TI BQ2002CPN

bq2002C
NiCd/NiMH Fast-Charge Management IC
Features
General Description
➤
The bq2002C Fast-Charge IC is a lowcost CMOS battery-charge controller
providing reliable charge termination
for both NiCd and NiMH battery applications. Controlling a current-limited
or constant-current supply allows the
bq2002C to be the basis for a costeffective stand-alone or system-integrated charger. The bq2002C integrates fast charge with pulsed-trickle
control in a single IC for charging one
or more NiCd or NiMH battery cells.
➤
➤
Fast charge of nickel cadmium
or nickel-metal hydride batteries
Direct LED output displays
charge status
Fast-charge termination by -∆V,
maximum voltage, maximum
temperature, and maximum
time
➤
Internal band-gap voltage reference
➤
Selectable pulse-trickle charge
rates
➤
Low-power mode
➤
8-pin 300-mil DIP or 150-mil
SOIC
Pin Connections
Fast charge is initiated on application
of the charging supply or battery
replacement. For safety, fast charge is
inhibited if the battery temperature
and voltage are outside configured
limits.
Fast charge is terminated by any of
the following:
n
Peak voltage detection (PVD)
n
Negative delta voltage (-∆V)
n
Maximum voltage
n
Maximum temperature
n
Maximum time
After fast charge, the bq2002C pulsetrickles the battery per the preconfigured limits. Fast charge may be
inhibited using the INH pin. The
bq2002C may also be placed in lowstandby-power mode to reduce
system power consumption.
Pin Names
TM
1
8
CC
LED
2
7
INH
BAT
3
6
VCC
VSS
4
5
TS
TM
Timer mode select input
TS
Temperature sense input
LED
Charging status output
VCC
Supply voltage input
BAT
Battery voltage input
INH
Charge inhibit input
VSS
System ground
CC
Charge control output
8-Pin DIP or
Narrow SOIC
PN-200201.eps
9/97 B
1
bq2002C
TM
Charge control output
CC
Pin Descriptions
An open-drain output used to control the
charging current to the battery. CC switching to high impedance (Z) enables charging
current to flow, and low to inhibit charging
current. CC is modulated to provide pulse
trickle.
Timer mode input
A three-level input that controls the settings
for the fast charge safety timer, voltage termination mode, pulse-trickle, and voltage
hold-off time.
LED
Functional Description
Charging output status
Open-drain output that indicates the charging
status.
BAT
Figure 2 shows a state diagram and Figure 3 shows a
block diagram of the bq2002C.
Battery input voltage
Battery Voltage and Temperature
Measurements
The battery voltage sense input. The input to
this pin is created by a high-impedance resistor divider network connected between
the positive and negative terminals of the
battery.
VSS
System ground
TS
Temperature sense input
Battery voltage and temperature are monitored for
maximum allowable values. The voltage presented on
the battery sense input, BAT, should represent a
single-cell potential for the battery under charge. A
resistor-divider ratio of
RB1
=N-1
RB2
Input for an external battery temperature
monitoring thermistor.
VCC
is recommended to maintain the battery voltage within
the valid range, where N is the number of cells, RB1 is
the resistor connected to the positive battery terminal,
and RB2 is the resistor connected to the negative
battery terminal. See Figure 1.
Supply voltage input
5.0V ± 20% power input.
INH
Charge inhibit input
Note: This resistor-divider network input impedance to
end-to-end should be at least 200kΩ and less than 1 MΩ.
When high, INH suspends the fast charge in
progress. When returned low, the IC resumes operation at the point where initially
suspended.
A ground-referenced negative temperature coefficient
thermistor placed near the battery may be used as a lowcost temperature-to-voltage transducer. The temperature
sense voltage input at TS is developed using a resistorthermistor network between VCC and VSS. See Figure 1.
VCC
PACK +
RT
RB1
VCC
R3
BAT
bq2002C
TM
RB2
TS
N
T
C
bq2002C
R4
VSS
VSS
BAT pin connection
Mid-level
setting for TM
Thermistor connection
NTC = negative temperature coefficient thermistor.
Fg2002/C.eps
Figure 1. Voltage and Temperature Monitoring and TM Pin Configuration
2
bq2002C
Chip on
4.0V
VCC
Battery Voltage
too High?
VBAT > 2V
VBAT < 2V
Battery Voltage
too Low?
VBAT < 0.84V
0.84V < VBAT
VTS > VCC/2
VTS < VCC/2
Battery
Temperature?
Charge
Pending
Fast
LED =
Low
VBAT > 0.84V and
VBAT < 2V and
VTS > VCC/2
VBAT > 2V or
VTS < VCC/2 or
PVD or - V or
Maximum Time Out
Trickle
LED =
Flash
VBAT > 2V
VBAT
2V
Trickle
LED = Z
SD2002C.eps
Figure 2. State Diagram
Clock
Phase
Generator
OSC
TM
Timing
Control
Sample
History
Voltage
Reference
PVD, - V
ALU
A to D
Converter
INH
Charge-Control
State Machine
LBAT
Check
HTF TCO
Check Check
Power-On
Reset
CC
LED
TS
Power
Down
VCC
MCV
Check
BAT
VSS
Bd2002CEG.eps
Figure 3. Block Diagram
3
bq2002C
VCC = 0
Fast Charging
Pulse-Trickle
Fast Charging
1s
CC Output
See
Table 1
Charge initiated by application of power
Charge initiated by battery replacement
LED
TD2002C1.eps
Figure 4. Charge Cycle Phases
pending state. In this state pulse trickle charge is
applied to the battery and the LED flashes until the
voltage and temperature come into the allowed fast
charge range or VBAT rises above VMCV. Anytime VBAT
≥ VMCV, the IC enters the Charge Complete/Battery
Absent state. In this state the LED is off and trickle
charge is applied to the battery until the next new
charge cycle begins.
Starting A Charge Cycle
Either of two events starts a charge cycle (see Figure 4):
1. Application of power to VCC or
2. Voltage at the BAT pin falling through the maximum
cell voltage VMCV where
Fast charge continues until termination by one or more of
the five possible termination conditions:
VMCV = 2V ±5%.
If the battery is within the configured temperature and
voltage limits, the IC begins fast charge. The valid
battery voltage range is VLBAT < VBAT < VMCV, where
VLBAT = 0.175 ∗ VCC ±20%
The valid temperature range is VTS > VHTF where
VHTF = 0.6 ∗ VCC ±5%.
n
Peak voltage detection (PVD)
n
Negative delta voltage (-∆V)
n
Maximum voltage
n
Maximum temperature
n
Maximum time
If VBAT ≤ VLBAT or VTS ≤ VHTF, the IC enters the charge-
Table 1. Fast-Charge Safety Time/Hold-Off Table
PulseTrickle
Rate
PulseTrickle
Pulse Width
(ms)
Maximum
Synchronized
Sampling
Period
(seconds)
Corresponding
Fast-Charge
Rate
TM
Termination
Typical
FastCharge
Time Limits
(minutes)
C/2
Mid
PVD
160
300
C/32
73
18.7
1C
Low
PVD
80
150
C/32
37
18.7
2C
High
-∆V
40
75
C/32
18
9.4
Notes:
Typical PVD
and -∆V
Hold-Off
Time (seconds)
Typical conditions = 25°C, VCC = 5.0V
Mid = 0.5 * VCC ±0.5V
Tolerance on all timing is ±12%.
4
bq2002C
Maximum charge time is configured using the TM pin.
Time settings are available for corresponding charge
rates of C/2, 1C, and 2C. Maximum time-out termination is enforced on the fast-charge phase, then reset, and
enforced again on the top-off phase, if selected. There is
no time limit on the trickle-charge phase.
PVD and -∆V Termination
There are two modes for voltage termination, depending on the state of TM. For -∆V (TM = high), if VBAT is
lower than any previously measured value by 12mV
±3mV, fast charge is terminated. For PVD (TM = low or
mid), a decrease of 2.5mV ±2.5mV terminates fast
charge. The PVD and -∆V tests are valid in the range
1V < VBAT < 2V.
Pulse-Trickle Charge
Pulse-trickle is used to compensate for self-discharge
while the battery is idle in the charger. The battery is
pulse-trickle charged by driving the CC pin active once
per second for the period specified in Table 1. This
results in a trickle rate of C/32.
Synchronized Voltage Sampling
Voltage sampling at the BAT pin for PVD and -∆V termination may be synchronized to an external stimulus
using the INH input. Low-high-low input pulses
between 100ns and 3.5ms in width must be applied at
the INH pin with a frequency greater than the “maximum synchronized sampling period” set by the state of
the TM pin as shown in Table 1. Voltage is sampled on
the falling edge of such pulses. If the time between
pulses is greater than the synchronizing period, voltage
sampling “free-runs” at once every 17 seconds. A sample
is taken by averaging together voltage measurements
taken 57µs apart. The IC takes 32 measurements in
PVD mode and 16 measurements in -∆V mode. The
resulting sample periods (9.17 and 18.18ms, respectively) filter out harmonics centered around 55 and
109Hz. This technique minimizes the effect of any AC
line ripple that may feed through the power supply from
either 50 or 60Hz AC sources. If the INH input remains
high for more than 12ms, the voltage sample history
kept by the IC and used for PVD and -∆V termination
decisions is erased and a new history is started. Such a
reset is required when transitioning from free-running
to synchronized voltage sampling. The response of the
IC to pulses less than 100ns in width or between 3.5ms
and 12ms is indeterminate. The tolerance on all timing
is ± 12%.
TM Pin
The TM pin is a three-level pin used to select the
charge timer, top-off, voltage termination mode, trickle
rate, and voltage hold-off period options. Table 1
describes the states selected by the TM pin. The
mid-level selection input is developed by a resistor
divider between V CC and ground that fixes the voltage on TM at VCC/2 ± 0.5V. See Figure 4.
Charge Status Indication
A fast charge in progress is uniquely indicated when the
LED pin goes low. In the charge pending state, the LED
pin is driven low for 500ms, then to high-Z for 500ms.
The LED pin is driven to the high-Z state for all other
conditions. Figure 2 outlines the state of the LED pin
during charge.
Charge Inhibit
Fast charge and top-off may be inhibited by using the
INH pin. When high, INH suspends all fast charge and
top-off activity and the internal charge timer. INH
freezes the current state of LED until inhibit is
removed. Temperature monitoring is not affected by the
INH pin. During charge inhibit, the bq2002C continues
to pulse-trickle charge the battery per the TM selection.
When INH returns low, charge control and the charge
timer resume from the point where INH became active.
Voltage Termination Hold-off
A hold-off period occurs at the start of fast charging.
During the hold-off time, the PVD and -∆V terminations
are disabled. This avoids premature termination on the
voltage spikes sometimes produced by older batteries
when fast-charge current is first applied. Maximum
voltage and temperature terminations are not affected
by the hold-off period.
Low-Power Mode
The IC enters a low-power state when VBAT is driven
above the power-down threshold (VPD) where
Maximum Voltage, Temperature, and Time
VPD = VCC - (1V ±0.5V)
Any time the voltage on the BAT pin exceeds the maximum cell voltage, VMCV, fast charge is terminated.
Both the CC pin and the LED pin are driven to the
high-Z state. The operating current is reduced to less
than 1µA in this mode. When VBAT returns to a value
below VPD, the IC pulse-trickle charges until the next
new charge cycle begins.
Maximum temperature termination occurs anytime the
voltage on the TS pin falls below the temperature cut-off
threshold VTCO, where
VTCO = 0.5 ∗ VCC ± 5%.
5
bq2002C
Absolute Maximum Ratings
Symbol
Parameter
Minimum
Maximum
Unit
VCC
VCC relative to VSS
-0.3
+7.0
V
VT
DC voltage applied on any pin
excluding VCC relative to VSS
-0.3
+7.0
V
TOPR
Operating ambient temperature
0
+70
°C
TSTG
Storage temperature
-40
+85
°C
TSOLDER
Soldering temperature
-
+260
°C
TBIAS
Temperature under bias
-40
+85
°C
Note:
Commercial
10 sec max.
Permanent device damage may occur if Absolute Maximum Ratings are exceeded. Functional operation should be limited to the Recommended DC Operating Conditions detailed in this data sheet. Exposure to conditions beyond the operational limits for extended periods of time may affect device reliability.
DC Thresholds
Symbol
Notes
(TA = 0 to 70°C; VCC ± 20%)
Parameter
Rating
Tolerance
Unit
Notes
VTCO
Temperature cutoff
0.5 * VCC
±5%
V
VTS ≤ VTCO inhibits/terminates
fast charge
VHTF
High-temperature fault
0.6 ∗ VCC
±5%
V
VTS ≤ VHTF inhibits fast charge
start
VMCV
Maximum cell voltage
2
±5%
V
VBAT ≥ VMCV inhibits/terminates
fast charge
VLBAT
Minimum cell voltage
0.175 ∗ VCC
±20%
V
VBAT ≤ VLBAT inhibits fast charge
-∆V
BAT input change for
-∆V detection
-12
±3
mV
PVD
BAT input change for
PVD detection
-2.5
±2.5
mV
6
bq2002C
Recommended DC Operating Conditions (TA = 0 to 70°C)
Symbol
Condition
Minimum
Typical
Maximum
Unit
4.0
5.0
6.0
V
Notes
VCC
Supply voltage
VDET
-∆V, PVD detect voltage
1
-
2
V
VBAT
Battery input
0
-
VCC
V
VTS
Thermistor input
0.5
-
VCC
V
VTS < 0.5V prohibited
VIH
Logic input high
0.5
-
-
V
INH
Logic input high
VCC - 0.5
-
-
V
TM
Logic input mid
VCC
-
+ 0.5
V
TM
VIM
- 0.5
2
VIL
VCC
2
Logic input low
-
-
0.1
V
INH
Logic input low
-
-
0.5
V
TM
VOL
Logic output low
-
-
0.8
V
LED, CC, IOL = 10mA
VPD
Power down
VCC - 1.5
-
VCC - 0.5
V
VBAT ≥ VPD max. powers
down bq2002C;
VBAT < VPD min. =
normal operation.
ICC
Supply current
-
-
500
µA
Outputs unloaded,
VCC = 5.1V
ISB
Standby current
-
-
1
µA
VCC = 5.1V, VBAT = VPD
IOL
LED, CC sink
10
-
-
mA
@VOL = VSS + 0.8V
IL
Input leakage
-
-
±1
µA
INH, CC, V = VSS to VCC
IOZ
Output leakage in
high-Z state
-5
-
-
µA
LED, CC
Note:
All voltages relative to VSS.
7
bq2002C
Impedance
Symbol
Parameter
Minimum
Typical
Maximum
Unit
RBAT
Battery input impedance
50
-
-
MΩ
RTS
TS input impedance
50
-
-
MΩ
Timing
Symbol
(TA = 0 to +70°C; VCC ± 10%)
Parameter
Minimum
Typical
Maximum
Unit
-12
-
12
%
dFCV
Time base variation
Note:
Typical is at TA = 25°C, VCC = 5.0V.
8
Notes
bq2002C
8-Pin DIP (PN)
8-Pin PN (0.300" DIP)
Inches
D
E1
E
A
B1
A1
L
C
B
S
e
G
9
Millimeters
Dimension
A
Min.
Max.
Min.
Max.
0.160
0.180
4.06
4.57
A1
0.015
0.040
0.38
1.02
B
0.015
0.022
0.38
0.56
B1
0.055
0.065
1.40
1.65
C
0.008
0.013
0.20
0.33
D
0.350
0.380
8.89
9.65
E
0.300
0.325
7.62
8.26
E1
0.230
0.280
5.84
7.11
e
0.300
0.370
7.62
9.40
G
0.090
0.110
2.29
2.79
L
0.115
0.150
2.92
3.81
S
0.020
0.040
0.51
1.02
bq2002C
8-Pin SOIC Narrow (SN)
8-Pin SN (0.150" SOIC)
Inches
10
Millimeters
Dimension
A
Min.
Max.
Min.
Max.
0.060
0.070
1.52
1.78
A1
0.004
0.010
0.10
0.25
B
0.013
0.020
0.33
0.51
C
0.007
0.010
0.18
0.25
D
0.185
0.200
4.70
5.08
E
0.150
0.160
3.81
4.06
e
0.045
0.055
1.14
1.40
H
0.225
0.245
5.72
6.22
L
0.015
0.035
0.38
0.89
bq2002C
Data Sheet Revision History
Change No.
Page No.
1
All
Note:
Description
Revised format and outline of this data sheet
Change 1 = Sept. 1997 B changes from Dec. 1995.
Ordering Information
bq2002C
Package Option:
PN = 8-pin plastic DIP
SN = 8-pin narrow SOIC
Device:
bq2002C Fast-Charge IC
11
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated