TEMIC U842B-FP

U842B
Wiper Control for Intermittent and Wipe/ Wash Mode
Description
The U842B circuit is designed as an interval and
wipe/ wash timer for automotive wiper control. The
interval pause can be set in a range from 3 s to 11 s by an
external 1-kW potentiometer. Wipe/wash mode has
priority over the interval mode. The U842B controls the
wiper motor with/without park switch signal.
The integrated relay driver is protected against short
circuits and is switched to conductive condition in the
case of a load-dump. With only a few external
components, protection against RF interference and
transients (ISO/TR 7637-1/3) can be achieved.
Features
D Fixed pre-wash delay of 400 ms
D Dry wiping
D Interval input: low side
D Wipe/ wash input: low side
D Park input: high side (park position)
– With park switch signal: 3 cycles
D Output driver protected against short circuit
– Without park switch signal: 2.8 s
D Inputs INT, WASH and PARK digitally debounced
D All inputs with integrated RF protection
D Load-dump protection and interference protection ac-
D All time periods determined by RC oscillator
D Fixed relay activation time of 500 ms
D Adjustable interval pause from 3 s to 11 s
cording to ISO 7637-1/3 (DIN 40839)
Application
Digital/ wipe-wash control for rear or front wiper
Ordring Information
Extended Type Number
U842B
U842B–FP
Package
DIP8
SO8
Remarks
Pin Description
Pin
1
2
3
4
5
6
7
8
Symbol
INT
WASH
PARK
PAUS
OSC
VS
GND
OUT
Function
Interval input
Wipe/ wash input
Park switch input
Pause time adjust
Oscillator input
Supply voltage
Ground
Relay output
INT
1
8
OUT
WASH
2
7
GND
U842B
PARK
3
6
Vs
PAUS
4
5
OSC
13300
Figure 1. Pinning
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
1 (12)
U842B
Block Diagram
VS
GND
6
7
Stabilization
POR
Load–dump –
detection
21 V
8
1/2 VS
OUT
28 V
INT
1
+
–
250 mV
+
–
25 pF 21 V
WASH
2
+
–
Logic
0.5 Ω
25 pF 21 V
PARK
3
+
–
Oscillator
VS
25 pF 21 V
OUT
+
–
25 pF
Upper
switching
point
21 V
21 V
4
5
OSC
PAUS
13287
Figure 2. Block diagram
Basic Circuit
Power Supply
For reasons of interference protection and surge immunity, a RC circuitry has to be provided to limit the current,
and to supply the integrated circuit in the case of supply
voltage drops.
Suggested values: R1 = 180 C1 = 47 F,
(see figure 2)
The supply (Pin 6) is clamped with a 21-V Zener diode.
The operation voltage ranges between VBatt = 9 V to 16 V.
The capacitor, C1, can be dimensioned smaller (typically:
10 F) if a diode is used in the supply against polarity reversal. In this case of negative interference pulses, there,
is only a small discharge current of the circuit.
2 (12)
Oscillator
All timing sequences in the circuit are derived from an RC
oscillator which is charged by an external resistor, R9, and
discharged by an integrated 2-k resistor. The basic
frequency, f0, is determined by the capacitor, C2, and an
integrated voltage divider. The basic frequency is
adjusted to 320 Hz ( 3.125 ms ) by C2 = 100 nF and
R9 = 220 k.
The tolerances and the temperature coefficients of the external components determine the precision of the
oscillator frequency. A 1% metallic-film resistor and a
5% capacitor are recommended..
The debouncing times of the inputs, the turn-on time of
the relay (t5), the pre-wash delay (t1), the dry wiping time
(t2) and the debouncing time (t7, short circuit detection)
depend on the oscillator frequency (f0) as follows:
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U842B
VBatt
R1
180 Ω
R9
220 kΩ
8
C1
6
7
5
C2
47 µF
100 nF
R7
1.5 kΩ
U842B
1
2
3
R6
10 kΩ
R4
10 kΩ
Switch
INT
4
R5
47 kΩ
R11
360 Ω
VR1
1 kΩ
Button
WASH
13288
PARK
Figure 3. Basic cicuitry
Variable Debouncing Times
Debouncing is basically done by counting oscillator
clocks starting with the occurance of any input signal.
Caused by the asynchronism of input signal and IC-clock,
the debouncing time may vary in a certain range.
Figure 4 shows the short circuit debouncing as an
example:
During the relay activation, a comparator monitors the
output current at each positive edge of the clock to load
a 3-stage shift register in the case of a detected short circuit condition i.e., I > 500 mA. With the third edge, the
output stage is disabled. Dependent on the short circuit
occurence the delay time may range from 2 to 3 clock
cycles.
The timing can be adjusted by variation of the external
frequency-determining components ( R/C).
The potentiometer at Pin 4 determines the interval pause,
which can be varied by adjusting the upper charging
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
threshold of the oscillator. For all other time periods, an
internal voltage divider determines the upper charging
threshold of the oscillator (see figure 2).
Timing
Fixed:
Relay activation time
Dry wiping
Interval pause
Switch-on delay INT
Variable:
Debouncing time INT
Debouncing time WASH
1. pre-wash delay
2. reverse debouncing
Debouncing time PARK
Debouncing time SC
t5
t2
=
=
t6 =
t4D =
160 1/f0
896 1/f0
or 3 cycles
872 1/f0
8 1/f0
t4
24 to 32 1/f0
=
t1 =
t1.R =
t8 =
t7 =
112 to 128 1/f0
16 to 32 1/f0
6 to 8 1/f0
2 to 3 1/f0
3 (12)
U842B
Wipe/ Wash Operation
CL
0
1
3
2
ON
OUT
OFF
SC
IC>500mA
ÉÉÉÉÉ
ÉÉÉÉÉ
t 7
13301
Figure 4. The debouncing of the short circuit detection
Relay Output
The relay output is an open collector Darlington transistor
with an integrated 28-V Z-diode for limitation of the
inductive cut-out pulse of the relay coil. The maximum
static collector current must not exceed 300 mA and the
saturation voltage is typically 1.2 V for a current of
200 mA.
The collector current is permanently measured by an integrated shunt, and in the case of a short circuit
(IC > 500 mA) to Vbat, the relay output is stored disabled.
The short circuit buffer is reset by opening the INT and
WASH switches. As long as the short condition exists a
further activation of these switches will disable the output
stage again. Otherwise the normal wipe operation is performed.
The relay output is protected against short interference
peaks by an integrated 28-V Z-diode. During load-dump,
the relay output is switched to conductive condition if the
battery voltage exceeds approximately 30 V. The output
transistor is dimensioned so that it can absorb the current
produced by the load-dump pulse.
Power-on Reset
When the operating voltage is switched on, an internal
power-on reset pulse ( POR) is generated which sets the
logic of the circuits to defined initial condition. The relay
output is disabled, the short circuit buffer is reset.
Functional Description
Interval Function
In order to avoid short-term disabling caused by current
pulses of transients, a 10 ms debounce period (t7) is provided (see figure 4).
The circuit is brought to its interval mode with the input
switch INT operated for more than 625 ms
( t > t4 + t4D +t5 ).
During a load-dump pulse, the output transistor is
switched to conductive condition to prevent destruction.
The short circuit detection is suppressed during the loaddump.
This time includes:
– 100 ms debounce time t4
– 25 ms INT switch-on delay t4D
– 500 ms relay activation time t5
Interference Voltages and Load-dump
The IC supply is protected by R1, C1 and an integrated
21-V Z-diode. The inputs are protected by a series
resistor, integrated 21-V Z-diode and RF capacitor.
If the INT input is toggled for 125 ms < t < 625 ms, the
relay activation time t5 lapses anyway and the wiper
performs one turn. To enable correct interval functioning,
the INT input has to be activated afterwards as described.
The RC-configuration stabilizes the supply of the circuit
during negative interference voltages to avoid power-on
reset ( POR).
The beginning of the interval pause depends on the
application with or without wiper motor park switch ( see
figures 5, 6, 7 and 8 ).
4 (12)
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U842B
Interval Function with Park-Switch Feedback
During the relay activation time the wiper motor leaves
its park position and the park switch changes its potential
from VBatt to GND. After the relay is switched off the
wiper motor is supplied via the park switch until the park
position is reached again. The park switch changes its
potential from GND back to VBatt. With the park switch
connected to the park input (Pin 3) the interval pause t6
starts after the 25 ms debounce time (t7) is over (see
figures 5 and 6).
Wiper motor
Wash
pump
R2
1.5 kΩ
M
R3
1.5 kΩ
Park
R1
180 Ω
M
Run
R4
INT
10 kΩ
R5
WASH
47 kΩ
R6
1
8
2
7
U842B
R9
3
SETINT
VR1
10 kΩ
R11
1 kΩ
360 Ω
6
220 kΩ
5
4
R7
C1
C2
47 µF
100 nF
1.5 kΩ
13289
Figure 5. Application circuit with park switch feedback
INT
VBatt
t4
0V
t 4D
OUT
VBatt
t5
t6
0V
PARK
t 4D
VBatt
t8
0V
ON
MOTOR
OFF
13302
Figure 6. Intermittent circuit function with park position feedback
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
5 (12)
U842B
Interval Function without Park-Switch Feedback
If the park input of the circuit is not connected with the
park switch of the wiper motor (see figure 7), the interval
pause starts directly after the turn-on time of the relay is
over (see figure 8).
Wiper motor
Wash
pump
R2
1.5 kΩ
M
R3
1.5 kΩ
Park
R1
180 Ω
M
Run
R4
INT
10 kΩ
R5
WASH
47 kΩ
1
8
2
7
U842B
3
SETINT
VR1
R9
6
220 kΩ
R11
5
4
5.1 kΩ
1 kΩ
R7
C1
C2
47 µF
100 nF
20 kΩ
13290
Figure 7. Application circuit without park position feedback
V
INT
Batt
t4
0V
t 4D
V
OUT
Batt
t5
t6
0V
V
PARK
t 4D
Batt
0V
ON
MOTOR
OFF
13303
Figure 8. Intermittent circuit function without park position feedback
6 (12)
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U842B
WASH
V
Batt
<t 1
0V
t 1R
V
Batt
OUT
t1
t7
0V
wipe1
PARK
wipe2
wipe3
V
Batt
0V
ON
MOTOR
OFF
13304
Figure 9. Wash operation with park switch signal
After operating the WASH switch, the relay is activated
after the debounce time, t1. As long as the switch is
pushed, water is sprayed on the windscreen by the wash
pump. When it is released, the dry wiping starts after 100
ms reverse debouncing (t1R).
figure 9). During the third cycle, the wiper motor is supplied via the park switch because the relay driver is
switched off after the second cycle.
Wipe/ Wash Mode with Park Position Feedback
If U842B is used without the wiper motor’s park switch,
Pin 3 stays at high potential via its integrated pull-up
resistor. Therefore, the driver stage switches off after the
fixed dry wiping time t2.
If the park input of the circuit is connected to the park
switch, the dry wiping lasts three full wipe cycles (see
V
Batt
WASH
Wipe/ Wash Mode without Park Position Feedback
<t 1
0V
OUT
t
1R
V
Batt
t1
t2
0V
PARK
V
Batt
0V
ON
MOTOR
OFF
13305
Figure 10. Wash operation without park signal report
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
7 (12)
U842B
Wipe/ Wash Mode Priority
The wipe/wash mode has priority over the interval mode
– therefore the interval function is interrupted as soon as
the WASH switch is operated longer than the debounce
time t1. With or without park switch feedback, after relay
activation time is over (no park switch feedback), or after
the third wipe (park switch feedback), the interval mode
is continued with an interval pause t6 (see figures 11
and 12).
V
Batt
WASH
0V
INT
V
Batt
0V
OUT
V
Batt
t6
t5
0V
t 4D
PARK
V
Batt
0V
MOTOR
ON
OFF
13306
Figure 11. Wipe/ wash priority with park position feedback
V
Batt
WASH
0V
INT
V
Batt
0V
OUT
V
Batt
t5
t2
t6
0V
t 4D
PARK
V
Batt
0V
ON
MOTOR
OFF
13307
Figure 12. Wash/ wipe priority without park position feedback
8 (12)
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U842B
Absolute Maximum Ratings
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Thermal Resistance
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
Parameters
t = 60 s
t = 600 s
Ambient temperature range
Supply voltage
Storage temperature range
Maximum junction temperature
Parameters
Thermal resistance
DIP8
SO8
Symbol
VBatt
VBatt
Tamb
Value
24
18
–30 to +100
Unit
V
V
Tstg
–40 to +100
Tj
150
°C
°C
°C
Symbol
Rthja
Rthja
Maximum
110
160
Unit
K/W
K/W
Electrical Characteristics
VBatt = 13.5 V, Tamb = 25°C, reference point ground (Pin 7), circuit with recommended external circuitry
(see figure 2)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
m
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Parameters
Supply
Supply-voltage range
Supply currrent
Undervoltage threshold POR
Series resistance
Filter capacitance
Internal Z-diode
INT input
Protective diode
Internal capacitance
Threshold
Pull-up resistance
External series resistance
PARK input
Protective diode
Internal capacitance
Threshold
Pull-up resistance
External series resistance
WASH input
Protective diode
Internal capacitance
Threshold
Pull-up resistance
External series resistance
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
Test Conditions / Pin
Symbol
Min
VS
I6
V6
R1
C1
V6
9
Typ
3.5
180
47
21
Max
Unit
16
3
V
mA
V
F
V
Pin 1
V1
C1
V1
R1
RS
21
25
0.5 V6
20
10
V3
C3
V3
R3
RS
21
25
0.5 V6
20
10
V2
C2
V2
R2
RS
21
25
0.5 V6
100
47
V
pF
k
k
Pin 3
V
pF
k
k
Pin 2
V
pF
k
k
9 (12)
U842B
Parameters
Test Conditions / Pin
PAUS input
Pin 4
Protective diode
Internal capacitance
Relay output
Pin 8
Saturation voltage 100 mA
Saturation voltage 200 mA
Relay coil resistance
Output current
Normal operation
Output pulse current
Load-dump
Internal Z-diode
Short circuit threshold
Oscillator input
Pin 5
Oscillator capacitor
Pin 5
Oscillator resistor
Pins 5 and 6
Basic frequency
Lower switching point
Upper switching point
External 1 kW pot.
Internal discharge resistance
Protective diode
VF = forward voltage
Times
External circuitry – see oscillator input (figure 3)
Debouncing times:
INT input
WASH input
Pre-wash delay
Reverse delay
Park
Short circuit
Switch-on delay (interval mode)
Relay activation time
Interval pause
Dry wiping
Without park switch feedback
With park switch feedback
Symbol
Min
Typ
Max
Unit
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
W
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
10 (12)
V4
C4
21
25
V
pF
V8
V8
RRel
I8
1.0
1.2
V
V
60
I8
V8
I8
C2
R8
f0
V5
V5
R5
V5
300
mA
1.5
A
28
V
mA
100
220
320
0.07 V6
nF
k
Hz
500
0.2 V6
0.5 V6
2
VS + VF
k
V
t4
50
125
ms
t1
t1,R
t8
t7
t4D
t5
t6
260
50
14
5
18
400
2.25
540
125
37
12
31
625
13.75
ms
ms
ms
ms
ms
ms
s
t2
2.1
3.5
s
wipes
3
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
U842B
Package Information
Package DIP8
Dimensions in mm
7.77
7.47
9.8
9.5
1.64
1.44
4.8 max
6.4 max
0.5 min
0.58
0.48
3.3
0.36 max
9.8
8.2
2.54
7.62
8
5
technical drawings
according to DIN
specifications
13021
1
4
Package SO8
Dimensions in mm
5.2
4.8
5.00
4.85
3.7
1.4
0.25
0.10
0.4
1.27
6.15
5.85
3.81
8
0.2
3.8
5
technical drawings
according to DIN
specifications
13034
8
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97
5
11 (12)
U842B
Ozone Depleting Substances Policy Statement
It is the policy of TEMIC TELEFUNKEN microelectronic GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems
with respect to their impact on the health and safety of our employees and the public, as well as their impact on
the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs).
The Montreal Protocol ( 1987) and its London Amendments ( 1990) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
TEMIC TELEFUNKEN microelectronic GmbH semiconductor division has been able to use its policy of
continuous improvements to eliminate the use of ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
TEMIC can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain
such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer
application by the customer. Should the buyer use TEMIC products for any unintended or unauthorized
application, the buyer shall indemnify TEMIC against all claims, costs, damages, and expenses, arising out of,
directly or indirectly, any claim of personal damage, injury or death associated with such unintended or
unauthorized use.
TEMIC TELEFUNKEN microelectronic GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
12 (12)
TELEFUNKEN Semiconductors
Rev. A2, 03-Feb-97