VFM STEP-UP DC/DC CONVERTER CONTROLLER NO. EA-030-0204 RN5RYxx1 SERIES OUTLINE The RN5RYxx1 Series are CMOS-based VFM Control ICs for step-up DC/DC converter with an external driver transistor featuring high output voltage accuracy and low supply current. Each of the RN5RYxx1 Series ICs consists of a voltage reference unit, an error amplifier, an oscillator, a VFM control circuit and feed back resistors. A low ripple, high efficiency step-up DC/DC converter can be composed of the RN5RYxx1 Series with only an inductor, a diode, a capacitor, and a drive transistor. Since the package for these ICs is SOT-23-5( Mini-mold)package, high density mounting of the ICs on boards is possible. FEATURES • Low Supply Current ..................................................................................Typ. 3µA • Low Standby Current ..................................................................................Typ. 0.6µA • Low Temperature-Drift Coefficient of Output Voltage ...........................Typ. ±50ppm / ˚C • High Accuracy Output Voltage ...................................................................±2.5% • Low Oscillation Start-up Voltage ...............................................................Max. 0.8V • Small Package ............................................................................................. SOT-23-5(Mini-Mold) APPLICATIONS • Power source for battery-powered instruments. • Power source for cameras, VCRs, camcorders, pagers, and other hand-held communication instruments. BLOCK DIAGRAM VOUT CE 2 5 OSC EXT 3 Output Buffer – + Vref GND 1 1 RN5RYxx1 SELECTION GUIDE In the RN5RYxx1 Series, the output voltage, the version and the taping type for the ICs can be selected at the user's request. The selection can be made by designating the part number as shown below : } } RN5RYxxxx – xx ← Part Number ↑ ↑↑ ↑ a bc d Code Contents a Designation of Output Voltage (VOUT) VOUT can be designated within the range of 2.0 to 6.0V b 1 Designation of Packing Type: c A: Taping C: Antistatic bag for samples d Designation of Taping Type: Ex. SOT-23-5: TR, TL (refer to Taping Specification) “TR” is prescribed as a standard For example, the product with Output Voltage 2.0V, Taping Type TR, is designated by Part Number RN5RY201A–TR. 2 RN5RYxx1 PIN CONFIGURATION • SOT-23-5 5 4 (mark side) 1 2 3 PIN DESCRIPTION Pin No. Symbol Description 1 GND Ground Pin 2 VOUT Output Pin 3 EXT External Transistor Drive Pin (CMOS Output) 4 NC No Connection 5 CE Chip Enable Pin 3 RN5RYxx1 ABSOLUTE MAXIMUM RATINGS Symbol Item Ratings Unit +12 V VIN Input Voltage VCE CE Pin Input Voltage –0.3 to VOUT+0.3 V VEXT EXT Pin Output Voltage –0.3 to VOUT+0.3 V IEXT EXT Pin Output Current ±50 mA Power Dissipation 150 mW PD Topt Operating Temperature – 30 to +85 ˚C Tstg Storage temperature – 55 to +125 ˚C Tsolder Lead Temperature (Soldering) 260˚C, 10s ABSOLUTE MAXIMUM RATINGS Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits. 4 RN5RYxx1 ELECTRICAL CHARACTERISTICS • RN5RY301 Topt=25˚C Symbol VOUT Item Output Voltage Conditions Min. Typ. Max. Unit VIN=1.5V,IOUT=10mA 2.925 3.000 3.075 V 10 V VIN Input Voltage IDD1 Supply Current 1 EXT No load, VOUT=3.15V, Test circuits1 3 5 µA IDD2 Supply Current 2 EXT No load, VOUT=2.85V, Test circuits1 25 50 µA Istandby Standby Current VOUT=1.5V, Test circuits2 0.6 1.5 µA fosc Maximum Oscillator Frequency VOUT=2.85V, Test circuits3 180 kHZ Duty Oscillator Duty Cycle 75 % Vstart Oscillator Start -Up Voltage ∆VOUT ∆Topt VOUT=2.85V, EXT High side, Test circuits3 60 EXT No load, Test circuits4 0.7 0.8 Output Voltage Temperature Coefficient IOUT=10mA – 30˚C≤Topt≤85˚C ±50 IEXTH EXT “H” Output Current VOUT=2.85V, VEXT=GND, Test circuits5 IEXTL EXT “L” Output Current VOUT=2.85V, VEXT=2.85V, Test circuits6 1.5 mA VCEH CE “H” Input Voltage VOUT=2.85V, Test circuits4 1.5 V VCEL CE “L” Input Voltage VOUT=2.85V, Test circuits4 ICEH CE “H” Input Current CE=3.0V, Test circuits7 ICEL CE “L” Input Current CE=GND, Test circuits8 ppm/˚C –1.5 0.0 – 0.1 0.0 V mA 0.25 V 0.1 µA µA 5 RN5RYxx1 • RN5RY401 Topt=25˚C Symbol VOUT 6 Item Output Voltage Conditions Min. Typ. Max. Unit VIN=2.0V, IOUT=10mA 3.900 4.000 4.100 V 10 V VIN Input Voltage IDD1 Supply Current 1 EXT No load, VOUT=4.2V, Test circuits1 3 5 µA IDD2 Supply Current 2 EXT No load, VOUT=3.8V, Test circuits1 50 90 µA Istandby Standby Current VOUT=2.0V, Test circuits2 0.6 1.5 µA fosc Maximum Oscillator Frequency VOUT=3.8V, Test circuits3 180 kHZ Duty Oscillator Duty Cycle 75 % Vstart Oscillator Start -Up Voltage ∆VOUT ∆Topt VOUT=3.8V, EXT High side, Test circuits3 60 EXT No load, Test circuits4 0.7 0.8 Output Voltage Temperature Coefficient IOUT=10mA –30˚C≤Topt≤85˚C ±50 IEXTH EXT “H” Output Current VOUT=3.8V, VEXT=GND, Test circuits5 IEXTL EXT “L” Output Current VOUT=3.8V, VEXT=3.8V, Test circuits6 1.5 mA VCEH CE “H” Input Voltage VOUT=3.8V, Test circuits4 1.5 V VCEL CE “L” Input Voltage VOUT=3.8V, Test circuits4 ICEH CE “H” Input Current CE=4.0V, Test circuits7 ICEL CE “L” Input Current CE=GND, Test circuits8 ppm/˚C –1.5 0.0 –0.1 0.0 V mA 0.25 V 0.1 µA µA RN5RYxx1 • RN5RY501 Topt=25˚C Symbol VOUT Item Output Voltage Conditions Min. Typ. Max. Unit VIN=2.5V, IOUT=10mA 4.875 5.000 5.125 V 10 V VIN Input Voltage IDD1 Supply Current 1 EXT No load, VOUT=5.25V, Test circuits1 3 5 µA IDD2 Supply Current 2 EXT No load, VOUT=4.75V, Test circuits1 90 150 µA Istandby Standby Current VOUT=2.5V, Test circuits2 0.6 1.5 µA VOUT =4.75V, Test circuits3 180 kHZ 75 % fosc Maximum Oscillator Frequency Duty Oscillator Duty Cycle Vstart Oscillator Start-Up Voltage ∆VOUT ∆Topt VOUT=4.75V, EXT High side, Test circuits3 60 EXT No load, Test circuits4 0.7 0.8 Output Voltage Temperature Coefficient IOUT=10mA –30˚C≤Topt≤85˚C ±50 IEXTH EXT “H” Output Current VOUT=4.75V, VEXT=GND, Test circuits5 IEXTL EXT “L” Output Current VOUT=4.75V, VEXT=4.75V, Test circuits6 1.5 mA VCEH CE “H” Input Voltage VOUT=4.75V, Test circuits4 1.5 V VCEL CE “L” Input Voltage VOUT=4.75V, Test circuits4 ICEH CE “H” Input Current CE=5.0V, Test circuits7 ICEL CE “L” Input Current CE=GND, Test circuits8 ppm/˚C –1.5 0.0 –0.1 0.0 V mA 0.25 V 0.1 µA µA 7 RN5RYxx1 TEST CIRCUIT A CE GND GND VOUT A EXT VOUT NC EXT Test Circuit 1 GND GND CE CE VOUT EXT NC NC Oscilloscope Oscilloscope Test Circuit 3 GND Test Circuit 4 CE GND VOUT EXT CE VOUT NC EXT Oscilloscope NC Oscilloscope Test Circuit 5 GND CE VOUT EXT Test Circuit 6 A GND CE VOUT NC Test Circuit 7 8 NC Test Circuit 2 VOUT EXT CE EXT NC Test Circuit 8 A RN5RYxx1 TYPICAL CHARACTERISTICS 1) Output Voltage vs. Output Current RN5RY301 1.0V 1.5V 200 300 400 Output Current IOUT(mA) RN5RY401 L=27µH 4.00 1.0V 2.0V 0.8V 0.9V 3.00 0 100 200 300 400 500 Output Current IOUT(mA) RN5RY501 6.00 2.0V 3.0V 0.9V 0.8V 100 200 300 400 500 Output Current IOUT(mA) 600 700 1.5V 200 300 400 Output Current IOUT(mA) RN5RY401 500 L=68µH VIN=3.0V 4.00 2.0V 1.0V 0.8V 0.9V 0 100 200 300 400 500 Output Current IOUT(mA) RN5RY501 6.00 1.0V 0.9V 100 L=27µH 5.00 1.0V 0.8V 3.00 600 VIN=4.0V 4.00 0 VIN=2.0V 5.00 VIN=3.0V L=68µH 3.00 2.00 0 500 Output Voltage VOUT(V) 100 0.9V 5.00 Output Voltage VOUT(V) Output Voltage VOUT(V) VIN=2.0V 2.00 0 Output Voltage VOUT(V) 4.00 3.00 0.8V RN5RY301 L=27µH Output Voltage VOUT(V) Output Voltage VOUT(V) 4.00 600 L=68µH VIN=4.0V 5.00 1.0V 0.9V 3.0V 2.0V 0.8V 4.00 0 100 200 300 400 500 Output Current IOUT(mA) 600 700 9 RN5RYxx1 2) Efficiency vs. Output Current RN5RY301 100 L=27µH 90 60 50 0.9V 0.8V 1.0V Effciency η(%) Effciency η(%) 80 VIN=2.0V 70 1.5V 40 30 70 50 10 200 300 400 Output Current IOUT(mA) RN5RY401 100 500 L=27µH 90 0 0 Effciency η(%) Effciency η(%) 2.0V 0.9V 0.8V 40 30 RN5RY501 30 600 L=27µH 0 100 200 300 400 500 Output Current IOUT(mA) RN5RY501 100 90 VIN=4.0V 600 L=68µH VIN=4.0V 80 70 1.0V 60 2.0V Effciency η(%) 80 3.0V 0.9V 50 40 0.8V 30 70 60 1.0V 50 0.9V 40 30 20 20 10 10 0 2.0V 0.8V 40 0 90 Effciency η(%) 0.9V 10 100 10 1.0V 50 10 200 300 400 500 Output Current IOUT(mA) L=68µH VIN=3.0V 60 20 100 RN5RY401 70 20 0 500 80 60 50 200 300 400 Output Current IOUT(mA) 90 80 1.0V 100 100 VIN=3.0V 70 0.9V 1.5V 30 10 100 0.8V 1.0V 40 20 0 VIN=2.0V 60 20 0 L=68µH 90 80 0 RN5RY301 100 0 100 200 300 400 500 Output Current IOUT(mA) 600 700 0 0 3.0V 2.0V 0.8V 100 200 300 400 500 600 Output Current IOUT(mA) 700 RN5RYxx1 3) Ripple Voltage vs. Output Current RN5RY301 RN5RY401 L=27µH Ripple Voltage Vr(mVp-p) Ripple Voltage Vr(mVp-p) 1.5V 300 1.0V VIN=2.0V 250 200 0.9V 150 0.8V 100 L=27µH 400 350 2.0V 300 VIN=3.0V 200 1.0V 100 0.9V 0.8V 50 0 0 100 200 300 400 Output Current IOUT(mA) RN5RY501 500 0 0 100 200 400 500 300 Output Current IOUT(mA) 600 L=27µH Ripple Voltage Vr(mVp-p) 500 3.0V 400 2.0V VIN=4.0V 300 200 1.0V 0.9V 100 0 0 0.8V 100 200 300 500 400 Output Current IOUT(mA) 600 700 11 RN5RYxx1 TYPICAL APPLICATIONS L1 D1 VIN RN5RYxx1 VOUT VOUT Cb EXT + GND C1 + Rb Q1 Components : Inductor (L1) CE C2 + C3 : CD105 Diode (D1) : D1FS4A (Schottky Type) Capacitor (C1) : 33µF (Tantalum Type) Capacitor (C2) : 47µF (Tantalum Type) Capacitor (C3) : 47µF (Tantalum Type) Transistor (Q1) : 2SD1628G Base Resistor (Rb) : 220Ω Base Capacitor (Cb) : 2200pF APPLICATION HINTS • A spike-shaped voltage higher than output voltage may be applied to the driver transistor. Therefore, care should be paid regarding its absolute maximum ratings (VDS, VCF). We recommend to use a transistor having absolute maximum ratings of at least twice the set output voltage. • We also recommend the use of an output capacitor with an allowable voltage which is at least 1.5 times the set output voltage. This is because there may be the case where a spike-shaped voltage higher than the set output voltage is generated. Use capacitor with good high frequency characteristics such as tantalum capacitor. • Choose such an inductor that a sufficiently small D.C. resistance and large allowable current, and hardly reaches magnetic saturation. • Use a diode of a Schottky type with high switching speed, and also take care of the rated current. • Set external components as close as possible to the IC and minimize the current between the components and the IC. In particular, make minimum connection with the output capacitor. • Make sufficient grounding. A large current flows through GND pin by switching. When the impedance of the GND connection is high, the potential within the IC is varied by the switching current. This may result in unstable operation of the IC. 12