RICOH RN5RYXX1

VFM STEP-UP DC/DC
CONVERTER CONTROLLER
NO. EA-030-0204
RN5RYxx1 SERIES
OUTLINE
The RN5RYxx1 Series are CMOS-based VFM Control ICs for step-up DC/DC converter with an external driver transistor featuring high output voltage accuracy and low supply current. Each of the RN5RYxx1 Series ICs
consists of a voltage reference unit, an error amplifier, an oscillator, a VFM control circuit and feed back resistors.
A low ripple, high efficiency step-up DC/DC converter can be composed of the RN5RYxx1 Series with only an
inductor, a diode, a capacitor, and a drive transistor.
Since the package for these ICs is SOT-23-5( Mini-mold)package, high density mounting of the ICs on boards
is possible.
FEATURES
• Low Supply Current ..................................................................................Typ. 3µA
• Low Standby Current ..................................................................................Typ. 0.6µA
• Low Temperature-Drift Coefficient of Output Voltage ...........................Typ. ±50ppm / ˚C
• High Accuracy Output Voltage ...................................................................±2.5%
• Low Oscillation Start-up Voltage ...............................................................Max. 0.8V
• Small Package ............................................................................................. SOT-23-5(Mini-Mold)
APPLICATIONS
• Power source for battery-powered instruments.
• Power source for cameras, VCRs, camcorders, pagers, and other hand-held communication instruments.
BLOCK DIAGRAM
VOUT
CE
2
5
OSC
EXT
3
Output
Buffer
–
+
Vref
GND
1
1
RN5RYxx1
SELECTION GUIDE
In the RN5RYxx1 Series, the output voltage, the version and the taping type for the ICs can be selected at
the user's request. The selection can be made by designating the part number as shown below :
}
}
RN5RYxxxx – xx ← Part Number
↑ ↑↑
↑
a bc
d
Code
Contents
a
Designation of Output Voltage (VOUT)
VOUT can be designated within the range of 2.0 to 6.0V
b
1
Designation of Packing Type:
c
A: Taping
C: Antistatic bag for samples
d
Designation of Taping Type:
Ex. SOT-23-5: TR, TL
(refer to Taping Specification)
“TR” is prescribed as a standard
For example, the product with Output Voltage 2.0V, Taping Type TR, is designated by Part Number
RN5RY201A–TR.
2
RN5RYxx1
PIN CONFIGURATION
• SOT-23-5
5
4
(mark side)
1
2
3
PIN DESCRIPTION
Pin No.
Symbol
Description
1
GND
Ground Pin
2
VOUT
Output Pin
3
EXT
External Transistor Drive Pin (CMOS Output)
4
NC
No Connection
5
CE
Chip Enable Pin
3
RN5RYxx1
ABSOLUTE MAXIMUM RATINGS
Symbol
Item
Ratings
Unit
+12
V
VIN
Input Voltage
VCE
CE Pin Input Voltage
–0.3 to VOUT+0.3
V
VEXT
EXT Pin Output Voltage
–0.3 to VOUT+0.3
V
IEXT
EXT Pin Output Current
±50
mA
Power Dissipation
150
mW
PD
Topt
Operating Temperature
– 30 to +85
˚C
Tstg
Storage temperature
– 55 to +125
˚C
Tsolder
Lead Temperature (Soldering)
260˚C, 10s
ABSOLUTE MAXIMUM RATINGS
Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any
conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above
these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress
ratings only and do not necessarily imply functional operation below these limits.
4
RN5RYxx1
ELECTRICAL CHARACTERISTICS
• RN5RY301
Topt=25˚C
Symbol
VOUT
Item
Output Voltage
Conditions
Min.
Typ.
Max.
Unit
VIN=1.5V,IOUT=10mA
2.925
3.000
3.075
V
10
V
VIN
Input Voltage
IDD1
Supply Current 1
EXT No load, VOUT=3.15V, Test circuits1
3
5
µA
IDD2
Supply Current 2
EXT No load, VOUT=2.85V, Test circuits1
25
50
µA
Istandby
Standby Current
VOUT=1.5V, Test circuits2
0.6
1.5
µA
fosc
Maximum Oscillator Frequency
VOUT=2.85V, Test circuits3
180
kHZ
Duty
Oscillator Duty Cycle
75
%
Vstart
Oscillator Start -Up Voltage
∆VOUT
∆Topt
VOUT=2.85V, EXT High side, Test circuits3
60
EXT No load, Test circuits4
0.7
0.8
Output Voltage
Temperature Coefficient
IOUT=10mA
– 30˚C≤Topt≤85˚C
±50
IEXTH
EXT “H” Output Current
VOUT=2.85V, VEXT=GND, Test circuits5
IEXTL
EXT “L” Output Current
VOUT=2.85V, VEXT=2.85V, Test circuits6
1.5
mA
VCEH
CE “H” Input Voltage
VOUT=2.85V, Test circuits4
1.5
V
VCEL
CE “L” Input Voltage
VOUT=2.85V, Test circuits4
ICEH
CE “H” Input Current
CE=3.0V, Test circuits7
ICEL
CE “L” Input Current
CE=GND, Test circuits8
ppm/˚C
–1.5
0.0
– 0.1
0.0
V
mA
0.25
V
0.1
µA
µA
5
RN5RYxx1
• RN5RY401
Topt=25˚C
Symbol
VOUT
6
Item
Output Voltage
Conditions
Min.
Typ.
Max.
Unit
VIN=2.0V, IOUT=10mA
3.900
4.000
4.100
V
10
V
VIN
Input Voltage
IDD1
Supply Current 1
EXT No load, VOUT=4.2V, Test circuits1
3
5
µA
IDD2
Supply Current 2
EXT No load, VOUT=3.8V, Test circuits1
50
90
µA
Istandby
Standby Current
VOUT=2.0V, Test circuits2
0.6
1.5
µA
fosc
Maximum Oscillator Frequency
VOUT=3.8V, Test circuits3
180
kHZ
Duty
Oscillator Duty Cycle
75
%
Vstart
Oscillator Start -Up Voltage
∆VOUT
∆Topt
VOUT=3.8V, EXT High side, Test circuits3
60
EXT No load, Test circuits4
0.7
0.8
Output Voltage
Temperature Coefficient
IOUT=10mA
–30˚C≤Topt≤85˚C
±50
IEXTH
EXT “H” Output Current
VOUT=3.8V, VEXT=GND, Test circuits5
IEXTL
EXT “L” Output Current
VOUT=3.8V, VEXT=3.8V, Test circuits6
1.5
mA
VCEH
CE “H” Input Voltage
VOUT=3.8V, Test circuits4
1.5
V
VCEL
CE “L” Input Voltage
VOUT=3.8V, Test circuits4
ICEH
CE “H” Input Current
CE=4.0V, Test circuits7
ICEL
CE “L” Input Current
CE=GND, Test circuits8
ppm/˚C
–1.5
0.0
–0.1
0.0
V
mA
0.25
V
0.1
µA
µA
RN5RYxx1
• RN5RY501
Topt=25˚C
Symbol
VOUT
Item
Output Voltage
Conditions
Min.
Typ.
Max.
Unit
VIN=2.5V, IOUT=10mA
4.875
5.000
5.125
V
10
V
VIN
Input Voltage
IDD1
Supply Current 1
EXT No load, VOUT=5.25V, Test circuits1
3
5
µA
IDD2
Supply Current 2
EXT No load, VOUT=4.75V, Test circuits1
90
150
µA
Istandby
Standby Current
VOUT=2.5V, Test circuits2
0.6
1.5
µA
VOUT =4.75V, Test circuits3
180
kHZ
75
%
fosc
Maximum Oscillator Frequency
Duty
Oscillator Duty Cycle
Vstart
Oscillator Start-Up Voltage
∆VOUT
∆Topt
VOUT=4.75V, EXT High side, Test circuits3
60
EXT No load, Test circuits4
0.7
0.8
Output Voltage
Temperature Coefficient
IOUT=10mA
–30˚C≤Topt≤85˚C
±50
IEXTH
EXT “H” Output Current
VOUT=4.75V, VEXT=GND, Test circuits5
IEXTL
EXT “L” Output Current
VOUT=4.75V, VEXT=4.75V, Test circuits6
1.5
mA
VCEH
CE “H” Input Voltage
VOUT=4.75V, Test circuits4
1.5
V
VCEL
CE “L” Input Voltage
VOUT=4.75V, Test circuits4
ICEH
CE “H” Input Current
CE=5.0V, Test circuits7
ICEL
CE “L” Input Current
CE=GND, Test circuits8
ppm/˚C
–1.5
0.0
–0.1
0.0
V
mA
0.25
V
0.1
µA
µA
7
RN5RYxx1
TEST CIRCUIT
A
CE
GND
GND
VOUT
A
EXT
VOUT
NC
EXT
Test Circuit 1
GND
GND
CE
CE
VOUT
EXT
NC
NC
Oscilloscope
Oscilloscope
Test Circuit 3
GND
Test Circuit 4
CE
GND
VOUT
EXT
CE
VOUT
NC
EXT
Oscilloscope
NC
Oscilloscope
Test Circuit 5
GND
CE
VOUT
EXT
Test Circuit 6
A
GND
CE
VOUT
NC
Test Circuit 7
8
NC
Test Circuit 2
VOUT
EXT
CE
EXT
NC
Test Circuit 8
A
RN5RYxx1
TYPICAL CHARACTERISTICS
1) Output Voltage vs. Output Current
RN5RY301
1.0V
1.5V
200
300
400
Output Current IOUT(mA)
RN5RY401
L=27µH
4.00
1.0V
2.0V
0.8V
0.9V
3.00
0
100
200
300
400
500
Output Current IOUT(mA)
RN5RY501
6.00
2.0V
3.0V
0.9V
0.8V
100
200 300 400 500
Output Current IOUT(mA)
600
700
1.5V
200
300
400
Output Current IOUT(mA)
RN5RY401
500
L=68µH
VIN=3.0V
4.00
2.0V
1.0V
0.8V
0.9V
0
100
200
300
400
500
Output Current IOUT(mA)
RN5RY501
6.00
1.0V
0.9V
100
L=27µH
5.00
1.0V
0.8V
3.00
600
VIN=4.0V
4.00
0
VIN=2.0V
5.00
VIN=3.0V
L=68µH
3.00
2.00
0
500
Output Voltage VOUT(V)
100
0.9V
5.00
Output Voltage VOUT(V)
Output Voltage VOUT(V)
VIN=2.0V
2.00
0
Output Voltage VOUT(V)
4.00
3.00
0.8V
RN5RY301
L=27µH
Output Voltage VOUT(V)
Output Voltage VOUT(V)
4.00
600
L=68µH
VIN=4.0V
5.00
1.0V
0.9V
3.0V
2.0V
0.8V
4.00
0
100
200 300 400 500
Output Current IOUT(mA)
600
700
9
RN5RYxx1
2) Efficiency vs. Output Current
RN5RY301
100
L=27µH
90
60
50
0.9V
0.8V
1.0V
Effciency η(%)
Effciency η(%)
80
VIN=2.0V
70
1.5V
40
30
70
50
10
200
300
400
Output Current IOUT(mA)
RN5RY401
100
500
L=27µH
90
0
0
Effciency η(%)
Effciency η(%)
2.0V
0.9V
0.8V
40
30
RN5RY501
30
600
L=27µH
0
100
200
300
400
500
Output Current IOUT(mA)
RN5RY501
100
90
VIN=4.0V
600
L=68µH
VIN=4.0V
80
70
1.0V
60
2.0V
Effciency η(%)
80
3.0V
0.9V
50
40
0.8V
30
70
60
1.0V
50
0.9V
40
30
20
20
10
10
0
2.0V
0.8V
40
0
90
Effciency η(%)
0.9V
10
100
10
1.0V
50
10
200
300
400
500
Output Current IOUT(mA)
L=68µH
VIN=3.0V
60
20
100
RN5RY401
70
20
0
500
80
60
50
200
300
400
Output Current IOUT(mA)
90
80
1.0V
100
100
VIN=3.0V
70
0.9V
1.5V
30
10
100
0.8V
1.0V
40
20
0
VIN=2.0V
60
20
0
L=68µH
90
80
0
RN5RY301
100
0
100
200 300 400 500
Output Current IOUT(mA)
600
700
0
0
3.0V
2.0V
0.8V
100
200
300 400
500 600
Output Current IOUT(mA)
700
RN5RYxx1
3) Ripple Voltage vs. Output Current
RN5RY301
RN5RY401
L=27µH
Ripple Voltage Vr(mVp-p)
Ripple Voltage Vr(mVp-p)
1.5V
300
1.0V
VIN=2.0V
250
200
0.9V
150
0.8V
100
L=27µH
400
350
2.0V
300
VIN=3.0V
200
1.0V
100
0.9V
0.8V
50
0
0
100
200
300
400
Output Current IOUT(mA)
RN5RY501
500
0
0
100
200
400
500
300
Output Current IOUT(mA)
600
L=27µH
Ripple Voltage Vr(mVp-p)
500
3.0V
400
2.0V
VIN=4.0V
300
200
1.0V
0.9V
100
0
0
0.8V
100
200
300
500
400
Output Current IOUT(mA)
600
700
11
RN5RYxx1
TYPICAL APPLICATIONS
L1
D1
VIN
RN5RYxx1
VOUT
VOUT
Cb
EXT
+
GND
C1
+
Rb
Q1
Components : Inductor (L1)
CE
C2
+
C3
: CD105
Diode (D1)
: D1FS4A (Schottky Type)
Capacitor (C1)
: 33µF (Tantalum Type)
Capacitor (C2)
: 47µF (Tantalum Type)
Capacitor (C3)
: 47µF (Tantalum Type)
Transistor (Q1)
: 2SD1628G
Base Resistor (Rb)
: 220Ω
Base Capacitor (Cb)
: 2200pF
APPLICATION HINTS
• A spike-shaped voltage higher than output voltage may be applied to the driver transistor. Therefore, care should be
paid regarding its absolute maximum ratings (VDS, VCF). We recommend to use a transistor having absolute maximum ratings of at least twice the set output voltage.
• We also recommend the use of an output capacitor with an allowable voltage which is at least 1.5 times the set output voltage. This is because there may be the case where a spike-shaped voltage higher than the set output voltage
is generated.
Use capacitor with good high frequency characteristics such as tantalum capacitor.
• Choose such an inductor that a sufficiently small D.C. resistance and large allowable current, and hardly reaches
magnetic saturation.
• Use a diode of a Schottky type with high switching speed, and also take care of the rated current.
• Set external components as close as possible to the IC and minimize the current between the components and the
IC. In particular, make minimum connection with the output capacitor.
• Make sufficient grounding. A large current flows through GND pin by switching. When the impedance of the GND
connection is high, the potential within the IC is varied by the switching current. This may result in unstable operation of the IC.
12