FREESCALE MKL25Z128VFM4

Freescale Semiconductor
Data Sheet: Technical Data
Document Number: KL25P80M48SF0
Rev. 3, 9/19/2012
KL25P80M48SF0
KL25 Sub-Family Data Sheet
Supports the following:
MKL25Z32VFM4, MKL25Z64VFM4,
MKL25Z128VFM4, MKL25Z32VFT4,
MKL25Z64VFT4, MKL25Z128VFT4,
MKL25Z32VLH4, MKL25Z64VLH4,
MKL25Z128VLH4, MKL25Z32VLK4,
MKL25Z64VLK4, and MKL25Z128VLK4
Features
• Operating Characteristics
– Voltage range: 1.71 to 3.6 V
– Flash write voltage range: 1.71 to 3.6 V
– Temperature range (ambient): -40 to 105°C
• Performance
– Up to 48 MHz ARM® Cortex-M0+ core
• Memories and memory interfaces
– Up to 128 KB program flash memory
– Up to 16 KB RAM
• Clocks
– 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal
oscillator
– Multi-purpose clock source
• System peripherals
– Nine low-power modes to provide power
optimization based on application requirements
– 4-channel DMA controller, supporting up to 63
request sources
– COP Software watchdog
– Low-leakage wakeup unit
– SWD interface and Micro Trace buffer
– Bit Manipulation Engine (BME)
• Security and integrity modules
– 80-bit unique identification (ID) number per chip
• Human-machine interface
– Low-power hardware touch sensor interface (TSI)
– General-purpose input/output
• Analog modules
– 16-bit SAR ADC
– 12-bit DAC
– Analog comparator (CMP) containing a 6-bit DAC
and programmable reference input
• Timers
– Six channel Timer/PWM (TPM)
– Two 2-channel Timer/PWM (TPM)
– Periodic interrupt timers
– 16-bit low-power timer (LPTMR)
– Real-time clock
• Communication interfaces
– USB full-/low-speed On-the-Go controller with onchip transceiver and 5 V to 3.3 V regulator
– Two 8-bit SPI modules
– Two I2C modules
– One low power UART module
– Two UART modules
Freescale reserves the right to change the detail specifications as may be
required to permit improvements in the design of its products.
© 2012 Freescale Semiconductor, Inc.
Table of Contents
1 Ordering parts...........................................................................3
5.3.1
Device clock specifications...................................21
1.1 Determining valid orderable parts......................................3
5.3.2
General Switching Specifications..........................22
2 Part identification......................................................................3
5.4 Thermal specifications.......................................................22
2.1 Description.........................................................................3
5.4.1
Thermal operating requirements...........................22
2.2 Format...............................................................................3
5.4.2
Thermal attributes.................................................22
2.3 Fields.................................................................................3
6 Peripheral operating requirements and behaviors....................23
2.4 Example............................................................................4
6.1 Core modules....................................................................23
3 Terminology and guidelines......................................................4
6.1.1
SWD Electricals ...................................................23
3.1 Definition: Operating requirement......................................4
6.2 System modules................................................................25
3.2 Definition: Operating behavior...........................................4
6.3 Clock modules...................................................................25
3.3 Definition: Attribute............................................................5
6.3.1
MCG specifications...............................................25
3.4 Definition: Rating...............................................................5
6.3.2
Oscillator electrical specifications.........................27
3.5 Result of exceeding a rating..............................................6
3.6 Relationship between ratings and operating
6.4 Memories and memory interfaces.....................................29
6.4.1
Flash electrical specifications................................29
requirements......................................................................6
6.5 Security and integrity modules..........................................30
3.7 Guidelines for ratings and operating requirements............7
6.6 Analog...............................................................................31
3.8 Definition: Typical value.....................................................7
6.6.1
ADC electrical specifications.................................31
3.9 Typical Value Conditions...................................................8
6.6.2
CMP and 6-bit DAC electrical specifications.........35
4 Ratings......................................................................................8
6.6.3
12-bit DAC electrical characteristics.....................36
4.1 Thermal handling ratings...................................................8
6.7 Timers................................................................................39
4.2 Moisture handling ratings..................................................9
6.8 Communication interfaces.................................................39
4.3 ESD handling ratings.........................................................9
6.8.1
USB electrical specifications.................................39
4.4 Voltage and current operating ratings...............................9
6.8.2
USB VREG electrical specifications......................39
5 General.....................................................................................9
6.8.3
SPI switching specifications..................................40
5.1 AC electrical characteristics..............................................10
6.8.4
I2C.........................................................................44
5.2 Nonswitching electrical specifications...............................10
6.8.5
UART....................................................................44
5.2.1
Voltage and current operating requirements.........10
6.9 Human-machine interfaces (HMI)......................................45
5.2.2
LVD and POR operating requirements.................11
5.2.3
Voltage and current operating behaviors..............12
7 Dimensions...............................................................................45
5.2.4
Power mode transition operating behaviors..........13
7.1 Obtaining package dimensions.........................................45
5.2.5
Power consumption operating behaviors..............13
8 Pinout........................................................................................45
5.2.6
EMC radiated emissions operating behaviors.......20
8.1 KL25 Signal Multiplexing and Pin Assignments................45
5.2.7
Designing with radiated emissions in mind...........21
8.2 KL25 Pinouts.....................................................................48
5.2.8
Capacitance attributes..........................................21
9 Revision History........................................................................52
6.9.1
TSI electrical specifications...................................45
5.3 Switching specifications.....................................................21
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
2
Freescale Semiconductor, Inc.
Ordering parts
1 Ordering parts
1.1 Determining valid orderable parts
Valid orderable part numbers are provided on the web. To determine the orderable part
numbers for this device, go to www.freescale.com and perform a part number search for
the following device numbers: PKL25 and MKL25
2 Part identification
2.1 Description
Part numbers for the chip have fields that identify the specific part. You can use the
values of these fields to determine the specific part you have received.
2.2 Format
Part numbers for this device have the following format:
Q KL## A FFF R T PP CC N
2.3 Fields
This table lists the possible values for each field in the part number (not all combinations
are valid):
Field
Description
Values
Q
Qualification status
• M = Fully qualified, general market flow
• P = Prequalification
KL##
Kinetis family
• KL25
A
Key attribute
• Z = Cortex-M0+
FFF
Program flash memory size
•
•
•
•
32 = 32 KB
64 = 64 KB
128 = 128 KB
256 = 256 KB
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
3
Terminology and guidelines
Field
Description
Values
R
Silicon revision
• (Blank) = Main
• A = Revision after main
T
Temperature range (°C)
• V = –40 to 105
PP
Package identifier
•
•
•
•
CC
Maximum CPU frequency (MHz)
• 4 = 48 MHz
N
Packaging type
• R = Tape and reel
• (Blank) = Trays
FM = 32 QFN (5 mm x 5 mm)
FT = 48 QFN (7 mm x 7 mm)
LH = 64 LQFP (10 mm x 10 mm)
LK = 80 LQFP (12 mm x 12 mm)
2.4 Example
This is an example part number:
MKL25Z64VLK4
3 Terminology and guidelines
3.1 Definition: Operating requirement
An operating requirement is a specified value or range of values for a technical
characteristic that you must guarantee during operation to avoid incorrect operation and
possibly decreasing the useful life of the chip.
3.1.1 Example
This is an example of an operating requirement, which you must meet for the
accompanying operating behaviors to be guaranteed:
Symbol
VDD
Description
1.0 V core supply
voltage
Min.
0.9
Max.
Unit
1.1
V
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
4
Freescale Semiconductor, Inc.
Terminology and guidelines
3.2 Definition: Operating behavior
An operating behavior is a specified value or range of values for a technical
characteristic that are guaranteed during operation if you meet the operating requirements
and any other specified conditions.
3.2.1 Example
This is an example of an operating behavior, which is guaranteed if you meet the
accompanying operating requirements:
Symbol
IWP
Description
Min.
Digital I/O weak pullup/ 10
pulldown current
Max.
130
Unit
µA
3.3 Definition: Attribute
An attribute is a specified value or range of values for a technical characteristic that are
guaranteed, regardless of whether you meet the operating requirements.
3.3.1 Example
This is an example of an attribute:
Symbol
CIN_D
Description
Input capacitance:
digital pins
Min.
—
Max.
7
Unit
pF
3.4 Definition: Rating
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,
may cause permanent chip failure:
• Operating ratings apply during operation of the chip.
• Handling ratings apply when the chip is not powered.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
5
Terminology and guidelines
3.4.1 Example
This is an example of an operating rating:
Symbol
VDD
Description
Min.
1.0 V core supply
voltage
Max.
–0.3
Unit
1.2
V
3.5 Result of exceeding a rating
40
Failures in time (ppm)
30
The likelihood of permanent chip failure increases rapidly as
soon as a characteristic begins to exceed one of its operating ratings.
20
10
0
Operating rating
Measured characteristic
3.6 Relationship between ratings and operating requirements
ra
pe
tin
gr
g
tin
(
in.
t (m
)
n.
mi
a
gr
tin
ra
pe
)
O
O
t (m
e
ir
qu
e
n
me
gr
tin
O
ra
pe
ax
.)
e
ir
qu
e
n
me
a
gr
tin
ra
pe
g
tin
ax
(m
.)
O
Fatal range
Degraded operating range
Normal operating range
Degraded operating range
Fatal range
Expected permanent failure
- No permanent failure
- Possible decreased life
- Possible incorrect operation
- No permanent failure
- Correct operation
- No permanent failure
- Possible decreased life
- Possible incorrect operation
Expected permanent failure
–∞
∞
Operating (power on)
n
Ha
ng
dli
ng
ati
)
in.
(m
r
nd
Ha
g
lin
ing
rat
ax
(m
.)
Fatal range
Handling range
Fatal range
Expected permanent failure
No permanent failure
Expected permanent failure
–∞
∞
Handling (power off)
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
6
Freescale Semiconductor, Inc.
Terminology and guidelines
3.7 Guidelines for ratings and operating requirements
Follow these guidelines for ratings and operating requirements:
• Never exceed any of the chip’s ratings.
• During normal operation, don’t exceed any of the chip’s operating requirements.
• If you must exceed an operating requirement at times other than during normal
operation (for example, during power sequencing), limit the duration as much as
possible.
3.8 Definition: Typical value
A typical value is a specified value for a technical characteristic that:
• Lies within the range of values specified by the operating behavior
• Given the typical manufacturing process, is representative of that characteristic
during operation when you meet the typical-value conditions or other specified
conditions
Typical values are provided as design guidelines and are neither tested nor guaranteed.
3.8.1 Example 1
This is an example of an operating behavior that includes a typical value:
Symbol
IWP
Description
Digital I/O weak
pullup/pulldown
current
Min.
10
Typ.
70
Max.
130
Unit
µA
3.8.2 Example 2
This is an example of a chart that shows typical values for various voltage and
temperature conditions:
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
7
Ratings
5000
4500
4000
TJ
IDD_STOP (μA)
3500
150 °C
3000
105 °C
2500
25 °C
2000
–40 °C
1500
1000
500
0
0.90
0.95
1.00
1.05
1.10
VDD (V)
3.9 Typical Value Conditions
Typical values assume you meet the following conditions (or other conditions as
specified):
Symbol
Description
Value
Unit
TA
Ambient temperature
25
°C
VDD
3.3 V supply voltage
3.3
V
4 Ratings
4.1 Thermal handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
TSTG
Storage temperature
–55
150
°C
1
TSDR
Solder temperature, lead-free
—
260
°C
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
8
Freescale Semiconductor, Inc.
General
4.2 Moisture handling ratings
Symbol
MSL
Description
Moisture sensitivity level
Min.
Max.
Unit
Notes
—
3
—
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic
Solid State Surface Mount Devices.
4.3 ESD handling ratings
Symbol
Description
Min.
Max.
Unit
Notes
VHBM
Electrostatic discharge voltage, human body model
-2000
+2000
V
1
VCDM
Electrostatic discharge voltage, charged-device model
-500
+500
V
2
Latch-up current at ambient temperature of 105°C
-100
+100
mA
ILAT
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body
Model (HBM).
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
4.4 Voltage and current operating ratings
Symbol
Description
Min.
Max.
Unit
VDD
Digital supply voltage
–0.3
3.8
V
IDD
Digital supply current
—
120
mA
–0.3
3.6
V
–0.3
VDD + 0.3
V
–25
25
mA
VDIO
VAIO
ID
Digital pin input voltage (except RESET)
Analog
pins1and
RESET pin input voltage
Instantaneous maximum current single pin limit (applies to all
port pins)
VDDA
Analog supply voltage
VDD – 0.3
VDD + 0.3
V
VUSB_DP
USB_DP input voltage
–0.3
3.63
V
VUSB_DM
USB_DM input voltage
–0.3
3.63
V
VREGIN
USB regulator input
–0.3
6.0
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
5 General
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
9
General
5.1 AC electrical characteristics
Unless otherwise specified, propagation delays are measured from the 50% to the 50%
point, and rise and fall times are measured at the 20% and 80% points, as shown in the
following figure.
Figure 1. Input signal measurement reference
All digital I/O switching characteristics, unless otherwise specified, assumes:
1. output pins
• have CL=30pF loads,
• are slew rate disabled, and
• are normal drive strength
5.2 Nonswitching electrical specifications
5.2.1 Voltage and current operating requirements
Table 1. Voltage and current operating requirements
Symbol
Description
Min.
Max.
Unit
VDD
Supply voltage
1.71
3.6
V
VDDA
Analog supply voltage
1.71
3.6
V
VDD – VDDA VDD-to-VDDA differential voltage
–0.1
0.1
V
VSS – VSSA VSS-to-VSSA differential voltage
–0.1
0.1
V
• 2.7 V ≤ VDD ≤ 3.6 V
0.7 × VDD
—
V
• 1.7 V ≤ VDD ≤ 2.7 V
0.75 × VDD
—
V
• 2.7 V ≤ VDD ≤ 3.6 V
—
0.35 × VDD
V
• 1.7 V ≤ VDD ≤ 2.7 V
—
0.3 × VDD
V
VIH
VIL
Notes
Input high voltage
Input low voltage
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
10
Freescale Semiconductor, Inc.
General
Table 1. Voltage and current operating requirements (continued)
Symbol
Description
VHYS
Input hysteresis
IICDIO
Digital pin negative DC injection current — single pin
Min.
Max.
Unit
0.06 × VDD
—
V
-5
—
mA
1
• VIN < VSS-0.3V
IICAIO
Analog2 pin DC injection current — single pin
3
mA
• VIN < VSS-0.3V (Negative current injection)
• VIN > VDD+0.3V (Positive current injection)
IICcont
Contiguous pin DC injection current —regional limit,
includes sum of negative injection currents or sum of
positive injection currents of 16 contiguous pins
• Negative current injection
• Positive current injection
VRAM
Notes
VDD voltage required to retain RAM
-5
—
—
+5
-25
—
—
+25
1.2
—
mA
V
1. All digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If
VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor
is calculated as R=(VDIO_MIN-VIN)/|IIC|.
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.
5.2.2 LVD and POR operating requirements
Table 2. VDD supply LVD and POR operating requirements
Symbol
Description
Min.
Typ.
Max.
Unit
VPOR
Falling VDD POR detect voltage
0.8
1.1
1.5
V
VLVDH
Falling low-voltage detect threshold — high
range (LVDV=01)
2.48
2.56
2.64
V
Low-voltage warning thresholds — high range
1
VLVW1H
• Level 1 falling (LVWV=00)
2.62
2.70
2.78
V
VLVW2H
• Level 2 falling (LVWV=01)
2.72
2.80
2.88
V
VLVW3H
• Level 3 falling (LVWV=10)
2.82
2.90
2.98
V
VLVW4H
• Level 4 falling (LVWV=11)
2.92
3.00
3.08
V
—
±60
—
mV
1.54
1.60
1.66
V
VHYSH
Low-voltage inhibit reset/recover hysteresis —
high range
VLVDL
Falling low-voltage detect threshold — low range
(LVDV=00)
Notes
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
11
General
Table 2. VDD supply LVD and POR operating requirements (continued)
Symbol
Description
Min.
Typ.
Max.
Unit
Low-voltage warning thresholds — low range
1
VLVW1L
• Level 1 falling (LVWV=00)
1.74
1.80
1.86
V
VLVW2L
• Level 2 falling (LVWV=01)
1.84
1.90
1.96
V
VLVW3L
• Level 3 falling (LVWV=10)
1.94
2.00
2.06
V
VLVW4L
• Level 4 falling (LVWV=11)
2.04
2.10
2.16
V
—
±40
—
mV
VHYSL
Low-voltage inhibit reset/recover hysteresis —
low range
Notes
VBG
Bandgap voltage reference
0.97
1.00
1.03
V
tLPO
Internal low power oscillator period — factory
trimmed
900
1000
1100
μs
1. Rising thresholds are falling threshold + hysteresis voltage
5.2.3 Voltage and current operating behaviors
Table 3. Voltage and current operating behaviors
Symbol
VOH
VOH
Description
Min.
Unit
Output high voltage — Normal drive pad
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -1.5 mA
VDD – 0.5
—
V
Output high voltage — High drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -18 mA
VDD – 0.5
—
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -6 mA
VDD – 0.5
—
V
—
100
mA
Output high current total for all ports
VOL
Output low voltage — Normal drive pad
Notes
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA
IOHT
VOL
Max.
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA
—
0.5
V
Output low voltage — High drive pad
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA
—
0.5
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA
—
0.5
V
Output low current total for all ports
—
100
mA
IIN
Input leakage current (per pin) for full temperature
range
—
1
μA
2
IIN
Input leakage current (per pin) at 25 °C
—
0.025
μA
2
IIN
Input leakage current (total all pins) for full temperature
range
—
65
μA
2
IOZ
Hi-Z (off-state) leakage current (per pin)
—
1
μA
IOLT
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
12
Freescale Semiconductor, Inc.
General
Table 3. Voltage and current operating behaviors (continued)
Symbol
Description
Min.
Max.
Unit
Notes
RPU
Internal pullup resistors
20
50
kΩ
3
RPD
Internal pulldown resistors
20
50
kΩ
4
1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.
2. Measured at VDD = 3.6 V
3. Measured at VDD supply voltage = VDD min and Vinput = VSS
4. Measured at VDD supply voltage = VDD min and Vinput = VDD
5.2.4 Power mode transition operating behaviors
All specifications except tPOR and VLLSx→RUN recovery times in the following table
assume this clock configuration:
• CPU and system clocks = 48 MHz
• Bus and flash clock = 24 MHz
• FEI clock mode
Table 4. Power mode transition operating behaviors
Symbol
tPOR
Description
After a POR event, amount of time from the point
VDD reaches 1.8 V to execution of the first
instruction across the operating temperature
range of the chip.
Min.
Typ.
Max.
Unit
—
—
300
μs
—
95
115
μs
—
93
115
μs
—
42
53
μs
—
4
4.6
μs
—
4
4.4
μs
—
4
4.4
μs
Notes
• VLLS0 → RUN
• VLLS1 → RUN
• VLLS3 → RUN
• LLS → RUN
• VLPS → RUN
• STOP → RUN
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
13
General
5.2.5 Power consumption operating behaviors
Table 5. Power consumption operating behaviors
Symbol
IDDA
Description
Analog supply current
IDD_RUNCO_ Run mode current in compute operation - 48
MHz core / 24 MHz flash/ bus disabled, LPTMR
CM
running using 4MHz internal reference clock,
CoreMark® benchmark code executing from
flash
Min.
Typ.
Max.
Unit
Notes
—
—
See note
mA
1
2
—
6.4
—
mA
• at 3.0 V
IDD_RUNCO Run mode current in compute operation - 48
MHz core / 24 MHz flash / bus clock disabled,
code of while(1) loop executing from flash
—
• at 3.0 V
IDD_RUN
4.1
5.2
mA
Run mode current - 48 MHz core / 24 MHz bus
and flash, all peripheral clocks disabled, code of
while(1) loop executing from flash
3
—
• at 3.0 V
IDD_RUN
3
5.1
6.3
mA
Run mode current - 48 MHz core / 24 MHz bus
and flash, all peripheral clocks enabled, code of
while(1) loop executing from flash
3, 4,
• at 3.0 V
• at 25 °C
• at 125 °C
IDD_WAIT
Wait mode current - core disabled / 48 MHz
system / 24 MHz bus / flash disabled (flash doze
enabled), all peripheral clocks disabled
• at 3.0 V
IDD_WAIT
Wait mode current - core disabled / 24 MHz
system / 24 MHz bus / flash disabled (flash doze
enabled), all peripheral clocks disabled
• at 3.0 V
IDD_PSTOP2 Stop mode current with partial stop 2 clocking
option - core and system disabled / 10.5 MHz
bus
• at 3.0 V
IDD_VLPRCO Very low power run mode current in compute
operation - 4 MHz core / 0.8 MHz flash / bus
clock disabled, code of while(1) loop executing
from flash
• at 3.0 V
IDD_VLPR
Very low power run mode current - 4 MHz core /
0.8 MHz bus and flash, all peripheral clocks
disabled, code of while(1) loop executing from
flash
• at 3.0 V
—
6.4
7.8
mA
—
6.8
8.3
mA
—
3.7
5.0
mA
—
2.9
4.2
mA
—
2.5
3.7
mA
—
188
570
μA
—
224
613
μA
3
3
3
5
5
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
14
Freescale Semiconductor, Inc.
General
Table 5. Power consumption operating behaviors (continued)
Symbol
Description
IDD_VLPR
Very low power run mode current - 4 MHz core /
0.8 MHz bus and flash, all peripheral clocks
enabled, code of while(1) loop executing from
flash
• at 3.0 V
IDD_VLPW
Very low power wait mode current - core
disabled / 4 MHz system / 0.8 MHz bus / flash
disabled (flash doze enabled), all peripheral
clocks disabled
• at 3.0 V
IDD_STOP
Stop mode current at 3.0 V
IDD_VLPS
IDD_LLS
IDD_VLLS3
IDD_VLLS1
Min.
Typ.
Max.
Unit
—
300
745
μA
—
135
496
μA
at 25 °C
—
345
490
at 50 °C
—
357
827
at 70 °C
—
392
869
at 85 °C
—
438
927
at 105 °C
—
551
1065
at 25 °C
—
4.4
16
at 50 °C
—
10
35
at 70 °C
—
20
50
at 85 °C
—
37
112
at 105 °C
—
81
201
at 25 °C
—
1.9
3.7
at 50 °C
—
3.6
39
at 70 °C
—
6.5
43
at 85 °C
—
13
49
at 105 °C
—
30
69
at 25 °C
—
1.4
3.2
at 50 °C
—
2.5
19
at 70 °C
—
5.1
21
at 85 °C
—
9.2
26
at 105 °C
—
21
38
at 25°C
—
0.7
1.4
at 50°C
—
1.3
13
at 70°C
—
2.3
14
at 85°C
—
5.1
17
at 105°C
—
13
25
Notes
5, 4
5
μA
Very-low-power stop mode current at 3.0 V
μA
Low leakage stop mode current at 3.0 V
μA
Very low-leakage stop mode 3 current at 3.0 V
μA
Very low-leakage stop mode 1 current at 3.0V
μA
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
15
General
Table 5. Power consumption operating behaviors (continued)
Symbol
IDD_VLLS0
Description
Very low-leakage stop mode 0 current
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V
at 25 °C
at 50 °C
at 70 °C
at 85 °C
Min.
Typ.
Max.
—
381
943
—
956
11760
—
2370
13260
—
4800
15700
—
12410
23480
Unit
Notes
nA
at 105 °C
IDD_VLLS0
Very low-leakage stop mode 0 current
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V
at 25 °C
at 50 °C
at 70 °C
at 85 °C
6
—
176
860
—
760
3577
—
2120
11660
—
4500
18450
—
12130
22441
nA
at 105 °C
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See
each module's specification for its supply current.
2. MCG configured for PEE mode. CoreMark benchmark compiled using Keil 4.54 with optimization level 3, optimized for
time.
3. MCG configured for FEI mode.
4. Incremental current consumption from peripheral activity is not included.
5. MCG configured for BLPI mode.
6. No brownout
Table 6. Low power mode peripheral adders — typical value
Symbol
Description
Temperature (°C)
Unit
-40
25
50
70
85
105
IIREFSTEN4MHz
4 MHz internal reference clock (IRC)
adder. Measured by entering STOP or
VLPS mode with 4 MHz IRC enabled.
56
56
56
56
56
56
µA
IIREFSTEN32KHz
32 kHz internal reference clock (IRC)
adder. Measured by entering STOP
mode with the 32 kHz IRC enabled.
52
52
52
52
52
52
µA
IEREFSTEN4MHz
External 4MHz crystal clock adder.
Measured by entering STOP or VLPS
mode with the crystal enabled.
206
228
237
245
251
258
uA
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
16
Freescale Semiconductor, Inc.
General
Table 6. Low power mode peripheral adders — typical value (continued)
Symbol
IEREFSTEN32KHz
Description
Temperature (°C)
External 32 kHz crystal clock adder by
means of the OSC0_CR[EREFSTEN
and EREFSTEN] bits. Measured by
entering all modes with the crystal
enabled.
VLLS1
VLLS3
LLS
Unit
-40
25
50
70
85
105
440
490
540
560
570
580
440
490
540
560
570
580
490
490
540
560
570
680
510
560
560
560
610
680
510
560
560
560
610
680
nA
VLPS
STOP
ICMP
CMP peripheral adder measured by
placing the device in VLLS1 mode with
CMP enabled using the 6-bit DAC and a
single external input for compare.
Includes 6-bit DAC power consumption.
22
22
22
22
22
22
µA
IRTC
RTC peripheral adder measured by
placing the device in VLLS1 mode with
external 32 kHz crystal enabled by
means of the RTC_CR[OSCE] bit and
the RTC ALARM set for 1 minute.
Includes ERCLK32K (32 kHz external
crystal) power consumption.
432
357
388
475
532
810
nA
IUART
UART peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source waiting
for RX data at 115200 baud rate.
Includes selected clock source power
consumption.
66
66
66
66
66
66
µA
214
237
246
254
260
268
MCGIRCLK (4MHz internal reference
clock)
OSCERCLK (4MHz external crystal)
ITPM
TPM peripheral adder measured by
placing the device in STOP or VLPS
mode with selected clock source
configured for output compare
generating 100Hz clock signal. No load
is placed on the I/O generating the clock
signal. Includes selected clock source
and I/O switching currents.
MCGIRCLK (4MHz internal reference
clock)
OSCERCLK (4MHz external crystal)
IBG
Bandgap adder when BGEN bit is set
and device is placed in VLPx, LLS, or
VLLSx mode.
µA
86
86
86
86
86
86
235
256
265
274
280
287
45
45
45
45
45
45
µA
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
17
General
Table 6. Low power mode peripheral adders — typical value (continued)
Symbol
IADC
5.2.5.1
Description
ADC peripheral adder combining the
measured values at VDD and VDDA by
placing the device in STOP or VLPS
mode. ADC is configured for low power
mode using the internal clock and
continuous conversions.
Temperature (°C)
Unit
-40
25
50
70
85
105
366
366
366
366
366
366
µA
Diagram: Typical IDD_RUN operating behavior
The following data was measured under these conditions:
•
•
•
•
•
MCG in FBE for run mode, and BLPE for VLPR mode
USB regulator disabled
No GPIOs toggled
Code execution from flash with cache enabled
For the ALLOFF curve, all peripheral clocks are disabled except FTFA
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
18
Freescale Semiconductor, Inc.
General
Run Mode Current Vs Core Frequency
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE
8.00E-03
7.00E-03
Current Consumption on VDD(A)
6.00E-03
5.00E-03
All Peripheral CLK Gates
4.00E-03
All Off
All On
3.00E-03
2.00E-03
1.00E-03
000.00E+00
'1-1
'1-1
'1-1
'1-1
'1-1
'1-1
'1-1
'1-2
1
2
3
4
6
12
24
48
CLK Ratio
Flash-Core
Core Freq (MHz)
Figure 2. Run mode supply current vs. core frequency
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
19
General
VLPR Mode Current Vs Core Frequency
Temperature = 25, V DD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE
400.00E-06
Current Consumption on VDD (A)
350.00E-06
300.00E-06
250.00E-06
All Peripheral CLK Gates
200.00E-06
All Off
All On
150.00E-06
100.00E-06
50.00E-06
000.00E+00
'1-1
'1-2
1
'1-2
'1-4
2
4
CLK Ratio
Flash-Core
Core Freq (MHz)
Figure 3. VLPR mode current vs. core frequency
5.2.6 EMC radiated emissions operating behaviors
Table 7. EMC radiated emissions operating behaviors for 64-pin LQFP
package
Symbol
Description
Frequency
band (MHz)
Typ.
Unit
Notes
1, 2
VRE1
Radiated emissions voltage, band 1
0.15–50
13
dBμV
VRE2
Radiated emissions voltage, band 2
50–150
15
dBμV
VRE3
Radiated emissions voltage, band 3
150–500
12
dBμV
VRE4
Radiated emissions voltage, band 4
500–1000
7
dBμV
IEC level
0.15–1000
M
—
VRE_IEC
2, 3
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
measured orientations in each frequency range.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
20
Freescale Semiconductor, Inc.
General
2. VDD = 3.3 V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS = 48 MHz, fBUS = 48 MHz
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband
TEM Cell Method
5.2.7 Designing with radiated emissions in mind
To find application notes that provide guidance on designing your system to minimize
interference from radiated emissions:
1. Go to www.freescale.com.
2. Perform a keyword search for “EMC design.”
5.2.8 Capacitance attributes
Table 8. Capacitance attributes
Symbol
Description
Min.
Max.
Unit
CIN_A
Input capacitance: analog pins
—
7
pF
CIN_D
Input capacitance: digital pins
—
7
pF
5.3 Switching specifications
5.3.1 Device clock specifications
Symbol
Description
Min.
Max.
Unit
Notes
Normal run mode
fSYS
System and core clock
—
48
MHz
fBUS
Bus clock
—
24
MHz
Flash clock
—
24
MHz
System and core clock when Full Speed USB in
operation
20
—
MHz
—
24
MHz
fFLASH
fSYS_USB
fLPTMR
LPTMR clock
VLPR
mode1
fSYS
System and core clock
—
4
MHz
fBUS
Bus clock
—
1
MHz
fFLASH
Flash clock
—
1
MHz
fLPTMR
LPTMR clock
—
24
MHz
fERCLK
External reference clock
—
16
MHz
LPTMR clock
—
24
MHz
fLPTMR_pin
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
21
General
Symbol
Description
Min.
Max.
Unit
—
16
MHz
Oscillator crystal or resonator frequency — high
frequency mode (high range) (MCG_C2[RANGE]=1x)
—
16
MHz
TPM asynchronous clock
—
8
MHz
UART0 asynchronous clock
—
8
MHz
fLPTMR_ERCL LPTMR external reference clock
Notes
K
fosc_hi_2
fTPM
fUART0
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any
other module.
5.3.2 General Switching Specifications
These general purpose specifications apply to all signals configured for GPIO, UART,
and I2C signals.
Symbol
Description
Min.
Max.
Unit
Notes
GPIO pin interrupt pulse width (digital glitch filter
disabled) — Synchronous path
1.5
—
Bus clock
cycles
1
External RESET and NMI pin interrupt pulse width —
Asynchronous path
100
—
ns
2
GPIO pin interrupt pulse width — Asynchronous path
16
—
ns
2
Port rise and fall time
3
—
36
ns
1. The greater synchronous and asynchronous timing must be met.
2. This is the shortest pulse that is guaranteed to be recognized.
3. 75 pF load
5.4 Thermal specifications
5.4.1 Thermal operating requirements
Table 9. Thermal operating requirements
Symbol
Description
Min.
Max.
Unit
TJ
Die junction temperature
–40
125
°C
TA
Ambient temperature
–40
105
°C
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
22
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
5.4.2 Thermal attributes
Table 10. Thermal attributes
Board type
Symbol
Single-layer (1S)
RθJA
Four-layer (2s2p)
Description
80
LQFP
64
LQFP
48 QFN
32 QFN
Unit
Notes
Thermal resistance, junction
to ambient (natural
convection)
70
71
84
92
°C/W
1
RθJA
Thermal resistance, junction
to ambient (natural
convection)
53
52
28
33
°C/W
Single-layer (1S)
RθJMA
Thermal resistance, junction
to ambient (200 ft./min. air
speed)
—
59
69
75
°C/W
Four-layer (2s2p)
RθJMA
Thermal resistance, junction
to ambient (200 ft./min. air
speed)
—
46
22
27
°C/W
—
RθJB
Thermal resistance, junction
to board
34
34
10
12
°C/W
2
—
RθJC
Thermal resistance, junction
to case
15
20
2.0
1.8
°C/W
3
—
ΨJT
Thermal characterization
parameter, junction to
package top outside center
(natural convection)
0.6
5
5.0
8
°C/W
4
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions
—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method
Environmental Conditions—Forced Convection (Moving Air).
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions
—Junction-to-Board.
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate
temperature used for the case temperature. The value includes the thermal resistance of the interface material between
the top of the package and the cold plate.
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions
—Natural Convection (Still Air).
6 Peripheral operating requirements and behaviors
6.1 Core modules
6.1.1 SWD Electricals
Table 11. SWD full voltage range electricals
Symbol
Description
Min.
Max.
Unit
Operating voltage
1.71
3.6
V
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
23
Peripheral operating requirements and behaviors
Table 11. SWD full voltage range electricals (continued)
Symbol
J1
Description
Min.
Max.
Unit
0
25
MHz
1/J1
—
ns
20
—
ns
SWD_CLK frequency of operation
• Serial wire debug
J2
SWD_CLK cycle period
J3
SWD_CLK clock pulse width
• Serial wire debug
J4
SWD_CLK rise and fall times
—
3
ns
J9
SWD_DIO input data setup time to SWD_CLK rise
10
—
ns
J10
SWD_DIO input data hold time after SWD_CLK rise
0
—
ns
J11
SWD_CLK high to SWD_DIO data valid
—
32
ns
J12
SWD_CLK high to SWD_DIO high-Z
5
—
ns
J2
J3
J3
SWD_CLK (input)
J4
J4
Figure 4. Serial wire clock input timing
SWD_CLK
J9
SWD_DIO
J10
Input data valid
J11
SWD_DIO
Output data valid
J12
SWD_DIO
J11
SWD_DIO
Output data valid
Figure 5. Serial wire data timing
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
24
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.2 System modules
There are no specifications necessary for the device's system modules.
6.3 Clock modules
6.3.1 MCG specifications
Table 12. MCG specifications
Symbol
Description
fints_ft
Internal reference frequency (slow clock) —
factory trimmed at nominal VDD and 25 °C
fints_t
Internal reference frequency (slow clock) — user
trimmed
Δfdco_res_t Resolution of trimmed average DCO output
frequency at fixed voltage and temperature —
using SCTRIM and SCFTRIM
Min.
Typ.
Max.
Unit
Notes
—
32.768
—
kHz
31.25
—
39.0625
kHz
—
± 0.3
± 0.6
%fdco
1
Δfdco_t
Total deviation of trimmed average DCO output
frequency over voltage and temperature
—
+0.5/-0.7
±3
%fdco
1, 2
Δfdco_t
Total deviation of trimmed average DCO output
frequency over fixed voltage and temperature
range of 0 - 70 °C
—
± 0.4
± 1.5
%fdco
1, 2
Internal reference frequency (fast clock) —
factory trimmed at nominal VDD and 25 °C
—
4
—
MHz
Δfintf_ft
Frequency deviation of internal reference clock
(fast clock) over temperature and voltage --factory trimmed at nominal VDD and 25 °C
—
+1/-2
±3
%fintf_ft
fintf_t
Internal reference frequency (fast clock) — user
trimmed at nominal VDD and 25 °C
3
—
5
MHz
fintf_ft
floc_low
Loss of external clock minimum frequency —
RANGE = 00
(3/5) x
fints_t
—
—
kHz
floc_high
Loss of external clock minimum frequency —
RANGE = 01, 10, or 11
(16/5) x
fints_t
—
—
kHz
31.25
—
39.0625
kHz
20
20.97
25
MHz
40
41.94
48
MHz
2
FLL
ffll_ref
fdco
FLL reference frequency range
DCO output
frequency range
Low range (DRS = 00)
3, 4
640 × ffll_ref
Mid range (DRS = 01)
1280 × ffll_ref
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
25
Peripheral operating requirements and behaviors
Table 12. MCG specifications (continued)
Symbol
Description
fdco_t_DMX32 DCO output
frequency
Low range (DRS = 00)
Min.
Typ.
Max.
Unit
Notes
—
23.99
—
MHz
5, 6
—
47.97
—
MHz
—
180
—
ps
7
—
—
1
ms
8
48.0
—
100
MHz
—
1060
—
µA
—
600
—
µA
2.0
—
4.0
MHz
732 × ffll_ref
Mid range (DRS = 01)
1464 × ffll_ref
Jcyc_fll
FLL period jitter
• fVCO = 48 MHz
tfll_acquire
FLL target frequency acquisition time
PLL
fvco
VCO operating frequency
Ipll
PLL operating current
• PLL at 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2
MHz, VDIV multiplier = 48)
Ipll
PLL operating current
• PLL at 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2
MHz, VDIV multiplier = 24)
fpll_ref
PLL reference frequency range
Jcyc_pll
PLL period jitter (RMS)
Jacc_pll
• fvco = 48 MHz
—
120
—
ps
• fvco = 100 MHz
—
50
—
ps
PLL accumulated jitter over 1µs (RMS)
10
• fvco = 48 MHz
—
1350
—
ps
• fvco = 100 MHz
—
600
—
ps
Lock entry frequency tolerance
± 1.49
—
± 2.98
%
Dunl
Lock exit frequency tolerance
± 4.47
—
± 5.97
%
Lock detector detection time
9
10
Dlock
tpll_lock
9
—
—
10-6
150 ×
+ 1075(1/
fpll_ref)
s
11
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock
mode).
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation
(Δfdco_t) over voltage and temperature must be considered.
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
7. This specification is based on standard deviation (RMS) of period or frequency.
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
9. Excludes any oscillator currents that are also consuming power while PLL is in operation.
10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of
each PCB and results will vary.
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes
it is already running.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
26
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.3.2 Oscillator electrical specifications
This section provides the electrical characteristics of the module.
6.3.2.1
Oscillator DC electrical specifications
Table 13. Oscillator DC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDOSC
IDDOSC
Supply current — low-power mode (HGO=0)
Notes
1
• 32 kHz
—
500
—
nA
• 4 MHz
—
200
—
μA
• 8 MHz (RANGE=01)
—
300
—
μA
• 16 MHz
—
950
—
μA
• 24 MHz
—
1.2
—
mA
• 32 MHz
—
1.5
—
mA
Supply current — high gain mode (HGO=1)
1
• 32 kHz
—
25
—
μA
• 4 MHz
—
400
—
μA
• 8 MHz (RANGE=01)
—
500
—
μA
• 16 MHz
—
2.5
—
mA
• 24 MHz
—
3
—
mA
• 32 MHz
—
4
—
mA
Cx
EXTAL load capacitance
—
—
—
2, 3
Cy
XTAL load capacitance
—
—
—
2, 3
RF
Feedback resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — low-frequency, high-gain
mode (HGO=1)
—
10
—
MΩ
Feedback resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
MΩ
Feedback resistor — high-frequency, high-gain
mode (HGO=1)
—
1
—
MΩ
2, 4
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
27
Peripheral operating requirements and behaviors
Table 13. Oscillator DC electrical specifications (continued)
Symbol
RS
Description
Min.
Typ.
Max.
Unit
Series resistor — low-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Series resistor — low-frequency, high-gain mode
(HGO=1)
—
200
—
kΩ
Series resistor — high-frequency, low-power
mode (HGO=0)
—
—
—
kΩ
Notes
Series resistor — high-frequency, high-gain
mode (HGO=1)
Vpp5
—
0
—
kΩ
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — low-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, low-power mode
(HGO=0)
—
0.6
—
V
Peak-to-peak amplitude of oscillation (oscillator
mode) — high-frequency, high-gain mode
(HGO=1)
—
VDD
—
V
1. VDD=3.3 V, Temperature =25 °C
2. See crystal or resonator manufacturer's recommendation
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all
other cases external capacitors must be used..
4. When low power mode is selected, RF is integrated and must not be attached externally.
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any
other devices.
6.3.2.2
Symbol
Oscillator frequency specifications
Table 14. Oscillator frequency specifications
Description
Min.
Typ.
Max.
Unit
fosc_lo
Oscillator crystal or resonator frequency — low
frequency mode (MCG_C2[RANGE]=00)
32
—
40
kHz
fosc_hi_1
Oscillator crystal or resonator frequency — high
frequency mode (low range)
(MCG_C2[RANGE]=01)
3
—
8
MHz
fosc_hi_2
Oscillator crystal or resonator frequency — high
frequency mode (high range)
(MCG_C2[RANGE]=1x)
8
—
32
MHz
fec_extal
Input clock frequency (external clock mode)
—
—
48
MHz
tdc_extal
Input clock duty cycle (external clock mode)
40
50
60
%
Notes
1, 2
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
28
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 14. Oscillator frequency specifications (continued)
Symbol
tcst
Description
Min.
Typ.
Max.
Unit
Notes
Crystal startup time — 32 kHz low-frequency,
low-power mode (HGO=0)
—
750
—
ms
3, 4
Crystal startup time — 32 kHz low-frequency,
high-gain mode (HGO=1)
—
250
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), low-power mode
(HGO=0)
—
0.6
—
ms
Crystal startup time — 8 MHz high-frequency
(MCG_C2[RANGE]=01), high-gain mode
(HGO=1)
—
1
—
ms
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it
remains within the limits of the DCO input clock frequency.
3. Proper PC board layout procedures must be followed to achieve specifications.
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register
being set.
6.4 Memories and memory interfaces
6.4.1 Flash electrical specifications
This section describes the electrical characteristics of the flash memory module.
6.4.1.1
Flash timing specifications — program and erase
The following specifications represent the amount of time the internal charge pumps are
active and do not include command overhead.
Table 15. NVM program/erase timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
thvpgm4
Notes
Longword Program high-voltage time
—
7.5
18
μs
thversscr
Sector Erase high-voltage time
—
13
113
ms
1
thversall
Erase All high-voltage time
—
52
452
ms
1
1. Maximum time based on expectations at cycling end-of-life.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
29
Peripheral operating requirements and behaviors
6.4.1.2
Flash timing specifications — commands
Table 16. Flash command timing specifications
Symbol
Description
Min.
Typ.
Max.
Unit
Notes
trd1sec1k
Read 1s Section execution time (flash sector)
—
—
60
μs
1
tpgmchk
Program Check execution time
—
—
45
μs
1
trdrsrc
Read Resource execution time
—
—
30
μs
1
tpgm4
Program Longword execution time
—
65
145
μs
tersscr
Erase Flash Sector execution time
—
14
114
ms
trd1all
Read 1s All Blocks execution time
—
—
1.8
ms
trdonce
Read Once execution time
—
—
25
μs
Program Once execution time
—
65
—
μs
tersall
Erase All Blocks execution time
—
62
500
ms
2
tvfykey
Verify Backdoor Access Key execution time
—
—
30
μs
1
tpgmonce
2
1
1. Assumes 25MHz flash clock frequency.
2. Maximum times for erase parameters based on expectations at cycling end-of-life.
6.4.1.3
Flash high voltage current behaviors
Table 17. Flash high voltage current behaviors
Symbol
Description
IDD_PGM
IDD_ERS
6.4.1.4
Symbol
Min.
Typ.
Max.
Unit
Average current adder during high voltage
flash programming operation
—
2.5
6.0
mA
Average current adder during high voltage
flash erase operation
—
1.5
4.0
mA
Reliability specifications
Table 18. NVM reliability specifications
Description
Min.
Typ.1
Max.
Unit
Notes
Program Flash
tnvmretp10k Data retention after up to 10 K cycles
5
50
—
years
tnvmretp1k
Data retention after up to 1 K cycles
20
100
—
years
nnvmcycp
Cycling endurance
10 K
50 K
—
cycles
2
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering
Bulletin EB619.
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
30
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.5 Security and integrity modules
There are no specifications necessary for the device's security and integrity modules.
6.6 Analog
6.6.1 ADC electrical specifications
The 16-bit accuracy specifications listed in Table 19 and Table 20 are achievable on the
differential pins ADCx_DP0, ADCx_DM0.
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy
specifications.
6.6.1.1
16-bit ADC operating conditions
Table 19. 16-bit ADC operating conditions
Symbol
Description
Conditions
Min.
Typ.1
Max.
Unit
VDDA
Supply voltage
Absolute
1.71
—
3.6
V
ΔVDDA
Supply voltage
Delta to VDD (VDD-VDDA)
-100
0
+100
mV
2
ΔVSSA
Ground voltage
Delta to VSS (VSS - VSSA)
-100
0
+100
mV
2
VREFH
ADC reference
voltage high
1.13
VDDA
VDDA
V
3
VREFL
ADC reference
voltage low
VSSA
VSSA
VSSA
V
3
VADIN
Input voltage
VREFL
—
VREFH
V
CADIN
Input capacitance
• 16-bit mode
—
8
10
pF
• 8-/10-/12-bit modes
—
4
5
—
2
5
RADIN
RAS
Input resistance
Notes
kΩ
Analog source
resistance
13-/12-bit modes
fADCK < 4 MHz
—
—
5
kΩ
fADCK
ADC conversion
clock frequency
≤ 13-bit mode
1.0
—
18.0
MHz
5
fADCK
ADC conversion
clock frequency
16-bit mode
2.0
—
12.0
MHz
5
Crate
ADC conversion
rate
≤ 13 bit modes
No ADC hardware averaging
4
6
20.000
—
818.330
Ksps
Continuous conversions
enabled, subsequent
conversion time
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
31
Peripheral operating requirements and behaviors
Table 19. 16-bit ADC operating conditions (continued)
Symbol
Crate
Description
Conditions
ADC conversion
rate
16-bit mode
Min.
Typ.1
Max.
Unit
Notes
6
No ADC hardware averaging
37.037
—
461.467
Ksps
Continuous conversions
enabled, subsequent
conversion time
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
2. DC potential difference.
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to
VSSA.
4. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best
results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The RAS/CAS
time constant should be kept to < 1ns.
5. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool
SIMPLIFIED
INPUT PIN EQUIVALENT
CIRCUIT
Z ADIN
SIMPLIFIED
CHANNEL SELECT
CIRCUIT
Pad
leakage
due to
input
protection
Z AS
R AS
ADC SAR
ENGINE
R ADIN
V ADIN
C AS
V AS
R ADIN
INPUT PIN
R ADIN
INPUT PIN
R ADIN
INPUT PIN
C ADIN
Figure 6. ADC input impedance equivalency diagram
6.6.1.2
16-bit ADC electrical characteristics
Table 20. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA)
Symbol
Description
IDDA_ADC
Supply current
Conditions1
Min.
Typ.2
Max.
Unit
Notes
0.215
—
1.7
mA
3
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
32
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 20. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
fADACK
Conditions1
Description
ADC
asynchronous
clock source
Sample Time
TUE
DNL
INL
EFS
Min.
Typ.2
Max.
Unit
Notes
• ADLPC = 1, ADHSC = 0
1.2
2.4
3.9
MHz
• ADLPC = 1, ADHSC = 1
2.4
4.0
6.1
MHz
tADACK = 1/
fADACK
• ADLPC = 0, ADHSC = 0
3.0
5.2
7.3
MHz
• ADLPC = 0, ADHSC = 1
4.4
6.2
9.5
MHz
LSB4
5
LSB4
5
LSB4
5
LSB4
VADIN =
VDDA
See Reference Manual chapter for sample times
Total unadjusted
error
• 12-bit modes
—
±4
±6.8
• <12-bit modes
—
±1.4
±2.1
Differential nonlinearity
• 12-bit modes
—
±0.7
-1.1 to +1.9
Integral nonlinearity
-0.3 to 0.5
• <12-bit modes
—
±0.2
• 12-bit modes
—
±1.0
-2.7 to +1.9
-0.7 to +0.5
Full-scale error
• <12-bit modes
—
±0.5
• 12-bit modes
—
-4
-5.4
• <12-bit modes
—
-1.4
-1.8
5
EQ
ENOB
Quantization
error
• 16-bit modes
—
-1 to 0
—
• ≤13-bit modes
—
—
±0.5
Effective number 16-bit differential mode
of bits
• Avg = 32
• Avg = 4
LSB4
6
12.8
14.5
—
bits
11.9
13.8
—
bits
12.2
13.9
—
bits
11.4
13.1
—
bits
16-bit single-ended mode
• Avg = 32
• Avg = 4
SINAD
THD
Signal-to-noise
plus distortion
See ENOB
Total harmonic
distortion
16-bit differential mode
6.02 × ENOB + 1.76
• Avg = 32
16-bit single-ended mode
• Avg = 32
SFDR
Spurious free
dynamic range
dB
7
—
–94
—
dB
—
-85
—
dB
16-bit differential mode
• Avg = 32
16-bit single-ended mode
• Avg = 32
7
82
95
—
dB
78
90
—
dB
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
33
Peripheral operating requirements and behaviors
Table 20. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)
Symbol
Description
EIL
Input leakage
error
Conditions1
Min.
Typ.2
Max.
IIn × RAS
Unit
Notes
mV
IIn =
leakage
current
(refer to
the MCU's
voltage
and current
operating
ratings)
VTEMP25
Temp sensor
slope
Across the full temperature
range of the device
—
1.715
—
mV/°C
Temp sensor
voltage
25 °C
—
719
—
mV
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).
For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock
speed.
4. 1 LSB = (VREFH - VREFL)/2N
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
34
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode
6.6.2 CMP and 6-bit DAC electrical specifications
Table 21. Comparator and 6-bit DAC electrical specifications
Symbol
Description
Min.
Typ.
Max.
Unit
VDD
Supply voltage
1.71
—
3.6
V
IDDHS
Supply current, high-speed mode (EN = 1, PMODE =
1)
—
—
200
μA
IDDLS
Supply current, low-speed mode (EN = 1, PMODE = 0)
—
—
20
μA
VAIN
Analog input voltage
VSS
—
VDD
V
VAIO
Analog input offset voltage
—
—
20
mV
• CR0[HYSTCTR] = 00
—
5
—
mV
• CR0[HYSTCTR] = 01
—
10
—
mV
• CR0[HYSTCTR] = 10
—
20
—
mV
• CR0[HYSTCTR] = 11
—
30
—
mV
VH
Analog comparator
hysteresis1
VCMPOh
Output high
VDD – 0.5
—
—
V
VCMPOl
Output low
—
—
0.5
V
tDHS
Propagation delay, high-speed mode (EN = 1, PMODE
= 1)
20
50
200
ns
tDLS
Propagation delay, low-speed mode (EN = 1, PMODE
= 0)
80
250
600
ns
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
35
Peripheral operating requirements and behaviors
Table 21. Comparator and 6-bit DAC electrical specifications (continued)
Symbol
IDAC6b
Description
Min.
Typ.
Max.
Unit
Analog comparator initialization delay2
—
—
40
μs
6-bit DAC current adder (enabled)
—
7
—
μA
INL
6-bit DAC integral non-linearity
–0.5
—
0.5
LSB3
DNL
6-bit DAC differential non-linearity
–0.3
—
0.3
LSB
1. Typical hysteresis is measured with input voltage range limited to 0.7 to VDD – 0.7 V.
2. Comparator initialization delay is defined as the time between software writes to change control inputs (writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
3. 1 LSB = Vreference/64
CMP Hysteresis vs Vinn
90.00E-03
80.00E-03
70.00E-03
CMP Hysteresis (V)
60.00E-03
HYSTCTR
Setting
50.00E-03
0
1
40.00E-03
2
3
30.00E-03
20.00E-03
10.00E-03
000.00E+00
0.1
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vinn (V)
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)
CMP Hysteresis vs Vinn
180.00E-03
160.00E-03
140.00E-03
CMP Hysteresis (V)
120.00E-03
HYSTCTR
Setting
100.00E-03
0
1
80.00E-03
2
3
60.00E-03
40.00E-03
20.00E-03
000.00E+00
0.1
-20.00E-03
0.4
0.7
1
1.3
1.6
1.9
2.2
2.5
2.8
3.1
Vinn (V)
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)
6.6.3 12-bit DAC electrical characteristics
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
36
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
6.6.3.1
Symbol
12-bit DAC operating requirements
Table 22. 12-bit DAC operating requirements
Desciption
Min.
Max.
Unit
VDDA
Supply voltage
1.71
3.6
V
VDACR
Reference voltage
1.13
3.6
V
TA
Temperature
Operating temperature
range of the device
CL
Output load capacitance
—
100
pF
IL
Output load current
—
1
mA
Notes
1
°C
2
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC
6.6.3.2
Symbol
12-bit DAC operating behaviors
Table 23. 12-bit DAC operating behaviors
Description
IDDA_DACL Supply current — low-power mode
Min.
Typ.
Max.
Unit
—
—
250
μA
—
—
900
μA
Notes
P
IDDA_DACH Supply current — high-speed mode
P
tDACLP
Full-scale settling time (0x080 to 0xF7F) —
low-power mode
—
100
200
μs
1
tDACHP
Full-scale settling time (0x080 to 0xF7F) —
high-power mode
—
15
30
μs
1
—
0.7
1
μs
1
—
—
100
mV
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)
— low-power mode and high-speed mode
Vdacoutl
DAC output voltage range low — high-speed
mode, no load, DAC set to 0x000
Vdacouth
DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF
VDACR
−100
—
VDACR
mV
INL
Integral non-linearity error — high speed
mode
—
—
±8
LSB
2
DNL
Differential non-linearity error — VDACR > 2
V
—
—
±1
LSB
3
DNL
Differential non-linearity error — VDACR =
VREF_OUT
—
—
±1
LSB
4
—
±0.4
±0.8
%FSR
5
Gain error
—
±0.1
±0.6
%FSR
5
Power supply rejection ratio, VDDA ≥ 2.4 V
60
—
90
dB
TCO
Temperature coefficient offset voltage
—
3.7
—
μV/C
TGE
Temperature coefficient gain error
—
0.000421
—
%FSR/C
Rop
Output resistance load = 3 kΩ
—
—
250
Ω
VOFFSET Offset error
EG
PSRR
6
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
37
Peripheral operating requirements and behaviors
Table 23. 12-bit DAC operating behaviors (continued)
Symbol
SR
BW
1.
2.
3.
4.
5.
6.
Description
Min.
Typ.
Max.
Unit
Slew rate -80h→ F7Fh→ 80h
Notes
V/μs
• High power (SPHP)
1.2
1.7
—
• Low power (SPLP)
0.05
0.12
—
3dB bandwidth
kHz
• High power (SPHP)
550
—
—
• Low power (SPLP)
40
—
—
Settling within ±1 LSB
The INL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV
The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V
Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV
VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to
0x800, temperature range is across the full range of the device
Figure 11. Typical INL error vs. digital code
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
38
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Figure 12. Offset at half scale vs. temperature
6.7 Timers
See General switching specifications.
6.8 Communication interfaces
6.8.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit http://www.usb.org.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
39
Peripheral operating requirements and behaviors
6.8.2 USB VREG electrical specifications
Table 24. USB VREG electrical specifications
Symbol
Description
Min.
Typ.1
Max.
Unit
VREGIN
Input supply voltage
2.7
—
5.5
V
IDDon
Quiescent current — Run mode, load current
equal zero, input supply (VREGIN) > 3.6 V
—
120
186
μA
IDDstby
Quiescent current — Standby mode, load current
equal zero
—
1.1
10
μA
IDDoff
Quiescent current — Shutdown mode
—
650
—
nA
—
—
4
μA
• VREGIN = 5.0 V and temperature=25C
• Across operating voltage and temperature
ILOADrun
Maximum load current — Run mode
—
—
120
mA
ILOADstby
Maximum load current — Standby mode
—
—
1
mA
VReg33out
Regulator output voltage — Input supply
(VREGIN) > 3.6 V
3
3.3
3.6
V
• Run mode
• Standby mode
2.1
2.8
3.6
V
Regulator output voltage — Input supply
(VREGIN) < 3.6 V, pass-through mode
2.1
—
3.6
V
COUT
External output capacitor
1.76
2.2
8.16
μF
ESR
External output capacitor equivalent series
resistance
1
—
100
mΩ
ILIM
Short circuit current
—
290
—
mA
VReg33out
Notes
2
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad.
6.8.3 SPI switching specifications
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and
slave operations. Many of the transfer attributes are programmable. The following tables
provide timing characteristics for classic SPI timing modes. See the SPI chapter of the
chip's Reference Manual for information about the modified transfer formats used for
communicating with slower peripheral devices.
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as
well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.
Table 25. SPI master mode timing on slew rate disabled pads
Num.
Symbol
1
fop
Description
Frequency of operation
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
40
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 25. SPI master mode timing on slew rate disabled pads (continued)
Num.
Symbol
Description
Min.
Max.
Unit
Note
2
tSPSCK
SPSCK period
2 x tperiph
2048 x
tperiph
ns
2
3
tLead
Enable lead time
1/2
—
tSPSCK
—
4
tLag
Enable lag time
1/2
—
tSPSCK
—
5
tWSPSCK
tperiph - 30
1024 x
tperiph
ns
—
6
tSU
Data setup time (inputs)
16
—
ns
—
7
tHI
Data hold time (inputs)
0
—
ns
—
8
tv
Data valid (after SPSCK edge)
—
10
ns
—
9
tHO
Data hold time (outputs)
0
—
ns
—
10
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
11
Clock (SPSCK) high or low time
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
2. tperiph = 1/fperiph
Table 26. SPI master mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
6
tSU
7
tHI
8
tv
9
10
11
Description
Min.
Max.
Unit
Note
fperiph/2048
fperiph/2
Hz
1
2 x tperiph
2048 x
tperiph
ns
2
Enable lead time
1/2
—
tSPSCK
—
Enable lag time
1/2
—
tSPSCK
—
tperiph - 30
1024 x
tperiph
ns
—
Data setup time (inputs)
96
—
ns
—
Data hold time (inputs)
0
—
ns
—
Data valid (after SPSCK edge)
—
52
ns
—
tHO
Data hold time (outputs)
0
—
ns
—
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
Frequency of operation
SPSCK period
Clock (SPSCK) high or low time
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
2. tperiph = 1/fperiph
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
41
Peripheral operating requirements and behaviors
SS1
(OUTPUT)
3
2
SPSCK
(CPOL = 0)
(OUTPUT)
10
11
10
11
4
5
5
SPSCK
(CPOL = 1)
(OUTPUT)
6
7
MISO
(INPUT)
MSB IN2
BIT 6 . . . 1
LSB IN
8
MOSI
(OUTPUT)
MSB OUT2
9
BIT 6 . . . 1
LSB OUT
1. If configured as an output.
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 13. SPI master mode timing (CPHA = 0)
SS1
(OUTPUT)
2
3
SPSCK
(CPOL = 0)
(OUTPUT)
5
SPSCK
(CPOL = 1)
(OUTPUT)
5
6
MISO
(INPUT)
10
11
10
11
4
7
MSB IN2
BIT 6 . . . 1
8
MOSI
2
(OUTPUT)PORT DATA MASTER MSB OUT
LSB IN
9
BIT 6 . . . 1
MASTER LSB OUT
PORT DATA
1.If configured as output
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.
Figure 14. SPI master mode timing (CPHA = 1)
Table 27. SPI slave mode timing on slew rate disabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
4
tLag
5
tWSPSCK
Description
Frequency of operation
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
Enable lead time
1
—
tperiph
—
Enable lag time
1
—
tperiph
—
tperiph - 30
—
ns
—
SPSCK period
Clock (SPSCK) high or low time
Table continues on the next page...
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
42
Freescale Semiconductor, Inc.
Peripheral operating requirements and behaviors
Table 27. SPI slave mode timing on slew rate disabled pads (continued)
1.
2.
3.
4.
Num.
Symbol
6
tSU
7
Description
Min.
Max.
Unit
Note
Data setup time (inputs)
2
—
ns
—
tHI
Data hold time (inputs)
7
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
22
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
13
tRO
Rise time output
—
25
ns
—
tFO
Fall time output
For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
Table 28. SPI slave mode timing on slew rate enabled pads
Num.
Symbol
1
fop
2
tSPSCK
3
tLead
Enable lead time
4
tLag
Enable lag time
5
tWSPSCK
6
tSU
7
Min.
Max.
Unit
Note
0
fperiph/4
Hz
1
4 x tperiph
—
ns
2
1
—
tperiph
—
Frequency of operation
SPSCK period
1
—
tperiph
—
tperiph - 30
—
ns
—
Data setup time (inputs)
2
—
ns
—
tHI
Data hold time (inputs)
7
—
ns
—
8
ta
Slave access time
—
tperiph
ns
3
9
tdis
Slave MISO disable time
—
tperiph
ns
4
10
tv
Data valid (after SPSCK edge)
—
122
ns
—
11
tHO
Data hold time (outputs)
0
—
ns
—
12
tRI
Rise time input
—
tperiph - 25
ns
—
tFI
Fall time input
tRO
Rise time output
—
36
ns
—
tFO
Fall time output
13
1.
2.
3.
4.
Description
Clock (SPSCK) high or low time
For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).
tperiph = 1/fperiph
Time to data active from high-impedance state
Hold time to high-impedance state
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
43
Peripheral operating requirements and behaviors
SS
(INPUT)
2
SPSCK
(CPOL = 0)
(INPUT)
5
3
SPSCK
(CPOL = 1)
(INPUT)
5
13 4
12
13
9
8
MISO
(OUTPUT)
12
10
see
note
SLAVE MSB
6
11
11
BIT 6 . . . 1
SLAVE LSB OUT
SEE
NOTE
7
MOSI
(INPUT)
BIT 6 . . . 1
MSB IN
LSB IN
NOTE: Not defined!
Figure 15. SPI slave mode timing (CPHA = 0)
SS
(INPUT)
4
2
3
SPSCK
(CPOL = 0)
(INPUT)
5
SPSCK
(CPOL = 1)
(INPUT)
5
see
note
8
MOSI
(INPUT)
SLAVE
13
12
13
9
11
10
MISO
(OUTPUT)
12
MSB OUT
6
BIT 6 . . . 1
SLAVE LSB OUT
7
MSB IN
BIT 6 . . . 1
LSB IN
NOTE: Not defined!
Figure 16. SPI slave mode timing (CPHA = 1)
6.8.4 I2C
See General switching specifications.
6.8.5 UART
See General switching specifications.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
44
Freescale Semiconductor, Inc.
Dimensions
6.9 Human-machine interfaces (HMI)
6.9.1 TSI electrical specifications
Table 29. TSI electrical specifications
Symbol
Description
Min.
Type
Max
Unit
TSI_RUNF
Fixed power consumption in run mode
—
100
—
µA
TSI_RUNV
Variable power consumption in run mode
(depends on oscillator's current selection)
1.0
—
128
µA
TSI_EN
Power consumption in enable mode
—
100
—
µA
TSI_DIS
Power consumption in disable mode
—
1.2
—
µA
TSI_TEN
TSI analog enable time
—
66
—
µs
TSI_CREF
TSI reference capacitor
—
1.0
—
pF
TSI_DVOLT
Voltage variation of VP & VM around nominal
values
0.19
—
1.03
V
7 Dimensions
7.1 Obtaining package dimensions
Package dimensions are provided in package drawings.
To find a package drawing, go to www.freescale.com and perform a keyword search for
the drawing’s document number:
If you want the drawing for this package
Then use this document number
32-pin QFN
98ASA00473D
48-pin QFN
98ASA00466D
64-pin LQFP
98ASS23234W
80-pin LQFP
98ASS23174W
8 Pinout
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
45
Pinout
8.1 KL25 Signal Multiplexing and Pin Assignments
The following table shows the signals available on each pin and the locations of these
pins on the devices supported by this document. The Port Control Module is responsible
for selecting which ALT functionality is available on each pin.
80
64
LQFP LQFP
48
QFN
32
QFN
Pin Name
Default
ALT0
ALT1
ALT2
1
1
—
1
PTE0
DISABLED
PTE0
2
2
—
—
PTE1
DISABLED
PTE1
SPI1_MOSI
3
—
—
—
PTE2
DISABLED
PTE2
SPI1_SCK
4
—
—
—
PTE3
DISABLED
PTE3
SPI1_MISO
5
—
—
—
PTE4
DISABLED
PTE4
SPI1_PCS0
6
—
—
—
PTE5
DISABLED
PTE5
7
3
1
—
VDD
VDD
VDD
8
4
2
2
VSS
VSS
VSS
ALT3
ALT4
ALT5
UART1_TX
RTC_CLKOUT CMP0_OUT
I2C1_SDA
UART1_RX
SPI1_MISO
I2C1_SCL
ALT7
SPI1_MOSI
9
5
3
3
USB0_DP
USB0_DP
USB0_DP
10
6
4
4
USB0_DM
USB0_DM
USB0_DM
11
7
5
5
VOUT33
VOUT33
VOUT33
12
8
6
6
VREGIN
VREGIN
VREGIN
13
9
7
—
PTE20
ADC0_DP0/
ADC0_SE0
ADC0_DP0/
ADC0_SE0
PTE20
TPM1_CH0
UART0_TX
14
10
8
—
PTE21
ADC0_DM0/
ADC0_SE4a
ADC0_DM0/
ADC0_SE4a
PTE21
TPM1_CH1
UART0_RX
15
11
—
—
PTE22
ADC0_DP3/
ADC0_SE3
ADC0_DP3/
ADC0_SE3
PTE22
TPM2_CH0
UART2_TX
16
12
—
—
PTE23
ADC0_DM3/
ADC0_SE7a
ADC0_DM3/
ADC0_SE7a
PTE23
TPM2_CH1
UART2_RX
17
13
9
7
VDDA
VDDA
VDDA
18
14
10
—
VREFH
VREFH
VREFH
19
15
11
—
VREFL
VREFL
VREFL
20
16
12
8
VSSA
VSSA
VSSA
21
17
13
—
PTE29
CMP0_IN5/
ADC0_SE4b
CMP0_IN5/
ADC0_SE4b
PTE29
TPM0_CH2
TPM_CLKIN0
22
18
14
9
PTE30
DAC0_OUT/
ADC0_SE23/
CMP0_IN4
DAC0_OUT/
ADC0_SE23/
CMP0_IN4
PTE30
TPM0_CH3
TPM_CLKIN1
23
19
—
—
PTE31
DISABLED
PTE31
TPM0_CH4
24
20
15
—
PTE24
DISABLED
PTE24
TPM0_CH0
I2C0_SCL
25
21
16
—
PTE25
DISABLED
PTE25
TPM0_CH1
I2C0_SDA
26
22
17
10
PTA0
SWD_CLK
PTA0
TPM0_CH5
TSI0_CH1
ALT6
SWD_CLK
27
23
18
11
PTA1
DISABLED
TSI0_CH2
PTA1
UART0_RX
TPM2_CH0
28
24
19
12
PTA2
DISABLED
TSI0_CH3
PTA2
UART0_TX
TPM2_CH1
29
25
20
13
PTA3
SWD_DIO
TSI0_CH4
PTA3
I2C1_SCL
TPM0_CH0
SWD_DIO
30
26
21
14
PTA4
NMI_b
TSI0_CH5
PTA4
I2C1_SDA
TPM0_CH1
NMI_b
31
27
—
—
PTA5
DISABLED
PTA5
USB_CLKIN
TPM0_CH2
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
46
Freescale Semiconductor, Inc.
Pinout
80
64
LQFP LQFP
48
QFN
32
QFN
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
ALT4
ALT5
32
28
—
—
PTA12
DISABLED
PTA12
TPM1_CH0
33
29
—
—
PTA13
DISABLED
PTA13
TPM1_CH1
34
—
—
—
PTA14
DISABLED
PTA14
SPI0_PCS0
UART0_TX
35
—
—
—
PTA15
DISABLED
PTA15
SPI0_SCK
UART0_RX
36
—
—
—
PTA16
DISABLED
PTA16
SPI0_MOSI
SPI0_MISO
PTA17
SPI0_MISO
SPI0_MOSI
37
—
—
—
PTA17
DISABLED
38
30
22
15
VDD
VDD
VDD
39
31
23
16
VSS
VSS
VSS
40
32
24
17
PTA18
EXTAL0
EXTAL0
PTA18
UART1_RX
TPM_CLKIN0
41
33
25
18
PTA19
XTAL0
XTAL0
PTA19
UART1_TX
TPM_CLKIN1
42
34
26
19
RESET_b
RESET_b
43
35
27
20
PTB0/
LLWU_P5
ADC0_SE8/
TSI0_CH0
ADC0_SE8/
TSI0_CH0
PTB0/
LLWU_P5
I2C0_SCL
TPM1_CH0
44
36
28
21
PTB1
ADC0_SE9/
TSI0_CH6
ADC0_SE9/
TSI0_CH6
PTB1
I2C0_SDA
TPM1_CH1
45
37
29
—
PTB2
ADC0_SE12/
TSI0_CH7
ADC0_SE12/
TSI0_CH7
PTB2
I2C0_SCL
TPM2_CH0
46
38
30
—
PTB3
ADC0_SE13/
TSI0_CH8
ADC0_SE13/
TSI0_CH8
PTB3
I2C0_SDA
TPM2_CH1
47
—
—
—
PTB8
DISABLED
PTB8
48
—
—
—
PTB9
DISABLED
PTB9
49
—
—
—
PTB10
DISABLED
PTB10
SPI1_PCS0
50
—
—
—
PTB11
DISABLED
PTB11
SPI1_SCK
ALT6
ALT7
LPTMR0_
ALT1
PTA20
EXTRG_IN
51
39
31
—
PTB16
TSI0_CH9
TSI0_CH9
PTB16
SPI1_MOSI
UART0_RX
TPM_CLKIN0
SPI1_MISO
52
40
32
—
PTB17
TSI0_CH10
TSI0_CH10
PTB17
SPI1_MISO
UART0_TX
TPM_CLKIN1
SPI1_MOSI
53
41
—
—
PTB18
TSI0_CH11
TSI0_CH11
PTB18
TPM2_CH0
54
42
—
—
PTB19
TSI0_CH12
TSI0_CH12
PTB19
TPM2_CH1
55
43
33
—
PTC0
ADC0_SE14/
TSI0_CH13
ADC0_SE14/
TSI0_CH13
PTC0
EXTRG_IN
56
44
34
22
PTC1/
LLWU_P6/
RTC_CLKIN
ADC0_SE15/
TSI0_CH14
ADC0_SE15/
TSI0_CH14
PTC1/
LLWU_P6/
RTC_CLKIN
I2C1_SCL
TPM0_CH0
57
45
35
23
PTC2
ADC0_SE11/
TSI0_CH15
ADC0_SE11/
TSI0_CH15
PTC2
I2C1_SDA
TPM0_CH1
58
46
36
24
PTC3/
LLWU_P7
DISABLED
59
47
—
—
VSS
VSS
VSS
60
48
—
—
VDD
VDD
VDD
61
49
37
25
PTC4/
LLWU_P8
DISABLED
PTC4/
LLWU_P8
62
50
38
26
PTC5/
LLWU_P9
DISABLED
63
51
39
27
PTC6/
LLWU_P10
CMP0_IN0
PTC3/
LLWU_P7
CMP0_IN0
CMP0_OUT
UART1_RX
TPM0_CH2
SPI0_PCS0
UART1_TX
TPM0_CH3
PTC5/
LLWU_P9
SPI0_SCK
LPTMR0_
ALT2
PTC6/
LLWU_P10
SPI0_MOSI
EXTRG_IN
CLKOUT
CMP0_OUT
SPI0_MISO
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
47
Pinout
80
64
LQFP LQFP
48
QFN
32
QFN
Pin Name
Default
ALT0
ALT1
ALT2
ALT3
64
52
40
28
PTC7
CMP0_IN1
CMP0_IN1
PTC7
SPI0_MISO
65
53
—
—
PTC8
CMP0_IN2
CMP0_IN2
PTC8
I2C0_SCL
TPM0_CH4
66
54
—
—
PTC9
CMP0_IN3
CMP0_IN3
PTC9
I2C0_SDA
TPM0_CH5
67
55
—
—
PTC10
DISABLED
PTC10
I2C1_SCL
68
56
—
—
PTC11
DISABLED
PTC11
I2C1_SDA
ALT4
ALT5
ALT7
SPI0_MOSI
69
—
—
—
PTC12
DISABLED
PTC12
TPM_CLKIN0
70
—
—
—
PTC13
DISABLED
PTC13
TPM_CLKIN1
71
—
—
—
PTC16
DISABLED
PTC16
72
—
—
—
PTC17
DISABLED
PTC17
73
57
41
—
PTD0
DISABLED
PTD0
SPI0_PCS0
TPM0_CH0
74
58
42
—
PTD1
ADC0_SE5b
PTD1
SPI0_SCK
TPM0_CH1
75
59
43
—
PTD2
DISABLED
PTD2
SPI0_MOSI
UART2_RX
TPM0_CH2
SPI0_MISO
76
60
44
—
PTD3
DISABLED
PTD3
SPI0_MISO
UART2_TX
TPM0_CH3
SPI0_MOSI
77
61
45
29
PTD4/
LLWU_P14
DISABLED
PTD4/
LLWU_P14
SPI1_PCS0
UART2_RX
TPM0_CH4
78
62
46
30
PTD5
ADC0_SE6b
ADC0_SE6b
PTD5
SPI1_SCK
UART2_TX
TPM0_CH5
79
63
47
31
PTD6/
LLWU_P15
ADC0_SE7b
ADC0_SE7b
PTD6/
LLWU_P15
SPI1_MOSI
UART0_RX
SPI1_MISO
80
64
48
32
PTD7
DISABLED
PTD7
SPI1_MISO
UART0_TX
SPI1_MOSI
ADC0_SE5b
ALT6
8.2 KL25 Pinouts
The below figures show the pinout diagrams for the devices supported by this document.
Many signals may be multiplexed onto a single pin. To determine what signals can be
used on which pin, see the previous section.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
48
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC17
PTC16
PTC13
PTC12
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
Pinout
VOUT33
11
50
PTB11
VREGIN
12
49
PTB10
PTE20
13
48
PTB9
PTE21
14
47
PTB8
PTE22
15
46
PTB3
PTE23
16
45
PTB2
VDDA
17
44
PTB1
VREFH
18
43
PTB0/LLWU_P5
VREFL
19
42
RESET_b
VSSA
20
41
PTA19
40
PTB16
PTA18
51
39
10
VSS
USB0_DM
38
PTB17
VDD
52
37
9
PTA17
USB0_DP
36
PTB18
PTA16
53
35
8
PTA15
VSS
34
PTB19
PTA14
54
33
7
PTA13
VDD
PTA12
PTC0
32
55
31
6
PTA5
PTE5
30
PTC1/LLWU_P6/RTC_CLKIN
PTA4
56
29
5
PTA3
PTE4
28
PTC2
PTA2
57
27
4
PTA1
PTE3
26
PTC3/LLWU_P7
PTA0
58
25
3
PTE25
PTE2
24
VSS
PTE24
59
23
2
PTE31
PTE1
22
VDD
PTE30
60
21
1
PTE29
PTE0
Figure 17. KL25 80-pin LQFP pinout diagram
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
49
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC11
PTC10
PTC9
PTC8
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
Pinout
PTB18
PTE20
9
40
PTB17
PTE21
10
39
PTB16
PTE22
11
38
PTB3
PTE23
12
37
PTB2
VDDA
13
36
PTB1
VREFH
14
35
PTB0/LLWU_P5
VREFL
15
34
RESET_b
VSSA
16
33
PTA19
PTA18
32
41
31
8
VSS
VREGIN
30
PTB19
VDD
42
29
7
PTA13
VOUT33
28
PTC0
PTA12
43
27
6
PTA5
USB0_DM
26
PTC1/LLWU_P6/RTC_CLKIN
PTA4
44
25
5
PTA3
USB0_DP
24
PTC2
PTA2
45
23
4
PTA1
VSS
22
PTC3/LLWU_P7
PTA0
46
21
3
PTE25
VDD
20
VSS
PTE24
47
19
2
PTE31
PTE1
18
VDD
PTE30
48
17
1
PTE29
PTE0
Figure 18. KL25 64-pin LQFP pinout diagram
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
50
Freescale Semiconductor, Inc.
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTD3
PTD2
PTD1
PTD0
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
48
47
46
45
44
43
42
41
40
39
38
37
Pinout
PTE20
7
30
PTB3
PTE21
8
29
PTB2
VDDA
9
28
PTB1
VREFH
10
27
PTB0/LLWU_P5
VREFL
11
26
RESET_b
VSSA
12
25
PTA19
24
PTB16
PTA18
31
23
6
VSS
VREGIN
22
PTB17
VDD
32
21
5
PTA4
VOUT33
20
PTC0
PTA3
33
19
4
PTA2
USB0_DM
18
PTC1/LLWU_P6/RTC_CLKIN
PTA1
34
17
3
PTA0
USB0_DP
16
PTC2
PTE25
35
15
2
PTE24
VSS
14
PTC3/LLWU_P7
PTE30
36
13
1
PTE29
VDD
Figure 19. KL25 48-pin QFN pinout diagram
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
Freescale Semiconductor, Inc.
51
PTD7
PTD6/LLWU_P15
PTD5
PTD4/LLWU_P14
PTC7
PTC6/LLWU_P10
PTC5/LLWU_P9
PTC4/LLWU_P8
32
31
30
29
28
27
26
25
Revision History
21
PTB1
VOUT33
5
20
PTB0/LLWU_P5
VREGIN
6
19
RESET_b
VDDA
7
18
PTA19
VSSA
8
17
PTA18
PTA0
PTE30
16
4
VSS
USB0_DM
15
PTC1/LLWU_P6/RTC_CLKIN
VDD
22
14
3
PTA4
USB0_DP
13
PTC2
PTA3
23
12
2
PTA2
VSS
11
PTC3/LLWU_P7
PTA1
24
10
1
9
PTE0
Figure 20. KL25 32-pin QFN pinout diagram
9 Revision History
The following table provides a revision history for this document.
Table 30. Revision History
Rev. No.
Date
Substantial Changes
1
7/2012
Initial NDA release.
2
9/2012
Completed all the TBDs, initial public release.
3
9/2012
Updated Signal Multiplexing and Pin Assignments table to add UART2
signals.
KL25 Sub-Family Data Sheet Data Sheet, Rev. 3, 9/19/2012.
52
Freescale Semiconductor, Inc.
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
Document Number: KL25P80M48SF0
Rev. 3, 9/19/2012
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.
For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© 2012 Freescale Semiconductor, Inc.