Freescale Semiconductor Technical Data MPX2010 Rev 11, 11/2006 10 kPa On-Chip Temperature Compensated & Calibrated Silicon Pressure Sensors MPX2010 MPXV2010G SERIES The MPX2010/MPXV2010G series silicon piezoresistive pressure sensors provide a very accurate and linear voltage output directly proportional to the applied pressure. These sensors house a single monolithic silicon die with the strain gauge and thin film resistor network integrated on each chip. The sensor is laser trimmed for precise span, offset calibration and temperature compensation. COMPENSATED PRESSURE SENSOR 0 to 10 kPa (0 to 1.45 psi) FULL SCALE SPAN: 25 mV Features • Temperature Compensated over 0°C to +85°C • Ratiometric to Supply Voltage • Differential and Gauge Options SMALL OUTLINE PACKAGES Typical Applications • Respiratory Diagnostics • Air Movement Control • Controllers • Pressure Switching ORDERING INFORMATION Device Type Options Case No. MPX Series Order No. Packing Options Device Marking MPXV2010GP CASE 1369-01 MPXV2010DP CASE 1351-01 SMALL OUTLINE PACKAGE (MPXV2010G SERIES) Ported Elements Gauge, Side Port, SMT 1369 MPXV2010GP Trays MPXV2010G Differential, Dual Port, SMT 1351 MPXV2010DP Trays MPXV2010G UNIBODY PACKAGE (MPX2010 SERIES) Basic Element Differential 344 Ported Elements Differential, Dual Port SMALL OUTLINE PACKAGE PIN NUMBERS 1 GND(1) 5 N/C 2 +VOUT 6 N/C 3 VS 7 N/C 4 –VOUT 8 N/C MPX2010D — MPX2010D 344C MPX2010DP — MPX2010DP Gauge 344B MPX2010GP — MPX2010GP 1 GND(1) 3 VS Gauge, Axial 344E MPX2010GS — MPX2010D 2 +VOUT 4 –VOUT 344F MPX2010GSX — MPX2010D 1. Pin 1 in noted by the notch in the lead. Gauge, Axial PC Mount UNIBODY PACKAGE PIN NUMBERS 1. Pin 1 in noted by the notch in the lead. UNIBODY PACKAGES MPX2010GP CASE 344-15 MPX2010GP CASE 344B-01 MPX2010DP CASE 344C-01 © Freescale Semiconductor, Inc., 2006. All rights reserved. MPX2010GS CASE 344E-01 MPX2010GSX CASE 344F-01 VS 3 Thin Film Temperature Compensation and Calibration Circuitry Sensing Element 2 4 +VOUT –VOUT 1 GND Figure 1. Temperature Compensated and Calibrated Pressure Sensor Schematic VOLTAGE OUTPUT VERSUS APPLIED DIFFERENTIAL PRESSURE The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure side (P1) relative to the vacuum side (P2). Similarly, output voltage increases as increasing vacuum is applied to the vacuum side (P2) relative to the pressure side (P1). Figure 1 shows a block diagram of the internal circuitry on the stand-alone pressure sensor chip. Table 1. Maximum Ratings(1) Rating Symbol Value Unit Maximum Pressure (P1 > P2) PMAX 75 kPa Storage Temperature TSTG –40 to +125 °C TA –40 to +125 °C Operating Temperature 1. Exposure beyond the specified limits may cause permanent damage or degradation to the device. MPX2010 2 Sensors Freescale Semiconductor Table 2. Operating Characteristics (VS = 10 VDC, TA = 25°C unless otherwise noted, P1 > P2) Characteristic Symbol Min Typ Max Units POP 0 — 10 kPa VS — 10 16 VDC IO — 6.0 — mAdc VFSS 24 25 26 mV Offset(4) VOFF –1.0 — 1.0 mV Sensitivity ∆V/∆Ρ — 2.5 — mV/kPa — –1.0 — 1.0 %VFSS — — ±0.1 — %VFSS — — ±0.5 — %VFSS TCVFSS –1.0 — 1.0 %VFSS TCVOFF –1.0 — 1.0 mV ZIN 1000 — 2550 W ZOUT 1400 — 3000 W tR — 1.0 — ms — — 2.0 — ms — — ±0.5 — %VFSS Pressure Range(1) Supply Voltage (2) Supply Current Full Scale Span (3) Linearity(5) Pressure Hysteresis (5) (0 to 50 kPa) Temperature Hysteresis(5) (–40°C to +125°C) Temperature Effect on Full Scale Span (5) Temperature Effect on Offset(5) Input Impedance Output Impedance Response Time (6) (10% to 90%) Warm-Up Time Offset Stability(7) 1. 1.0 kPa (kiloPascal) equals 0.145 psi. 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating. 3. Full Scale Span (VFSS) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure. 4. Offset (VOFF) is defined as the output voltage at the minimum rated pressure. 5. Accuracy (error budget) consists of the following: • Linearity: Output deviation from a straight line relationship with pressure over the specified pressure range. • Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied. • Pressure Hysteresis: Output deviation at any pressure within the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure, at 25°C. • TcSpan: Output deviation over the temperature range of 0° to 85°C, relative to 25°C. • TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0° to 85°C, relative to 25°C. • Variation from Nominal: The variation from nominal values, for Offset or Full Scale Span, as a percent of VFSS, at 25°C. 6. Response Time is defined as the time form the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure. 7. Offset stability is the product’s output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test. MPX2010 Sensors Freescale Semiconductor 3 ON-CHIP TEMPERATURE COMPENSATION AND CALIBRATION VS = 10 Vdc TA = 25°C P1 > P2 30 25 TYP Output (mVdc) 20 a 15 MAX Span Range (Typical) 10 5 MIN 0 –5 kPa PSI 2.5 0.362 5 0.725 7.5 1.09 10 1.45 Offset (Typical) Figure 2. Output vs. Pressure Differential Figure 2 shows the output characteristics of the MPX2010/ MPXV2010G series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line. The effects of temperature on full scale span and offset are very small and are shown under Operating Characteristics. Silicone Die Coat This performance over temperature is achieved by having both the shear stress strain gauge and the thin-film resistor circuitry on the same silicon diaphragm. Each chip is dynamically laser trimmed for precise span and offset calibration and temperature compensation. Stainless Steel Metal Cover Die P1 Wire Bond Lead Frame P2 Epoxy Case RTV Die Bond Figure 3. Unibody Package: Cross Sectional Diagram (Not to Scale) Figure 3 illustrates the differential/gauge die in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm. The MPX2010/MPXV2010G series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application. MPX2010 4 Sensors Freescale Semiconductor LINEARITY Least Square Deviation Least Squares Fit Relative Voltage Output Linearity refers to how well a transducer's output follows the equation: Vout = Voff + sensitivity x P over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 4) or (2) a least squares best line fit. While a least squares fit gives the “best case” linearity error (lower numerical value), the calculations required are burdensome. Conversely, an end point fit will give the “worst case” error (often more desirable in error budget calculations) and the calculations are more straightforward for the user. Freescale’s specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure. Exaggerated Performance Curve Straight Line Deviation End Point Straight Line Fit Offset 50 Pressure (% Full Scale) 0 100 Figure 4. Linearity Specification Comparison PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing silicone gel which isolates the die from the environment. The Freescale MPX pressure sensor is designed to operate with positive differential pressure applied, P1 > P2. The Pressure (P1) side may be identified by using the following table. Table 3. Pressure (P1) Side Delineation Part Number MPX2010D Case Type 344 Pressure (P1) Side Identifier Stainless Steep Cap MPX2010DP 344C Side with Part Marking MPX2010GP 344B Side with Port Attached MPX2010GS 344E Side with Port Attached MPX2010GSX 344F Side with Port Attached MPXV2010GP 1369 Side with Port Attached MPXV2010DP 1351 Side with Part Marking MPX2010 Sensors Freescale Semiconductor 5 PACKAGE DIMENSIONS C R M 1 B -A- 2 3 Z 4 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION -A- IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630). DIM A B C D F G J L M N R Y Z N L 1 2 3 4 PIN 1 -TSEATING PLANE J F G F Y D 4 PL 0.136 (0.005) STYLE 1: PIN 1. 2. 3. 4. M T A DAMBAR TRIM ZONE: THIS IS INCLUDED WITHIN DIM. "F" 8 PL M STYLE 2: PIN 1. 2. 3. 4. GROUND + OUTPUT + SUPPLY - OUTPUT STYLE 3: PIN 1. 2. 3. 4. VCC - SUPPLY + SUPPLY GROUND INCHES MILLIMETERS MIN MAX MIN MAX 0.595 0.630 15.11 16.00 0.514 0.534 13.06 13.56 0.200 0.220 5.08 5.59 0.016 0.020 0.41 0.51 0.048 0.064 1.22 1.63 0.100 BSC 2.54 BSC 0.014 0.016 0.36 0.40 0.695 0.725 17.65 18.42 30˚ NOM 30˚ NOM 0.475 0.495 12.07 12.57 0.430 0.450 10.92 11.43 0.048 0.052 1.22 1.32 0.106 0.118 2.68 3.00 GND -VOUT VS +VOUT CASE 344-15 ISSUE AA UNIBODY PACKAGE SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. -A- -T- U L R H N PORT #1 POSITIVE PRESSURE (P1) -Q- B 1 2 3 4 PIN 1 K -P0.25 (0.010) J M T Q S S F C G D 4 PL 0.13 (0.005) M T S S Q S DIM A B C D F G H J K L N P Q R S U INCHES MILLIMETERS MIN MAX MIN MAX 1.145 1.175 29.08 29.85 0.685 0.715 17.40 18.16 0.305 0.325 7.75 8.26 0.016 0.020 0.41 0.51 0.048 0.064 1.22 1.63 0.100 BSC 2.54 BSC 0.182 0.194 4.62 4.93 0.014 0.016 0.36 0.41 0.695 0.725 17.65 18.42 0.290 0.300 7.37 7.62 0.420 0.440 10.67 11.18 0.153 0.159 3.89 4.04 0.153 0.159 3.89 4.04 0.230 0.250 5.84 6.35 0.220 0.240 5.59 6.10 0.910 BSC 23.11 BSC STYLE 1: PIN 1. GROUND 2. + OUTPUT 3. + SUPPLY 4. - OUTPUT CASE 344B-01 ISSUE B UNIBODY PACKAGE MPX2010 6 Sensors Freescale Semiconductor PACKAGE DIMENSIONS NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. -AU V PORT #1 R W L H PORT #2 PORT #1 POSITIVE PRESSURE (P1) PORT #2 VACUUM (P2) N -QB SEATING PLANE SEATING PLANE 1 2 3 4 PIN 1 K -P-T- 0.25 (0.010) -T- M T Q S S F J G D 4 PL C 0.13 (0.005) M T S S Q S DIM A B C D F G H J K L N P Q R S U V W INCHES MILLIMETERS MIN MAX MIN MAX 1.145 1.175 29.08 29.85 0.685 0.715 17.40 18.16 0.405 0.435 10.29 11.05 0.016 0.020 0.41 0.51 0.048 0.064 1.22 1.63 0.100 BSC 2.54 BSC 0.182 0.194 4.62 4.93 0.014 0.016 0.36 0.41 0.695 0.725 17.65 18.42 0.290 0.300 7.37 7.62 0.420 0.440 10.67 11.18 0.153 0.159 3.89 4.04 0.153 0.159 3.89 4.04 0.063 0.083 1.60 2.11 0.220 0.240 5.59 6.10 0.910 BSC 23.11 BSC 0.248 0.278 6.30 7.06 0.310 0.330 7.87 8.38 STYLE 1: PIN 1. 2. 3. 4. GROUND + OUTPUT + SUPPLY - OUTPUT CASE 344C-01 ISSUE B UNIBODY PACKAGE C PORT #1 POSITIVE PRESSURE (P1) -B- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. A BACK SIDE VACUUM (P2) DIM A B C D F G J K N R S V V 4 3 2 1 PIN 1 K J N R SEATING PLANE S -T- INCHES MILLIMETERS MIN MAX MIN MAX 0.690 0.720 17.53 18.28 0.245 0.255 6.22 6.48 0.780 0.820 19.81 20.82 0.016 0.020 0.41 0.51 0.048 0.064 1.22 1.63 0.100 BSC 2.54 BSC 0.014 0.016 0.36 0.41 0.345 0.375 8.76 9.53 0.300 0.310 7.62 7.87 0.178 0.186 4.52 4.72 0.220 0.240 5.59 6.10 0.182 0.194 4.62 4.93 G F D 4 PL 0.13 (0.005) M T B M STYLE 1: PIN 1. 2. 3. 4. GROUND + OUTPUT + SUPPLY - OUTPUT CASE 344E-01 ISSUE B UNIBODY PACKAGE MPX2010 Sensors Freescale Semiconductor 7 PACKAGE DIMENSIONS -TC A E -Q- U N V B R PORT #1 POSITIVE PRESSURE (P1) PIN 1 -P0.25 (0.010) M T Q M 4 3 2 1 S K J F NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. DIM A B C D E F G J K N P Q R S U V INCHES MILLIMETERS MIN MAX MIN MAX 1.080 1.120 27.43 28.45 0.740 0.760 18.80 19.30 0.630 0.650 16.00 16.51 0.016 0.020 0.41 0.51 0.160 0.180 4.06 4.57 0.048 0.064 1.22 1.63 0.100 BSC 2.54 BSC 0.014 0.016 0.36 0.41 0.220 0.240 5.59 6.10 0.070 0.080 1.78 2.03 0.150 0.160 3.81 4.06 0.150 0.160 3.81 4.06 0.440 0.460 11.18 11.68 0.695 0.725 17.65 18.42 0.840 0.860 21.34 21.84 0.182 0.194 4.62 4.92 G D 4 PL 0.13 (0.005) M T P S Q S STYLE 1: PIN 1. 2. 3. 4. GROUND V (+) OUT V SUPPLY V (-) OUT CASE 344F-01 ISSUE B UNIBODY PACKAGE MPX2010 8 Sensors Freescale Semiconductor PACKAGE DIMENSIONS PAGE 1 OF 2 CASE1351-01 ISSUE A SMALL OUTLINE PACKAGE MPX2010 Sensors Freescale Semiconductor 9 PACKAGE DIMENSIONS PAGE 2 OF 2 CASE1351-01 ISSUE A SMALL OUTLINE PACKAGE MPX2010 10 Sensors Freescale Semiconductor PACKAGE DIMENSIONS PAGE 1 OF 2 CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE MPX2010 Sensors Freescale Semiconductor 11 PACKAGE DIMENSIONS PAGE 2 OF 2 CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE MPX2010 12 Sensors Freescale Semiconductor NOTES MPX2010 Sensors Freescale Semiconductor 13 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 [email protected] MPX2010 Rev. 11 11/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2006. All rights reserved.