STMICROELECTRONICS TEA2037A_04

TEA2037A
HORIZONTAL AND VERTICAL DEFLECTION MONITOR
FEATURES SUMMARY
■ DIRECT LINE DARLINGTON DRIVE
Figure 1. Package
■
DIRECT FRAME-YOKE DRIVE (± 1A)
■
COMPOSITE VIDEO SIGNAL INPUT
CAPABILITY
■
FRAME OUTPUT PROTECTION AGAINST
SHORT CIRCUITS
■
PLL
■
HORIZONTAL OSCILLATOR FREQUENCY
RANGE FROM 15kHz TO 100kHz
■
VERTICAL OSCILLATOR FREQUENCY
RANGE FROM 30Hz TO 120Hz
■
VERY FEW EXTERNAL COMPONENTS
■
VERY LOW COST POWER PACKAGE
POWERDIP (8+8)
(Plastic Package)
DESCRIPTION
The TEA2037A is an horizontal and vertical deflection circuit. It uses the same concept as
TEA2117 but optimised for small screens, for a
very low cost solution.
Figure 2. Pin Connections
FRAME OSCILLATOR
1
16
V CC1
FLYBACK GENERATOR SUPPLY
2
15
VIDEO INPUT
FRAME FLYBACK
3
14
LINE OUTPUT
GROUND
4
13
GROUND
GROUND
5
12
GROUND
INVERTING INPUT
6
11
LINE FLYBACK
FRAME POWER SUPPLY
7
10
PHASE DETECTOR
FRAME OUTPUT
8
9
LINE OSCILLATOR
REV. 2
May 2004
1/14
TEA2037A
Figure 3. Block Diagram
16
1
7
FRAME
OSCILLATOR
4
3
2
FLYBACK
GENERATOR
+
POWER
STAGE
-
5
FRAME-SYNC
SEPARATOR
12
6
13
15
Yoke
8
INPUT
STAGE
PHASE
DETECTOR
LINE
OSCILLATOR
OUTPUT
STAGE
14
TEA2037A
11
10
9
VCC1
Table 1. Absolute Maximum Ratings
Symbol
Value
Unit
Supply Voltage
30
V
V2
Flyback Generator Supply Voltage
35
V
V7
Frame Power Supply Voltage
60
V
I8nr
Frame Output Current (non repetitive)
± 1.5
A
Frame Output Current (continuous)
±1
A
V14
Line Output Voltage (external)
60
V
Ip14
Line Output Peak Current
0.8
A
IC14
Line Output Continuous Current
0.4
A
Tstg
Storage Temperature
–40 to 150
°C
+ 150
°C
Value
Unit
15
°C/W
VCC1
I8
TJ
Parameter
Max Operating Junction Temperature
Table 2. Thermal Data
Symbol
Parameter
Rth (j-c)
Junction-case Thermal Resistance
Rth (j-a)
Junction-ambient Thermal Resistance
Typ.
(Soldered on a 35µm thick 45cm2 PC Board copper area)
45
°C/W
Recommended Junction Temperature
120
°C
Tj
2/14
Max
Max
TEA2037A
ELECTRICAL CHARACTERISTICS (Tamb = 25°C)
Table 3. Supply (shunt regulator) (Pin 16)
Symbol
ICC1
VCC1
∆VCC1
LPS
Parameter
Supply Current
Min.
Typ.
10
Supply Voltage (ICC1 = 15mA)
Voltage Variation (ICC1: 10mA to 20mA)
9
–280
9.8
50
Starting Threshold for Line Output Pulses
Max.
Unit
20
mA
10.5
+280
V
mV
5
V
Table 4. Video Input (Pin 15)
Symbol
V15
MWF
VIN
Parameter
Min.
Typ.
Max.
Unit
Reference Voltage (I15 = –1µA)
1.4
1.75
2
V
Minimum Width of Frame Pulse (When synchronized with TTL signal)
50
Sync Bottom to Black Level (RSYNC 15 = 560kΩ)
0.2
0.3
Min.
Typ.
Max.
Unit
µs
VPP
Table 5. Line Oscillator (Pin 9)
Symbol
Parameter
LT9
Low Threshold Voltage
2.8
3.2
3.6
V
HT9
High Threshold Voltage
5.4
6.6
7.8
V
BI9
Bias Current
DR9
Discharge Impedance
1.0
1.4
1.8
kΩ
FLP1
Free Running Line Period
(R = 34.9kΩ Tied to VCC1, C = 2.2nF Tied to Ground)
62
64
66
µs
FLP2
Free Running Line Period (R = 13.7KΩ, C = 2.2nF)
27
µs
OT9
Oscillator Threshold for Line Output Pulse Triggering
4.6
V
2
Hz/°C
∆F
------∆0
100
Horizontal Frequency Drift with Temperature
(see application Figure 11)
nA
Table 6. Line Output (Pin 14)
Symbol
Parameter
LV14
Saturation Voltage (I14 = 200mA)
OPW
Output Pulse Width (line period = 64µs)
Min.
Typ.
Max.
Unit
1.1
1.6
V
20
22
24
µs
Min.
Typ.
Max.
Unit
Table 7. Line Flyback Input (Pin 11)
Symbol
Parameter
V11
Bias Voltage
1.8
2.4
3.2
V
Z11
Input Impedance
4.5
5.8
8
kΩ
3/14
TEA2037A
Table 8. Phase Detector
Symbol
Min.
Typ.
Max.
Unit
Output Current During Synchro Pulse
250
450
800
µA
RI10
Current Ratio (positive/negative)
0.95
1
1.05
LI10
Leakage Current
CV10
Control Range Voltage
I10
Parameter
–2
+2
µA
2.60
7.10
V
Table 9. Frame Oscillator (Pin 1)
Symbol
Parameter
Min.
Typ.
Max.
Unit
LT1
Low Threshold Voltage
1.6
2.0
2.3
V
HT1
High Threshold Voltage
2.6
3.1
3.6
V
BI1
Bias Current
DR1
Discharge Impedance
300
470
700
kΩ
FFP1
Free Running Line Period
(R = 845kΩ Tied to VCC1, C = 180nF Tied to Ground)
20.5
23
25
ms
MFP
Minimum Frame Period (I15 = -100µA) (with the Same RC)
12.8
ms
FFP2
Free Running Line Period (R = 408kΩ, C = 220nF)
14.3
ms
FPR
Frame Period Ratio =
30
1.7
1.8
FG
Frame Saw-tooth Gain Between Pin 1 and non Inverting Input of the
Frame Amplifier
–0.4
∆F
------∆0
Vertical Frequency Drift with Temperature (see application Figure 11)
4.10–3
nA
1.9
Hz/°C
Table 10. Frame Power Supply (Pin 7)
Symbol
Parameter
V7
Operating Voltage (with flyback generator)
I7
Supply Current (V7 = 30V)
Min.
Typ.
10
Max.
Unit
58
V
22
mA
Max.
Unit
30
V
Table 11. Flyback Generator Supply (Pin 2)
Symbol
V2
4/14
Parameter
Operating Voltage
Min.
10
Typ.
TEA2037A
Table 12. Frame Output (Pin 8)
Symbol
Parameter
Min.
Typ.
Max.
Unit
LV8A
LV8B
Saturation Voltage to Ground (V7 = 30V)
I8 = 0.1
I8 = 1A
0.06
0.37
0.6
1
V
V
HV8A
HV8B
Saturation Voltage to V7 (V7 = 30V)
I8 = –0.1
I8 = –1A
1.3
1.7
1.6
2.4
V
V
FV8A
FV8B
Saturation Voltage to V7 in Flyback Mode (V8 > V7)
I8 = 0.1
I8 = 1A
1.6
2.5
2.1
4.5
V
V
Typ.
Max.
Unit
1.5
3.0
0.8
2.2
2.1
4.5
1.1
4.5
V
V
V
V
170
µA
Table 13. Flyback Generator (Pin 2 and 3)
Symbol
F2DA
F2DB
FSVA
FSVB
Parameter
Min.
Flyback Transistor on (output = high state) (V2 = 30V)
V3/2 with I3 → 2 = 0.1A
I3 → 2 = 1A
V2/3 with I3 → 2 = 0.1
I3 → 2 = 1A
Flyback Transistor off (output = V7 - 8V) (V7 = V2 = 30V)
FCI
Leakage Current Pin 2
The TEA2037A performs all the video and power
functions required to provide signals for the direct
drive of the line darlington and frame yoke.
It contains:
– A shunt regulator
– A synchronization separator
– An integrated frame separator without external
components
– A saw-tooth generator for the frame
– A power amplifier for direct drive of frame yoke
(short circuit protected)
– An open collector output for the line darlington
drive
– A line phase detector and a voltage control
oscillator.
The slice level of sync-separation is fixed by value
of the external resistors R1 and R2. VR is an internally fixed voltage.
The sync-pulse allows the discharge of the capacitor by a 2 x 1 current. A line sync-pulse is not able
to discharge the capacitor under VZ/2. A frame
sync pulse permits the complete discharge of the
capacitor, so during the frame sync-pulse Q3 and
Q4 provide current for the other parts of the circuit.
5/14
TEA2037A
Figure 4. Synchronization Separator Circuit
Figure 5. Frame Separator
VZ
Q3
SL1
Q4
SL2
I
VR
ST1
ST2
VZ /2
3I
15
R1
Video
SL1
R2
The oscillator thresholds are internally fixed by resistors. The discharge of the capacitor depends on
the internal resistor R4. The control voltage is applied on resistor R5.
Figure 6. Line Oscillator
VCC1
Phase
Comparator
Output
R5
9
R4
6/14
TEA2037A
Figure 7. Phase Comparator
the video signal are synchronized, the output of
the comparator is an alternatively negative and
positive current. The frame sync-pulse inhibits the
comparator to prevent frequency drift of the line
oscillator on the frame beginning.
Line
Flyback
Figure 8.
Integrated
Flyback
VCC1
VC
11
10
Sync pulse
VC
Output
Current
ST2
The sync-pulse drives the current in the comparator. The line flyback integrated by the external network gives on pin 11 a saw tooth, the DC offset of
this saw tooth is fixed by VC. The comparator output provides a positive current for the part of the
signal on pin 11 greater than to VC and a negative
current for the other part.When the line flyback and
ST1
7/14
TEA2037A
Line Output (pin 14)
It is an open collector output which is able to drive
pulse current of 800mA for a rapid discharging of
the darlington base. The output pulse time is 22µs
for a 64µs period.
The oscillator thresholds are internally fixed by resistors. The oscillator is synchronized during the
last half free run period. The input current during
the charge of the capacitor is less than 100nA.
Frame Output Amplifier
This amplifier is able to drive directly the frame
yoke. Its output is short circuit and overload protected; it contains also a thermal protection.
Figure 9. Frame Oscillator
VCC1
INPUT CURRENT
COMPENSATION
1
Frame
Sync Pulse
To Frame
Amplifier
8/14
TEA2037A
TYPICAL APPLICATION FOR DISPLAY UNITS
Figure 10. Application without flyback generator and with sync-pulse drive; yoke: 72mH, 40Ω
VCC1
1kΩ
820kΩ
VCC
28V
100µF
180nF
16
4
5
12
13
2
7
100nF
2.2Ω
1
3
10kΩ
8
1kΩ
15
TEA2037A
22nF
470kΩ
10
9
100kΩ
VCC
2.2nF
1µF
56kΩ
470Ω
1/2W
10Ω
33.2kΩ
2.2nF
470µF
220nF
14
6.8Ω
47nF
3.9kΩ
470kΩ
6
11
100Ω
15kΩ
2.2µF
VCC1
47Ω
1N4148
Figure 11. Application with flyback generator and video; yoke: 72mH, 40Ω
VCC1
1kΩ
820kΩ
VCC
28V
100µF
1N4003
47µF
180nF
16
4
5
12
13
2
7
3
100nF
8
15
1kΩ
560kΩ
1
2.2Ω
1N4148
1.5kΩ
TEA2037A
22nF
470kΩ
10
9
1µF
2.2nF
680pF
VCC
2.2nF
10Ω
3.9kΩ
100kΩ
470µF
220nF
14
470Ω
1/2W
56kΩ
6.8Ω
47nF
470kΩ
6
11
100Ω
15kΩ
33.2kΩ
100nF
Video
2.2µF
VCC1
47Ω
1N4148
9/14
TEA2037A
TYPICAL APPLICATION FOR HIGH FREQUENCY MONITOR
Table 14. Characteristics
• Capture range: ± 5µs (@ sync pulse = 4.7µs)
• Input signal: negative TTL sync (line + frame)
• Dissipated power: 1.4W (heatsink required)
• Adjustments:
- Vertical amplitude
- Vertical Linearity
- Vertical frequency
- Horizontal frequency
• Screen: 14’’ Color
• Frame deflection yoke: 11mH, 7Ω, 750mA peak–to–peak
• VCC = + 14V with flyback generator
• Frame flyback time: 0.6ms
• Vertical frequency: 72Hz
• Vertical free–running period: 16ms (adjustable)
• Horizontal frequency: 35kHz (adjustable)
• Line flyback time: 5.5µs
Figure 12. Characteristics
2.2kΩ
VCC1
270kΩ
VCC
14V
1000µF
470kΩ
470kΩ
P3
100µF
1N4002
100nF
47µF
150nF
16
4
12
5
13
2
7
2.2Ω
1N4148
1
3
10kΩ
8
15
Frame Yoke
11mH/7Ω
TEA2037A
22nF
15kΩ
39kΩ
68kΩ
10
9
14
1µF
680pF
P4
18kΩ
VCC
10Ω
22kΩ
1nF
22kΩ
3.9kΩ
47kΩ
6.8nF
2200µF
330nF
220Ω
1/2W
2.2µF
Line
Darlington
47Ω
VCC1
P1
1N4148
1Ω
47nF
10/14
47kΩ
6
11
100Ω
Line
Flyback
180kΩ
Sync
TEA2037A
PART NUMBERING
Table 15. Order Codes
Part Number
Package
Temperature Range
TEA2037A
POWERDIP (8+8)
-25 to 85 °C
11/14
TEA2037A
PACKAGE MECHANICAL
Table 16. POWERDIP(8+8) - Mechanical Data
millimeters
inches
Symbol
Min
a1
0.51
B
0.85
Typ
Max
Min
Max
0.020
1.4
b
0.033
0.5
b1
Typ
0.055
0.020
0.38
0.5
D
0.015
0.020
20
0.787
E
8.8
0.346
e
2.54
0.100
e3
17.78
0.700
F
7.1
0.280
i
5.1
0.201
L
3.3
Z
0.130
1.27
0.050
I
b1
L
a1
Figure 13. POWERDIP(8+8) - Package Dimensions
b
Z
B
e
E
e3
D
9
1
8
F
16
Note: Drawing is not to scale
12/14
TEA2037A
REVISION HISTORY
Table 17. Revision History
Date
Revision
Description of Changes
September-1996
1
First Issue
13-May-2004
2
Stylesheet update. No content change.
13/14
TEA2037A
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
14/14