Freescale Semiconductor Technical Data Document Number: MRF6V2010N Rev. 1, 5/2007 RF Power Field Effect Transistor N - Channel Enhancement - Mode Lateral MOSFETs MRF6V2010NR1 MRF6V2010NBR1 Designed primarily for CW large - signal output and driver applications with frequencies up to 450 MHz. Devices are unmatched and are suitable for use in industrial, medical and scientific applications. • Typical CW Performance at 220 MHz: VDD = 50 Volts, IDQ = 30 mA, Pout = 10 Watts Power Gain — 23.9 dB Drain Efficiency — 62% • Capable of Handling 10:1 VSWR, @ 50 Vdc, 220 MHz, 10 Watts CW Output Power Features • Integrated ESD Protection • Excellent Thermal Stability • Facilitates Manual Gain Control, ALC and Modulation Techniques • 200°C Capable Plastic Package • RoHS Compliant • TO - 270 - 2 in Tape and Reel. R1 Suffix = 500 Units per 24 mm, 13 inch Reel. • TO - 272 - 2 in Tape and Reel. R1 Suffix = 500 Units per 44 mm, 13 inch Reel. 10 - 450 MHz, 10 W, 50 V LATERAL N - CHANNEL BROADBAND RF POWER MOSFETs CASE 1265 - 08, STYLE 1 TO - 270 - 2 PLASTIC MRF6V2010NR1 CASE 1337 - 03, STYLE 1 TO - 272 - 2 PLASTIC MRF6V2010NBR1 Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDSS - 0.5, +110 Vdc Gate - Source Voltage VGS - 0.5, +10 Vdc Storage Temperature Range Tstg - 65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Value (1,2) Unit RθJC 3.0 °C/W Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 81°C, 10 W CW 1. MTTF calculator available at http://www.freescale.com/rf. Select Tools/Software/Application Software/Calculators to access the MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2007. All rights reserved. RF Device Data Freescale Semiconductor MRF6V2010NR1 MRF6V2010NBR1 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 2 (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Moisture Sensitivity Level Test Methodology Per JESD 22 - A113, IPC/JEDEC J - STD - 020 Rating Package Peak Temperature Unit 3 260 °C Table 5. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 2.5 mA Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 50 μAdc V(BR)DSS 110 — — Vdc IGSS — — 10 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 28 μAdc) VGS(th) 1 1.68 3 Vdc Gate Quiescent Voltage (VDD = 50 Vdc, ID = 30 mAdc, Measured in Functional Test) VGS(Q) 1.5 2.68 3.5 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 70 mAdc) VDS(on) — 0.26 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.13 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 7.3 — pF Input Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Ciss — 16.3 — pF Off Characteristics Drain - Source Breakdown Voltage (ID = 5 mA, VGS = 0 Vdc) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) On Characteristics Dynamic Characteristics Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W, f = 220 MHz, CW Power Gain Gps 22.5 23.9 25.5 dB Drain Efficiency ηD 58 62 — % Input Return Loss IRL — - 14 -9 dB ATTENTION: The MRF6V2010N and MRF6V2010NB are high power devices and special considerations must be followed in board design and mounting. Incorrect mounting can lead to internal temperatures which exceed the maximum allowable operating junction temperature. Refer to Freescale Application Note AN3263 (for bolt down mounting) or AN1907 (for solder reflow mounting) PRIOR TO STARTING SYSTEM DESIGN to ensure proper mounting of these devices. MRF6V2010NR1 MRF6V2010NBR1 2 RF Device Data Freescale Semiconductor B2 L2 B1 VBIAS + + C2 C3 + C11 C4 C5 C6 C7 C12 C13 C14 C15 VSUPPLY C16 C8 L3 R1 RF INPUT Z1 Z2 L1 Z3 Z5 Z6 C1 0.235″ 1.190″ 0.619″ 0.190″ 0.293″ 0.120″ x 0.082″ x 0.082″ x 0.082″ x 0.270″ x 0.270″ x 0.270″ Z8 Z9 Z10 Z11 C18 Z4 C9 Z1 Z2 Z3 Z4 Z5 Z6 Z7 RF OUTPUT C10 C17 DUT Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z7 Z8 Z9 Z10 Z11 PCB 0.062″ x 0.270″ Microstrip 0.198″ x 0.082″ Microstrip 5.600″ x 0.082″ Microstrip 0.442″ x 0.082″ Microstrip 0.341″ x 0.082″ Microstrip Arlon GX - 0300 - 55 - 22, 0.030″, εr = 2.55 Figure 1. MRF6V2010NR1(NBR1) Test Circuit Schematic Table 6. MRF6V2010NR1(NBR1) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1, B2 95 Ω, 100 MHz Long Ferrite Beads 2743021447 Fair - Rite C1, C8, C11, C18 1000 pF Chip Capacitors ATC100B102JT50XT ATC C2 10 μF, 35 V Tantalum Capacitor T491D106K035AT Kemet C3 22 μF, 35 V Tantalum Capacitor T491X226K035AT Kemet C4, C13 39 K pF Chip Capacitors ATC200B393KT50XT ATC C5, C14 22 K pF Chip Capacitors ATC200B223KT50XT ATC C6, C15 0.1 μF Chip Capacitors CDR33BX104AKYS Kemet C7, C12 2.2 μF, 50 V Chip Capacitors C1825C225J5RAC Kemet C9 0.6 - 4.5 pF Variable Capacitor, Gigatrim 27271SL Johanson C10 12 pF Chip Capacitor ATC100B120JT500XT ATC C16 470 μF, 63 V Electrolytic Capacitor ESMG630ELL471MK205 United Chemi - Con C17 27 pF Chip Capacitor ATC100B270JT500XT ATC L1 17.5 nH Inductor B06T CoilCraft L2, L3 82 nH Inductors 1812SMS - 82NJ CoilCraft R1 120 Ω, 1/4 W Chip Resistor CRCW12061200FKTA Vishay MRF6V2010NR1 MRF6V2010NBR1 RF Device Data Freescale Semiconductor 3 C14 C5 C13 C6 C4 C7 R1 C3 B2 L2 B1 C2 C15 C12 C11 C8 L3 CUT OUT AREA L1 C1 C16 C17 C18 C10 C9 MRF6V2010N/NB Rev. 3 Figure 2. MRF6V2010NR1(NBR1) Test Circuit Component Layout MRF6V2010NR1 MRF6V2010NBR1 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 100 100 ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) Ciss 10 Coss Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1 10 1 Crss TC = 25°C 0.1 0.1 10 20 30 40 50 1 10 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) VDS, DRAIN−SOURCE VOLTAGE (VOLTS) Figure 3. Capacitance versus Drain - Source Voltage Figure 4. DC Safe Operating Area 0.35 25 0.3 24 0.25 0.2 2.75 V 0.15 2.63 V 0.1 2.5 V 0.05 200 10 20 38 mA 23 30 mA 22 23 mA 21 20 15 mA VDD = 50 Vdc f1 = 220 MHz 19 2.25 V 18 0 0 20 40 60 80 100 120 1 0.1 DRAIN VOLTAGE (VOLTS) Pout, OUTPUT POWER (WATTS) CW Figure 5. DC Drain Current versus Drain Voltage Figure 6. CW Power Gain versus Output Power −20 15 mA −25 23 mA −30 47 Pout, OUTPUT POWER (dBm) IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) 100 IDQ = 45 mA VGS = 3 V Gps, POWER GAIN (dB) ID, DRAIN CURRENT (AMPS) 0 30 mA −35 38 mA −40 45 mA −45 −50 IDQ = 60 mA −55 1 VDD = 50 Vdc f1 = 220 MHz, f2 = 220.1 MHz Two −Tone Measurements 100 kHz Tone Spacing 10 Ideal 45 P3dB = 40.87 dBm (12.2 W) 43 P1dB = 40.43 dBm (11.04 W) 41 Actual 39 VDD = 50 Vdc, IDQ = 30 mA f = 220 MHz 20 37 13 15 17 19 21 23 Pout, OUTPUT POWER (WATTS) PEP Pin, INPUT POWER (dBm) Figure 7. Third Order Intermodulation Distortion versus Output Power Figure 8. CW Output Power versus Input Power MRF6V2010NR1 MRF6V2010NBR1 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 26 45 TC = −30_C Pout, OUTPUT POWER (dBm) Gps, POWER GAIN (dB) 24 22 20 18 50 V 45 V 40 V 16 35 V 30 V 14 25 V IDQ = 30 mA f = 220 MHz 12 VDD = 20 V 85_C 25_C 35 30 VDD = 50 Vdc IDQ = 30 mA f = 220 MHz 25 20 10 2 4 6 8 10 12 14 15 20 25 Figure 10. Power Output versus Power Input 108 72 25_C −30_C 85_C TC = −30_C 54 45 22 36 85_C ηD 25_C 27 18 20 VDD = 50 Vdc IDQ = 30 mA f = 220 MHz 19 1 MTTF (HOURS) 63 Gps 24 18 0.1 10 Figure 9. Power Gain versus Output Power 25 21 5 Pin, INPUT POWER (dBm) 26 23 0 Pout, OUTPUT POWER (WATTS) CW ηD, DRAIN EFFICIENCY (%) 0 Gps, POWER GAIN (dB) 40 107 106 9 0 10 Pout, OUTPUT POWER (WATTS) CW Figure 11. Power Gain and Drain Efficiency versus CW Output Power 20 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 10 W CW, and ηD = 62%. MTTF calculator available at http:/www.freescale.com/rf. Select Tools/ Software/Application Software/Calculators to access the MTTF calcu− lators by product. Figure 12. MTTF versus Junction Temperature MRF6V2010NR1 MRF6V2010NBR1 6 RF Device Data Freescale Semiconductor Zo = 50 Ω Zload f = 220 MHz Zsource f = 220 MHz VDD = 50 Vdc, IDQ = 30 mA, Pout = 10 W CW f MHz Zsource W Zload W 220 20 + j25 75 + j44 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 13. Series Equivalent Source and Load Impedance MRF6V2010NR1 MRF6V2010NBR1 RF Device Data Freescale Semiconductor 7 PACKAGE DIMENSIONS MRF6V2010NR1 MRF6V2010NBR1 8 RF Device Data Freescale Semiconductor MRF6V2010NR1 MRF6V2010NBR1 RF Device Data Freescale Semiconductor 9 MRF6V2010NR1 MRF6V2010NBR1 10 RF Device Data Freescale Semiconductor MRF6V2010NR1 MRF6V2010NBR1 RF Device Data Freescale Semiconductor 11 MRF6V2010NR1 MRF6V2010NBR1 12 RF Device Data Freescale Semiconductor MRF6V2010NR1 MRF6V2010NBR1 RF Device Data Freescale Semiconductor 13 PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1907: Solder Reflow Attach Method for High Power RF Devices in Plastic Packages • AN1955: Thermal Measurement Methodology of RF Power Amplifiers • AN3263: Bolt Down Mounting Method for High Power RF Transistors and RFICs in Over - Molded Plastic Packages Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 Feb. 2007 • Initial Release of Data Sheet 1 May 2007 • Corrected Test Circuit Component part numbers in Table 6, Component Designations and Values for C1, C8, C11, C18, C4, C13, C5, and C14, p. 3 • Corrected Series Impedance Zsource and Zload values, Fig. 13, Series Equivalent Source and Load Impedance, p. 7 MRF6V2010NR1 MRF6V2010NBR1 14 RF Device Data Freescale Semiconductor How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or 303 - 675 - 2140 Fax: 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2007. All rights reserved. MRF6V2010NR1 MRF6V2010NBR1 Document Number: RF Device Data MRF6V2010N Rev. 1, 5/2007 Freescale Semiconductor 15