MICROCHIP MCP6L4T

MCP6L1/1R/2/4
2.8 MHz, 200 µA Op Amps
Features
Description
•
•
•
•
•
•
•
The Microchip Technology Inc. MCP6L1/1R/2/4 family
of operational amplifiers (op amps) supports generalpurpose applications. Battery powered circuits benefit
from their low quiescent current, A/D converters from
their wide bandwidth and anti-aliasing filters from their
low input bias current.
Supply Voltage: 2.7V to 6.0V
Rail-to-Rail Output
Input Range Includes Ground
Available in SOT-23-5 package
Gain Bandwidth Product: 2.8 MHz (typical)
Supply Current: IQ = 200 µA/amplifier (typical)
Extended Temperature Range: -40°C to +125°C
Typical Applications
•
•
•
•
•
•
Portable Equipment
Photodiode Amplifier
Analog Filters
Data Acquisition
Notebooks and PDAs
Battery-Powered Systems
This family has a 2.8 MHz Gain Bandwidth Product
(GBWP) with a low 200 µA per amplifier quiescent current. These op amps operate on supply voltages
between 2.7V and 6.0V, with rail-to-rail input and output
swing. They are available in the extended temperature
range.
Package Types
MCP6L1
MCP6L2
SOT-23-5
SOIC, MSOP
VOUT 1
Design Aids
•
•
•
•
VSS
FilterLab® Software
Microchip Advanced Part Selector (MAPS)
Analog Demonstration and Evaluation Boards
Application Notes
Typical Application
2
VIN+ 3
4 VIN–
R2
29.4 kΩ
SOIC, MSOP
C2
470 nF
7 VOUTB
VINA+ 3
6 VINB–
5 VINB+
MCP6L4
SOIC, TSSOP
8 NC
VIN– 2
7 VDD
VOUTA 1
14 VOUTD
6 VOUT
5 NC
VINA– 2
VINA+ 3
13 VIND–
SOT-23-5
VOUT
VIN
VINA– 2
NC 1
VSS 4
MCP6L1
8 VDD
MCP6L1
MCP6L1R
R1
18.2 kΩ
VOUTA 1
VSS 4
VIN+ 3
C1
1.0 µF
5 VDD
VOUT 1
VDD
5 VSS
VDD 4
VINB+ 5
VINB– 6
VOUTB 7
12 VIND+
11 VSS
10 VINC+
9 VINC–
8 VOUTC
2
VIN+ 3
4 VIN–
Low-Pass Filter
© 2009 Microchip Technology Inc.
DS22135A-page 1
MCP6L1/1R/2/4
NOTES:
DS22135A-page 2
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
1.0
1.1
ELECTRICAL CHARACTERISTICS
† Notice: Stresses above those listed under “Absolute
Maximum Ratings” may cause permanent damage to the
device. This is a stress rating only and functional operation of
the device at those or any other conditions above those
indicated in the operational listings of this specification is not
implied. Exposure to maximum rating conditions for extended
periods may affect device reliability.
Absolute Maximum Ratings †
VDD – VSS .......................................................................7.0V
Current at Input Pins ....................................................±2 mA
Analog Inputs (VIN+, VIN–) †† ....... VSS – 1.0V to VDD + 1.0V
All Inputs and Outputs ................... VSS – 0.3V to VDD + 0.3V
Difference Input voltage ...................................... |VDD – VSS|
Output Short Circuit Current ................................ Continuous
Current at Output and Supply Pins ..........................±150 mA
Storage Temperature ...................................-65°C to +150°C
Max. Junction Temperature ........................................ +150°C
ESD protection on all pins (HBM, MM) ................≥ 3 kV, 200V
1.2
†† See Section 4.1.2 “Input Voltage and Current Limits”.
Specifications
TABLE 1-1:
DC ELECTRICAL SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = 5.0V, VSS = GND, VCM = VSS, VOUT ≈ VDD/2,
VL = VDD/2, and RL = 10 kΩ to VL (refer to Figure 1-1).
Parameters
Sym
Min
(Note 1)
Typ
Max
(Note 1)
Units
Conditions
Input Offset
Input Offset Voltage
Input Offset Voltage Drift
Power Supply Rejection Ratio
VOS
-3
±1
+3
ΔVOS/ΔTA
—
±2.5
—
PSRR
—
90
—
mV
µV/°C TA= -40°C to+125°C
dB
Input Current and Impedance
IB
—
1
—
pA
Across Temperature
IB
—
20
—
pA
TA= +85°C
Across Temperature
IB
—
500
—
pA
TA= +125°C
IOS
—
±1
—
pA
Input Bias Current
Input Offset Current
Common Mode Input Impedance
ZCM
—
1013||5
—
Ω||pF
Differential Input Impedance
ZDIFF
—
1013||2
—
Ω||pF
Common-Mode Input Voltage Range
VCMR
-0.3
—
3.7
V
Common-Mode Rejection Ratio
CMRR
—
90
—
dB
VCM = -0.3V to 5.3V
AOL
—
105
—
dB
VOUT = 0.2V to 4.8V
Common Mode
Open Loop Gain
DC Open Loop Gain (large signal)
Output
Maximum Output Voltage Swing
Output Short Circuit Current
VOL
—
—
0.030
V
G = +2, 0.5V Input Overdrive
VOH
4.960
—
—
V
G = +2, 0.5V Input Overdrive
ISC
—
±20
—
mA
VDD
2.7
—
6.0
V
IQ
70
200
330
µA
Power Supply
Supply Voltage
Quiescent Current per Amplifier
Note 1:
IO = 0
For design guidance only; not tested.
© 2009 Microchip Technology Inc.
DS22135A-page 3
MCP6L1/1R/2/4
TABLE 1-2:
AC ELECTRICAL SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, TA = 25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT ≈ VDD/2,
VL = VDD/2, RL = 10 kΩ to VL and CL = 60 pF (refer to Figure 1-1).
Parameters
Sym
Min
Typ
Max
Units
Conditions
AC Response
Gain Bandwidth Product
GBWP
—
2.8
—
MHz
Phase Margin
PM
—
50
—
°
Slew Rate
SR
—
2.3
—
V/µs
Input Noise Voltage
Eni
—
7
—
Input Noise Voltage Density
eni
—
21
—
nV/√Hz f = 10 kHz
Input Noise Current Density
ini
—
0.6
—
fA/√Hz
G = +1
Noise
TABLE 1-3:
µVP-P
f = 0.1 Hz to 10 Hz
f = 1 kHz
TEMPERATURE SPECIFICATIONS
Electrical Characteristics: Unless otherwise indicated, all limits are specified for: VDD = +2.7V to +6.0V, VSS = GND.
Parameters
Sym
Min
Typ
Max
Units
Specified Temperature Range
TA
-40
—
+125
°C
Operating Temperature Range
TA
-40
—
+125
°C
Storage Temperature Range
TA
-65
—
+150
°C
Thermal Resistance, 5L-SOT-23
θJA
—
256
—
°C/W
Thermal Resistance, 8L-SOIC (150 mil)
θJA
—
163
—
°C/W
Thermal Resistance, 8L-MSOP
θJA
—
206
—
°C/W
Thermal Resistance, 14L-SOIC
θJA
—
120
—
°C/W
Thermal Resistance, 14L-TSSOP
θJA
—
100
—
°C/W
Conditions
Temperature Ranges
(Note 1)
Thermal Package Resistances
Note 1:
1.3
Operation must not cause TJ to exceed Maximum Junction Temperature specification (150°C).
Test Circuit
The circuit used for most DC and AC tests is shown in
Figure 1-1. This circuit can independently set VCM and
VOUT; see Equation 1-1. Note that VCM is not the
circuit’s common mode voltage ((VP + VM)/2), and that
VOST includes VOS plus the effects (on the input offset
error, VOST) of temperature, CMRR, PSRR and AOL.
CF
6.8 pF
RG
100 kΩ
VP
G DM = R F ⁄ R G
CB1
100 nF
MCP6LX
V CM = ( V P + V DD ⁄ 2 ) ⁄ 2
VDD/2
CB2
1 µF
VIN–
V OST = V IN– – V IN+
V OUT = ( V DD ⁄ 2 ) + ( V P – V M ) + V OST ( 1 + G DM )
Where:
GDM = Differential Mode Gain
(V/V)
VCM = Op Amp’s Common Mode
Input Voltage
(V)
DS22135A-page 4
VDD
VIN+
EQUATION 1-1:
VOST = Op Amp’s Total Input Offset
Voltage
RF
100 kΩ
(mV)
VM
RG
100 kΩ
RL
10 kΩ
RF
100 kΩ
CF
6.8 pF
VOUT
CL
60 pF
VL
FIGURE 1-1:
AC and DC Test Circuit for
Most Specifications.
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
2.0
TYPICAL PERFORMANCE CURVES
Note:
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA = +25°C, VDD = 5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2,
0.0
Representative Part
VDD = 2.7V
-40°C
+25°C
+85°C
+125°
C
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-0.2
1.4
-0.3
1.3
-0.4
-0.5
100
CMRR, PSRR (dB)
CMRR (VCMRL to VCMRH)
95
90
PSRR (VCM = VSS)
85
80
75
70
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
-40°C
+25°C
+85°C
+125°
C
0.0
1.0
-25 0
25 50 75 100 125
Ambient Temperature (°C)
FIGURE 2-4:
Input Common Mode Range
Voltage vs. Ambient Temperature.
FIGURE 2-2:
Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 5.5V.
-50
-25
0
25
50
75
Ambient Temperature (°C)
FIGURE 2-5:
Temperature.
100
125
CMRR, PSRR vs. Ambient
100
Representative Part
90
CMRR, PSRR (dB)
Input Offset Voltage (mV)
1.2
1.1
Common Mode Input Voltage (V)
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
VDD – VCMRH
VCMRL – VSS
-50
Representative Part
VDD = 5.5V
-0.5
1.5
3.0
FIGURE 2-1:
Input Offset Voltage vs.
Common Mode Input Voltage at VDD = 2.7V.
Input Offset Voltage (µV)
-0.1
-0.6
0.0
0.5
1.0
1.5
2.0
2.5
Common Mode Input Voltage (V)
1.6
One Wafer Lot
Common Mode Range;
VDD – V CMRH (V)
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-0.5
Common Mode Range;
VCMRL – V SS (V)
Input Offset Voltage (mV)
RL = 10 kΩ to VL and CL = 60 pF.
VDD = 5.5V
VDD = 2.7V
80
PSRR+
70
PSRR–
60
CMRR
50
40
30
-50
-25
0
25
50
75
Ambient Temperature (°C)
100
FIGURE 2-3:
Input Offset Voltage vs.
Ambient Temperature.
© 2009 Microchip Technology Inc.
125
20
1
1.E+00
FIGURE 2-6:
Frequency.
10
1.E+01
100
1k
1.E+02
1.E+03
Frequency (Hz)
10k
1.E+04
100k
1.E+05
CMRR, PSRR vs.
DS22135A-page 5
MCP6L1/1R/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2,
RL = 10 kΩ to VL and CL = 60 pF.
10m
1.E-02
1m
1.E-03
100µ
1.E-04
10µ
1.E-05
1µ
1.E-06
100n
1.E-07
10n
1.E-08
1n
1.E-09
100p
1.E-10
10p
1.E-11
1p
1.E-12
Input, Output Voltages (V)
Input Current Magnitude (A)
6
+125°C
+85°C
+25°C
-40°C
3
2
1
0
0.E+00
5.E-06
300
-30
250
80
-60
-90
40
Gain
20
-120
-150
0
-180
-20
0.1 1
10
1.E- 1.E+ 1.E+
01 00 01
FIGURE 2-8:
Frequency.
Quiescent Current
per amplifier (µA)
0
Phase
100
50
-40°C
+25°C
+85°C
+125°C
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
FIGURE 2-11:
Quiescent Current vs.
Power Supply Voltage.
Short Circuit Current (mA)
Input Noise Voltage Density
(nV/Hz)
150
40
100
10
0.1
1
10
100 1.E+0
1k
10k 1.E+0
100k
1.E-01
1.E+0
1.E+0
1.E+0
1.E+0
0
1Frequency
2 (Hz)
3
4
5
DS22135A-page 6
3.E-05
0
1,000
FIGURE 2-9:
vs. Frequency.
2.E-05
200
-210
100 1k 10k 100k 1M 10M
1.E+ 1.E+ 1.E+ 1.E+ 1.E+ 1.E+
Frequency
(Hz) 05 06 07
02 03 04
Open-Loop Gain, Phase vs.
2.E-05
FIGURE 2-10:
The MCP6L1/1R/2/4 Show
No Phase Reversal.
100
60
1.E-05
Time (5 µs/div)
120
Open-Loop Phase (°)
Open-Loop Gain (dB)
FIGURE 2-7:
Measured Input Current vs.
Input Voltage (below VSS).
VOUT
4
-1
-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0
Input Voltage (V)
VIN
G = +2 V/V
5
Input Noise Voltage Density
30
20
10
0
-10
-40°C
+25°C
+85°C
+125°C
-20
-30
-40
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
Power Supply Voltage (V)
FIGURE 2-12:
Output Short Circuit Current
vs. Power Supply Voltage.
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
Note: Unless otherwise indicated, TA = +25°C, VDD = +5.0V, VSS = GND, VCM = VSS, VOUT = VDD/2, VL = VDD/2,
RL = 10 kΩ to VL and CL = 60 pF.
3.0
VDD – VOH
IOUT
60
2.5
Slew Rate (V/µs)
Ratio of Output Headroom
to Output Current (mV/mA)
70
50
40
VOL – VSS
-IOUT
30
20
1.0
0.5
0.0
1m
1.E-03
Output Current Magnitude (A)
-50
10m
1.E-02
FIGURE 2-13:
Ratio of Output Voltage
Headroom to Output Current vs. Output Current.
FIGURE 2-16:
Temperature.
10
P-P )
G = +1 V/V
Output Voltage Swing (V
2.56
2.54
2.52
2.50
2.48
2.46
2.44
2.42
0.E+00
1.E-06
-25
2.E-06
3.E-06
4.E-06
5.E-06
6.E-06
7.E-06
8.E-06
9.E-06
1.E-05
Time (1 µs/div)
FIGURE 2-14:
Pulse Response.
Small Signal, Non-Inverting
5.0
0
25
50
75
100
125
Ambient Temperature (°C)
2.58
Output Voltage (20 mV/div)
Rising Edge
1.5
10
0
100µ
1.E-04
Slew Rate vs. Ambient
VDD = 5.5V
VDD = 2.7V
1
0.1
10k
1.E+04
FIGURE 2-17:
Frequency.
100k
1.E+05
Frequency (Hz)
1M
1.E+06
Output Voltage Swing vs.
G = +1 V/V
4.5
Output Voltage (V)
Falling Edge
2.0
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.E+00
1.E-06
2. E-06
3.E-06
4.E-06
5. E-06
6.E-06
7. E-06
8.E -06
9.E-06
1. E-05
Time (1 µs/div)
FIGURE 2-15:
Pulse Response.
Large Signal, Non-Inverting
© 2009 Microchip Technology Inc.
DS22135A-page 7
MCP6L1/1R/2/4
NOTES:
DS22135A-page 8
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
3.0
PIN DESCRIPTIONS
Descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
MCP6L1
MCP6L1R
MCP6L2
MCP6L4
SOIC-8,
MSOP-8
SOT-23-5
SOIC-8,
MSOP-8
SOIC-14,
TSSOP-14
Symbol
SOT-23-5
1
4
3
5
—
—
—
—
—
—
2
—
—
—
—
6
2
3
7
—
—
—
—
—
—
4
—
—
—
1, 5, 8
1
4
3
2
—
—
—
—
—
—
5
—
—
—
—
1
2
3
8
5
6
7
—
—
—
4
—
—
—
—
1
2
3
4
5
6
7
8
9
10
11
12
13
14
—
VOUT, VOUTA
VIN–, VINA–
VIN+, VINA+
VDD
VINB+
VINB–
VOUTB
VOUTC
VINC–
VINC+
VSS
VIND+
VIND–
VOUTD
NC
3.1
Analog Outputs
3.3
Description
Output (op amp A)
Inverting Input (op amp A)
Non-inverting Input (op amp A)
Positive Power Supply
Non-inverting Input (op amp B)
Inverting Input (op amp B)
Output (op amp B)
Output (op amp C)
Inverting Input (op amp C)
Non-inverting Input (op amp C)
Negative Power Supply
Non-inverting Input (op amp D)
Inverting Input (op amp D)
Output (op amp D)
No Internal Connection
Power Supply Pins
The analog output pins (VOUT) are low-impedance
voltage sources.
The positive power supply (VDD) is 2.7V to 6.0V higher
than the negative power supply (VSS). For normal
operation, the other pins are between VSS and VDD.
3.2
Typically, these parts are used in a single (positive)
supply configuration. In this case, VSS is connected to
ground and VDD is connected to the supply. VDD will
need bypass capacitors.
Analog Inputs
The non-inverting and inverting inputs (VIN+, VIN–, …)
are high-impedance CMOS inputs with low bias
currents.
© 2009 Microchip Technology Inc.
DS22135A-page 9
MCP6L1/1R/2/4
NOTES:
DS22135A-page 10
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
4.0
APPLICATION INFORMATION
The MCP6L1/1R/2/4 family of op amps is manufactured using Microchip’s state of the art CMOS process.
They are unity-gain stable and suitable for a wide range
of general purpose applications.
4.1
Inputs
4.1.1
PHASE REVERSAL
The MCP6L1/1R/2/4 op amps are designed to prevent
phase inversion when the input pins exceed the supply
voltages. Figure 2-10 shows an input voltage exceeding both supplies without any phase reversal.
4.1.2
4.1.3
NORMAL OPERATION
The Common Mode Input Voltage Range (VCMR)
includes ground in single-supply systems (VSS), but
does not include VDD. This means that the amplifier
input behaves linearly as long as the Common Mode
Input Voltage (VCM) is kept within the VCMR limits (typically VSS – 0.3V to VDD – 1.2V at +25°C).
Figure 4-3 shows a unity gain buffer. Since VOUT is the
same voltage as the inverting input, VOUT must be kept
below VDD – 1.2V (typically) for correct operation.
V1
V2
MCP6LX
INPUT VOLTAGE AND CURRENT
LIMITS
In order to prevent damage and/or improper operation
of these amplifiers, the circuit they are in must limit the
currents (and voltages) at the input pins (see
Section 1.1 “Absolute Maximum Ratings †”).
Figure 4-1 shows the recommended approach to
protecting these inputs. The internal ESD diodes
prevent the input pins (VIN+ and VIN–) from going too
far below ground, and the resistors R1 and R2 limit the
possible current drawn out of the input pins. Diodes D1
and D2 prevent the input pins (VIN+ and VIN–) from
going too far above VDD, and dump any currents onto
VDD.
VDD
D1
D2
V1
R1
MCP6LX
V2
R2
R3
VSS – (minimum expected V1)
2 mA
VSS – (minimum expected V2)
R2 >
2 mA
FIGURE 4-2:
Unity Gain Buffer has a
Limited VOUT Range.
4.2
Rail-to-Rail Output
The output voltage range of the MCP6L1/1R/2/4 op
amps is VDD – 35 mV (minimum) and VSS + 35 mV
(maximum) when RL = 10 kΩ is connected to VDD/2
and VDD = 5.0V. Refer to Figure 2-13 for more information.
4.3
Capacitive Loads
Driving large capacitive loads can cause stability
problems for voltage feedback op amps. As the load
capacitance increases, the feedback loop’s phase
margin decreases and the closed-loop bandwidth is
reduced. This produces gain peaking in the frequency
response, with overshoot and ringing in the step
response.
When driving large capacitive loads with these op
amps (e.g., > 100 pF when G = +1), a small series
resistor at the output (RISO in Figure 4-3) improves the
feedback loop’s stability by making the output load
resistive at higher frequencies; the bandwidth will
usually be decreased.
R1 >
FIGURE 4-1:
Inputs.
RG
RF
VOUT
CL
Protecting the Analog
A significant amount of current can flow out of the
inputs (through the ESD diodes) when the common
mode voltage (VCM) is below ground (VSS); see
Figure 2-7. Applications that are high impedance may
need to limit the usable voltage range.
© 2009 Microchip Technology Inc.
RISO
RN
MCP6LX
FIGURE 4-3:
Output Resistor, RISO
stabilizes large capacitive loads.
Bench measurements are helpful in choosing RISO.
Adjust RISO so that a small signal step response (see
Figure 2-14) has reasonable overshoot (e.g., 4%).
DS22135A-page 11
MCP6L1/1R/2/4
4.4
Supply Bypass
Guard Ring
With this family of operational amplifiers, the power
supply pin (VDD for single supply) should have a local
bypass capacitor (i.e., 0.01 µF to 0.1 µF) within 2 mm
for good high frequency performance. It also needs a
bulk capacitor (i.e., 1 µF or larger) within 100 mm to
provide large, slow currents. This bulk capacitor can be
shared with other nearby analog parts.
FIGURE 4-5:
4.5
1.
Unused Op Amps
An unused op amp in a quad package (e.g., MCP6L4)
should be configured as shown in Figure 4-4. These
circuits prevent the output from toggling and causing
crosstalk. Circuit A sets the op amp at its minimum
noise gain. The resistor divider produces any desired
reference voltage within the output voltage range of the
op amp; the op amp buffers that reference voltage.
Circuit B uses the minimum number of components
and operates as a comparator, but it may draw more
current.
¼ MCP6L4 (A)
¼ MCP6L4 (B)
VDD
VDD
R1
VDD
R2
2.
VIN– VIN+
Example guard ring layout.
Inverting Amplifiers (Figure 4-5) and Transimpedance Gain Amplifiers (convert current to
voltage, such as photo detectors).
a) Connect the guard ring to the non-inverting
input pin (VIN+); this biases the guard ring
to the same reference voltage as the op
amp’s input (e.g., VDD/2 or ground).
b) Connect the inverting pin (VIN–) to the input
with a wire that does not touch the PCB surface.
Non-inverting Gain and Unity-Gain Buffer.
a) Connect the guard ring to the inverting input
pin (VIN–); this biases the guard ring to the
common mode input voltage.
b) Connect the non-inverting pin (VIN+) to the
input with a wire that does not touch the
PCB surface.
VREF
R2
V REF = V DD ⋅ -----------------R1 + R2
FIGURE 4-4:
4.6
Unused Op Amps.
PCB Surface Leakage
In applications where low input bias current is critical,
PCB (printed circuit board) surface leakage effects
need to be considered. Surface leakage is caused by
humidity, dust or other contamination on the board.
Under low humidity conditions, a typical resistance
between nearby traces is 1012Ω. A 5V difference would
cause 5 pA of current to flow; this is greater than this
family’s bias current at 25°C (1 pA, typical).
The easiest way to reduce surface leakage is to use a
guard ring around sensitive pins (or traces). The guard
ring is biased at the same voltage as the sensitive pin.
Figure 4-5 shows an example of this type of layout.
DS22135A-page 12
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
4.7
Application Circuits
4.7.1
ACTIVE LOW-PASS FILTER
Figure 4-6 shows a second-order Butterworth filter,
with a 10 Hz cutoff frequency and a gain of +1 V/V,
using a Sallen Key topology. Microchip’s FilterLab®
software designed the filter, then the capacitors were
reduced in value (using the same program).
R1
18.2 kΩ
C1
R2
29.4 kΩ 1.0 µF
VOUT
VIN
C2
470 nF
FIGURE 4-6:
MCP6L1
Sallen Key Topology.
Figure 4-7 shows a filter with the same requirements,
except the gain is -1 V/V, in a Multiple Feedback topology. It was designed in a similar fashion using FilterLab®.
R2
25.5 kΩ
R1
54.9 kΩ
C1
220 nF
R3
25.5 kΩ
MCP6L1
VOUT
VIN
C2
820 nF
FIGURE 4-7:
VDD/2
Multiple Feedback Topology.
© 2009 Microchip Technology Inc.
DS22135A-page 13
MCP6L1/1R/2/4
NOTES:
DS22135A-page 14
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
5.0
DESIGN AIDS
Microchip provides the basic design aids needed for
the MCP6L1/1R/2/4 family of op amps.
5.1
FilterLab® Software
5.4
Application Notes
The following Microchip Application Notes are
available on the Microchip web site at www.microchip.
com/appnotes and are recommended as supplemental
reference resources.
Microchip’s FilterLab® software is an innovative
software tool that simplifies analog active filter (using
op amps) design. Available at no cost from the Microchip web site at www.microchip.com/filterlab, the FilterLab design tool provides full schematic diagrams of the
filter circuit with component values. It also outputs the
filter circuit in SPICE format, which can be used with
the macro model to simulate actual filter performance.
ADN003: “Select the Right Operational Amplifier for
your Filtering Circuits”, DS21821
5.2
AN990: “Analog Sensor Conditioning Circuits – An
Overview”, DS00990
Microchip Advanced Part Selector
(MAPS)
AN722: “Operational Amplifier Topologies and DC
Specifications”, DS00722
AN723: “Operational Amplifier AC Specifications and
Applications”, DS00723
AN884: “Driving Capacitive Loads With Op Amps”,
DS00884
MAPS is a software tool that helps efficiently identify
Microchip devices that fit a particular design requirement. Available at no cost from the Microchip website
at www.microchip.com/maps, the MAPS is an overall
selection tool for Microchip’s product portfolio that
includes Analog, Memory, MCUs and DSCs. Using this
tool, a customer can define a filter to sort features for a
parametric search of devices and export side-by-side
technical comparison reports. Helpful links are also
provided for Data sheets, Purchase and Sampling of
Microchip parts.
5.3
Analog Demonstration and
Evaluation Boards
Microchip offers a broad spectrum of Analog Demonstration and Evaluation Boards that are designed to
help customers achieve faster time to market. For a
complete listing of these boards and their corresponding user’s guides and technical information, visit the
Microchip web site at www.microchip.com/analog
tools.
Some boards that are especially useful are:
•
•
•
•
•
•
•
MCP6XXX Amplifier Evaluation Board 1
MCP6XXX Amplifier Evaluation Board 2
MCP6XXX Amplifier Evaluation Board 3
MCP6XXX Amplifier Evaluation Board 4
Active Filter Demo Board Kit
P/N VSUPEV2: 5/6-Pin SOT-23 Evaluation Board
P/N SOIC8EV: 8-Pin SOIC/MSOP/TSSOP/DIP
Evaluation Board
• P/N SOIC14EV: 14-Pin SOIC/TSSOP/DIP Evaluation Board
© 2009 Microchip Technology Inc.
DS22135A-page 15
MCP6L1/1R/2/4
NOTES:
DS22135A-page 16
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
6.0
PACKAGING INFORMATION
6.1
Package Marking Information
Example:
5-Lead SOT-23 (MCP6L1/1R)
5
4
Device
XXNN
Code
MCP6L1
WCNN
MCP6L1R
WDNN
5
4
WC25
Note: Applies to 5-Lead SOT-23.
1
2
3
1
3
Example:
8-Lead MSOP
XXXXXX
6L2E
YWWNNN
908256
8-Lead SOIC (150 mil)
XXXXXXXX
XXXXYYWW
NNN
Legend: XX...X
Y
YY
WW
NNN
e3
*
Note:
2
Example:
MCP6L2E
e3
SN^^0908
256
Customer-specific information
Year code (last digit of calendar year)
Year code (last 2 digits of calendar year)
Week code (week of January 1 is week ‘01’)
Alphanumeric traceability code
Pb-free JEDEC designator for Matte Tin (Sn)
This package is Pb-free. The Pb-free JEDEC designator ( e3 )
can be found on the outer packaging for this package.
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
© 2009 Microchip Technology Inc.
DS22135A-page 17
MCP6L1/1R/2/4
Package Marking Information (Continued)
14-Lead SOIC (150 mil) (MCP6L4)
Example:
MCP6L4
e3
E/SL^^
0908256
XXXXXXXXXX
XXXXXXXXXX
YYWWNNN
14-Lead TSSOP (MCP6L4)
Example:
XXXXXXXX
YYWW
6L4E
0908
NNN
256
DS22135A-page 18
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
.# #$#
/!- 0
#
1/
%##!#
##
+22---
2
/
b
N
E
E1
3
2
1
e
e1
D
A2
A
c
φ
A1
L
L1
3#
4#
5$8%1
44""
5
56
7
5
(
4!1#
()*
6$# !4!1#
6,9#
:
!!1//
;
:
#!%%
:
(
6,<!#
"
:
!!1/<!#
"
:
;
6,4#
:
)*
(
.#4#
4
:
=
.#
#
4
(
:
;
.#
>
:
>
4!/
;
:
=
4!<!#
8
:
(
!"!#$!!% #$ !% #$ #&!
!
!#
"'(
)*+ ) #&#,$ --#$## - *)
© 2009 Microchip Technology Inc.
DS22135A-page 19
MCP6L1/1R/2/4
!" .# #$#
/!- 0
#
1/
%##!#
##
+22---
2
/
D
N
E
E1
NOTE 1
1
2
e
b
A2
A
c
φ
L
L1
A1
3#
4#
5$8%1
44""
5
5
56
7
;
1#
6,9#
:
=()*
:
!!1//
(
;(
(
#!%%
:
(
6,<!#
"
!!1/<!#
"
)*
6,4#
)*
.#4#
4
.#
#
4
)*
=
;
(".
.#
>
:
;>
4!/
;
:
4!<!#
8
:
1, $!&%#$,08$#$ #8#!-###!
!"!#$!!% #$ !% #$ #&!(
!
!#
"'(
)*+ ) #&#,$ --#$## ".+ % 0$ $-#$##0%%#
$
- *)
DS22135A-page 20
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
#$%&'()*+,
.# #$#
/!- 0
#
1/
%##!#
##
+22---
2
/
D
e
N
E
E1
NOTE 1
1
2
3
α
h
b
h
A2
A
c
φ
L
A1
L1
3#
4#
5$8%1
β
44""
5
5
56
7
;
1#
6,9#
:
)*
:
!!1//
(
:
:
#!%%?
:
(
6,<!#
"
!!1/<!#
"
)*
6,4#
)*
(
=)*
*%@
#A
(
:
(
.#4#
4
:
.#
#
4
".
.#
>
:
;>
4!/
:
(
4!<!#
8
:
(
!%#
(>
:
(>
!%#)##
(>
:
(>
1, $!&%#$,08$#$ #8#!-###!
?%#*# #
!"!#$!!% #$ !% #$ #&!(
!
!#
"'(
)*+ ) #&#,$ --#$## ".+ % 0$ $-#$##0%%#
$
- *()
© 2009 Microchip Technology Inc.
DS22135A-page 21
MCP6L1/1R/2/4
#$%&'()*+,
.# #$#
/!- 0
#
1/
%##!#
##
+22---
2
/
DS22135A-page 22
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
-.
#$%&'()*+,
.# #$#
/!- 0
#
1/
%##!#
##
+22---
2
/
D
N
E
E1
NOTE 1
1
2
3
e
h
b
A
A2
c
φ
L
A1
β
L1
3#
4#
5$8%1
α
h
44""
5
5
56
7
1#
6,9#
:
)*
:
!!1//
(
:
:
#!%%?
:
(
6,<!#
"
!!1/<!#
"
)*
6,4#
;=()*
(
=)*
*%@
#A
(
:
(
.#4#
4
:
.#
#
4
".
.#
>
:
;>
4!/
:
(
4!<!#
8
:
(
!%#
(>
:
(>
!%#)##
(>
:
(>
1, $!&%#$,08$#$ #8#!-###!
?%#*# #
!"!#$!!% #$ !% #$ #&!(
!
!#
"'(
)*+ ) #&#,$ --#$## ".+ % 0$ $-#$##0%%#
$
- *=()
© 2009 Microchip Technology Inc.
DS22135A-page 23
MCP6L1/1R/2/4
.# #$#
/!- 0
#
1/
%##!#
##
+22---
2
/
DS22135A-page 24
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
//!
#.&.)*
.# #$#
/!- 0
#
1/
%##!#
##
+22---
2
/
D
N
E
E1
NOTE 1
1
2
b
e
c
A
φ
A2
A1
L
L1
3#
4#
5$8%1
44""
5
5
56
7
;
1#
6,9#
:
=()*
:
!!1//
;
(
#!%%
(
:
(
6,<!#
"
!!1/<!#
"
=)*
!!1/4#
.#4#
4
(
=
(
.#
#
4
(
".
.#
I
>
:
;>
4!/
:
4!<!#
8
:
1, $!&%#$,08$#$ #8#!-###!
!"!#$!!% #$ !% #$ #&!(
!
!#
"'(
)*+ ) #&#,$ --#$## ".+ % 0$ $-#$##0%%#
$
- *;=)
© 2009 Microchip Technology Inc.
DS22135A-page 25
MCP6L1/1R/2/4
NOTES:
DS22135A-page 26
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
APPENDIX A:
REVISION HISTORY
Revision A (March 2009)
• Original Release of this Document.
© 2009 Microchip Technology Inc.
DS22135A-page 29
MCP6L1/1R/2/4
NOTES:
DS22135A-page 30
© 2009 Microchip Technology Inc.
MCP6L1/1R/2/4
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
X
/XX
Device
Temperature
Range
Package
Examples:
a) MCP6L1T-E/OT:
b) MCP6L1T-E/MS:
Device:
MCP6L1T:
MCP6L1RT:
MCP6L2T:
MCP6L4T:
Single Op Amp (Tape and Reel)
(SOT-23, MSOP, SOIC)
Single Op Amp (Tape and Reel) (SOT-23)
Dual Op Amp (Tape and Reel)
(SOIC, MSOP)
Quad Op Amp (Tape and Reel)
(SOIC, TSSOP)
Temperature Range:
E
= -40°C to +125°C
Package:
OT
MS
SN
SL
ST
=
=
=
=
=
c) MCP6L1T-E/SN:
a) MCP6L1RT-E/OT:
Tape and Reel,
Extended Temperature,
5LD SOT-23 package.
a) MCP6L2T-E/MS:
Tape and Reel,
Extended Temperature,
8LD MSOP package.
Tape and Reel,
Extended Temperature,
8LD SOIC package.
b) MCP6L2T-E/SN:
Plastic Small Outline Transistor (SOT-23), 5-lead
Plastic MSOP, 8-lead
Plastic SOIC, (3.99 mm body), 8-lead
Plastic SOIC (3.99 mm body), 14-lead
Plastic TSSOP (4.4mm body), 14-lead
a) MCP6L4T-E/SL:
b) MCP6L4T-E/ST:
© 2009 Microchip Technology Inc.
Tape and Reel,
Extended Temperature,
5LD SOT-23 package
Tape and Reel,
Extended Temperature,
8LD MSOP package.
Tape and Reel,
Extended Temperature,
8LD SOIC package.
Tape and Reel,
Extended Temperature,
14LD SOIC package.
Tape and Reel,
Extended Temperature,
14LD TSSOP package.
DS22135A-page 31
MCP6L1/1R/2/4
NOTES:
DS22135A-page 32
© 2009 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.
Trademarks
The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro,
PICSTART, rfPIC, SmartShunt and UNI/O are registered
trademarks of Microchip Technology Incorporated in the
U.S.A. and other countries.
FilterLab, Linear Active Thermistor, MXDEV, MXLAB,
SEEVAL, SmartSensor and The Embedded Control Solutions
Company are registered trademarks of Microchip Technology
Incorporated in the U.S.A.
Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, In-Circuit Serial
Programming, ICSP, ICEPIC, Mindi, MiWi, MPASM, MPLAB
Certified logo, MPLIB, MPLINK, mTouch, PICkit, PICDEM,
PICDEM.net, PICtail, PIC32 logo, PowerCal, PowerInfo,
PowerMate, PowerTool, REAL ICE, rfLAB, Select Mode, Total
Endurance, WiperLock and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
All other trademarks mentioned herein are property of their
respective companies.
© 2009, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
Printed on recycled paper.
Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
© 2009 Microchip Technology Inc.
DS22135A-page 33
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4080
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
02/04/09
DS22135A-page 34
© 2009 Microchip Technology Inc.