
DIM
A
A1
A2
b
b1
c
c1
D
D1
e
E
E1
L
L1
L2
R1
S
θ
θ1
θ2
θ3
MILLIMETERS
MIN
MAX
—
1.60
0.05
0.15
1.35
1.45
0.17
0.27
0.17
0.23
0.09
0.20
0.09
0.16
12.00 BSC
10.00 BSC
0.50 BSC
12.00 BSC
10.00 BSC
0.45
0.75
1.00 REF
0.50 REF
0.10
0.20
0.20 REF
0°
7°
—
0°
12 REF
12 REF
SECTION AB–AB
ROTATED 90° CLOCKWISE
Figure 24-2. 64-Pin Low-Profile Quad Flat Pack (Case No. 840F)
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Mechanical Specifications
409
Mechanical Specifications
24.5 64-Pin Quad Flat Pack (QFP)
L
48
33
DETAIL A
S
D
S
H A–B
V
0.20 (0.008)
M
B
P
B
M
L
B
0.20 (0.008)
–B–
C A–B
–A–
0.05 (0.002) A–B
S
D
32
S
49
–A–, –B–, –D–
DETAIL A
64
17
F
1
16
–D–
A
0.20 (0.008)
C A–B
S
D
S
0.05 (0.002) A–B
S
0.20 (0.008) M H A–B
S
D
S
M
J
N
E
M
C
M
H
0.02 (0.008)
DATUM
PLANE
M
C A–B
S
D
S
SECTION B–B
0.01 (0.004)
G
U
T
R
–H–
DETAILC
–H–
–C–
SEATING
PLANE
BASE
METAL
D
DATUM
PLANE
Q
K
W
X
DETAIL C
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DATUM PLANE –H– IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.
4. DATUMS –A–, –B– AND –D– TO BE DETERMINED
AT DATUM PLANE –H–.
5. DIMENSIONS S AND V TO BE DETERMINED AT
SEATING PLANE –C–.
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25
(0.010) PER SIDE. DIMENSIONS A AND B DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE –H–.
7. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) PER SIDE.
TOTAL IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION. DAMBAR
CANNOT BE LOCATED ON THE LOWER RADIUS
OR THE FOOT.
DIM
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Q
R
S
T
U
V
W
X
MILLIMETERS
MIN
MAX
13.90
14.10
13.90
14.10
2.15
2.45
0.30
0.45
2.00
2.40
0.30
0.40
0.80 BSC
—
0.25
0.13
0.23
0.65
0.95
12.00 REF
5°
10°
0.13
0.17
0.40 BSC
0°
7°
0.13
0.30
16.95
17.45
0.13
—
0°
—
16.95
17.45
0.35
0.45
1.6 REF
INCHES
MIN
MAX
0.547
0.555
0.547
0.555
0.085
0.096
0.012
0.018
0.079
0.094
0.012
0.016
0.031 BSC
—
0.010
0.005
0.009
0.026
0.037
0.472 REF
5°
10°
0.005
0.007
0.016 BSC
0°
7°
0.005
0.012
0.667
0.687
0.005
—
0°
—
0.667
0.687
0.014
0.018
0.063 REF
Figure 24-3. 64-Pin Quad Flat Pack (Case No. 840B)
Technical Data
410
MC68HC908LJ12 — Rev. 2.1
Mechanical Specifications
Freescale Semiconductor
Technical Data — MC68HC908LJ12
Section 25. Ordering Information
25.1 Contents
25.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
25.3
MC Order Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
25.2 Introduction
This section contains ordering numbers for the MC68HC908LJ12.
25.3 MC Order Numbers
Table 25-1. MC Order Numbers
Package
Operating
Temperature Range
MC68HC908LJ12CFB
52-pin LQFP
–40 °C to +85 °C
MC68HC908LJ12CPB
64-pin LQFP
–40 °C to +85 °C
MC68HC908LJ12CFU
64-pin QFP
–40 °C to +85 °C
MC Order Number
MC68HC908LJ12 — Rev. 2.1
Freescale Semiconductor
Technical Data
Ordering Information
411
Ordering Information
Technical Data
412
MC68HC908LJ12 — Rev. 2.1
Ordering Information
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
RoHS-compliant and/or Pb- free versions of Freescale products have the functionality
and electrical characteristics of their non-RoHS-compliant and/or non-Pb- free
counterparts. For further information, see http://www.freescale.com or contact your
Freescale sales representative.
E-mail:
[email protected]
For information on Freescale.s Environmental Products program, go to
http://www.freescale.com/epp.
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
[email protected]
Rev. 2.1
MC68HC908LJ12/D
August 2, 2005
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners. The ARM
POWERED logo is a registered trademark of ARM Limited. ARM7TDMI-S is a
trademark of ARM Limited. Java and all other Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. The
Bluetooth trademarks are owned by their proprietor and used by Freescale
Semiconductor, Inc. under license.
© Freescale Semiconductor, Inc. 2005. All rights reserved.