TI SN74LVTH16543DGGR

SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
D
D
D
D
D
D
D
D
D
D
D
D
Members of the Texas Instruments
Widebus  Family
State-of-the-Art Advanced BiCMOS
Technology (ABT) Design for 3.3-V
Operation and Low Static-Power
Dissipation
Support Mixed-Mode Signal Operation (5-V
Input and Output Voltages With 3.3-V VCC)
Support Unregulated Battery Operation
Down to 2.7 V
Ioff and Power-Up 3-State Support Hot
Insertion
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Typical VOLP (Output Ground Bounce)
< 0.8 V at VCC = 3.3 V, TA = 25°C
Distributed VCC and GND Pin Configuration
Minimizes High-Speed Switching Noise
Flow-Through Architecture Optimizes PCB
Layout
Latch-Up Performance Exceeds 500 mA Per
JESD 17
ESD Protection Exceeds 2000 V Per
MIL-STD-883, Method 3015; Exceeds 200 V
Using Machine Model (C = 200 pF, R = 0)
Package Options Include Plastic Shrink
Small-Outline (DL) and Thin Shrink
Small-Outline (DGG) Packages and 380-mil
Fine-Pitch Ceramic Flat (WD) Package
Using 25-mil Center-to-Center Spacings
SN54LVTH16543 . . . WD PACKAGE
SN74LVTH16543 . . . DGG OR DL PACKAGE
(TOP VIEW)
1OEAB
1LEAB
1CEAB
GND
1A1
1A2
VCC
1A3
1A4
1A5
GND
1A6
1A7
1A8
2A1
2A2
2A3
GND
2A4
2A5
2A6
VCC
2A7
2A8
GND
2CEAB
2LEAB
2OEAB
1
56
2
55
3
54
4
53
5
52
6
51
7
50
8
49
9
48
10
47
11
46
12
45
13
44
14
43
15
42
16
41
17
40
18
39
19
38
20
37
21
36
22
35
23
34
24
33
25
32
26
31
27
30
28
29
1OEBA
1LEBA
1CEBA
GND
1B1
1B2
VCC
1B3
1B4
1B5
GND
1B6
1B7
1B8
2B1
2B2
2B3
GND
2B4
2B5
2B6
VCC
2B7
2B8
GND
2CEBA
2LEBA
2OEBA
description
The ’LVTH16543 devices are 16-bit registered transceivers designed for low-voltage (3.3-V) VCC operation, but
with the capability to provide a TTL interface to a 5-V system environment. These devices can be used as two
8-bit transceivers or one 16-bit transceiver. Separate latch-enable (LEAB or LEBA) and output-enable (OEAB
or OEBA) inputs are provided for each register to permit independent control in either direction of data flow.
The A-to-B enable (CEAB) input must be low to enter data from A or to output data from B. If CEAB is low and
LEAB is low, the A-to-B latches are transparent; a subsequent low-to-high transition of LEAB puts the A latches
in the storage mode. With CEAB and OEAB both low, the 3-state B outputs are active and reflect the data present
at the output of the A latches. Data flow from B to A is similar but requires using the CEBA, LEBA, and OEBA
inputs.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus is a trademark of Texas Instruments Incorporated.
Copyright  1999, Texas Instruments Incorporated
UNLESS OTHERWISE NOTED this document contains PRODUCTION
DATA information current as of publication date. Products conform to
specifications per the terms of Texas Instruments standard warranty.
Production processing does not necessarily include testing of all
parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
description (continued)
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry
disables the outputs, preventing damaging current backflow through the devices when they are powered down.
The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
The SN54LVTH16543 is characterized for operation over the full military temperature range of –55°C to 125°C.
The SN74LVTH16543 is characterized for operation from –40°C to 85°C.
FUNCTION TABLE†
(each 8-bit section)
INPUTS
CEAB
LEAB
OEAB
A
OUTPUT
B
H
X
X
X
Z
X
X
H
X
Z
L
H
L
X
L
L
L
L
B0‡
L
L
L
L
H
H
† A-to-B data flow is shown; B-to-A flow control is the
same except that it uses CEBA, LEBA, and OEBA.
‡ Output level before the indicated steady-state
input conditions were established
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
logic symbol†
1OEBA
1CEBA
1LEBA
1OEAB
1CEAB
1LEAB
2OEBA
2CEBA
2LEBA
2OEAB
2CEAB
56
54
55
1
3
2
29
31
30
28
26
27
2LEAB
1A1
1EN3
G1
1C5
2EN4
G2
2C6
7EN9
G7
7C11
8EN10
G8
8C12
5
3
6D
1A2
1A3
1A4
1A5
1A6
1A7
1A8
2A1
6
2A3
2A4
2A5
2A6
2A7
2A8
4
52
51
8
49
9
48
10
47
12
45
13
44
14
43
15
9
12D
2A2
5D
16
11D
10
42
41
17
40
19
38
20
37
21
36
23
34
24
33
1B1
1B2
1B3
1B4
1B5
1B6
1B7
1B8
2B1
2B2
2B3
2B4
2B5
2B6
2B7
2B8
† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
logic diagram (positive logic)
1OEBA
1CEBA
1LEBA
1OEAB
1CEAB
1LEAB
1A1
56
54
55
1
3
2
C1
5
1D
52
1B1
C1
1D
To Seven Other Channels
2OEBA
2CEBA
2LEBA
2OEAB
2CEAB
2LEAB
2A1
29
31
30
28
26
27
C1
15
1D
C1
1D
To Seven Other Channels
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
42
2B1
SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Voltage range applied to any output in the high-impedance
or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 7 V
Voltage range applied to any output in the high state, VO (see Note 1) . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V
Current into any output in the low state, IO: SN54LVTH16543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA
SN74LVTH16543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH16543 . . . . . . . . . . . . . . . . . . . . . 48 mA
SN74LVTH16543 . . . . . . . . . . . . . . . . . . . . . 64 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA
Package thermal impedance, θJA (see Note 3): DGG package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W
DL package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and VO > VCC.
3. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 4)
SN54LVTH16543
SN74LVTH16543
MIN
MAX
MIN
MAX
2.7
3.6
2.7
3.6
UNIT
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
0.8
0.8
V
Input voltage
5.5
5.5
V
IOH
IOL
High-level output current
–24
–32
mA
Low-level output current
48
64
mA
∆t/∆v
Input transition rise or fall rate
∆t/∆VCC
TA
Power-up ramp rate
200
Operating free-air temperature
–55
High-level input voltage
2
Outputs enabled
2
10
V
10
–40
ns/V
µs/V
200
125
V
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
VCC = 2.7 V,
VCC = 2.7 V to 3.6 V,
II = –18 mA
IOH = –100 µA
VCC = 2.7 V,
IOH = –8 mA
IOH = –24 mA
VCC = 3 V
7V
VCC = 2
2.7
VOL
VCC = 3 V
Control inputs
Ioff
II(hold)
(
)
A or B ports
MIN
–1.2
VCC–0.2
2.4
–1.2
VCC–0.2
2.4
0.2
IOL = 24 mA
IOL = 16 mA
0.5
0.5
0.4
0.4
IOL = 32 mA
IOL = 48 mA
0.5
0.5
0.55
VI = 5.5 V
VI = 5.5 V
10
10
20
20
VCC = 3.6 V
VI = VCC
VI = 0
1
1
VCC = 0,
VI or VO = 0 to 4.5 V
VI = 0.8 V
IOZPD
VCC = 1.5 V to 0, VO = 0.5 V to 3 V,
OE = don’t care
ICC
VCC = 3.6 V,
IO = 0,
VI = VCC or GND
V
0.55
IOL = 64 mA
VI = VCC or GND
IOZPU
V
2
0.2
±1
VCC = 3 V
UNIT
V
2
IOH = –32 mA
IOL = 100 µA
VI = 2 V
VCC = 3.6 V§,
VI = 0 to 3.6 V
VCC = 0 to 1.5 V, VO = 0.5 V to 3 V,
OE = don’t care
–5
µA
–5
±100
75
75
–75
–75
µA
µA
±500
Outputs high
Outputs low
Outputs disabled
∆ICC¶
VCC = 3 V to 3.6 V, One input at VCC – 0.6 V,
Other inputs at VCC or GND
Ci
VI = 3 V or 0
VO = 3 V or 0
Cio
SN74LVTH16543
TYP†
MAX
MIN
±1
VCC = 3.6 V,
VCC = 0 or 3.6 V,
II
A or B ports‡
SN54LVTH16543
TYP†
MAX
TEST CONDITIONS
±100*
± 100
µA
±100*
±100
µA
0.19
0.19
5
5
0.19
0.19
0.2
0.2
mA
mA
4
4
pF
10
10
pF
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ Unused pins at VCC or GND
§ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
¶ This is the increase in supply current for each input that is at the specified TTL voltage level rather than VCC or GND.
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
timing requirements over recommended operating free-air temperature range (unless otherwise
noted) (see Figure 1)
SN54LVTH16543
VCC = 3.3 V
± 0.3 V
MIN
tw
tsu
th
Pulse duration, LEAB or LEBA low
VCC = 2.7 V
MIN
MAX
MIN
MAX
VCC = 2.7 V
MIN
3.3
3.3
3.3
3.3
A or B before
LEAB↑ or LEBA↑
Data high
0.5
0.5
0.5
0.5
Data low
0.8
1.3
0.8
1.3
A or B before
CEAB↑ or CEBA↑
Data high
0
0
0
0
Data low
0.6
1.1
0.6
1.1
A or B after
LEAB↑ or LEBA↑
Data high
1.5
0.7
1.5
0.7
Data low
1.2
1.3
1.2
1.3
A or B after
CEAB↑ or CEBA↑
Data high
1.7
0.9
1.7
0.9
Data low
1.6
1.8
1.6
1.8
Setup time
Hold time
MAX
SN74LVTH16543
VCC = 3.3 V
± 0.3 V
UNIT
MAX
ns
ns
ns
switching characteristics over recommended operating free-air temperature range, CL = 50 pF
(unless otherwise noted) (see Figure 1)
SN54LVTH16543
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
A or B
B or A
tPLH
tPHL
LE
A or B
tPZH
tPZL
OE
A or B
tPHZ
tPLZ
OE
A or B
tPZH
tPZL
CE
A or B
tPHZ
tPLZ
CE
A or B
VCC = 3.3 V
± 0.3 V
SN74LVTH16543
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MAX
MIN
TYP†
MAX
3.4
3.9
1.2
2.3
3.2
3.7
1.1
3.4
3.9
1.2
2.1
3.2
3.7
1.2
4.1
5.1
1.3
2.5
3.9
4.9
1.2
4.1
5.1
1.3
2.3
3.9
4.9
1.2
4.5
5.6
1.3
2.8
4.3
5.4
1.2
4.5
5.6
1.3
2.8
4.3
5.4
1.9
4.9
5.4
2
3.5
4.7
5.2
1.9
4.6
4.7
2
3.3
4.4
4.5
1.2
4.7
5.8
1.3
3
4.5
5.6
1.2
4.7
5.8
1.3
3
4.5
5.6
1.9
5.1
5.6
2
3.6
4.9
5.4
1.9
4.9
5.1
2
3.5
4.7
4.9
MIN
MAX
1.1
MIN
MIN
UNIT
MAX
ns
ns
ns
ns
ns
ns
† All typical values are at VCC = 3.3 V, TA = 25°C.
PRODUCT PREVIEW information concerns products in the formative or
design phase of development. Characteristic data and other
specifications are design goals. Texas Instruments reserves the right to
change or discontinue these products without notice.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
SN54LVTH16543, SN74LVTH16543
3.3-V ABT 16-BIT REGISTERED TRANSCEIVERS
WITH 3-STATE OUTPUTS
SCBS699D – JULY 1997 – REVISED APRIL 1999
PARAMETER MEASUREMENT INFORMATION
6V
500 Ω
From Output
Under Test
S1
GND
CL = 50 pF
(see Note A)
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
Open
500 Ω
2.7 V
1.5 V
Timing Input
LOAD CIRCUIT
0V
tw
tsu
2.7 V
Input
1.5 V
1.5 V
th
2.7 V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
1.5 V
Input
1.5 V
0V
tPLH
tPHL
VOH
1.5 V
Output
1.5 V
VOL
tPHL
Output
Waveform 1
S1 at 6 V
(see Note B)
1.5 V
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
0V
tPZL
tPLZ
3V
1.5 V
tPZH
tPLH
VOH
Output
2.7 V
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH – 0.3 V
VOH
≈0V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
31-Jul-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
74LVTH16543DGGRE4
ACTIVE
TSSOP
DGG
56
2000
74LVTH16543DLRG4
ACTIVE
SSOP
DL
56
SN74LVTH16543DGGR
ACTIVE
TSSOP
DGG
SN74LVTH16543DL
ACTIVE
SSOP
SN74LVTH16543DLG4
ACTIVE
SN74LVTH16543DLR
ACTIVE
Pb-Free
(RoHS)
Lead/Ball Finish
MSL Peak Temp (3)
CU NIPDAU
Level-1-250C-UNLIM
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
56
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
DL
56
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SSOP
DL
56
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SSOP
DL
56
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Jul-2007
TAPE AND REEL INFORMATION
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
Device
16-Jul-2007
Package Pins
Site
Reel
Diameter
(mm)
Reel
Width
(mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SN74LVTH16543DGGR
DGG
56
MLA
330
24
8.6
15.8
1.8
12
24
Q1
SN74LVTH16543DLR
DL
56
MLA
330
32
11.35
18.67
3.1
16
32
Q1
TAPE AND REEL BOX INFORMATION
Device
Package
Pins
Site
Length (mm)
Width (mm)
Height (mm)
SN74LVTH16543DGGR
DGG
56
MLA
333.2
333.2
31.75
SN74LVTH16543DLR
DL
56
MLA
346.0
346.0
49.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO001C – JANUARY 1995 – REVISED DECEMBER 2001
DL (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0.025 (0,635)
0.0135 (0,343)
0.008 (0,203)
48
0.005 (0,13) M
25
0.010 (0,25)
0.005 (0,13)
0.299 (7,59)
0.291 (7,39)
0.420 (10,67)
0.395 (10,03)
Gage Plane
0.010 (0,25)
1
0°–ā8°
24
0.040 (1,02)
A
0.020 (0,51)
Seating Plane
0.110 (2,79) MAX
0.004 (0,10)
0.008 (0,20) MIN
PINS **
28
48
56
A MAX
0.380
(9,65)
0.630
(16,00)
0.730
(18,54)
A MIN
0.370
(9,40)
0.620
(15,75)
0.720
(18,29)
DIM
4040048 / E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
Falls within JEDEC MO-118
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998
DGG (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
48 PINS SHOWN
0,27
0,17
0,50
48
0,08 M
25
6,20
6,00
8,30
7,90
0,15 NOM
Gage Plane
1
0,25
24
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
48
56
64
A MAX
12,60
14,10
17,10
A MIN
12,40
13,90
16,90
DIM
4040078 / F 12/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated