TEA2037A HORIZONTAL AND VERTICAL DEFLECTION MONITOR FEATURES SUMMARY ■ DIRECT LINE DARLINGTON DRIVE Figure 1. Package ■ DIRECT FRAME-YOKE DRIVE (± 1A) ■ COMPOSITE VIDEO SIGNAL INPUT CAPABILITY ■ FRAME OUTPUT PROTECTION AGAINST SHORT CIRCUITS ■ PLL ■ HORIZONTAL OSCILLATOR FREQUENCY RANGE FROM 15kHz TO 100kHz ■ VERTICAL OSCILLATOR FREQUENCY RANGE FROM 30Hz TO 120Hz ■ VERY FEW EXTERNAL COMPONENTS ■ VERY LOW COST POWER PACKAGE POWERDIP (8+8) (Plastic Package) DESCRIPTION The TEA2037A is an horizontal and vertical deflection circuit. It uses the same concept as TEA2117 but optimised for small screens, for a very low cost solution. Figure 2. Pin Connections FRAME OSCILLATOR 1 16 V CC1 FLYBACK GENERATOR SUPPLY 2 15 VIDEO INPUT FRAME FLYBACK 3 14 LINE OUTPUT GROUND 4 13 GROUND GROUND 5 12 GROUND INVERTING INPUT 6 11 LINE FLYBACK FRAME POWER SUPPLY 7 10 PHASE DETECTOR FRAME OUTPUT 8 9 LINE OSCILLATOR REV. 2 May 2004 1/14 TEA2037A Figure 3. Block Diagram 16 1 7 FRAME OSCILLATOR 4 3 2 FLYBACK GENERATOR + POWER STAGE - 5 FRAME-SYNC SEPARATOR 12 6 13 15 Yoke 8 INPUT STAGE PHASE DETECTOR LINE OSCILLATOR OUTPUT STAGE 14 TEA2037A 11 10 9 VCC1 Table 1. Absolute Maximum Ratings Symbol Value Unit Supply Voltage 30 V V2 Flyback Generator Supply Voltage 35 V V7 Frame Power Supply Voltage 60 V I8nr Frame Output Current (non repetitive) ± 1.5 A Frame Output Current (continuous) ±1 A V14 Line Output Voltage (external) 60 V Ip14 Line Output Peak Current 0.8 A IC14 Line Output Continuous Current 0.4 A Tstg Storage Temperature –40 to 150 °C + 150 °C Value Unit 15 °C/W VCC1 I8 TJ Parameter Max Operating Junction Temperature Table 2. Thermal Data Symbol Parameter Rth (j-c) Junction-case Thermal Resistance Rth (j-a) Junction-ambient Thermal Resistance Typ. (Soldered on a 35µm thick 45cm2 PC Board copper area) 45 °C/W Recommended Junction Temperature 120 °C Tj 2/14 Max Max TEA2037A ELECTRICAL CHARACTERISTICS (Tamb = 25°C) Table 3. Supply (shunt regulator) (Pin 16) Symbol ICC1 VCC1 ∆VCC1 LPS Parameter Supply Current Min. Typ. 10 Supply Voltage (ICC1 = 15mA) Voltage Variation (ICC1: 10mA to 20mA) 9 –280 9.8 50 Starting Threshold for Line Output Pulses Max. Unit 20 mA 10.5 +280 V mV 5 V Table 4. Video Input (Pin 15) Symbol V15 MWF VIN Parameter Min. Typ. Max. Unit Reference Voltage (I15 = –1µA) 1.4 1.75 2 V Minimum Width of Frame Pulse (When synchronized with TTL signal) 50 Sync Bottom to Black Level (RSYNC 15 = 560kΩ) 0.2 0.3 Min. Typ. Max. Unit µs VPP Table 5. Line Oscillator (Pin 9) Symbol Parameter LT9 Low Threshold Voltage 2.8 3.2 3.6 V HT9 High Threshold Voltage 5.4 6.6 7.8 V BI9 Bias Current DR9 Discharge Impedance 1.0 1.4 1.8 kΩ FLP1 Free Running Line Period (R = 34.9kΩ Tied to VCC1, C = 2.2nF Tied to Ground) 62 64 66 µs FLP2 Free Running Line Period (R = 13.7KΩ, C = 2.2nF) 27 µs OT9 Oscillator Threshold for Line Output Pulse Triggering 4.6 V 2 Hz/°C ∆F ------∆0 100 Horizontal Frequency Drift with Temperature (see application Figure 11) nA Table 6. Line Output (Pin 14) Symbol Parameter LV14 Saturation Voltage (I14 = 200mA) OPW Output Pulse Width (line period = 64µs) Min. Typ. Max. Unit 1.1 1.6 V 20 22 24 µs Min. Typ. Max. Unit Table 7. Line Flyback Input (Pin 11) Symbol Parameter V11 Bias Voltage 1.8 2.4 3.2 V Z11 Input Impedance 4.5 5.8 8 kΩ 3/14 TEA2037A Table 8. Phase Detector Symbol Min. Typ. Max. Unit Output Current During Synchro Pulse 250 450 800 µA RI10 Current Ratio (positive/negative) 0.95 1 1.05 LI10 Leakage Current CV10 Control Range Voltage I10 Parameter –2 +2 µA 2.60 7.10 V Table 9. Frame Oscillator (Pin 1) Symbol Parameter Min. Typ. Max. Unit LT1 Low Threshold Voltage 1.6 2.0 2.3 V HT1 High Threshold Voltage 2.6 3.1 3.6 V BI1 Bias Current DR1 Discharge Impedance 300 470 700 kΩ FFP1 Free Running Line Period (R = 845kΩ Tied to VCC1, C = 180nF Tied to Ground) 20.5 23 25 ms MFP Minimum Frame Period (I15 = -100µA) (with the Same RC) 12.8 ms FFP2 Free Running Line Period (R = 408kΩ, C = 220nF) 14.3 ms FPR Frame Period Ratio = 30 1.7 1.8 FG Frame Saw-tooth Gain Between Pin 1 and non Inverting Input of the Frame Amplifier –0.4 ∆F ------∆0 Vertical Frequency Drift with Temperature (see application Figure 11) 4.10–3 nA 1.9 Hz/°C Table 10. Frame Power Supply (Pin 7) Symbol Parameter V7 Operating Voltage (with flyback generator) I7 Supply Current (V7 = 30V) Min. Typ. 10 Max. Unit 58 V 22 mA Max. Unit 30 V Table 11. Flyback Generator Supply (Pin 2) Symbol V2 4/14 Parameter Operating Voltage Min. 10 Typ. TEA2037A Table 12. Frame Output (Pin 8) Symbol Parameter Min. Typ. Max. Unit LV8A LV8B Saturation Voltage to Ground (V7 = 30V) I8 = 0.1 I8 = 1A 0.06 0.37 0.6 1 V V HV8A HV8B Saturation Voltage to V7 (V7 = 30V) I8 = –0.1 I8 = –1A 1.3 1.7 1.6 2.4 V V FV8A FV8B Saturation Voltage to V7 in Flyback Mode (V8 > V7) I8 = 0.1 I8 = 1A 1.6 2.5 2.1 4.5 V V Typ. Max. Unit 1.5 3.0 0.8 2.2 2.1 4.5 1.1 4.5 V V V V 170 µA Table 13. Flyback Generator (Pin 2 and 3) Symbol F2DA F2DB FSVA FSVB Parameter Min. Flyback Transistor on (output = high state) (V2 = 30V) V3/2 with I3 → 2 = 0.1A I3 → 2 = 1A V2/3 with I3 → 2 = 0.1 I3 → 2 = 1A Flyback Transistor off (output = V7 - 8V) (V7 = V2 = 30V) FCI Leakage Current Pin 2 The TEA2037A performs all the video and power functions required to provide signals for the direct drive of the line darlington and frame yoke. It contains: – A shunt regulator – A synchronization separator – An integrated frame separator without external components – A saw-tooth generator for the frame – A power amplifier for direct drive of frame yoke (short circuit protected) – An open collector output for the line darlington drive – A line phase detector and a voltage control oscillator. The slice level of sync-separation is fixed by value of the external resistors R1 and R2. VR is an internally fixed voltage. The sync-pulse allows the discharge of the capacitor by a 2 x 1 current. A line sync-pulse is not able to discharge the capacitor under VZ/2. A frame sync pulse permits the complete discharge of the capacitor, so during the frame sync-pulse Q3 and Q4 provide current for the other parts of the circuit. 5/14 TEA2037A Figure 4. Synchronization Separator Circuit Figure 5. Frame Separator VZ Q3 SL1 Q4 SL2 I VR ST1 ST2 VZ /2 3I 15 R1 Video SL1 R2 The oscillator thresholds are internally fixed by resistors. The discharge of the capacitor depends on the internal resistor R4. The control voltage is applied on resistor R5. Figure 6. Line Oscillator VCC1 Phase Comparator Output R5 9 R4 6/14 TEA2037A Figure 7. Phase Comparator the video signal are synchronized, the output of the comparator is an alternatively negative and positive current. The frame sync-pulse inhibits the comparator to prevent frequency drift of the line oscillator on the frame beginning. Line Flyback Figure 8. Integrated Flyback VCC1 VC 11 10 Sync pulse VC Output Current ST2 The sync-pulse drives the current in the comparator. The line flyback integrated by the external network gives on pin 11 a saw tooth, the DC offset of this saw tooth is fixed by VC. The comparator output provides a positive current for the part of the signal on pin 11 greater than to VC and a negative current for the other part.When the line flyback and ST1 7/14 TEA2037A Line Output (pin 14) It is an open collector output which is able to drive pulse current of 800mA for a rapid discharging of the darlington base. The output pulse time is 22µs for a 64µs period. The oscillator thresholds are internally fixed by resistors. The oscillator is synchronized during the last half free run period. The input current during the charge of the capacitor is less than 100nA. Frame Output Amplifier This amplifier is able to drive directly the frame yoke. Its output is short circuit and overload protected; it contains also a thermal protection. Figure 9. Frame Oscillator VCC1 INPUT CURRENT COMPENSATION 1 Frame Sync Pulse To Frame Amplifier 8/14 TEA2037A TYPICAL APPLICATION FOR DISPLAY UNITS Figure 10. Application without flyback generator and with sync-pulse drive; yoke: 72mH, 40Ω VCC1 1kΩ 820kΩ VCC 28V 100µF 180nF 16 4 5 12 13 2 7 100nF 2.2Ω 1 3 10kΩ 8 1kΩ 15 TEA2037A 22nF 470kΩ 10 9 100kΩ VCC 2.2nF 1µF 56kΩ 470Ω 1/2W 10Ω 33.2kΩ 2.2nF 470µF 220nF 14 6.8Ω 47nF 3.9kΩ 470kΩ 6 11 100Ω 15kΩ 2.2µF VCC1 47Ω 1N4148 Figure 11. Application with flyback generator and video; yoke: 72mH, 40Ω VCC1 1kΩ 820kΩ VCC 28V 100µF 1N4003 47µF 180nF 16 4 5 12 13 2 7 3 100nF 8 15 1kΩ 560kΩ 1 2.2Ω 1N4148 1.5kΩ TEA2037A 22nF 470kΩ 10 9 1µF 2.2nF 680pF VCC 2.2nF 10Ω 3.9kΩ 100kΩ 470µF 220nF 14 470Ω 1/2W 56kΩ 6.8Ω 47nF 470kΩ 6 11 100Ω 15kΩ 33.2kΩ 100nF Video 2.2µF VCC1 47Ω 1N4148 9/14 TEA2037A TYPICAL APPLICATION FOR HIGH FREQUENCY MONITOR Table 14. Characteristics • Capture range: ± 5µs (@ sync pulse = 4.7µs) • Input signal: negative TTL sync (line + frame) • Dissipated power: 1.4W (heatsink required) • Adjustments: - Vertical amplitude - Vertical Linearity - Vertical frequency - Horizontal frequency • Screen: 14’’ Color • Frame deflection yoke: 11mH, 7Ω, 750mA peak–to–peak • VCC = + 14V with flyback generator • Frame flyback time: 0.6ms • Vertical frequency: 72Hz • Vertical free–running period: 16ms (adjustable) • Horizontal frequency: 35kHz (adjustable) • Line flyback time: 5.5µs Figure 12. Characteristics 2.2kΩ VCC1 270kΩ VCC 14V 1000µF 470kΩ 470kΩ P3 100µF 1N4002 100nF 47µF 150nF 16 4 12 5 13 2 7 2.2Ω 1N4148 1 3 10kΩ 8 15 Frame Yoke 11mH/7Ω TEA2037A 22nF 15kΩ 39kΩ 68kΩ 10 9 14 1µF 680pF P4 18kΩ VCC 10Ω 22kΩ 1nF 22kΩ 3.9kΩ 47kΩ 6.8nF 2200µF 330nF 220Ω 1/2W 2.2µF Line Darlington 47Ω VCC1 P1 1N4148 1Ω 47nF 10/14 47kΩ 6 11 100Ω Line Flyback 180kΩ Sync TEA2037A PART NUMBERING Table 15. Order Codes Part Number Package Temperature Range TEA2037A POWERDIP (8+8) -25 to 85 °C 11/14 TEA2037A PACKAGE MECHANICAL Table 16. POWERDIP(8+8) - Mechanical Data millimeters inches Symbol Min a1 0.51 B 0.85 Typ Max Min Max 0.020 1.4 b 0.033 0.5 b1 Typ 0.055 0.020 0.38 0.5 D 0.015 0.020 20 0.787 E 8.8 0.346 e 2.54 0.100 e3 17.78 0.700 F 7.1 0.280 i 5.1 0.201 L 3.3 Z 0.130 1.27 0.050 I b1 L a1 Figure 13. POWERDIP(8+8) - Package Dimensions b Z B e E e3 D 9 1 8 F 16 Note: Drawing is not to scale 12/14 TEA2037A REVISION HISTORY Table 17. Revision History Date Revision Description of Changes September-1996 1 First Issue 13-May-2004 2 Stylesheet update. No content change. 13/14 TEA2037A Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States www.st.com 14/14