M65KA128AL 128Mbit (4 Banks x 2M x 16) 1.8V Supply, Low Power SDRAMs Feature summary ■ 128Mbit Synchronous Dynamic RAM – Organized as 4 Banks of 2 MWords, each 16 bits wide ■ Supply Voltage – VDD = 1.65V to 1.95V – VDDQ = 1.65 to 1.95V for Input/Output ■ Synchronous Burst Read and Write – Fixed Burst lengths: 1, 2, 4, 8 words or full Page – Burst Types: Sequential and Interleaved. – Maximum clock frequency: 104MHz – CAS Latency 2, 3 ■ Automatic Precharge ■ Low Power features: – PASR (Partial Array Self Refresh), – Automatic TCSR (Temperature Compensated Self Refresh) – Driver Strength (DS) – Deep Power-Down Mode ■ Delivery form: Unsawn Wafer ■ Auto Refresh and Self Refresh ■ LVCMOS Interface Compatible with Multiplexed Addressing ■ Operating temperature – –25°C to +90°C Wafer The M65KA128AL is only available as part of a Multi-Chip Package Product. April 2006 Rev 3 1/53 www.st.com 1 Contents M65KA128AL Contents 1 Summary description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Signal descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 4 2/53 2.1 Address Inputs (A0-A11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Bank Select Inputs (BA0-BA1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Data Inputs/Outputs (DQ0-DQ15) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Chip Select (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.5 Column Address Strobe (CAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.6 Row Address Strobe (RAS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.7 Write Enable (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.8 Clock Input (K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.9 Clock Enable (KE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.10 Lower/Upper Data Input/Output Mask (LDQM/UDQM) . . . . . . . . . . . . . . 10 2.11 VDD Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.12 VDDQ Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.13 VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.14 VSSQ Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.5 Auto Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.6 Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.7 Deep Power-Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.1 Mode Register Set command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.2 Extended Mode Register Set command . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.3 Bank (Row) Activate command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 4.4 Read command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 M65KA128AL 5 Contents 4.5 Write command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.6 Precharge command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.7 Auto Precharge command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.8 Burst Terminate command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.9 Data Mask command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.10 Clock Suspend command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.11 Power-Down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.12 Auto Refresh command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.13 Self Refresh command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.14 Deep Power-Down command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.1 Mode Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2 Extended Mode Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 6 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7 DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3/53 List of tables M65KA128AL List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. 4/53 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Extended Mode Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 DC Characteristics 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 DC Characteristics 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Self Refresh Current (IDD6) Values in Normal Operating Mode . . . . . . . . . . . . . . . . . . . . . 25 Synchronous AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Asynchronous AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Ordering Information Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 M65KA128AL List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Chip Enable Signal During Read, Write and Precharge . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Read with Precharge AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Read with Auto Precharge AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Clock Suspend During Burst Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Random Column Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Random Row Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Column Interleaved Read AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Burst Column Read Followed by Auto Precharge AC Waveforms . . . . . . . . . . . . . . . . . . . 35 Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Byte Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Mode Register Set AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Clock Suspend During Burst Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Random Column Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Random Row Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Column Interleaved Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Burst Column Write Followed by Auto Precharge AC Waveforms . . . . . . . . . . . . . . . . . . . 43 Precharge Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Power-Down Mode and Clock Masking AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Auto Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Self Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Deep Power-Down Entry AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Deep Power-Down Exit AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5/53 Summary description 1 M65KA128AL Summary description The M65KA128AL is a 128 Mbit Low Power Synchronous DRAM (SDRAM) organized as 4 Banks of 2,097,152 Words of 16 bits each. The Low Power SDRAM achieves low power consumption and high-speed data transfer using the pipeline architecture. It is well suited for handheld battery powered applications like PDAs, 2.5 and 3G mobile phones and handheld computers. The device architecture is illustrated in Figure 2: Functional Block Diagram. The device uses Burst mode to read and write data. It is capable of one, two, four, eight-word and full page, sequential and interleaved Burst. To minimize current consumption during self-refresh operations, the M65KA128AL includes three system-accessible mechanisms configured via the Extended Mode Register: ● Automatic Temperature Compensated Self Refresh (TCSR) is used to adapts the refresh rate according to the operating temperature. ● Partial Array Self Refresh (PASR) performs a limited refresh of a half bank, a quarter of bank, one bank, two banks or all banks. ● The Deep Power-Down (DPD) mode completely halts the refresh operation and achieves minimum current consumption by cutting off the supply voltage from the whole memory array. The M65KA128AL is programmable through two registers, the Mode Register and the Extended Mode Register: ● The Mode Register is used to select the CAS Latency, the Burst Type (sequential or interleaved) and the Burst Length. For more details, refer to Table 4: Mode Register Definition, and to Section 4.1: Mode Register Set command. ● The Extended Mode Register is used to program the Low Power features (PASR and Driver Strength) to reduce the current consumption during the Self Refresh operations. For more details, refer to Table 5: Extended Mode Register Definition, and to Section 4.2: Extended Mode Register Set command. The M65KA128AL is offered in unsawn wafer. 6/53 M65KA128AL Figure 1. Summary description Logic Diagram VDD VDDQ 12 16 A0-A11 DQ0-DQ15 2 BA0-BA1 E RAS M65KA128AL CAS K KE W UDQM LDQM VSS VSSQ AI12138 Table 1. Signal Names A0-A11 Address Inputs BA0-BA1 Bank Select Inputs DQ0-DQ15 Data Inputs/Outputs K Clock Input KE Clock Enable Input E Chip Select Input W Write Enable Input RAS Row Address Strobe Input CAS Column Address Strobe Input UDQM Upper Data Input/Output Mask LDQM Lower Data Input/Output Mask VDD Supply Voltage VDDQ Input/Output Supply Voltage VSS Ground VSSQ Input/Output Ground 7/53 Summary description Figure 2. M65KA128AL Functional Block Diagram PASR Extended Mode Register Self Refresh Logic & Timer K Internal Row Counter KE DQ0 ... I/O Buffer & Logic Column Decoders ... LDQM Memory Cell Array Sense AMP & I/O Gate Column PreDecoders 2 M x 16 Bank 0 ... Column Active 2 M x 16 Bank 1 Row Decoders UDQM 2 M x 16 Bank 2 Row Decoders W Refresh 2 M x 16 Bank 3 Row Decoders CAS State Machine RAS Row PreDecoders Row Decoders Row Active E DQ15 Column Add Counter Bank Select Address Registers Burst Length Address Buffers A0-A11/BA0-BA1 Mode Register Burst Counter CAS Latency Data Out Control ai08974d 8/53 M65KA128AL 2 Signal descriptions Signal descriptions See Figure 1: Logic Diagram, and Table 1: Signal Names, for a brief overview of the signals connected to this device. 2.1 Address Inputs (A0-A11) The A0-A11 Address Inputs are used to select the row or column to be made active. If a row is selected, all A0-A11 Address Inputs are used. If a column is selected, only the nine least significant Address Inputs, A0-A8, are used. In this latter case, A10 determines whether Auto Precharge is used. If A10 is High (set to ‘1’) during Read or Write, the Read or Write operation includes an Auto Precharge cycle. If A10 is Low (set to ‘0’) during Read or Write, the Read or Write cycle does not include an Auto Precharge cycle. 2.2 Bank Select Inputs (BA0-BA1) The BA0 and BA1 Banks Select Inputs are used to select the bank to be made active. The device must be enabled, the Row Address Strobe, RAS, must be Low, VIL, the Column Address Strobe, CAS, and W must be High, VIH, when selecting the addresses. The address inputs are latched on the rising edge of the clock signal, K. 2.3 Data Inputs/Outputs (DQ0-DQ15) The Data Inputs/Outputs output the data stored at the selected address during a Read operation, or are used to input the data during a write operation. 2.4 Chip Select (E) The Chip Select input E activates the memory state machine, address buffers and decoders when driven Low, VIL. When High, VIH, the device is not selected. 2.5 Column Address Strobe (CAS) The Column Address Strobe, CAS, is used in conjunction with Address Inputs A8-A0 and BA1-BA0, to select the starting column location prior to a Read or Write. 2.6 Row Address Strobe (RAS) The Row Address Strobe, RAS, is used in conjunction with Address Inputs A11-A0 and BA1-BA0, to select the starting address location prior to a Read or Write. 2.7 Write Enable (W) The Write Enable input, W, controls writing. 9/53 Signal descriptions 2.8 M65KA128AL Clock Input (K) The Clock signal, K, is used to clock the Read and Write cycles. During normal operation, the Clock Enable pin, KE, is High, VIH. The clock signal K can be suspended to switch the device to the Self Refresh, Power-Down or Deep Power-Down mode by driving KE Low, VIL. 2.9 Clock Enable (KE) The Clock Enable, KE, pin is used to control the synchronizing of the signals to Clock signal K. The signals are clocked when KE is High, VIH When KE is Low, VIL, the signals are no longer clocked and data Read and Write cycles are extended. KE is also involved in switching the device to the Self Refresh, Power-Down and Deep Power-Down modes. 2.10 Lower/Upper Data Input/Output Mask (LDQM/UDQM) Lower Data Input/Output Mask and Upper Data Input/Output Mask pins are input signals used to control the Input and Output buffers, respectively. During Read operations, LDQM and UDQM control the Output buffer. When both LDQM and UDQM are High, VIH, the Output buffer is disabled. When held Low, VIL, the Output buffer is enabled. LDQM and UDQM are used to mask the data read or written from or to the memory array. LDQM Low, VIL, gates the data from or to the Lower Byte Data I/O (DQ0 to DQ7) while UDQM Low, gates the data from or to the Upper Byte Data I/Os (DQ8 to DQ15). During read operations, the latency between LDQM/UDQM High or Low and data output disabled or enabled is two clock cycles. During write operations, there is no latency between LDQM/UDQM stable and data input valid. 2.11 VDD Supply Voltage VDD provides the power supply to the internal core of the memory device. It is the main power supply for all operations (Read and Write). 2.12 VDDQ Supply Voltage VDDQ provides the power supply to the I/O pins and enables all Outputs to be powered independently of VDD. VDDQ can be tied to VDD or can use a separate supply. It is recommended to power-up and power-down VDD and VDDQ together to avoid certain conditions that would result in data corruption. 2.13 VSS Ground Ground, VSS, is the reference for the core power supply. It must be connected to the system ground. 10/53 M65KA128AL 2.14 Signal descriptions VSSQ Ground VSSQ ground is the reference for the input/output circuitry driven by VDDQ. VSSQ must be connected to VSS. Note: Each device in a system should have VDD and VDDQ decoupled with a 0.1µF ceramic capacitor close to the pin (high frequency, inherently low inductance capacitors should be as close as possible to the package). 11/53 Operations 3 M65KA128AL Operations There are 7 operating modes that control the memory. Each of these is described in this section, see Table 2: Operating Modes, for a summary. 3.1 Power-Up The Low Power SDRAM has to be powered up and initialized in a well determined manner: 1. Power must be applied to VDD and VDDQ simultaneously. 2. After applying VDD and VDDQ, a minimum pause of 200µs must be respected before the signals can be toggled. 3. The Precharge command must then be issued to all banks. The Clock Enable input, KE, and UDQM/LDQM must be held High until the Precharge command is issued to make sure that DQ0-DQ15 remain high impedance. 4. tRP after precharging all the banks, the Mode Register and the Extended Mode Register must be set by issuing a Mode Register Set command and an Extended Mode Register Set command, respectively. A minimum pause of tMRD must be respected after each register set command. 5. After configuring the registers, 2 or more Auto Refresh cycles must be executed before the device is ready for normal operation. The fourth and fifth steps can be swapped. 3.2 Burst Read The Read Command is used to switch the device to Burst Read mode (see Section 4.4: Read command for details). In Burst Read mode the data is output in bursts synchronized with the clock. A valid Burst Read operation is initiated by driving E and CAS Low, VIL, and by driving W and RAS High, VIH, at the positive edge of the clock signal, K. Burst Read can be accompanied by an Auto Precharge cycle depending on the state of the A10 Address Input. If A10 is High (set to ‘1’) when the Burst Read command is issued, the Burst Read operation will be followed by an Auto Precharge cycle. During Burst Read operation, the memory reads data from the activated bank. Different Burst Types and Lengths can be programmed using the Mode Register bits (see Section 5.1: Mode Register description). The Burst Types available are Sequential and Interleaved, selected using Mode Register Bit A3. Possible Burst Lengths are 1-, 2-, 4-, 8Word and Full Page, selected using Mode Register Bits A2 to A0. 12/53 M65KA128AL 3.3 Operations Burst Write The Write Command is used to switch the device to Burst Write mode (see Section 4.5: Write command for details). In Burst Write mode the data is input in bursts synchronized with the clock. A valid Burst Write is initiated by driving E, CAS and W Low, VIL, and by driving RAS High, VIH, at the positive edge of the clock signal, K. Burst Write can be accompanied by an Auto Precharge cycle depending on the state of the A10 Address Input. If A10 is High (set to ‘1’) when the Write command is issued, the Write operation will be followed by an Auto Precharge cycle. During Burst Write operation, the memory writes data to the activated bank. As for Burst Read, different Burst Types and Lengths can be utilized, programmed in the same fashion. 3.4 Self Refresh In Self Refresh mode, the data contained in the Low Power SDRAM memory array is retained and refreshed. The Low Power SDRAM refresh cycles are asynchronous. The Self-Refresh mode is entered by driving KE Low (set to ‘0’), with E, RAS, and CAS Low, and W High (set to ‘1’). When in this mode, the device is not clocked any more. The Self Refresh mode is exited by driving KE from Low to High, with E High, RAS, CAS and W Don’t Care, or with E Low and RAS, CAS and W High. 3.5 Auto Refresh The Auto Refresh mode is used to refresh the Low Power SDRAM in normal operation mode whenever needed. During an auto refresh operation, KE must be kept High, VIH and the address bits are “Don’t Care” because the specific address bits are generated by the internal refresh address counter. 3.6 Power-Down In Power-Down mode, the current is reduced the Standby current. For the memory to enter the Power-Down mode, KE must be held Low (set to ‘0’), after the Precharge Time tRP, with E High (set to ‘1’), RAS, CAS and W Don’t Care, or with E Low, RAS, CAS and W High. The Power-Down mode is exited by driving KE High, with E High, RAS, CAS and W Don’t Care, or with E Low and RAS, CAS and W High. 13/53 Operations 3.7 M65KA128AL Deep Power-Down The purpose of this mode is to achieve maximum power reduction by cutting the power supply to the whole memory array. Data is no longer retained when the device enters Deep Power-Down Mode. The Low Power SDRAM is switched to Deep Power-Down mode by applying VIL to E and W, and VIH to RAS and CAS on the rising edge of the clock, K, and by driving KE Low, VIL. For more information, see Figure 25: Deep Power-Down Entry AC Waveforms. The Low Power SDRAM is released from Deep Power-Down mode by applying VIH to KE, with all other pins Don’t Care. Then a special sequence, is required before the device can take any new command into account: 1. Maintain No Operation status conditions (see Table 3 for a minimum time of 200µs, 2. Issue a Precharge command to all the banks of the device (see Section 4.6: Precharge command for details), 3. Issue 2 or more Auto-Refresh commands, 4. Issue a Mode Register Set command and an Extended Mode Register Set command to initialize the Mode Register and the Extended Mode Register, respectively. The third and fourth steps can be swapped. The Deep Power-Down mode exit sequence is illustrated in Figure 26: Deep Power-Down Exit AC Waveforms. Table 2. Operating Modes (1) Operating Mode KEn-1 KEn E RAS CAS W A10 A9, A11 A0-A7 BA0-BA1 Burst Read VIH X VIL VIH VIL VIH VIL Valid Start Column Address Bank Select Burst Write VIH X VIL VIH VIL VIL VIL Valid Start Column Address Bank Select Self Refresh VIH VIL VIL VIL VIL VIH X X Auto Refresh VIH VIH VIL VIL VIL VIH X X Power-Down VIH VIL VIL VIH VIH VIH X X VIH X X X Deep Power-Down VIH VIL VIL VIH VIH VIL X X Device Deselect VIH X VIH X X X No Operation VIH X VIL VIH VIH VIH 1. X = Don’t Care VIL or VIH. 14/53 X X X X X M65KA128AL 4 Commands Commands There are 16 commands that control the memory. Refer to Table 3: Commands, in conjunction with the text descriptions below and to Table 3: Commands. 4.1 Mode Register Set command The Mode Register Set command is issued by applying VIL to E, RAS, CAS and W and by setting BA1 to ‘0’, and BA0 to ‘0’. The Mode Register Set command must be executed after the Power-Up sequence prior to issuing a Bank (Row) Active command. The execution of a Mode Register Set command will re-program the Mode Register, modifying its contents. 4.2 Extended Mode Register Set command The Extended Mode Register Set command is issued by applying VIL to E, RAS, CAS and W, and then by setting BA1 to ‘1’, and BA0 to ‘0’. The Extended Mode Register Set command must be executed after the Power-Up sequence prior to issuing a Bank (Row) Active command. The execution of an Extended Mode Register Set command will re-program the Extended Mode Register, modifying its contents. 4.3 Bank (Row) Activate command The Bank (Row) Active command is used to activate a row in a specific bank of the device. This command is initiated by driving E and RAS Low, VIL, and driving CAS and W High, VIH, at the positive edge of the clock signal, K. The value on BA1 and BA0 selects the bank, and the value on A0-A11 selects the row. The selected row remains active for column access until a Precharge command is issued to the bank containing the row. A minimum time of tRCD is required after issuing the Bank (Row) Active command prior to initiating Read and Write operations from and to the activated bank. 15/53 Commands 4.4 M65KA128AL Read command The Read command is used to switch the Low Power SDRAM to Burst Read mode (see Section 3.2: Burst Read). During Burst Read operation, the memory reads data from the activated bank. Inputs BA1 and BA0 are used to select a bank, Address inputs A8-A0 are used to select a starting column location. The value at input A10 determines whether Auto Precharge is activated. If Auto Precharge is selected, the row being accessed will be precharged at the end of the Burst Read operation. If Auto Precharge is not selected, the row will remain active for subsequent accesses. Different Burst Types and Lengths can be programmed using the Mode Register bits (see Table 4: Mode Register Definition): 4.5 ● The Burst Types available are Sequential and Interleaved selected using Mode Register Bit MR3. ● Possible Burst Lengths are 1-, 2-, 4-, 8-Word and Full Page, selected using Mode Register Bits MR0 to MR2. Write command The Write command is used to switch the Low Power SDRAM to Burst Write mode (see Section 3.3: Burst Write). During Burst Write operation, the memory writes data to the activated bank. Inputs BA1 and BA0 inputs are used to select a bank, the A8-A0 Address Inputs are used to select a starting column location. The value at the A10 input determines whether Auto Precharge is activated. If Auto Precharge is selected, the row being accessed will be precharged at the end of the Write burst. If Auto Precharge is not selected, the row will remain active for subsequent accesses. Burst Types and Lengths apply to Burst Write operation in the same manner as they do to Burst Read operations. 4.6 Precharge command The Precharge command is used to close the open row in a particular bank, or the open rows in all the banks, depending on the value on the A10 Address Input. If A10 is High, at VIH, when the Precharge command is issued, the command will be applied to all the banks, closing all the open rows in these banks. If A10 is Low, at VIL, when the Precharge command is issued, the command will be applied only to the selected bank, closing the open row of this bank. The Precharge command can also be used to terminate a Burst. Issued during a Burst Read or Burst Write cycle, the Precharge command will interrupt the Burst operation and close the active bank. The precharge command can be issued any time after tRAS min. is satisfied. Soon after the precharge command is issued, the precharge operation performed and the synchronous DRAM enters the idle state after tRP is satisfied. The tRP parameter is the time required to perform the precharge. The earliest timing in a read cycle that a precharge command can be issued without losing any data in the burst is CL-1 clock cycles before the reference clock that indicates the last data word is valid (see Figure 5) 16/53 M65KA128AL Commands In order to write all data to the memory cell correctly, the asynchronous parameter tDPL must be satisfied. The tDPL (min.) specification defines the earliest time that a precharge command can be issued. After the Precharge command is issued, a minimum time of tRP is required before the bank(s) are available. 4.7 Auto Precharge command The Auto Precharge command is used to close the open row in a specific bank after a Read or Write cycle. Read or Write with Auto Precharge is initiated if the A10 Address Input is High, at VIH, when a Read or Write command is issued. 4.8 Burst Terminate command The Burst Terminate command is used to terminate a Burst operation. A Burst operation can be interrupted by using the Precharge command (see the Section 4.6: Precharge command for details), or by issuing the Burst Terminate command. Issuing the Burst Terminate command during a Burst Read or Write cycle will terminate the burst while leaving the bank open. 4.9 Data Mask command The Data Mask command is used to mask the Read or Write data. A Data Mask command issued during a Read cycle will disable the data outputs, switching them to the highimpedance state after a delay of two clock cycles. A Data Mask command issued during a Write cycle will disable the data inputs with no delay. 4.10 Clock Suspend command The Clock Suspend command is used to interrupt the internal clock of the Low Power SDRAM. The command is controlled by the Clock Enable input, KE, which is High, VIH, in normal access mode. The Clock Suspend command is issued by driving KE Low, VIL thus freezing the internal clock and extending data Read and Write cycles. 4.11 Power-Down command The Power-Down command is used to put the device in Power-Down mode where the operating current is reduced to the Standby current. All banks must be precharged and a minimum time of tRP must elapse before issuing the Power-Down command. 4.12 Auto Refresh command The Auto Refresh command is used to put the device in Auto refresh mode (see Section 3.5: Auto Refresh). 17/53 Commands 4.13 M65KA128AL Self Refresh command The purpose of the Self Refresh command is used to put the device in Self Refresh mode to retain and refresh the data contained in the Low Power SDRAM memory array. In Self Refresh mode, the Low Power SDRAM runs Refresh cycles asynchronously. The Self Refresh cycle is performed according to the Extended Mode Register settings: 4.14 ● EMR3 to EMR4 bits configure the Refresh rate at which the memory array is refreshed to perform a Temperature Compensated Self Refresh. ● EMR0 to EMR2 configure the part of the memory array being refresh (Partial Array Self Refresh). Deep Power-Down command The Deep Power-Down command is used to switch the Low Power SDRAM to Deep PowerDown Mode. This mode provides maximum power reduction as it cuts the power of the entire memory array of the device. For more information on how the command is issued and its exit sequence, see Section 3.7: Deep Power-Down, Figure 25: Deep Power-Down Entry AC Waveforms, and Figure 26: Deep Power-Down Exit AC Waveforms. Table 3. Commands(1) Command KEn-1 KEn E RAS CAS W UDQM LDQM A10 A9, A11 A0-A7 BA0BA1 DQ0DQ7 DQ8DQ15 Mode Register Set(2) VIH X VIL VIL VIL VIL X X Op Code X X Extended Mode Register Set(2) VIH X VIL VIL VIL VIL X X Op Code X X Bank (Row) Active VIH X VIL VIL VIH VIH X X Start Row Address X X Word Read/Read with Auto Precharge VIH X VIL VIH VIL VIH VIL VIL Upper Byte Read/Read with Auto Precharge VIH X VIL VIH VIL VIH VIL VIH Lower Byte Read/Read with Auto Precharge VIH X VIL VIH VIL VIH VIH VIL VIL VIL VIL VIH VIH VIL Word Write/Write with Auto Precharge Upper Byte Write/Write with Auto Precharge VIH X VIL VIH VIL VIL Lower Byte Write/Write with Auto Precharge Write with Auto Precharge 18/53 VIH X VIL VIH VIL VIL Bank Select VIL/VIH X Start Column Address Bank Select VIL/VIH X Start Column Address Bank Select Hi-Z Output Valid VIL/VIH X Start Column Address Bank Select Output Valid Hi-Z VIL/VIH X Start Column Address Bank Select VIL/VIH X Start Column Address Bank Select Hi-Z Input Valid VIL/VIH (3) X Start Column Address Bank Select Input Valid Hi-Z VIH X Start Column Address Bank Select X X (3) (3) (3) (3) (3) Output Valid Input Valid M65KA128AL Table 3. Commands Commands(1) (continued) Command KEn-1 KEn E RAS CAS W UDQM LDQM A10 A9, A11 A0-A7 BA0BA1 DQ0DQ7 DQ8DQ15 Precharge All Banks VIH X VIL VIL VIH VIL X X VIH X X X X Precharge Selected Bank VIH X VIL VIL VIH VIL X X VIL X V X X Burst Terminate VIH VIH VIL VIH VIH VIL X X X X X X Auto Refresh VIH VIH VIL VIL VIL VIH X X X X X X Self Refresh Entry VIH VIL VIL VIL VIL VIH X X X X X X Self Refresh Exit(4) X X X X X X VIH VIH X VIL X X VIL VIH VIH VIH X X X X Power-Down Entry(5)(6) VIH VIL VIL VIH VIH VIH VIH X X X Power-Down Exit(5)(6) VIL VIH VIL VIH VIH VIH VIH X X X Deep PowerDown Entry VIH VIL VIL VIH VIH VIL Deep PowerDown Exit VIL VIH Clock Suspend Entry VIH VIL X X X Clock Suspend Exit VIL VIH X X Data Mask / Output Enable VIH X X Data Mask / Output Disable VIH X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X VIL VIL X X X X X X X VIH VIH X X Hi-Z Hi-Z X 1. X = Don’t Care VIL or VIH. V = Valid. 2. BA1 and BA0 must both be driven Low, VIL, to issue the Mode Register Set command. BA1 and BA0 must be driven High, VIH and Low, VIL, respectively, to issue the Extended Mode Register Set Command. 3. To perform Read or Write operations with Autoprecharge, A10 must be held High, VIH. 4. The Self Refresh mode is exited by asynchronously driving KE from Low to High. 5. The Power-Down mode is exited by asynchronously driving KE from Low to High. 6. Banks must be precharged before issuing a Power-Down command. 19/53 Register descriptions M65KA128AL 5 Register descriptions 5.1 Mode Register description The Mode Register is used to select the CAS Latency (1, 2 or 3), the Burst Type (sequential, interleaved), and the Burst Length (1-, 2-, 4-, 8-Word width or full page). It is loaded by issuing a Mode Register Set command that programs A0 to A11 address bits. The values placed on the address lines are then latched into the Mode Register. BA0-BA1 must be set to ‘0’. See Table 4: Mode Register Definition, for more details. Table 4. Mode Register Definition Address Bits Mode Register Bit Register Description A11-A7 - - A6-A4 MR6-MR4 Value Bit Description 00000 010 2 Clock Cycles CAS Latency Bits 011 3 Clock Cycles Other configurations reserved A3 A2-A0 MR3 MR2-MR0 0 Sequential 1 Interleaved 000 1 Word (A3 is Don’t Care) 001 2 Words (A3 is Don’t Care) 010 4 Words (A3 is Don’t Care) 011 8 Words (A3 is Don’t Care) 111 Full Page if A3 Low Reserved if A3 High Burst Type Burst Length Bit Other configurations reserved BA1-BA0 20/53 - - 00 M65KA128AL 5.2 Register descriptions Extended Mode Register description The Extended Mode Register is used to program Low Power self-refresh operation of the device (PASR, DS, TCSR). It is used to select the area of the memory array refreshed during Partial Array Self Refresh operations, and the driver strength. It is loaded by issuing a Extended Mode Register Set command that programs A0 to A11 address bits. The values placed on the address lines are then latched into the Extended Mode Register. BA0 and BA1 must be set to ‘0’ and ‘1’ respectively. See Table 5: Extended Mode Register Definition, for more details. Table 5. Extended Mode Register Definition Register Address Bits Mode Register Bit Description A11-A10 - - 00 0 Enabled EMR9 Auto Temperature Compensated Self Refresh (ATCSR) 1 Reserved - 00 A9 A8-A7 A6-A5 A4-A3 A2-A0 - EMR6-EMR5 Driver Strength Bits EMR4-EMR3 EMR2-EMR0 Value Bit Description 00 Full Strength 01 1/2 Strength 10 1/4 Strength 11 1/8 Strength 00 Self Refresh Area Bits 000 All Banks 001 Two Banks (BA1=0) 010 One Banks (BA0 and BA1 =0) Other configurations reserved BA1-BA0 - - 10 21/53 Maximum rating 6 M65KA128AL Maximum rating Stressing the device above the ratings listed in Table 6: Absolute Maximum Ratings, may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents. Table 6. Absolute Maximum Ratings Value Symbol Unit Min Max TJ Junction Temperature –25 90 °C TSTG Storage Temperature –55 125 °C Input or Output Voltage –0.5 2.6 V Supply Voltage –0.5 2.6 V VIO VDD, VDDQ 22/53 Parameter IOS Short Circuit Output Current 50 mA PD Power Dissipation 1 W M65KA128AL 7 DC and AC parameters DC and AC parameters This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions summarized in Table 7: Operating and AC Measurement Conditions. Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the quoted parameters. Table 7. Operating and AC Measurement Conditions M65KA128AL Parameter(1)(2) Units Supply Voltage (VDD) Input/Output Supply Voltage (VDDQ )(3) Junction Temperature (TJ) Min Typ Max 1.65 1.8 1.95 V 1.65 1.8 1.95 V 90 °C –25 Load Capacitance (CL) 30 pF Output Impedance (Z0) 50 Ω Input Rise/Fall Time (tR, tF) 1 ns Input High Voltage (VIH) 1.6 V Input Low Voltage (VIL) 0.2 V VDDQ/2 V Input and Output Timing Ref. Voltages Output Transition Timing Reference Voltages 0.3VDDQ 0.7VDDQ V 1. All voltages are referenced to VSS = 0V. 2. TJ = –25 to 90°C, f = 1MHz 3. VDDQ must not exceed the level of VDD. Figure 3. AC Measurement I/O Waveform I/O Timing Reference Voltage VDDQ VDDQ/2 0V Output Transition Timing Reference Voltage VDDQ 0V 0.7VDDQ 0.3VDDQ AI08009 23/53 DC and AC parameters Table 8. M65KA128AL AC Measurement Load Circuit DEVICE UNDER TEST OUT Z0 CL CL includes probe capacitance AI08008c Table 9. Capacitance(1)(2) M65KA128AL Symbol Parameter Pin Max K 2.0 3.5 pF A0-A11, BA0, BA1, KE, E, RAS, CAS, W, UDQM, LDQM 2.0 3.8 pF DQ0-DQ15 6.0 7.5 pF CI1 Input Capacitance CI2 CIO Unit Min Data I/O Capacitance 1. TJ = 25°C, f = 1MHz 2. Sampled only, not 100% tested. Table 10. Symbol DC Characteristics 1 Parameter Test Condition(1) Unit Min Max ILI Input Leakage Current 0V≤VIN ≤1.8V –1 1 µA ILO(2) Output Leakage Current 0V≤ VOUT ≤1.8V –1.5 1.5 µA VIL Input Low Voltage VIN = 0V –0.3(3) 0.3 V VIH Input High Voltage VIN = 0V 0.8VDDQ VDDQ + 0.3(4) V VOL Output Low Voltage IOUT = 100µA, VIN = 0V 0.2 V VOH Output High Voltage IOUT = –100µA, VIN = 0V 1. TJ = –25 to 90°C. 2. Data outputs are disabled. 3. VIL may undershoot to -1.0V for less that 5ns. 4. VIH may overshoot to 2.6V for less that 5ns. 24/53 M65KA128AL VDDQ – 0.2 V M65KA128AL Table 11. DC and AC parameters DC Characteristics 2 Symbol IDD1(2) Test Condition(1) Parameter Operating Current IDD2P IDD2PS IDD2N IDD3PS IDD3N IDD3NS IDD4(2) IDD5(3)(4) Unit Burst length = 1, one bank active tRC ≥ tRC(min), IOL = 0mA 36 mA KE ≤VIL(max), tCK = 15ns 0.6 Standby Current in Power-Down Mode KE ≤VIL(max), tCK = ∞ Input signal stable mA 0.5 KE ≥ VIH (min), E ≥ VIH (min), tCK = 15ns Input signals are changed once in 30ns Standby Current in Non Power-Down Mode IDD2NS IDD3P Typ Active Standby Current in PowerDown Mode 3 mA KE ≥ VIH (min), tCK = ∞ Input signals are stable 1 KE ≤VIL(max), tCK = 15ns 1 mA KE ≤VIL(max), tCK = ∞ 0.8 KE ≥ VIH (min), E ≥ VIH (min), tCK = 15ns Active Standby Current in Non Power- Input signals are changed once in 30ns Down Mode KE ≥ V (min), t = ∞ IH 15 mA CK 5 Input signals are stable Burst Mode Current, CL=2 Burst Mode Current, CL=3 Auto Refresh Current, CL=2 Auto Refresh Current, CL=3 tCK ≥ tCK (min), IOL = 0mA All banks active 35 mA 52 mA tRC1 ≥ tRC1(min) 65 mA See Table 12. µA 10 µA KE ≤0.2V IDD6 Self Refresh Current IDD7 See Figure 25: Deep Power-Down Entry Standby Current in Deep Power-down AC Waveforms, and Figure 26: Deep Mode Power-Down Exit AC Waveforms. 1. TJ = –25 to 90°C. 2. IDD1 and IDD4 depend on the output loading and cycle rates. All measurements are made with the output open and on condition that the addresses are changed only once during tCK(min.). 3. The minimum value of tRC (RAS cycle time for Refresh operation) is shown in Table 14: Asynchronous AC Characteristics. 4. IDD5 is measured on condition that the addresses are changed only once during tCK (min.). Table 12. Self Refresh Current (IDD6) Values in Normal Operating Mode(1) 4 Banks 2 Banks 1 Bank Temperature Unit Typ. Max. Typ. Max. Typ. Max. TJ < 40°C 150 130 120 µA 40°C < TJ ≤70°C 200 170 150 µA 70°C ≤TJ ≤90°C 600 350 220 µA 1. VDD = 1.8V, VDDQ = 1.8V, VSS = 0V, KE ≤0.2V. 25/53 DC and AC parameters Table 13. M65KA128AL Synchronous AC Characteristics Symbol Parameter Test Condition Min Max Unit CAS Latency = 3 7 ns CAS Latency = 2 9 ns tAC Access Time From Clock tAS Address Setup Time 2 ns tAH Address Hold Time 1 ns CAS Latency = 3 9.6 ns tCK Clock Period CAS Latency = 2 15 ns tCS Command Setup Time 2 ns tCH Command Hold Time 1 ns tCHW Clock High Pulse Width 3 ns tCLW Clock Low Pulse Width 3 ns tCKS Clock Enable Setup Time 2 ns tCKSP Clock Enable Setup Time (Power-Down Exit) 2 ns tCKH Clock Enable Hold Time 1 ns tDS Data Input Setup Time 2 ns tDH Data Input Hold Time 1 ns tOH Data Output Hold Time 3 ns tOLZ Clock to Data Output Low-Z 0 ns tOHZ Clock to Data Output High-Z 26/53 CAS Latency = 3 3 7 ns CAS Latency = 2 3 9 ns M65KA128AL Table 14. DC and AC parameters Asynchronous AC Characteristics M65KA128AL Symbol Parameter Min tDPL Data Input Valid to Precharge Command tDAL Data Input Valid to Bank/Row Activate Command tDQZ Unit(1) Max 2 tCK CAS Latency = 3 2CLK + 28.5 ns CAS Latency = 2 2CLK + 30 ns UDQM or LDQM High to Data Output Hi-Z 2 tCK tDQM UDQM or LDQM High to Data Input Masked 0 tCK tMRD Mode Register Set Cycle Time 2 tCK tRC RAS Cycle Time 86 ns tRCD Delay Time, RAS Active to CAS Active 28.5 ns tRAS RAS Active Time tRP RAS Precharge Time 57 120,000 ns 28.5 ns 2 tCK tRRD Delay Time, RAS Active to RAS Bank Active tRC1 Auto Refresh Exit Time 105 ns Self Refresh Exit Time 105 ns tRC2 (2) tREF tτ tWTL Refresh Time Transition Time Delay Time, Write Command to Data Input 1 0 64 ms 30 ns tCK 1. The unit tCK is the system Clock cycle time. 2. A new command can be issued tRC after the Self Refresh mode is exited. 27/53 DC and AC parameters AI09959b Chip Enable Signal During Read, Write and Precharge Write in Bank A Bank/Row Activate in Bank A DQ0-DQ15 Low LDQM/ UDQM Address A10 Hi-Z RAa RAa Low BA1 BA0 W CAS RAS E KE K High T0 T1 Low T2 T3 T4 T5 Read from Bank A T6 CAa T7 QAa1 T8 QAa2 T9 QAa3 T10 QAa4 DQN T11 T12 DAb1 T13 DAb2 T14 DAb3 T15 DAb4 T16 CAb T17 T18 Precharge Bank A T19 T20 T21 Figure 4. M65KA128AL 1. The Chip Enable signal, E, must be issued at a minimum rate with respect to the other signals. 2. Burst Length = 4 Words, Latency = 3 clock cycles. 3. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A, DAan= Data n written to Column a in Bank A. 28/53 M65KA128AL Figure 5. DC and AC parameters Read with Precharge AC Waveforms T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 tCK K tCLW tCHW KE tCH tCKS tCKH E tCS RAS CAS W BA0 BA1 A10 Address tAS LDQM/ UDQM tAH Low tAC DQ0-DQ15 tOHZ Hi-Z DQN tRCD DQN+1 tOLZ DQN+2 DQN+3 tOH tRAS tRP tRC Bank/Row Activate in Bank A Read from Bank A Precharge in Bank A Bank/Row Activate in Bank A AI09934c 1. Burst Length = 4 Words, Latency = 3 clock cycles. 29/53 DC and AC parameters Figure 6. M65KA128AL Read with Auto Precharge AC Waveforms Auto Precharge Start from Bank C T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 tCK K tCHW tCLW KE tCH tCKS tCKH E tCS RAS CAS W BA0 BA1 A10 Address tAS LDQM/ UDQM Low DQ0-DQ15 tAH tOH tAC Hi-Z DQN tRCD DQN+1 DQN+2 DQN+3 tOHZ tOLZ tRAS, tRRD tRC Bank/Row Activate in Bank C Read with Auto Precharge from Bank C Bank/Row Activate in Bank D Bank/Row Activate in Bank C AI09935c 1. Burst Length = 4 Words, Latency = 3 clock cycles. 30/53 Hi-Z Low RAa RAa Bank/Row Activate in Bank A DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E T1 T2 CAa T4 Read from Bank A T3 T5 T6 QAa1 T7 T9 Clock Suspended during 1 cycle QAa2 T8 QAa3 T11 T12 Clock Suspended during 2 cycles T10 T13 T15 T16 Clock Suspended during 3 cycles QAa4 T14 AI09947 End of Read Hi-Z T17 Figure 7. KE K T0 M65KA128AL DC and AC parameters Clock Suspend During Burst Read AC Waveforms 1. Burst Length = 4 Words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A. 31/53 32/53 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E T5 QAa1 T6 T7 CAb QAa3 T8 CAc T9 QAc2 T13 QAc1 T12 QAb2 T11 QAb1 T10 QAc3 T14 QAc4 T15 T16 Read from Bank A Read from Bank A QAa2 Read from Bank A QAa4 DQN Precharge in Bank A T17 Bank/Row Activate in Bank A RAa CAa T4 RAa T3 RAa T2 RAa Bank/Row Activate in Bank A Hi-Z Low High T1 T18 CAa T20 Read from Bank A T19 AI09955 T21 Figure 8. KE K T0 DC and AC parameters M65KA128AL Random Column Read AC Waveforms 1. Burst Length = 4 Words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAmn= Data n read from Column m in Bank A. DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E T5 T6 QBa1 T7 QBa2 T8 Read from Bank B T9 T10 Bank/Row Activate in Bank A QBa3 QBa4 RAa CBa T4 RBa T3 RAa T2 RBa Bank/Row Activate in Bank B Hi-Z Low High T1 T12 T13 Read from Bank A QBa8 T14 Precharge in Bank B QBa5 QBa6 QBa7 CAa T11 QAa1 T15 T17 T18 T19 CBb T20 T21 Bank/Row Activate in Bank B Read from Bank A AI09957 QAa2 QAa3 QAa4 QAa5 QAa6 QAa7 RBb RBb T16 Figure 9. KE K T0 M65KA128AL DC and AC parameters Random Row Read AC Waveforms 1. Burst Length = 8 Words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAmn= Data n read from row m in Bank A. 33/53 34/53 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T5 Bank/Row Activate in Bank D Read from Bank A RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T6 QAa2 CDa T8 T9 Read from Bank D Read from Bank A Precharge in Bank D Precharge in Bank A T20 QAb4 T19 QAb3 T18 QAb2 T17 QAb1 T16 QDc2 T15 QDc1 T14 QDb2 CAb T13 QDb1 T12 QDa2 CDc T11 QAa4 QDa1 CDb T10 Read from Bank D QAa3 Read from Bank D QAa1 DQN T7 AI09520b T21 DC and AC parameters M65KA128AL Figure 10. Column Interleaved Read AC Waveforms 1. Burst Length = 4 Words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAmn= Data n read from Column m in Bank A. DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T5 Bank/Row Activate in Bank D Read from Bank A RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T6 CDa T8 Read + Auto Precharge from Bank D DQN T7 T9 T11 T12 CAb Auto Precharge from Bank D Read + Auto Precharge from Bank A T10 T14 RDb RDb T15 T16 Autoprecharge Start from Bank A Bank/Row Activate in Bank D T13 T17 CDb T19 Read + Auto Precharge from Bank D T18 T20 AI09961b T21 M65KA128AL DC and AC parameters Figure 11. Burst Column Read Followed by Auto Precharge AC Waveforms 1. Burst Length = 4 Words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A. 35/53 36/53 1. Burst Length = 4 Words. Hi-Z Low T1 T2 T3 T4 tDH T6 Bank/Row Activate in Bank B T5 Write + Auto Precharge to Bank C tRRD tDS tRCD tCH, tAH Bank/Row Activate in Bank C tCS, tAS tCKS DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T0 T10 tDAL tRAS T9 Write to Bank B T8 Auto Precharge Start from Bank C tRC tRCD DQN T7 tDPL T13 Precharge in Bank B T12 Bank/Row Activate in Bank C tRC T11 tCKH T14 tRP T16 Bank/Row Activate in Bank B T15 AI09947 T17 DC and AC parameters M65KA128AL Figure 12. Write AC Waveforms Hi-Z Hi-Z High T1 T2 Bank/Row Activate Read in Bank D from Bank D DQ8-DQ15 DQ0-DQ7 UDQM LDQM Address A10 BA1 BA0 W CAS RAS E KE K T0 T3 T5 Lower Byte Read T4 T6 T8 Upper Byte Read tDQZ T7 T10 Upper Byte Write T9 T13 T14 Read from Bank D Upper Byte Write T12 Lower Byte Write T11 T15 T17 Upper Byte Read T16 T18 T20 Upper Byte Read T19 AI09963c T21 M65KA128AL DC and AC parameters Figure 13. Byte Write AC Waveforms 1. Burst Length = 4 Words. 37/53 DC and AC parameters M65KA128AL Figure 14. Mode Register Set AC Waveforms T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 K High KE tMRD, 2 Clock Cycles (min) E RAS CAS W BA0 BA1 A10 MR Address Data (2) LDQM/ UDQM DQ0-DQ15 Hi-Z tRP Precharge All Banks Mode Register Set Bank/Row Activate Valid 1. To program the Extended Mode Register, BA0 and BA1 must be set to ‘0’ and ‘1’ respectively, and A0 to A11 to the Extended Mode Register Data. 2. MR Data is the value to be written to the Mode Register. 38/53 AI09948 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T1 Bank/Row Activate in Bank A Hi-Z Low RAa RAa T0 T2 T4 T5 T6 DAa2 Clock Suspended during 1 cycle Write to Bank A DAa1 CAa T3 T8 T9 DAa3 Clock Suspended during 2 cycles T7 T10 T12 T13 DAa4 Clock Suspended during 3 cycles T11 T14 T15 T16 AI09950 T17 M65KA128AL DC and AC parameters Figure 15. Clock Suspend During Burst Write AC Waveforms 1. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, DAan= Data n Written to Column a in Bank A. 39/53 40/53 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K DDa2 T7 DDa4 DQN T6 DDa3 T5 CDb CDc T9 DDb2 T8 T14 Precharge in Bank D T13 DDc4 T12 DDc3 T11 DDc2 T10 T15 T16 Write to Bank D DDa1 Write to Bank D DDb1 Write to Bank D DDc1 T17 Bank/Row Activate in Bank D RDd CDa T4 RDa T3 RDd T2 RDa T1 Bank/Row Activate in Bank D Hi-Z Low High T0 T18 CDd Write to Bank D T21 AI09956b DDd2 T20 DDd1 T19 DC and AC parameters M65KA128AL Figure 16. Random Column Write AC Waveforms 1. Burst Length = 4 Words. 2. RDa = Address of Row a in Bank D, CDa = Address of Column a in Bank D, DDmn= Data n written to Column m in Bank D. DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K DAa2 T5 DAa3 T6 DAa4 DAa5 T7 T8 Write to Bank A DAa1 T9 T10 T12 Write to Bank D DDa4 T14 Precharge in Bank A DDa3 T13 DDa1 DDa2 CDa T11 DAa7 DAa8 Bank/Row Activate in Bank D DAa6 RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T18 CAb T20 Write to Bank A T21 AI09958 DAb1 DAb2 T19 DDa7 DDa8 T17 DDa6 RAb RAb T16 Bank/Row Activate in Bank A DDa5 T15 M65KA128AL DC and AC parameters Figure 17. Random Row Write AC Waveforms 1. Burst Length = 8 Words. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, DAmn= Data n written to row m in Bank A. 41/53 42/53 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K DAa2 Write to Bank B DBa2 T8 CBa DBa1 T7 DAa4 T6 DAa3 T5 Bank/Row Activate in Bank B Write to Bank A DQN DAa1 RBa CAa T4 RAa T3 RBa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 CBb Write to Bank B Write to Bank B DAb2 T14 Write to Bank A DAb1 CAb T13 DBc2 T12 DBc1 CBc T11 DBb2 T10 DBb1 T9 T17 DBb4 T18 Precharge in Bank A DBb2 DBb3 T16 Write to Bank B DBb1 CBd T15 T20 Precharge in Bank B T19 AI09521b T21 DC and AC parameters M65KA128AL Figure 18. Column Interleaved Write AC Waveforms 1. Burst Length = 4 Words. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, DAmn= Data n written to Column m in Bank A. DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T5 Bank/Row Activate in Bank D Write to Bank A DQN RDa CAa T4 RAa T3 RDa T2 RAa T1 Bank/Row Activate in Bank A Hi-Z Low High T0 T6 CDa T8 Write + Auto Precharge from Bank D T7 T9 T10 CAb T12 T13 Write + Auto Precharge from Bank A Auto Precharge Start from Bank D T11 T14 T16 T17 T18 CDb T19 Bank/Row Write + Activate Auto Precharge in Bank D from Bank D Auto Precharge Start from Bank A RDb RDb T15 T20 AI09962b T21 M65KA128AL DC and AC parameters Figure 19. Burst Column Write Followed by Auto Precharge AC Waveforms 1. Burst Length = 4 Words 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A. 43/53 44/53 DQ0-DQ15 LDWM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K DAa2 T5 T6 T8 Write Masking T7 T9 T10 T11 tRAS Write to Bank A DAa1 tDPL DAa5 Precharge in Bank A + Write Terminated DAa3 DQDAa4 N Bank/Row Activate in Bank A tRP RAb CAa T4 RAa T3 RAb tRCD T2 RAa T1 Bank/Row Activate in Bank A Hi-Z High T0 T12 CAb tRAS T14 Read from Bank A T13 T15 QAb2 T17 T19 T21 AI09524 Bank/Row Activate in Bank A RAc RAc T20 QAb3 DQQAb4 N T18 Precharge in Bank A + Read Terminated QAb1 T16 DC and AC parameters M65KA128AL Figure 20. Precharge Termination 1. Burst Length = 8 Words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A, DAan= Data n written to Column a in Bank A. W CAS RAS E KE K High DQ0-DQ15 Hi-Z LDQM/ UDQM Address A10 BA1 BA0 1 T1 T2 Precharge All Banks High Level nedeed 1 Clock Cycle needed T0 T6 EMR Data (1) T5 T7 tMRD T8 Mode Extended Mode CBR Register Set Register Set Auto Refresh tRP T4 MR Data (1) tMRD T3 T9 tRC1 T10 T11 T13 CBR Auto Refresh T12 T14 T16 T17 T18 tRC1 T19 T20 T21 AI09960b Bank/Row Activate 2 Refresh Cycles needed T15 M65KA128AL DC and AC parameters Figure 21. Power-On Sequence 1. MR Data and EMR data are the values to be written to the Mode Register and the Extended Mode Register, respectively. 45/53 46/53 DQ0-DQ15 LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T1 T2 1. Burst Length = 4 Words, Latency = 3 clock cycles. 2. RAa = Address of Row a in Bank A, CAa = Address of Column a in Bank A, QAan= Data n read from Column a in Bank A. T4 CAa T6 Read from Bank A T5 Power-Down Exit tCKSP T3 ACTIVE STANDBY Bank/Row Activate in Bank A Power-Down Entry Hi-Z Low RAa RAa T0 T7 T8 QAa2 T10 Start of Clock Masking QAa1 T9 T12 End of Clock Masking QAa3 T11 T14 T15 Power-Down Entry Precharge in Bank A QAa4 T13 T17 T19 tCKSP T18 PRECHARGE STANDBY T16 T21 AI09951 Power-Down Exit T20 DC and AC parameters M65KA128AL Figure 22. Power-Down Mode and Clock Masking AC Waveforms Hi-Z DQ0-DQ15 T1 Precharge Low High LDQM/ UDQM Address A10 BA1 BA0 W CAS RAS E KE K T0 T3 Auto Refresh tRP T2 T4 T5 tRC1 T6 Tn Tn+1 Tn+3 Auto Refresh Tn+2 Tn+4 Tn+5 tRC1 Tn+6 Tm Bank/Row Activate Read Tm+7 AI09952c Tm+1 Tm+2 Tm+3 Tm+4 Tm+5 Tm+6 M65KA128AL DC and AC parameters Figure 23. Auto Refresh 47/53 48/53 Low Hi-Z LDQM/ UDQM DQ0-DQ15 Address A10 BA1 BA0 W CAS RAS E KE K T0 T2 Precharge (optional) T1 T4 Self Refresh Entry tRP T3 Tn+1 Self Refresh Exit Tn tRC2 Tn+2 Tm+1 Self Refresh Entry (or Bank/Row Activate) Next Clock Enable Tm Self Refresh Exit tRC2 Tk+2 Bank/Row Activate Tk+1 Next Clock Enable Tk Tk+3 AI09953b Tk+4 DC and AC parameters M65KA128AL Figure 24. Self Refresh M65KA128AL DC and AC parameters Figure 25. Deep Power-Down Entry AC Waveforms T0 T1 T3 T2 T4 T5 K KE E RAS CAS W A10 DQ0-DQ15 Hi-Z tRP Precharge All Banks (optional) Deep Power-Down Entry ai07720c 1. BA0, BA1 and address bits A0 to A11 (except A10) are ‘Don’t Care’. 49/53 50/53 W CAS RAS E KE K High T2 1 Clock Cycle needed T1 Precharge All Banks (optional) 200µs High Level nedeed Deep Power-Down Exit DQ0-DQ15 Hi-Z LDQM/ UDQM Address A10 BA1 BA0 1 T0 T6 EMR Data (1) T5 T7 tMRD T8 Mode Extended Mode Auto Refresh Register Set Register Set (optional) (optional) (optional) tRP T4 MR Data (1) tMRD T3 T9 tRC1 T10 T11 T13 Auto Refresh (optional) T12 T14 T16 T17 T18 tRC1 T19 T20 T21 AI09954c Bank/Row Activate 2 Refresh Cycles needed T15 DC and AC parameters M65KA128AL Figure 26. Deep Power-Down Exit AC Waveforms 1. MR Data and EMR data are the values to be written to the Mode Register and the Extended Mode Register, respectively. M65KA128AL 8 Part numbering Table 15. Ordering Information Scheme Example: Part numbering M65KA128AL 10 W 5 Device Type M65 = Low Power SDRAM Delivery Form K = Wafer Form Operating Voltage, Mode, Bus Width A = VDD = VDDQ = 1.8V, Standard LPSDRAM, x16 Array Organization 128 = 4 Banks x 2Mbit x 16 Option 1 A = One Chip Enable Option 2 L = L Die Speed Class 10 = 10ns Package W = Unsawn Wafer Temperature Range 5 = –25 to 90°C For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the ST Sales Office nearest to you. 51/53 Revision history 9 M65KA128AL Revision history Table 16. 52/53 Document revision history Date Revision Changes 28-Nov-2005 1 First Issue. 05-Jan-2006 2 Wafer and die specifications section removed. 28-Apr-2006 3 Datasheet status updated to Full Datasheet. M65KA128AL Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZE REPRESENTATIVE OF ST, ST PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS, WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 53/53