TI SN74LVTH162373DL

SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
FEATURES
•
•
•
•
•
•
•
•
•
•
•
Members of the Texas Instruments Widebus™
Family
Output Ports Have Equivalent 22-Ω Series
Resistors, So No External Resistors Are
Required
Support Mixed-Mode Signal Operation (5-V
Input and Output Voltages With 3.3-V VCC)
Support Unregulated Battery Operation Down
to 2.7 V
Typical VOLP (Output Ground Bounce) <0.8 V
at VCC = 3.3 V, TA = 25°C
Ioff and Power-Up 3-State Support Hot
Insertion
Bus Hold on Data Inputs Eliminates the Need
for External Pullup/Pulldown Resistors
Distributed VCC and GND Pins Minimize
High-Speed Switching Noise
Flow-Through Architecture Optimizes PCB
Layout
Latch-Up Performance Exceeds 500 mA Per
JESD 17
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
SN54LVTH162373 . . . WD PACKAGE
SN74LVTH162373 . . . DGG OR DL PACKAGE
(TOP VIEW)
1OE
1Q1
1Q2
GND
1Q3
1Q4
VCC
1Q5
1Q6
GND
1Q7
1Q8
2Q1
2Q2
GND
2Q3
2Q4
VCC
2Q5
2Q6
GND
2Q7
2Q8
2OE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
1LE
1D1
1D2
GND
1D3
1D4
VCC
1D5
1D6
GND
1D7
1D8
2D1
2D2
GND
2D3
2D4
VCC
2D5
2D6
GND
2D7
2D8
2LE
DESCRIPTION/ORDERING INFORMATION
The 'LVTH162373 devices are16-bit transparent D-type latches with 3-state outputs designed for low-voltage
(3.3-V) VCC operation, but with the capability to provide a TTL interface to a 5-V system environment. These
devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and
working registers.
ORDERING INFORMATION
PACKAGE (1)
TA
Tube of 25
SSOP – DL
Reel of 1000
–40°C to 85°C
TSSOP – DGG
Reel of 2000
VFBGA – GQL
–55°C to 125°C
(1)
ORDERABLE PART NUMBER
TOP-SIDE MARKING
SN74LVTH162373DL
74LVTH162373DLG4
SN74LVTH162373DLR
LVTH162373
74LVTH162373DLRG4
SN74LVTH162373DGGR
74LVTH162373DGGRE4
LVTH162373
SN74LVTH162373KR
VFBGA – ZQL
(Pb-free)
Reel of 1000
CFP – WD
Tube
74LVTH162373ZQLR
SNJ54LVTH162373WD
LL2373
SNJ54LVTH162373WD
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 1993–2006, Texas Instruments Incorporated
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high or
low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the
bus lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines
without interface or pullup components.
OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while
the outputs are in the high-impedance state.
The outputs, which are designed to source or sink up to 12 mA, include equivalent 22-Ω series resistors to
reduce overshoot and undershoot.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown
resistors with the bus-hold circuitry is not recommended.
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry
disables the outputs, preventing damaging current backflow through the devices when they are powered down.
The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
These devices can be used as two 8-bit latches or one 16-bit latch. When the latch-enable (LE) input is high, the
Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the
D inputs.
TERMINAL ASSIGNMENTS (1)
GQL OR ZQL PACKAGE
(TOP VIEW)
1
2
3
4
5
6
A
B
C
D
E
1
2
3
4
5
6
A
1OE
NC
NC
NC
NC
1LE
B
1Q2
1Q1
GND
GND
1D1
1D2
C
1Q4
1Q3
VCC
VCC
1D3
1D4
D
1Q6
1Q5
GND
GND
1D5
1D6
E
1Q8
1Q7
1D7
1D8
F
2Q1
2Q2
2D2
2D1
G
2Q3
2Q4
GND
GND
2D4
2D3
H
2Q5
2Q6
VCC
VCC
2D6
2D5
F
J
2Q7
2Q8
GND
GND
2D8
2D7
G
K
2OE
NC
NC
NC
NC
2LE
H
J
K
(1)
NC - No internal connection
FUNCTION TABLE
(each 8-bit section)
INPUTS
2
OE
LE
D
OUTPUT
Q
L
H
H
H
L
H
L
L
L
L
X
Q0
H
X
X
Z
Submit Documentation Feedback
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
LOGIC DIAGRAM (POSITIVE LOGIC)
1OE
1LE
1
2OE
48
2LE
C1
1D1
47
2
1D
24
25
C1
1Q1
2D1
36
13
1D
To Seven Other Channels
2Q1
To Seven Other Channels
Pin numbers shown are for the DGG, DL, and WD packages.
Absolute Maximum Ratings (1)
over recommended operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range
–0.5
4.6
V
VI
Input voltage range (2)
–0.5
7
V
–0.5
7
V
–0.5
VCC + 0.5
state (2)
UNIT
VO
Voltage range applied to any output in the high-impedance or power-off
VO
Voltage range applied to any output in the high state (2)
IO
Current into any output in the low state
IO
Current into any output in the high state (3)
IIK
Input clamp current
VI < 0
IOK
Output clamp current
VO < 0
–50
mA
θJA
Package thermal impedance (4)
Tstg
(1)
(2)
(3)
(4)
mA
30
mA
–50
mA
DGG package
70
DL package
63
GQL/ZQL package
42
Storage temperature range
–65
V
30
150
°C/W
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
This current flows only when the output is in the high state and VO > VCC.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
SN54LVTH162373
SN74LVTH162373
MIN
MAX
MIN
MAX
2.7
3.6
2.7
3.6
UNIT
VCC
Supply voltage range
VIH
High-level input voltage
VIL
Low-level input voltage
0.8
0.8
VI
Input voltage
5.5
5.5
V
IOH
High-level output current
–12
–12
mA
IOL
Low-level output current
12
12
mA
∆t/∆v
Input transition rise or fall rate
10
10
ns/V
∆t/∆VCC
Power-up ramp rate
200
TA
Operating free-air temperature
–55
(1)
2
Outputs enabled
2
V
–40
V
µs/V
200
125
V
85
°C
All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
3
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
Electrical Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SN54LVTH162373
SN74LVTH162373
MIN TYP (1)
MIN TYP (1)
MAX
VIK
VCC = 2.7 V,
II = –18 mA
VOH
VCC = 3 V,
IOH = –12 mA
VOL
VCC = 3 V,
IOL = 12 mA
0.8
0.8
VCC = 0 or 3.6 V,
VI = 5.5 V
10
10
VI = VCC or GND
±1
±1
1
1
–5
–5
Control inputs VCC = 3.6 V,
II
Data inputs
Ioff
VCC = 3.6 V
VCC = 0,
2
2
VI = VCC
VI = 0
VI = 2 V
V (2),
75
75
–75
–75
UNIT
V
V
±100
VI = 0.8 V
Data inputs
VCC = 3.6
–1.2
VI or VO = 0 to 4.5 V
VCC = 3 V
II(hold)
–1.2
MAX
V
µA
µA
µA
500
–750
VI = 0 to 3.6 V
5
5
µA
–5
–5
µA
VCC = 0 to 1.5 V, VO = 0.5 V to 3 V,
OE = don't care
±100 (3)
±100
µA
IOZPD
VCC = 1.5 V to 0, VO = 0.5 V to 3 V,
OE = don't care
±100 (3)
±100
µA
VCC = 3.6 V,
IO = 0,
VI = VCC or GND
0.19
0.19
ICC
IOZH
VCC = 3.6 V,
VO = 3 V
IOZL
VCC = 3.6 V,
VO = 0.5 V
IOZPU
Outputs high
Outputs low
Outputs disabled
5
5
0.19
0.19
0.2
0.2
mA
∆ICC (4)
VCC = 3 V to 3.6 V, One input at VCC – 0.6 V,
Other inputs at VCC or GND
Ci
VI = 3 V or 0
3
3
pF
Co
VO = 3 V or 0
9
9
pF
(1)
(2)
(3)
(4)
mA
All typical values are at VCC = 3.3 V, TA = 25°C.
This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to
another.
On products compliant to MIL-PRF-38535, this parameter is not production tested.
This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
Timing Requirements
over operating free-air temperature range (unless otherwise noted) (see Figure 1)
SN54LVTH162373
VCC = 3.3 V
±0.3 V
MIN
4
tw
Pulse duration, LE high
tsu
Setup time, data before LE↓
th
Hold time, data after LE↓
MAX
SN74LVTH162373
VCC = 2.7 V
MIN
MAX
VCC = 3.3 V
±0.3 V
MIN
MAX
VCC = 2.7 V
MIN
UNIT
MAX
3
3
3
3
ns
1.3
0.6
1
0.6
ns
1
1.1
1
1.1
ns
Submit Documentation Feedback
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
Switching Characteristics
over recommended operating free-air temperature range, CL = 50 pF (unless otherwise noted) (see Figure 1)
SN54LVTH162373
PARAMETER
tPLH
tPHL
tPLH
tPHL
tPZH
tPZL
tPHZ
tPLZ
(1)
FROM
(INPUT)
TO
(OUTPUT)
D
Q
LE
Q
OE
Q
OE
Q
VCC = 3.3 V
±0.3 V
SN74LVTH162373
VCC = 3.3 V
±0.3 V
VCC = 2.7 V
VCC = 2.7 V
UNIT
MAX
MIN
TYP (1)
MAX
5
5.7
1.9
3.1
4.6
5.1
1.8
4.4
4.8
1.9
2.8
4
4.3
2.1
5.4
6.2
2.2
3.4
5.1
5.8
2.1
4.9
4.7
2.2
3.2
4.6
4.3
1.7
5.6
7
1.8
3.2
5.4
6.6
1.7
5.3
5.9
1.8
3.2
4.9
5.5
2.3
6.3
6.6
2.4
3.8
5.4
5.7
1
7.4
6.4
2.2
3.5
5.1
5
MIN
MAX
1.8
MIN
tsk(LH)
0.5
tsk(HL)
0.5
MIN
MAX
ns
ns
ns
ns
ns
All typical values are at VCC = 3.3 V, TA = 25°C.
Submit Documentation Feedback
5
SN54LVTH162373,, SN74LVTH162373
3.3-V ABT 16-BIT TRANSPARENT D-TYPE LATCHES
WITH 3-STATE OUTPUTS
www.ti.com
SCBS261M – JULY 1993 – REVISED DECEMBER 2006
PARAMETER MEASUREMENT INFORMATION
6V
500 W
From Output
Under Test
S1
Open
GND
CL = 50 pF
(see Note A)
500 W
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
2.7 V
LOAD CIRCUIT
Timing Input
1.5 V
0V
tw
tsu
2.7 V
1.5 V
Input
th
2.7 V
1.5 V
Data Input
1.5 V
1.5 V
0V
0V
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
2.7 V
Input
1.5 V
1.5 V
0V
tPHL
tPLH
VOH
Output
1.5 V
1.5 V
VOL
1.5 V
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
0V
tPLZ
tPZL
3V
1.5 V
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
tPZH
VOH
Output
Output
Waveform 1
S1 at 6 V
(see Note B)
tPLH
tPHL
2.7 V
Output
Control
1.5 V
VOH – 0.3 V
VOH
»0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = 50 W, tr £ 2.5 ns, tf £ 2.5 ns.
D. The outputs are measured one at a time, with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
6
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
30-Mar-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
5962-9763801QXA
ACTIVE
CFP
WD
48
1
TBD
A42 SNPB
N / A for Pkg Type
5962-9763801VXA
ACTIVE
CFP
WD
48
1
TBD
A42 SNPB
N / A for Pkg Type
74LVTH162373DGGRE4
ACTIVE
TSSOP
DGG
48
74LVTH162373DLG4
ACTIVE
SSOP
DL
48
74LVTH162373DLRG4
ACTIVE
SSOP
DL
74LVTH162373ZQLR
ACTIVE
BGA MI
CROSTA
R JUNI
OR
SN74LVTH162373DGGR
ACTIVE
SN74LVTH162373DL
MSL Peak Temp (3)
CU NIPDAU
Level-1-260C-UNLIM
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
48
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ZQL
56
1000 Green (RoHS &
no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
TSSOP
DGG
48
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SSOP
DL
48
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH162373DLR
ACTIVE
SSOP
DL
48
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH162373KR
NRND
GQL
56
1000
TBD
SNPB
Level-1-240C-UNLIM
SNJ54LVTH162373WD
ACTIVE
WD
48
1
TBD
A42 SNPB
BGA MI
CROSTA
R JUNI
OR
CFP
2000 Green (RoHS &
no Sb/Br)
Lead/Ball Finish
25
25
N / A for Pkg Type
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
30-Mar-2007
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MCFP010B – JANUARY 1995 – REVISED NOVEMBER 1997
WD (R-GDFP-F**)
CERAMIC DUAL FLATPACK
48 LEADS SHOWN
0.120 (3,05)
0.075 (1,91)
0.009 (0,23)
0.004 (0,10)
1.130 (28,70)
0.870 (22,10)
0.370 (9,40)
0.250 (6,35)
0.390 (9,91)
0.370 (9,40)
0.370 (9,40)
0.250 (6,35)
48
1
0.025 (0,635)
A
0.014 (0,36)
0.008 (0,20)
25
24
NO. OF
LEADS**
48
56
A MAX
0.640
(16,26)
0.740
(18,80)
A MIN
0.610
(15,49)
0.710
(18,03)
4040176 / D 10/97
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only
Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO -146AA
GDFP1-F56 and JEDEC MO -146AB
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to
discontinue any product or service without notice. Customers should obtain the latest relevant information
before placing orders and should verify that such information is current and complete. All products are sold
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent
TI deems necessary to support this warranty. Except where mandated by government requirements, testing
of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible
for their products and applications using TI components. To minimize the risks associated with customer
products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,
or process in which TI products or services are used. Information published by TI regarding third-party
products or services does not constitute a license from TI to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or
other intellectual property of the third party, or a license from TI under the patents or other intellectual
property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not
responsible or liable for such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless
www.ti.com/lpw
Telephony
www.ti.com/telephony
Mailing Address:
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated