U846B Digital Wiper Control for Intermittent and Wipe/ Wash Mode Description The U846B is a bipolar integrated circuit for automotive use (“Rugged Silicon”) in interval and wipe/ wash control of windshield or backlite wipers. The interval pause can be set individually within a wide range by using a potentiometer. Wipe / wash mode with dry wiping activated either for 2 wipes or for a certain time has priority over the interval mode. * * The U846B is used in applications to control wiper motors with or without park-switch signal feedback. The integrated relay driver is protected against short circuits and is switched to conductive condition in the case of a load-dump. By using only a few external components, protection against RF interference and ISO transients can be achieved. Features D Interval input: high side D Wipe/ wash input: high side D Park input: low side (park position) D Output driver protected against short circuits D All time periods determined by an RC-oscillator D Typical relay activation time of 500 ms D Adjustable interval pause from 1.2 s to 27 s D D D D D D D Typical pre-wipe delay of 100 ms Dry wiping – With park-switch signal: 2 cycles – Without park-switch signal typically 5.25 s Inputs INT, WASH and PARK digitally debounced All inputs with integrated RF protection Load-dump protection and interference protection according to ISO 7637–1/4 (DIN 40839) Application Digital interval / wipe/ wash control for windshield or backlite wiper motors with a 22-kW potentiometer (typical value) for interval pause adjustment. Recommended oscillator circuitry: R6 = 36 kW ; C2 = 100 nF. Ordering Information Extended Type Number U846B U846B–FP Package DIP8 SO8 Remarks Pin Description ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁ Pin 1 2 3 4 5 6 7 8 Symbol INT C R PARK WASH VS GND OUT Function Interval input Oscillator C Oscillator R Park-switch input Wipe/wash input Supply voltage Ground Relay output TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 INT 1 8 OUT C 2 7 GND 3 6 Vs PARK 4 5 WASH U846B R 12749 Figure 13. Pinning 1 (13) U846B Block Diagram VS GND 6 Stabilization POR load-dump detection 22 V IRef 1 INT 7 8 – + 15 V 0.5 VS 20 pF WASH + – 5 100 kW OUT 28 V + – Logic 15 V 250 mV 0.5 W 20 pF PARK + – 4 20 kW Oscillator 15 V 20 pF 3 kW 15 V U846B 2 15 V 3 C R 11632 Figure 1. Basic Circuitry Power Supply For reasons of interference protection and surge immunity, an RC circuitry has to be connected to the supply pin. Therefore, current limitation during transients and proper supply in the case of voltage drops is ensured. Recommended values: R1 = 180 W, C1 = 47 F. In order to protect the IC against reversed battery, a diode has to be added to the supply. With this configuration, the value of the external capacitor can be reduced to typically C1 = 10 F. The supply (Pin 6) is clamped with a 22-V Zener diode. The operation voltage may range between VBatt = 9 to 16 V. Oscillator All time sequences refer to the frequency of the RC oscillator. Its capacitor is charged by integrated current sources and is discharged via a small integrated resistor. The basic frequency, f0, is determined by the capacitor, C2, an internal 3 kW resistor and the external resistor R6 according to the formula: f0 [ 1 / (0.8 2 (13) [ The recommended values are C2 = 100 nF, R6 = 36 kW. The oscillator frequency is approximately f0 320 Hz. The minimum value of R6 is 21 kW. The precision of the oscillator frequency is determined by the accuracy of the integrated oscillator (approximately ±5%) and the tolerances and temperature coefficients of the external components. A 1% metallic-film resistor and a 5% capacitor with only a small temperature co-efficient are recommended. Timing Table 1 shows how to calculate the timing (debouncing and delay times). The recommended timing is based on the oscillator frequency f0 = 320 Hz. Synchronized times are derived from the oscillator with different numbers of divider stages. Asynchronous times are generated by the internal clock and the randomly applied input signals which result in a “digital uncertainty”. C2 (R6 + 3 kW)) TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 U846B VBatt R1 180 W 47 mF R5 C1 8 OUT 7 GND 6 VS 5 WASH WASH switch 47 kW U846B INT switch R2 2 kW R3 typ.22 kW INT C R PARK 1 2 3 4 R6 C2 100 nF 36 kW R4 10 kW PARK switch 11633 Figure 2. Basic circuitry ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁ Table 1. Times Synchronized Times Typical Values with f0 = 320 Hz Relay activation time t1 = 500 ms t1 = 160 1 / f0 Interval pause t2 = 440 * 1 / fINT t2 = 440 1 / fINT Dry wiping t3 = 5.25 s or 2 wipes t3 = 1680 1 / f0 or 2 wipes POR prolongation tDPOR = 25 ms tDPOR = 8 1 / f0 Asynchronous Times Debouncing time INT D Forward tDINT = 100 ms tDINT = (32 +/– 4) 1 / f0 D Reverse tDINR = 100 ms tDINR = (32 +/– 4) 1 / f0 Debouncing time WASH D Forward tDWASH = 100 ms tDWASH = (32 +/– 4) 1 / f0 D Reverse tDWASHR = (32 +/– 4) 1 / f0 tDWASHR = 100 ms Debouncing time PARK D Forward tDPARK = 25 ms tDPARK = (8 + 4) 1 / f0 D Reverse tDPARKR = 25 ms tDPARKR = (8 + 4) 1 / f0 Debouncing time SC tDSC = 10 ms tDSC = (3 +/– 1) 1 / f0 For the calculation of “fINT”: see chapter “Functional Description” on page 4 OFF 1 2 ~ ~ ON INT or WASH 3 ~ ~ CL ON IC >500 mA SC tDSC ~ ~ OFF ~ ~ OUT tDINTR or tDWASHR 11708 Figure 3. Debouncing of the short circuit detection and reset of the latched short circuit detection TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 3 (13) U846B Asynchronous Debouncing Times Ditigal debouncing by clock count makes all inputs insusceptible to short interference pulses. The switch input stages INT, WASH, PARK are debounced at the positive and negative edge (reverse debouncing). The debouncing times vary (digital uncertainty). This is caused by the asynchronism between the random input signal and the IC clock CL. Short circuit debouncing is shown in figure 3. During the relay activation time, the output current is monitored at each positive edge of the clock. In the case of a detected short, a 3-stage shift register counts 3 negative edges. The output stage is disabled with the following positive edge. Depending on when the short circuit occurs, there is a variation of 1 clock: the delay time may last from 2 to 4 clock cycles. In the case of the other times, (e.g., debouncimg input INT) the digital uncertainty adds up to ± 4 cycles. Relay Output current during the load-dump pulse (1A, short term). Short circuit detection is disabled during the load-dump. Power-on Reset When the supply voltage is switched on, an internal power-on reset pulse (POR) with a prolongation time of tDPOR = 25 ms is generated to set and hold the integrated logic at the condition which is defined initially. During tDPOR the relay output stage is kept disabled and the short circuit buffer is reset. Functional Description All timing periods refers to f0 = 320 Hz with R6 = 36 kW and C2 = 100 nF Interval Function The interval mode is activated with the high side input switch INT. After the debouncing time tDINT the relay is activated and the wiper motor performs one turn. The beginning of the interval pause depends on the application “with or without the park-switch” (see figures 5, 6, 7 and 8). If the INT switch is opened the wiper performs a full turn as long as the relay is energized. The relay output is an open collector Darlington transistor stage with an integrated 28-V Zener diode which limits the relay coil‘s inductive cut–out pulse. The maximum static collector current must not exceed 300 mA and the saturation voltage is typically Vsat = 1.2 V@ 200 mA. Contact Current and Leakage Resistance An integrated shunt resistor measures the collector current constantly. If a typical value of I8 = 500 mA is exceeded, the short circuit detection buffer is set. The input is detected “open” and the intermittent function is not activated if the input resistance of Pin 1 exceeds 45 kW. The output stage is switched off and is kept disabled even if an input switch is still on. When an input switch is opened, the short circuit buffer is reset after the debouncing delay and the output can be activated again. Timing of the Interval Pause t2 * * If after closing an input switch again a persistant short is detected, the short circuit buffer is set again and the output is disabled. If no short circuit condition is detected normal operation continues. In order to avoid short term disabling caused by current pulses of transients, a typical debounce period (tDSC = 10 ms) is provided (see figure 3). During a load-dump pulse (VBatt > 30 V), the output transistor is switched to conductive condition to prevent it from being destroyed. The output transistor absorbs the 4 (13) As the current into Pin 1 (INT) only ranges from 200 mA to 800 mA (depending on the potentiometer value), an external pull-down resistor helps to increase the contact current of the interval switch INT. During the interval pause the oscillator frequency is switched from f0 to fINT. Thus the frequency-determing resistor is now (R2 + R3). The frequency is calculated approximately by using the following formulas: [ 4.4/ (57 [ 5700 C fINT t2 2 C2 (R2 + R3)) (R2 + R3) Correct operation is ensured, with 2 kW < (R2 + R3) < 40 kW With the recommended value of C2 = 100 nF, the pause time can be adjusted to 1 s < t2 < 27 s (see figure 4). When the interval pause has been completed the oscillator is switched to its basic frequency f0. TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 t 2 – Interval Pause ( s ) U846B Interval Function with Park-Switch Feedback 28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 During the relay activation time, t1, the wiper motor‘s park-switch leaves its park position and changes its potential from GND to VBatt. The output is kept active as long as the park-switch stays at high potential, even if the relay activation time has expired in the meantime. If the park-switch is connected to the PARK input (Pin 4), the interval pause t2 starts after the 25 ms debounce time tDPARK (see figures 5 and 6). 2 7 96 12008 12 17 22 27 32 R2 + R3 ( kW ) 37 42 47 Figure 4. Pause time t2/ s versus resistor (R2 + R3)/ kW If the INT switch is opened while the relay is still energized, the wiper motor turns on until it reaches its park position. The motor current can flow only via the relay contact. 11635 INT VBatt tDINT 0V t1 t1 VBatt OUT 0V t2 PARK VBatt tDPARKR tDPARKR 0V MOTOR ON OFF Figure 5. Intermittent circuit function with park-position feedback TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 5 (13) U846B R1 180 W Relay 8 R5 47 kW 6 7 5 C1 U846B 1 2 3 C2 R2 6.2 kW 47 mF 10 V 4 R6 R4 100 nF 36 kW 10 kW R3 S1 15 kW S2 OI 1/2 Park switch WIWA M M 31 Wiper motor Interval switch Water pump 15 11634 Figure 6. Application circuit with park-switch feedback Interval Function without Park-Switch Feedback This configuration is used mainly if the relay is mounted directly to the wiper motor. The PARK input (Pin 4) can be left open (internal pull-down resistor). During the relay activation time, the motor current flows via the relay contact. When the relay is switched off, the park-switch takes over the current (see figure 7). The interval pause 6 (13) starts at the end of the activation time of the relay (see figure 8). If the INT switch is opened while the relay is still energized, the wiper motor turns on until it reaches its park position. The motor current flows via the parkswitch contact. TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 U846B R1 R5 180 W 8 47 kW 6 7 5 C1 U846B 1 2 R2 3 4 R6 C2 6.2 kW 47 mF 10 V 100 nF 36 kW R3 15 kW S1 S1 OI 1/2 Park switch WIWA M M 31 Wiper motor Interval switch Water pump 15 11636 Figure 7. Application circuit without park-position feedback VBatt INT tDINT 0V VBatt OUT 0V t1 t2 t1 ON MOTOR OFF 11637 Figure 8. Intermittent circuit function without park-position feedback TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 7 (13) U846B Wipe/ Wash Operation 11638 VBatt WASH 0V tDWASHR <tDWASH VBatt OUT 0V tDPARKR tDWASH VBatt PARK 0V ON MOTOR OFF Figure 9. Wash operation with park-switch signal When the WASH switch is closed, the relay is activated after the debounce time, tDWASH. As long as the switch is pushed, the wash pump sprays water on the windscreen. When the WASH switch is released, the dry wiping starts after the “reverse” debouncing time tDWASHR = 100 ms Wipe/ Wash Mode with Park-Position Feedback With the park input of the circuit connected to the wiper motor‘s park-switch, the output stays active until an inter- nal counter counts 2 positive edges of the park-switch i.e., 2 full cycles for dry wiping (see figure 9). Wipe/ Wash Mode without Park-Position Feedback If the U846B is used without the wiper motor’s parkswitch, Pin 4 is fixed to low potential (integrated pull-down resistor). Therefore, the driver stage is switched off after the dry wiping time t3 is finished, but the wiper motor is supplied via its park-switch until the park position is reached. 11639 VBatt WASH 0V tDWASHR <tDWASH VBatt OUT 0V tDWASH t3 ON MOTOR OFF Figure 10. Wash operation without park-signal feedback 8 (13) TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 U846B Wipe/ Wash Mode Priority With built-in priority for the wipe / wash mode, the interval function is interrupted as soon as the WASH switch is operated longer than the debounce time tDWASH. The interval mode continues with a relay activation time t1 (see figures 11 and 12) either with or without parkswitch feedback, after the relay activation time is finished (no park-switch feedback) or after the second wipe (parkswitch fedback). In this case, 3 wipes are performed. 11640 VBatt INT 0V VBatt WASH 0V tDINT VBatt tDWASH tDWASHR t1 t1 OUT 0V tDPARKR VBatt PARK 1 2 3 0V wipes ON MOTOR OFF Figure 11. Wipe/ wash priority with park-position feedback 11641 VBatt INT 0V tDWASHR VBatt WASH 0V tDINT tDWASH t3 VBatt t1 OUT 0V t1 t2 t1 ON MOTOR OFF Figure 12. Wash/ wipe priority without park-position feedback TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 9 (13) U846B Absolute Maximum Ratings ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ Parameters Supply voltage t = 60 s t = 600 s Ambient temperature range Storage temperature range Maximum junction temperature Symbol VBatt VBatt Tamb Tstg Tj Value 24 18 -40 to +100 -55 to +125 150 Unit V °C °C °C Thermal Resistance ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁ Junction ambient Parameters DIP8 SO8 Symbol RthJA RthJA Maximum 110 160 Unit K/W Electrical Characteristics ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ VBatt = 13.5 V, Tamb = 25°C, reference point ground (Pin 7), unless otherwise specified Circuit with recommended external circuitry (see figure 2) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁ W Á ÁÁÁÁ Á ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁ Á ÁÁÁ Á ÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ Parameters Supply Supply voltage range Supply current Undervoltage threshold POR Series reistor Filter capacior Internal Z–diode INT input Pin 1 Protective diode Internal capacitance Leakage resistance External series resistance PARK input Pin 4 Protective diode Internal capacitance Threshold Test Conditions/ Pin All switches open Symbol Min. VBatt I6 V6 R1 C1 V6 9 V1 C1 R RS V4 C4 V4 Pull-down resistance External series resistance WASH input Pin 5 Protective diode Internal capacitance Threshold R4 RS4 Pull-down resistance External series resistance R5 RS5 10 (13) V5 C5 V5 Typ. Max. Unit 16 V mA V 1.6 4 180 47 22.5 F V 15 20 45 2 40 15 20 0.5 V6 20 10 V pF k k V pF V k k 15 20 0.5 V6 100 V pF V 0.5 R5 k k TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 U846B Electrical Characteristics (continued) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ Á ÁÁÁÁÁ ÁÁÁÁ ÁÁÁ Á ÁÁÁÁ ÁÁÁ ÁÁÁ Á ÁÁÁ ÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ W ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁ Parameters Test Conditions/ Pin Relay output Pin 8 Saturation voltage I8 = 100 mA Saturation voltage I8 = 200 mA Relay coil resistance Output current Normal operation Output pulse current Load-dump Internal Z-diode Short circuit threshold Reverse current Oscillator input C Pin 2 Oscillator capacitor Pin 2 Basic frequency C2 = 100 nF, R3 = 36 k Lower switching point Upper switching point Internal discharge resistance Protective diode I = 10 mA Oscillator input R Pin 3 Oscillator resistor Integrated resistor Integrated Z–diode Times External circuitry - see oscillator input (figure 2) Debouncing Times D INT input p D WASH input p D PARK input p D Short circuit detection Relay activation time Tolerances of min. pause time Tolerances of max. pause time Dry wiping Without park-switch feedback With park-switch feedback TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 VBatt = 12 V, Tamb = 28 ±10°C R1 = 0 to 15 k , R3 = 6.2 k VBatt = 12 V, Tamb = 28 ±10°C R1 = 0 to 15 k , R3 = 6.2 k Symbol Min. V8 V8 RRel I8 I8 V8 I8 I8 Typ. Max. 1.0 1.2 60 V V 300 1.5 28.5 500 100 C2 f0 V2 V2 R2 V2 Unit mA A V mA A 100 320 1 2.75 500 15 nF Hz V V k k V V R3E R3i V3 18 36 3 14 tDINT tDINTR tDWASH tDWASHR tDPARK tDPARKR tDSC t1 t2min 50 50 100 100 100 100 25 25 10 400 2.6 3.48 625 4.35 ms ms ms ms ms ms ms ms s t2max 8.85 11.8 14.75 s t3 4.5 5.25 2 6 s turns 125 125 11 (13) U846B Package Information Package DIP8 Dimensions in mm 7.77 7.47 9.8 9.5 1.64 1.44 4.8 max 6.4 max 0.5 min 0.58 0.48 3.3 0.36 max 9.8 8.2 2.54 7.62 8 5 technical drawings according to DIN specifications 13021 1 4 Package SO8 Dimensions in mm 5.2 4.8 5.00 4.85 3.7 1.4 0.25 0.10 0.4 1.27 6.15 5.85 3.81 8 0.2 3.8 5 technical drawings according to DIN specifications 13034 8 12 (13) 5 TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 U846B Ozone Depleting Substances Policy Statement It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs). The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 TELEFUNKEN Semiconductors Rev. A2, 03-Feb-97 13 (13)