TI SN74AHCT139D

SN54AHCT139, SN74AHCT139
DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS
SCLS267M – DECEMBER 1995 – REVISED MARCH 2003
D
D
D
SN54AHCT139 . . . J OR W PACKAGE
SN74AHCT139 . . . D, DB, DGV, N, NS, OR PW PACKAGE
(TOP VIEW)
Inputs Are TTL-Voltage Compatible
Designed Specifically for High-Speed
Memory Decoders and Data-Transmission
Systems
Incorporate Two Enable Inputs to Simplify
Cascading and/or Data Reception
Latch-Up Performance Exceeds 250 mA Per
JESD 17
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
1G
1A
1B
1Y0
1Y1
1Y2
1Y3
GND
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
VCC
2G
2A
2B
2Y0
2Y1
2Y2
2Y3
SN54AHCT139 . . . FK PACKAGE
(TOP VIEW)
1A
1G
NC
VCC
description/ordering information
The ’AHCT139 devices are dual 2-line to 4-line
decoders/demultiplexers designed for 4.5-V to
5.5-V VCC operation. These devices are
designed to be used in high-performance
memory-decoding or data-routing applications
requiring very short propagation delay times. In
high-performance memory systems, these
decoders can be used to minimize the effects of
system decoding. When used with high-speed
memories utilizing a fast enable circuit, the delay
times of these decoders and the enable time of the
memory usually are less than the typical access
time of the memory. This means that the effective
system delay introduced by the decoders is
negligible.
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
2A
2B
NC
2Y0
2Y1
1Y3
GND
NC
2Y3
2Y2
1B
1Y0
NC
1Y1
1Y2
2G
D
D
NC – No internal connection
ORDERING INFORMATION
PDIP – N
SN74AHCT139N
Tube
SN74AHCT139D
Tape and reel
SN74AHCT139DR
SOP – NS
Tape and reel
SN74AHCT139NSR
AHCT139
SSOP – DB
Tape and reel
SN74AHCT139DBR
HB139
Tube
SN74AHCT139PW
Tape and reel
SN74AHCT139PWR
TVSOP – DGV
Tape and reel
SN74AHCT139DGVR
HB139
CDIP – J
Tube
SNJ54AHCT139J
SNJ54AHCT139J
CFP – W
Tube
SNJ54AHCT139W
SNJ54AHCT139W
LCCC – FK
Tube
SNJ54AHCT13FK
SNJ54AHCT139FK
TSSOP – PW
–55°C to 125°C
TOP-SIDE
MARKING
Tube
SOIC – D
–40°C to 85°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SN74AHCT139N
AHCT139
HB139
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
UNLESS OTHERWISE NOTED this document contains PRODUCTION
DATA information current as of publication date. Products conform to
specifications per the terms of Texas Instruments standard warranty.
Production processing does not necessarily include testing of all
parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54AHCT139, SN74AHCT139
DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS
SCLS267M – DECEMBER 1995 – REVISED MARCH 2003
description/ordering information (continued)
The active-low enable (G) input can be used as a data line in demultiplexing applications. These
decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its
driving circuit.
FUNCTION TABLE
(each decoder/demultiplexer)
INPUTS
OUTPUTS
SELECT
G
B
A
Y0
Y1
Y2
Y3
H
X
X
H
H
H
H
L
L
L
L
H
H
H
L
L
H
H
L
H
H
L
H
L
H
H
L
H
L
H
H
H
H
H
L
logic diagram (positive logic)
4
1Y0
1
1G
5
6
1A
Select
Inputs
1Y1
1Y2
2
7
3
1B
1Y3
Data
Outputs
12
2Y0
2G
15
11
2Y1
10
2A
Select
Inputs
2B
9
13
Pin numbers shown are for the D, DB, DGV, J, N, NS, PW, and W packages.
2
2Y2
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
2Y3
SN54AHCT139, SN74AHCT139
DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS
SCLS267M – DECEMBER 1995 – REVISED MARCH 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±25 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±75 mA
Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82°C/W
DGV package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
SN54AHCT139
SN74AHCT139
MIN
MAX
MIN
MAX
4.5
5.5
4.5
5.5
UNIT
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
0.8
V
Input voltage
0
5.5
0
5.5
V
VO
IOH
Output voltage
0
0
VCC
–8
V
High-level output current
VCC
–8
IOL
∆t/∆v
Low-level output current
8
8
mA
20
20
ns/V
High-level input voltage
2
2
0.8
Input transition rise or fall rate
V
V
mA
TA
Operating free-air temperature
–55
125
–40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54AHCT139, SN74AHCT139
DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS
SCLS267M – DECEMBER 1995 – REVISED MARCH 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
VOH
IOH = –50 mA
IOH = –8 mA
45V
4.5
VOL
IOL = 50 mA
IOL = 8 mA
45V
4.5
II
ICC
VI = 5.5 V or GND
VI = VCC or GND,
IO = 0
5.5 V
∆ICC†
One input at 3.4 V,
Other inputs at VCC or GND
5.5 V
MIN
4.4
TA = 25°C
TYP
MAX
4.5
3.94
0 V to 5.5 V
SN54AHCT139
MIN
MAX
SN74AHCT139
MIN
4.4
4.4
3.8
3.8
MAX
UNIT
V
0.1
0.1
0.1
0.36
0.44
0.44
±0.1
±1*
±1
mA
2
20
20
mA
1.35
1.5
1.5
mA
10
pF
Ci
VI = VCC or GND
5V
2
10
* On products compliant to MIL-PRF-38535, this parameter is not production tested at VCC = 0 V.
† This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or VCC.
V
switching characteristics over recommended operating free-air temperature range,
VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
LOAD
CAPACITANCE
tPLH
tPHL
A or B
Y
CL = 15 pF
tPLH
tPHL
G
Y
CL = 15 pF
tPLH
tPHL
A or B
Y
CL = 50 pF
tPLH
tPHL
G
Y
CL = 50 pF
MIN
TA = 25°C
TYP
MAX
SN54AHCT139
SN74AHCT139
MIN
MAX
MIN
MAX
5**
7.2**
1**
8.5**
1
8.5
5**
7.2**
1**
8.5**
1
8.5
4.4**
6.3**
1**
7.5**
1
7.5
4.4**
6.3**
1**
7.5**
1
7.5
6.5
9.2
1
10.5
1
10.5
6.5
9.2
1
10.5
1
10.5
5.9
8.3
1
9.5
1
9.5
5.9
8.3
1
9.5
1
9.5
TEST CONDITIONS
TYP
UNIT
ns
ns
ns
ns
** On products compliant to MIL-PRF-38535, this parameter is not production tested.
operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
Cpd
Power dissipation capacitance
No load,
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
f = 1 MHz
13
UNIT
pF
SN54AHCT139, SN74AHCT139
DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS
SCLS267M – DECEMBER 1995 – REVISED MARCH 2003
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
Test
Point
RL = 1 kΩ
From Output
Under Test
VCC
Open
S1
TEST
GND
CL
(see Note A)
CL
(see Note A)
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open Drain
Open
VCC
GND
VCC
LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
3V
1.5 V
Timing Input
0V
tw
3V
1.5 V
Input
1.5 V
th
tsu
3V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
3V
1.5 V
Input
1.5 V
0V
tPLH
In-Phase
Output
tPHL
50% VCC
tPHL
Out-of-Phase
Output
VOH
50% VCC
VOL
Output
Waveform 1
S1 at VCC
(see Note B)
VOH
50% VCC
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
1.5 V
0V
tPZL
tPLZ
≈VCC
50% VCC
tPZH
tPLH
50% VCC
3V
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
50% VCC
VOH – 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns.
D. The outputs are measured one at a time with one input transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
PACKAGE OPTION ADDENDUM
www.ti.com
9-Aug-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74AHCT139D
ACTIVE
SOIC
D
16
SN74AHCT139DBLE
OBSOLETE
SSOP
DB
16
SN74AHCT139DBR
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139DBRE4
ACTIVE
SSOP
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139DE4
ACTIVE
SOIC
D
16
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139DGVR
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139DGVRE4
ACTIVE
TVSOP
DGV
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139DR
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139DRE4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139N
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
SN74AHCT139NE4
ACTIVE
PDIP
N
16
25
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
SN74AHCT139NSR
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139NSRE4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139PW
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139PWE4
ACTIVE
TSSOP
PW
16
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139PWLE
OBSOLETE
TSSOP
PW
16
SN74AHCT139PWR
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74AHCT139PWRE4
ACTIVE
TSSOP
PW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
40
Green (RoHS &
no Sb/Br)
TBD
40
TBD
Lead/Ball Finish
CU NIPDAU
Call TI
Call TI
MSL Peak Temp (3)
Level-1-260C-UNLIM
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
9-Aug-2005
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000
DGV (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
24 PINS SHOWN
0,40
0,23
0,13
24
13
0,07 M
0,16 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
0°–8°
1
0,75
0,50
12
A
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,08
14
16
20
24
38
48
56
A MAX
3,70
3,70
5,10
5,10
7,90
9,80
11,40
A MIN
3,50
3,50
4,90
4,90
7,70
9,60
11,20
DIM
4073251/E 08/00
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
Falls within JEDEC: 24/48 Pins – MO-153
14/16/20/56 Pins – MO-194
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated