FREESCALE MRF6V2010NBR1

Freescale Semiconductor
Technical Data
Document Number: MRF6V2010N
Rev. 1, 5/2007
RF Power Field Effect Transistor
N - Channel Enhancement - Mode Lateral MOSFETs
MRF6V2010NR1
MRF6V2010NBR1
Designed primarily for CW large - signal output and driver applications with
frequencies up to 450 MHz. Devices are unmatched and are suitable for use in
industrial, medical and scientific applications.
• Typical CW Performance at 220 MHz: VDD = 50 Volts, IDQ = 30 mA,
Pout = 10 Watts
Power Gain — 23.9 dB
Drain Efficiency — 62%
• Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 10 Watts CW
Output Power
Features
• Integrated ESD Protection
• Excellent Thermal Stability
• Facilitates Manual Gain Control, ALC and Modulation Techniques
• 200°C Capable Plastic Package
• RoHS Compliant
• TO - 270 - 2 in Tape and Reel. R1 Suffix = 500 Units per 24 mm,
13 inch Reel.
• TO - 272 - 2 in Tape and Reel. R1 Suffix = 500 Units per 44 mm,
13 inch Reel.
10 - 450 MHz, 10 W, 50 V
LATERAL N - CHANNEL
BROADBAND
RF POWER MOSFETs
CASE 1265 - 08, STYLE 1
TO - 270 - 2
PLASTIC
MRF6V2010NR1
CASE 1337 - 03, STYLE 1
TO - 272 - 2
PLASTIC
MRF6V2010NBR1
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain - Source Voltage
VDSS
- 0.5, +110
Vdc
Gate - Source Voltage
VGS
- 0.5, +10
Vdc
Storage Temperature Range
Tstg
- 65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Value (1,2)
Unit
RθJC
3.0
°C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
Case Temperature 81°C, 10 W CW
1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF
calculators by product.
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.
Select Documentation/Application Notes - AN1955.
© Freescale Semiconductor, Inc., 2007. All rights reserved.
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
1
Table 3. ESD Protection Characteristics
Test Methodology
Class
Human Body Model (per JESD22 - A114)
2 (Minimum)
Machine Model (per EIA/JESD22 - A115)
A (Minimum)
Charge Device Model (per JESD22 - C101)
IV (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Per JESD 22 - A113, IPC/JEDEC J - STD - 020
Rating
Package Peak Temperature
Unit
3
260
°C
Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted)
Characteristic
Symbol
Min
Typ
Max
Unit
Zero Gate Voltage Drain Leakage Current
(VDS = 100 Vdc, VGS = 0 Vdc)
IDSS
—
—
2.5
mA
Zero Gate Voltage Drain Leakage Current
(VDS = 50 Vdc, VGS = 0 Vdc)
IDSS
—
—
50
μAdc
V(BR)DSS
110
—
—
Vdc
IGSS
—
—
10
μAdc
Gate Threshold Voltage
(VDS = 10 Vdc, ID = 28 μAdc)
VGS(th)
1
1.68
3
Vdc
Gate Quiescent Voltage
(VDD = 50 Vdc, ID = 30 mAdc, Measured in Functional Test)
VGS(Q)
1.5
2.68
3.5
Vdc
Drain - Source On - Voltage
(VGS = 10 Vdc, ID = 70 mAdc)
VDS(on)
—
0.26
—
Vdc
Reverse Transfer Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Crss
—
0.13
—
pF
Output Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Coss
—
7.3
—
pF
Input Capacitance
(VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc)
Ciss
—
16.3
—
pF
Off Characteristics
Drain - Source Breakdown Voltage
(ID = 5 mA, VGS = 0 Vdc)
Gate - Source Leakage Current
(VGS = 5 Vdc, VDS = 0 Vdc)
On Characteristics
Dynamic Characteristics
Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W, f = 220 MHz, CW
Power Gain
Gps
22.5
23.9
25.5
dB
Drain Efficiency
ηD
58
62
—
%
Input Return Loss
IRL
—
- 14
-9
dB
ATTENTION: The MRF6V2010N and MRF6V2010NB are high power devices and special considerations
must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which
exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263
(for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to
ensure proper mounting of these devices.
MRF6V2010NR1 MRF6V2010NBR1
2
RF Device Data
Freescale Semiconductor
B2
L2
B1
VBIAS
+
+
C2
C3
+
C11
C4
C5
C6
C7
C12
C13 C14
C15
VSUPPLY
C16
C8
L3
R1
RF
INPUT
Z1
Z2
L1
Z3
Z5
Z6
C1
0.235″
1.190″
0.619″
0.190″
0.293″
0.120″
x 0.082″
x 0.082″
x 0.082″
x 0.270″
x 0.270″
x 0.270″
Z8
Z9
Z10
Z11
C18
Z4
C9
Z1
Z2
Z3
Z4
Z5
Z6
Z7
RF
OUTPUT
C10
C17
DUT
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Microstrip
Z7
Z8
Z9
Z10
Z11
PCB
0.062″ x 0.270″ Microstrip
0.198″ x 0.082″ Microstrip
5.600″ x 0.082″ Microstrip
0.442″ x 0.082″ Microstrip
0.341″ x 0.082″ Microstrip
Arlon GX - 0300 - 55 - 22, 0.030″, εr = 2.55
Figure 1. MRF6V2010NR1(NBR1) Test Circuit Schematic
Table 6. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values
Part
Description
Part Number
Manufacturer
B1, B2
95 Ω, 100 MHz Long Ferrite Beads
2743021447
Fair - Rite
C1, C8, C11, C18
1000 pF Chip Capacitors
ATC100B102JT50XT
ATC
C2
10 μF, 35 V Tantalum Capacitor
T491D106K035AT
Kemet
C3
22 μF, 35 V Tantalum Capacitor
T491X226K035AT
Kemet
C4, C13
39 K pF Chip Capacitors
ATC200B393KT50XT
ATC
C5, C14
22 K pF Chip Capacitors
ATC200B223KT50XT
ATC
C6, C15
0.1 μF Chip Capacitors
CDR33BX104AKYS
Kemet
C7, C12
2.2 μF, 50 V Chip Capacitors
C1825C225J5RAC
Kemet
C9
0.6 - 4.5 pF Variable Capacitor, Gigatrim
27271SL
Johanson
C10
12 pF Chip Capacitor
ATC100B120JT500XT
ATC
C16
470 μF, 63 V Electrolytic Capacitor
ESMG630ELL471MK205
United Chemi - Con
C17
27 pF Chip Capacitor
ATC100B270JT500XT
ATC
L1
17.5 nH Inductor
B06T
CoilCraft
L2, L3
82 nH Inductors
1812SMS - 82NJ
CoilCraft
R1
120 Ω, 1/4 W Chip Resistor
CRCW12061200FKTA
Vishay
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
3
C14
C5
C13
C6
C4
C7
R1
C3
B2
L2
B1
C2
C15
C12
C11
C8
L3
CUT OUT AREA
L1
C1
C16
C17
C18
C10
C9
MRF6V2010N/NB
Rev. 3
Figure 2. MRF6V2010NR1(NBR1) Test Circuit Component Layout
MRF6V2010NR1 MRF6V2010NBR1
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
100
100
ID, DRAIN CURRENT (AMPS)
C, CAPACITANCE (pF)
Ciss
10
Coss
Measured with ±30 mV(rms)ac @ 1 MHz
VGS = 0 Vdc
1
10
1
Crss
TC = 25°C
0.1
0.1
10
20
30
40
50
1
10
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
VDS, DRAIN−SOURCE VOLTAGE (VOLTS)
Figure 3. Capacitance versus Drain - Source Voltage
Figure 4. DC Safe Operating Area
0.35
25
0.3
24
0.25
0.2
2.75 V
0.15
2.63 V
0.1
2.5 V
0.05
200
10
20
38 mA
23
30 mA
22
23 mA
21
20 15 mA
VDD = 50 Vdc
f1 = 220 MHz
19
2.25 V
18
0
0
20
40
60
80
100
120
1
0.1
DRAIN VOLTAGE (VOLTS)
Pout, OUTPUT POWER (WATTS) CW
Figure 5. DC Drain Current versus Drain Voltage
Figure 6. CW Power Gain versus Output Power
−20
15 mA
−25
23 mA
−30
47
Pout, OUTPUT POWER (dBm)
IMD, THIRD ORDER INTERMODULATION
DISTORTION (dBc)
100
IDQ = 45 mA
VGS = 3 V
Gps, POWER GAIN (dB)
ID, DRAIN CURRENT (AMPS)
0
30 mA
−35
38 mA
−40
45 mA
−45
−50
IDQ = 60 mA
−55
1
VDD = 50 Vdc
f1 = 220 MHz, f2 = 220.1 MHz
Two −Tone Measurements
100 kHz Tone Spacing
10
Ideal
45
P3dB = 40.87 dBm (12.2 W)
43
P1dB = 40.43 dBm (11.04 W)
41
Actual
39
VDD = 50 Vdc, IDQ = 30 mA
f = 220 MHz
20
37
13
15
17
19
21
23
Pout, OUTPUT POWER (WATTS) PEP
Pin, INPUT POWER (dBm)
Figure 7. Third Order Intermodulation Distortion
versus Output Power
Figure 8. CW Output Power versus Input Power
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
26
45
TC = −30_C
Pout, OUTPUT POWER (dBm)
Gps, POWER GAIN (dB)
24
22
20
18
50 V
45 V
40 V
16
35 V
30 V
14
25 V
IDQ = 30 mA
f = 220 MHz
12
VDD = 20 V
85_C
25_C
35
30
VDD = 50 Vdc
IDQ = 30 mA
f = 220 MHz
25
20
10
2
4
6
8
10
12
14
15
20
25
Figure 10. Power Output versus Power Input
108
72
25_C
−30_C
85_C
TC = −30_C
54
45
22
36
85_C
ηD
25_C
27
18
20
VDD = 50 Vdc
IDQ = 30 mA
f = 220 MHz
19
1
MTTF (HOURS)
63
Gps
24
18
0.1
10
Figure 9. Power Gain versus Output Power
25
21
5
Pin, INPUT POWER (dBm)
26
23
0
Pout, OUTPUT POWER (WATTS) CW
ηD, DRAIN EFFICIENCY (%)
0
Gps, POWER GAIN (dB)
40
107
106
9
0
10
Pout, OUTPUT POWER (WATTS) CW
Figure 11. Power Gain and Drain Efficiency
versus CW Output Power
20
105
90
110
130
150
170
190
210
230
250
TJ, JUNCTION TEMPERATURE (°C)
This above graph displays calculated MTTF in hours when the device
is operated at VDD = 50 Vdc, Pout = 10 W CW, and ηD = 62%.
MTTF calculator available at http:/www.freescale.com/rf. Select Tools/
Software/Application Software/Calculators to access the MTTF calcu−
lators by product.
Figure 12. MTTF versus Junction Temperature
MRF6V2010NR1 MRF6V2010NBR1
6
RF Device Data
Freescale Semiconductor
Zo = 50 Ω
Zload
f = 220 MHz
Zsource
f = 220 MHz
VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W CW
f
MHz
Zsource
W
Zload
W
220
20 + j25
75 + j44
Zsource = Test circuit impedance as measured from
gate to ground.
Zload
= Test circuit impedance as measured
from drain to ground.
Output
Matching
Network
Device
Under
Test
Input
Matching
Network
Z
source
Z
load
Figure 13. Series Equivalent Source and Load Impedance
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
7
PACKAGE DIMENSIONS
MRF6V2010NR1 MRF6V2010NBR1
8
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
9
MRF6V2010NR1 MRF6V2010NBR1
10
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
11
MRF6V2010NR1 MRF6V2010NBR1
12
RF Device Data
Freescale Semiconductor
MRF6V2010NR1 MRF6V2010NBR1
RF Device Data
Freescale Semiconductor
13
PRODUCT DOCUMENTATION
Refer to the following documents to aid your design process.
Application Notes
• AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages
• AN1955: Thermal Measurement Methodology of RF Power Amplifiers
• AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages
Engineering Bulletins
• EB212: Using Data Sheet Impedances for RF LDMOS Devices
REVISION HISTORY
The following table summarizes revisions to this document.
Revision
Date
Description
0
Feb. 2007
• Initial Release of Data Sheet
1
May 2007
• Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C1,
C8, C11, C18, C4, C13, C5, and C14, p. 3
• Corrected Series Impedance Zsource and Zload values, Fig. 13, Series Equivalent Source and Load
Impedance, p. 7
MRF6V2010NR1 MRF6V2010NBR1
14
RF Device Data
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1 - 8 - 1, Shimo - Meguro, Meguro - ku,
Tokyo 153 - 0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1 - 800 - 441 - 2447 or 303 - 675 - 2140
Fax: 303 - 675 - 2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2007. All rights reserved.
MRF6V2010NR1 MRF6V2010NBR1
Document
Number:
RF
Device
Data MRF6V2010N
Rev. 1, 5/2007
Freescale
Semiconductor
15