TEMIC U846B

U846B
Digital Wiper Control for Intermittent and Wipe/ Wash Mode
Description
The U846B is a bipolar integrated circuit for automotive
use (“Rugged Silicon”) in interval and wipe/ wash control
of windshield or backlite wipers.
The interval pause can be set individually within a wide
range by using a potentiometer. Wipe / wash mode with
dry wiping activated either for 2 wipes or for a certain
time has priority over the interval mode.
*
*
The U846B is used in applications to control wiper
motors with or without park-switch signal feedback. The
integrated relay driver is protected against short circuits
and is switched to conductive condition in the case of a
load-dump. By using only a few external components,
protection against RF interference and ISO transients can
be achieved.
Features
D Interval input: high side
D Wipe/ wash input: high side
D Park input: low side (park position)
D Output driver protected against short circuits
D All time periods determined by an RC-oscillator
D Typical relay activation time of 500 ms
D Adjustable interval pause from 1.2 s to 27 s
D
D
D
D
D
D
D
Typical pre-wipe delay of 100 ms
Dry wiping
– With park-switch signal: 2 cycles
– Without park-switch signal typically 5.25 s
Inputs INT, WASH and PARK digitally debounced
All inputs with integrated RF protection
Load-dump protection and interference protection
according to ISO 7637–1/4 (DIN 40839)
Application
Digital interval / wipe/ wash control for windshield or
backlite wiper motors with a 22-kW potentiometer
(typical value) for interval pause adjustment.
Recommended oscillator circuitry:
R6 = 36 kW ; C2 = 100 nF.
Ordering Information
Extended Type Number
U846B
U846B–FP
Package
DIP8
SO8
Remarks
Pin Description
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
Pin
1
2
3
4
5
6
7
8
Symbol
INT
C
R
PARK
WASH
VS
GND
OUT
Function
Interval input
Oscillator C
Oscillator R
Park-switch input
Wipe/wash input
Supply voltage
Ground
Relay output
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
INT
1
8
OUT
C
2
7
GND
3
6
Vs
PARK 4
5
WASH
U846B
R
12749
Figure 13. Pinning
1 (13)
U846B
Block Diagram
VS
GND
6
Stabilization
POR
load-dump detection
22 V
IRef
1
INT
7
8
–
+
15 V
0.5 VS
20 pF
WASH
+
–
5
100 kW
OUT
28 V
+
–
Logic
15 V
250 mV
0.5 W
20 pF
PARK
+
–
4
20 kW
Oscillator
15 V
20 pF
3 kW
15 V
U846B
2
15 V
3
C
R
11632
Figure 1.
Basic Circuitry
Power Supply
For reasons of interference protection and surge
immunity, an RC circuitry has to be connected to the
supply pin. Therefore, current limitation during transients
and proper supply in the case of voltage drops is ensured.
Recommended values: R1 = 180 W, C1 = 47 F. In order to
protect the IC against reversed battery, a diode has to be
added to the supply. With this configuration, the value of
the external capacitor can be reduced to typically
C1 = 10 F. The supply (Pin 6) is clamped with a 22-V
Zener diode. The operation voltage may range between
VBatt = 9 to 16 V.
Oscillator
All time sequences refer to the frequency of the RC
oscillator. Its capacitor is charged by integrated current
sources and is discharged via a small integrated resistor.
The basic frequency, f0, is determined by the capacitor,
C2, an internal 3 kW resistor and the external resistor R6
according to the formula:
f0
[ 1 / (0.8
2 (13)
[
The recommended values are C2 = 100 nF, R6 = 36 kW.
The oscillator frequency is approximately f0 320 Hz.
The minimum value of R6 is 21 kW.
The precision of the oscillator frequency is determined by
the accuracy of the integrated oscillator (approximately
±5%) and the tolerances and temperature coefficients of
the external components. A 1% metallic-film resistor and
a 5% capacitor with only a small temperature co-efficient
are recommended.
Timing
Table 1 shows how to calculate the timing (debouncing
and delay times). The recommended timing is based on
the oscillator frequency f0 = 320 Hz. Synchronized times
are derived from the oscillator with different numbers of
divider stages. Asynchronous times are generated by the
internal clock and the randomly applied input signals
which result in a “digital uncertainty”.
C2 (R6 + 3 kW))
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U846B
VBatt
R1
180 W
47 mF
R5
C1
8
OUT
7
GND
6
VS
5
WASH
WASH
switch
47 kW
U846B
INT
switch
R2
2 kW
R3
typ.22 kW
INT
C
R
PARK
1
2
3
4
R6
C2
100 nF 36 kW
R4
10 kW
PARK
switch
11633
Figure 2. Basic circuitry
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
Table 1. Times
Synchronized Times
Typical Values with f0 = 320 Hz
Relay activation time
t1 = 500 ms
t1 = 160 1 / f0
Interval pause
t2 = 440 * 1 / fINT
t2 = 440 1 / fINT
Dry wiping
t3 = 5.25 s or 2 wipes
t3 = 1680 1 / f0 or 2 wipes
POR prolongation
tDPOR = 25 ms
tDPOR = 8 1 / f0
Asynchronous Times
Debouncing time INT
D Forward
tDINT = 100 ms
tDINT = (32 +/– 4) 1 / f0
D Reverse
tDINR = 100 ms
tDINR = (32 +/– 4) 1 / f0
Debouncing time WASH
D Forward
tDWASH = 100 ms
tDWASH = (32 +/– 4) 1 / f0
D Reverse
tDWASHR = (32 +/– 4) 1 / f0 tDWASHR = 100 ms
Debouncing time PARK
D Forward
tDPARK = 25 ms
tDPARK = (8 + 4) 1 / f0
D Reverse
tDPARKR = 25 ms
tDPARKR = (8 + 4) 1 / f0
Debouncing time SC
tDSC = 10 ms
tDSC = (3 +/– 1) 1 / f0
For the calculation of “fINT”: see chapter “Functional Description” on page 4
OFF
1
2
~
~
ON
INT or WASH
3
~
~
CL
ON
IC >500 mA
SC
tDSC
~
~
OFF
~
~
OUT
tDINTR
or
tDWASHR
11708
Figure 3. Debouncing of the short circuit detection and reset of the latched short circuit detection
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
3 (13)
U846B
Asynchronous Debouncing Times
Ditigal debouncing by clock count makes all inputs
insusceptible to short interference pulses. The switch
input stages INT, WASH, PARK are debounced at the
positive and negative edge (reverse debouncing).
The debouncing times vary (digital uncertainty). This is
caused by the asynchronism between the random input
signal and the IC clock CL.
Short circuit debouncing is shown in figure 3.
During the relay activation time, the output current is
monitored at each positive edge of the clock. In the case
of a detected short, a 3-stage shift register counts 3
negative edges.
The output stage is disabled with the following positive
edge. Depending on when the short circuit occurs, there
is a variation of 1 clock: the delay time may last from 2
to 4 clock cycles. In the case of the other times, (e.g.,
debouncimg input INT) the digital uncertainty adds up to
± 4 cycles.
Relay Output
current during the load-dump pulse (1A, short term).
Short circuit detection is disabled during the load-dump.
Power-on Reset
When the supply voltage is switched on, an internal power-on reset pulse (POR) with a prolongation time of
tDPOR = 25 ms is generated to set and hold the integrated
logic at the condition which is defined initially.
During tDPOR the relay output stage is kept disabled and
the short circuit buffer is reset.
Functional Description
All timing periods refers to f0 = 320 Hz with R6 = 36 kW
and C2 = 100 nF
Interval Function
The interval mode is activated with the high side input
switch INT. After the debouncing time tDINT the relay is
activated and the wiper motor performs one turn. The beginning of the interval pause depends on the application
“with or without the park-switch” (see figures 5, 6, 7 and
8). If the INT switch is opened the wiper performs a full
turn as long as the relay is energized.
The relay output is an open collector Darlington transistor
stage with an integrated 28-V Zener diode which limits
the relay coil‘s inductive cut–out pulse. The maximum
static collector current must not exceed 300 mA and the
saturation voltage is typically Vsat = 1.2 V@ 200 mA.
Contact Current and Leakage Resistance
An integrated shunt resistor measures the collector
current constantly. If a typical value of I8 = 500 mA is
exceeded, the short circuit detection buffer is set.
The input is detected “open” and the intermittent function
is not activated if the input resistance of Pin 1 exceeds
45 kW.
The output stage is switched off and is kept disabled even
if an input switch is still on. When an input switch is
opened, the short circuit buffer is reset after the debouncing delay and the output can be activated again.
Timing of the Interval Pause t2
*
*
If
after closing an input switch again
a persistant
short is detected, the short circuit buffer is set again and
the output is disabled. If no short circuit condition is
detected normal operation continues.
In order to avoid short term disabling caused by current
pulses of transients, a typical debounce period
(tDSC = 10 ms) is provided (see figure 3).
During a load-dump pulse (VBatt > 30 V), the output
transistor is switched to conductive condition to prevent
it from being destroyed. The output transistor absorbs the
4 (13)
As the current into Pin 1 (INT) only ranges from 200 mA
to 800 mA (depending on the potentiometer value), an
external pull-down resistor helps to increase the contact
current of the interval switch INT.
During the interval pause the oscillator frequency is
switched from f0 to fINT. Thus the frequency-determing
resistor is now (R2 + R3). The frequency is calculated
approximately by using the following formulas:
[ 4.4/ (57
[ 5700 C
fINT
t2
2
C2
(R2 + R3))
(R2 + R3)
Correct operation is ensured, with
2 kW < (R2 + R3) < 40 kW
With the recommended value of C2 = 100 nF, the pause
time can be adjusted to 1 s < t2 < 27 s (see figure 4).
When the interval pause has been completed the oscillator is switched to its basic frequency f0.
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
t 2 – Interval Pause ( s )
U846B
Interval Function with Park-Switch Feedback
28
26
24
22
20
18
16
14
12
10
8
6
4
2
0
During the relay activation time, t1, the wiper motor‘s
park-switch leaves its park position and changes its
potential from GND to VBatt. The output is kept active as
long as the park-switch stays at high potential, even if the
relay activation time has expired in the meantime. If the
park-switch is connected to the PARK input (Pin 4), the
interval pause t2 starts after the 25 ms debounce time
tDPARK (see figures 5 and 6).
2
7
96 12008
12
17
22
27
32
R2 + R3 ( kW )
37
42
47
Figure 4. Pause time t2/ s versus resistor (R2 + R3)/ kW
If the INT switch is opened while the relay is still
energized, the wiper motor turns on until it reaches its
park position. The motor current can flow only via the
relay contact.
11635
INT
VBatt
tDINT
0V
t1
t1
VBatt
OUT
0V
t2
PARK
VBatt
tDPARKR
tDPARKR
0V
MOTOR
ON
OFF
Figure 5. Intermittent circuit function with park-position feedback
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
5 (13)
U846B
R1
180 W
Relay
8
R5
47 kW
6
7
5
C1
U846B
1
2
3
C2
R2
6.2 kW
47 mF
10 V
4
R6
R4
100 nF 36 kW 10 kW
R3
S1
15 kW
S2
OI
1/2
Park
switch
WIWA
M
M
31
Wiper motor
Interval switch
Water pump
15
11634
Figure 6. Application circuit with park-switch feedback
Interval Function without Park-Switch Feedback
This configuration is used mainly if the relay is mounted
directly to the wiper motor. The PARK input (Pin 4) can
be left open (internal pull-down resistor). During the relay
activation time, the motor current flows via the relay
contact. When the relay is switched off, the park-switch
takes over the current (see figure 7). The interval pause
6 (13)
starts at the end of the activation time of the relay (see
figure 8). If the INT switch is opened while the relay is
still energized, the wiper motor turns on until it reaches
its park position. The motor current flows via the parkswitch contact.
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U846B
R1
R5
180 W
8
47 kW
6
7
5
C1
U846B
1
2
R2
3
4
R6
C2
6.2 kW
47 mF
10 V
100 nF
36 kW
R3
15 kW
S1
S1
OI
1/2
Park
switch
WIWA
M
M
31
Wiper motor
Interval switch
Water pump
15
11636
Figure 7. Application circuit without park-position feedback
VBatt
INT
tDINT
0V
VBatt
OUT
0V
t1
t2
t1
ON
MOTOR
OFF
11637
Figure 8. Intermittent circuit function without park-position feedback
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
7 (13)
U846B
Wipe/ Wash Operation
11638
VBatt
WASH
0V
tDWASHR
<tDWASH
VBatt
OUT
0V
tDPARKR
tDWASH
VBatt
PARK
0V
ON
MOTOR
OFF
Figure 9. Wash operation with park-switch signal
When the WASH switch is closed, the relay is activated
after the debounce time, tDWASH. As long as the switch is
pushed, the wash pump sprays water on the windscreen.
When the WASH switch is released, the dry wiping starts
after the “reverse” debouncing time tDWASHR = 100 ms
Wipe/ Wash Mode with Park-Position
Feedback
With the park input of the circuit connected to the wiper
motor‘s park-switch, the output stays active until an inter-
nal counter counts 2 positive edges of the park-switch i.e.,
2 full cycles for dry wiping (see figure 9).
Wipe/ Wash Mode without Park-Position
Feedback
If the U846B is used without the wiper motor’s parkswitch, Pin 4 is fixed to low potential (integrated
pull-down resistor). Therefore, the driver stage is
switched off after the dry wiping time t3 is finished, but
the wiper motor is supplied via its park-switch until the
park position is reached.
11639
VBatt
WASH
0V
tDWASHR
<tDWASH
VBatt
OUT
0V
tDWASH
t3
ON
MOTOR
OFF
Figure 10. Wash operation without park-signal feedback
8 (13)
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U846B
Wipe/ Wash Mode Priority
With built-in priority for the wipe / wash mode, the
interval function is interrupted as soon as the WASH
switch is operated longer than the debounce time tDWASH.
The interval mode continues with a relay activation time
t1 (see figures 11 and 12) either with or without parkswitch feedback, after the relay activation time is finished
(no park-switch feedback) or after the second wipe (parkswitch fedback). In this case, 3 wipes are performed.
11640
VBatt
INT
0V
VBatt
WASH
0V
tDINT
VBatt
tDWASH
tDWASHR
t1
t1
OUT
0V
tDPARKR
VBatt
PARK
1
2
3
0V
wipes
ON
MOTOR
OFF
Figure 11. Wipe/ wash priority with park-position feedback
11641
VBatt
INT
0V
tDWASHR
VBatt
WASH
0V
tDINT
tDWASH
t3
VBatt
t1
OUT
0V
t1
t2
t1
ON
MOTOR
OFF
Figure 12. Wash/ wipe priority without park-position feedback
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
9 (13)
U846B
Absolute Maximum Ratings
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
Parameters
Supply voltage
t = 60 s
t = 600 s
Ambient temperature range
Storage temperature range
Maximum junction temperature
Symbol
VBatt
VBatt
Tamb
Tstg
Tj
Value
24
18
-40 to +100
-55 to +125
150
Unit
V
°C
°C
°C
Thermal Resistance
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁ
Junction ambient
Parameters
DIP8
SO8
Symbol
RthJA
RthJA
Maximum
110
160
Unit
K/W
Electrical Characteristics ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ
VBatt = 13.5 V, Tamb = 25°C, reference point ground (Pin 7), unless otherwise specified
Circuit with recommended external circuitry (see figure 2)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
Á
ÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁ
Á
ÁÁÁ
Á
ÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Parameters
Supply
Supply voltage range
Supply current
Undervoltage threshold POR
Series reistor
Filter capacior
Internal Z–diode
INT input Pin 1
Protective diode
Internal capacitance
Leakage resistance
External series resistance
PARK input Pin 4
Protective diode
Internal capacitance
Threshold
Test Conditions/ Pin
All switches open
Symbol
Min.
VBatt
I6
V6
R1
C1
V6
9
V1
C1
R
RS
V4
C4
V4
Pull-down resistance
External series resistance
WASH input Pin 5
Protective diode
Internal capacitance
Threshold
R4
RS4
Pull-down resistance
External series resistance
R5
RS5
10 (13)
V5
C5
V5
Typ.
Max.
Unit
16
V
mA
V
1.6
4
180
47
22.5
F
V
15
20
45
2
40
15
20
0.5
V6
20
10
V
pF
k
k
V
pF
V
k
k
15
20
0.5
V6
100
V
pF
V
0.5
R5
k
k
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U846B
Electrical Characteristics (continued)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
Á
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Á
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Á
ÁÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁ
Parameters
Test Conditions/ Pin
Relay output Pin 8
Saturation voltage
I8 = 100 mA
Saturation voltage
I8 = 200 mA
Relay coil resistance
Output current
Normal operation
Output pulse current
Load-dump
Internal Z-diode
Short circuit threshold
Reverse current
Oscillator input C Pin 2
Oscillator capacitor
Pin 2
Basic frequency
C2 = 100 nF, R3 = 36 k
Lower switching point
Upper switching point
Internal discharge resistance
Protective diode
I = 10 mA
Oscillator input R Pin 3
Oscillator resistor
Integrated resistor
Integrated Z–diode
Times
External circuitry - see oscillator input (figure 2)
Debouncing Times
D INT input
p
D WASH input
p
D PARK input
p
D Short circuit detection
Relay activation time
Tolerances of min. pause time
Tolerances of max. pause time
Dry wiping
Without park-switch feedback
With park-switch feedback
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
VBatt = 12 V,
Tamb = 28 ±10°C
R1 = 0 to 15 k ,
R3 = 6.2 k
VBatt = 12 V,
Tamb = 28 ±10°C
R1 = 0 to 15 k ,
R3 = 6.2 k
Symbol
Min.
V8
V8
RRel
I8
I8
V8
I8
I8
Typ.
Max.
1.0
1.2
60
V
V
300
1.5
28.5
500
100
C2
f0
V2
V2
R2
V2
Unit
mA
A
V
mA
A
100
320
1
2.75
500
15
nF
Hz
V
V
k
k
V
V
R3E
R3i
V3
18
36
3
14
tDINT
tDINTR
tDWASH
tDWASHR
tDPARK
tDPARKR
tDSC
t1
t2min
50
50
100
100
100
100
25
25
10
400
2.6
3.48
625
4.35
ms
ms
ms
ms
ms
ms
ms
ms
s
t2max
8.85
11.8
14.75
s
t3
4.5
5.25
2
6
s
turns
125
125
11 (13)
U846B
Package Information
Package DIP8
Dimensions in mm
7.77
7.47
9.8
9.5
1.64
1.44
4.8 max
6.4 max
0.5 min
0.58
0.48
3.3
0.36 max
9.8
8.2
2.54
7.62
8
5
technical drawings
according to DIN
specifications
13021
1
4
Package SO8
Dimensions in mm
5.2
4.8
5.00
4.85
3.7
1.4
0.25
0.10
0.4
1.27
6.15
5.85
3.81
8
0.2
3.8
5
technical drawings
according to DIN
specifications
13034
8
12 (13)
5
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U846B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs).
The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of
continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain
such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
13 (13)