Rev. 1.3, May. 2012 M378B5173BH0 M378B1G73BH0 M391B1G73BH0 240pin Unbuffered DIMM based on 4Gb B-die 78FBGA with Lead-Free & Halogen-Free (RoHS compliant) datasheet SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND SPECIFICATIONS WITHOUT NOTICE. Products and specifications discussed herein are for reference purposes only. All information discussed herein is provided on an "AS IS" basis, without warranties of any kind. This document and all information discussed herein remain the sole and exclusive property of Samsung Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property right is granted by one party to the other party under this document, by implication, estoppel or otherwise. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply. For updates or additional information about Samsung products, contact your nearest Samsung office. All brand names, trademarks and registered trademarks belong to their respective owners. ⓒ 2012 Samsung Electronics Co., Ltd. All rights reserved. -1- Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM Revision History Revision No. History Draft Date Remark Editor 1.0 - First SPEC. Release May. 2011 - J.Y.Lee 1.1 - Changed timing parameters(Setup/Hold time) Jul. 2011 - J.Y.Lee 1.2 - Changed Input/Output Capacitance on page 23 Jan. 2012 - J.Y.Lee - Corrected Typo 1.21 - Corrected Typo (tCKmin) Mar. 2012 - J.Y.Lee 1.3 - Added Module line up (4GB NON ECC UDIMM) May. 2012 - J.Y.Lee - Added IDD(1866Mbps) values -2- Unbuffered DIMM datasheet Rev. 1.3 DDR3 SDRAM Table Of Contents 240pin Unbuffered DIMM based on 4Gb B-die 1. DDR3 Unbuffered DIMM Ordering Information ............................................................................................................. 4 2. Key Features................................................................................................................................................................. 4 3. Address Configuration .................................................................................................................................................. 4 4. x64 DIMM Pin Configurations (Front side/Back side) ................................................................................................... 5 5. x72 DIMM Pin Configurations (Front side/Back side) ................................................................................................... 6 6. Pin Description ............................................................................................................................................................. 7 7. SPD and Thermal Sensor for ECC UDIMMs ................................................................................................................ 7 8. Input/Output Functional Description.............................................................................................................................. 8 8.1 Address Mirroring Feature ....................................................................................................................................... 9 8.1.1. DRAM Pin Wiring Mirroring .............................................................................................................................. 9 9. Function Block Diagram: ............................................................................................................................................... 10 9.1 4GB, 512Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................... 10 9.2 8GB, 1Gx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ....................................................... 11 9.3 8GB, 1Gx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ............................................................... 12 10. Absolute Maximum Ratings ........................................................................................................................................ 13 10.1 Absolute Maximum DC Ratings............................................................................................................................. 13 10.2 DRAM Component Operating Temperature Range .............................................................................................. 13 11. AC & DC Operating Conditions................................................................................................................................... 13 11.1 Recommended DC Operating Conditions (SSTL-15)............................................................................................ 13 12. AC & DC Input Measurement Levels .......................................................................................................................... 14 12.1 AC & DC Logic Input Levels for Single-ended Signals .......................................................................................... 14 12.2 VREF Tolerances.................................................................................................................................................... 15 12.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 16 12.3.1. Differential Signals Definition ......................................................................................................................... 16 12.3.2. Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................................. 16 12.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 17 12.3.4. Differential Input Cross Point Voltage ............................................................................................................ 18 12.4 Slew Rate Definition for Single Ended Input Signals ............................................................................................. 18 12.5 Slew rate definition for Differential Input Signals ................................................................................................... 18 13. AC & DC Output Measurement Levels ....................................................................................................................... 19 13.1 Single Ended AC and DC Output Levels ............................................................................................................... 19 13.2 Differential AC and DC Output Levels ................................................................................................................... 19 13.3 Single-ended Output Slew Rate ............................................................................................................................ 19 13.4 Differential Output Slew Rate ................................................................................................................................ 20 14. DIMM IDD specification definition ............................................................................................................................... 21 15. IDD SPEC Table ......................................................................................................................................................... 23 16. Input/Output Capacitance ........................................................................................................................................... 25 17. Electrical Characteristics and AC timing ..................................................................................................................... 26 17.1 Refresh Parameters by Device Density................................................................................................................. 26 17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 26 17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 26 17.3.1. Speed Bin Table Notes .................................................................................................................................. 30 18. Timing Parameters by Speed Grade .......................................................................................................................... 31 18.1 Jitter Notes ............................................................................................................................................................ 37 18.2 Timing Parameter Notes........................................................................................................................................ 38 19. Physical Dimensions................................................................................................................................................... 39 19.1 512Mbx8 based 512M x64 Module (1 Rank) - M378B5173BH0 ........................................................................... 39 19.2 512Mbx8 based 1Gx64/x72 Module (2 Ranks) - M378/91B1G73BH0 .................................................................. 40 -3- Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 1. DDR3 Unbuffered DIMM Ordering Information Part Number2 Density Organization Component Composition1 Number of Rank Height M378B5173BH0-CH9/K0/MA 4GB 512Mx64 512Mx8(K4B4G0846B-HC##)*8 1 30mm M378B1G73BH0-CF8/H9/K0/MA 8GB 1Gx64 512Mx8(K4B4G0846B-HC##)*16 2 30mm M391B1G73BH0-CF8/H9/K0/MA 8GB 1Gx72 512Mx8(K4B4G0846B-HC##)*18 2 30mm NOTE : 1. "##" - F8/H9/K0/MA 2. F8 - 1066Mbps 7-7-7/ H9 - 1333Mbps 9-9-9 / K0 - 1600Mbps 11-11-11 / MA - 1866Mbps 13-13-13 - DDR3-1866(13-13-13) is backward compatible to DDR3-1600(11-11-11), DDR3-1333(9-9-9), DDR3-1066(7-7-7) - DDR3-1600(11-11-11) is backward compatible to DDR3-1333(9-9-9), DDR3-1066(7-7-7) - DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7) 2. Key Features Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 6-6-6 7-7-7 9-9-9 11-11-11 13-13-13 Unit tCK(min) 2.5 1.875 1.5 1.25 1.071 ns CAS Latency 6 7 9 11 13 nCK tRCD(min) 15 13.125 13.5 13.75 13.91 ns tRP(min) 15 13.125 13.5 13.75 13.91 ns tRAS(min) 37.5 37.5 36 35 34 ns tRC(min) 52.5 50.625 49.5 48.75 47.91 ns • JEDEC standard 1.5V ± 0.075V Power Supply • VDDQ = 1.5V ± 0.075V • 400MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin, 933MHz fCK for 1866Mb/sec/pin • 8 independent internal bank • Programmable CAS Latency: 6,7,8,9,10,11,13 • Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock • Programmable CAS Write Latency(CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333), 8 (DDR3-1600) and 9 (DDR3-1866) • Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or write [either On the fly using A12 or MRS] • Bi-directional Differential Data Strobe • On Die Termination using ODT pin • Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE ≤ 95°C • Asynchronous Reset 3. Address Configuration Organization Row Address Column Address Bank Address Auto Precharge 512Mx8(4Gb) based Module A0-A15 A0-A9 BA0-BA2 A10/AP -4- Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 4. x64 DIMM Pin Configurations (Front side/Back side) Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back 1 VREFDQ 121 VSS 42 NC 162 NC 82 DQ33 202 VSS 2 VSS 122 DQ4 43 NC 163 VSS 83 VSS 203 DM4 3 DQ0 123 DQ5 44 VSS 164 NC 84 DQS4 204 NC 4 DQ1 124 VSS 45 NC 165 NC 85 DQS4 205 VSS 5 VSS 125 DM0 46 NC 166 VSS 86 VSS 206 DQ38 6 DQS0 126 NC 47 VSS 167 NC (TEST)3 87 DQ34 207 DQ39 7 DQS0 127 VSS 48 NC 168 Reset 88 DQ35 208 VSS 8 VSS 128 DQ6 89 VSS 209 DQ44 9 DQ2 129 DQ7 49 NC 169 CKE1,NC1 90 DQ40 210 DQ45 10 DQ3 130 VSS 50 CKE0 170 VDD 91 DQ41 211 VSS 11 VSS 131 DQ12 51 VDD 171 A15 92 VSS 212 DM5 12 DQ8 132 DQ13 52 BA2 172 A14 93 DQS5 213 NC 13 DQ9 133 VSS 53 NC 173 VDD 94 DQS5 214 VSS 14 VSS 134 DM1 54 VDD 174 A12/BC 95 VSS 215 DQ46 15 DQS1 135 NC 55 A11 175 A9 96 DQ42 216 DQ47 16 DQS1 136 VSS 56 A7 176 VDD 97 DQ43 217 VSS 17 VSS 137 DQ14 57 VDD 177 A8 98 VSS 218 DQ52 18 DQ10 138 DQ15 58 A5 178 A6 99 DQ48 219 DQ53 19 DQ11 139 VSS 59 A4 179 VDD 100 DQ49 220 VSS 20 VSS 140 DQ20 60 VDD 180 A3 101 VSS 221 DM6 21 DQ16 141 DQ21 61 A2 181 A1 102 DQS6 222 NC 22 DQ17 142 VSS 62 VDD 182 VDD 103 DQS6 223 VSS 23 VSS 143 DM2 63 CK1,NC 183 VDD 104 VSS 224 DQ54 24 DQS2 144 NC 64 CK1,NC 184 CK0 105 DQ50 225 DQ55 25 DQS2 145 VSS 65 VDD 185 CK0 106 DQ51 226 VSS KEY 26 VSS 146 DQ22 66 VDD 186 VDD 107 VSS 227 DQ60 27 DQ18 147 DQ23 67 VREFCA 187 NC 108 DQ56 228 DQ61 28 DQ19 148 VSS 68 NC 188 A0 109 DQ57 229 VSS 29 VSS 149 DQ28 69 VDD 189 VDD 110 VSS 230 DM7 30 DQ24 150 DQ29 70 A10/AP 190 BA1 111 DQS7 231 NC 31 DQ25 151 VSS 71 BA0 191 VDD 112 DQS7 232 VSS 32 VSS 152 DM3 72 VDD 192 RAS 113 VSS 233 DQ62 DQ63 33 DQS3 153 NC 73 WE 193 S0 114 DQ58 234 34 DQS3 154 VSS 74 CAS 194 VDD 115 DQ59 235 VSS 35 VSS 155 DQ30 75 VDD 195 ODT0 116 VSS 236 VDDSPD 36 DQ26 156 DQ31 76 S1, NC1 196 A13 117 SA0 237 SA1 37 DQ27 157 VSS 77 ODT1, NC 197 VDD 118 SCL 238 SDA 38 VSS 158 NC 78 VDD 198 NC 119 SA2 239 VSS 39 NC 159 NC 79 NC 199 VSS 120 VTT 240 VTT 80 VSS 200 DQ36 81 DQ32 201 DQ37 40 NC 160 VSS 41 VSS 161 NC 1 NOTE : NC = No Connect; NU = Not Used; RFU = Reserved Future Use 1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs 2. CK1,NC and CK1,NC : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated 3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs) SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice. -5- Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 5. x72 DIMM Pin Configurations (Front side/Back side) Pin Front Pin Back Pin Front Pin Back Pin Front Pin Back 1 VREFDQ 121 VSS 42 DQS8 162 NC 82 DQ33 202 VSS 2 VSS 122 DQ4 43 DQS8 163 VSS 83 VSS 203 DM4 3 DQ0 123 DQ5 44 VSS 164 CB6 84 DQS4 204 NC 4 DQ1 124 VSS 45 CB2 165 CB7 85 DQS4 205 VSS 5 VSS 125 DM0 46 CB3 166 VSS 86 VSS 206 DQ38 6 DQS0 126 NC 47 VSS 167 NC (TEST)3 87 DQ34 207 DQ39 7 DQS0 127 VSS 48 NC 168 Reset 88 DQ35 208 VSS 8 VSS 128 DQ6 89 VSS 209 DQ44 9 DQ2 129 DQ7 49 NC 169 CKE1,NC1 90 DQ40 210 DQ45 10 DQ3 130 VSS 50 CKE0 170 VDD 91 DQ41 211 VSS 11 VSS 131 DQ12 51 VDD 171 A15 92 VSS 212 DM5 12 DQ8 132 DQ13 52 BA2 172 A14 93 DQS5 213 NC 13 DQ9 133 VSS 53 NC 173 VDD 94 DQS5 214 VSS 14 VSS 134 DM1 54 VDD 174 A12/BC 95 VSS 215 DQ46 15 DQS1 135 NC 55 A11 175 A9 96 DQ42 216 DQ47 16 DQS1 136 VSS 56 A7 176 VDD 97 DQ43 217 VSS 17 VSS 137 DQ14 57 VDD 177 A8 98 VSS 218 DQ52 18 DQ10 138 DQ15 58 A5 178 A6 99 DQ48 219 DQ53 19 DQ11 139 VSS 59 A4 179 VDD 100 DQ49 220 VSS 20 VSS 140 DQ20 60 VDD 180 A3 101 VSS 221 DM6 21 DQ16 141 DQ21 61 A2 181 A1 102 DQS6 222 NC 22 DQ17 142 VSS 62 VDD 182 VDD 103 DQS6 223 VSS 23 VSS 143 DM2 63 CK1,NC 183 VDD 104 VSS 224 DQ54 24 DQS2 144 NC 64 CK1,NC 184 CK0 105 DQ50 225 DQ55 25 DQS2 145 VSS 65 VDD 185 CK0 106 DQ51 226 VSS KEY 26 VSS 146 DQ22 66 VDD 186 VDD 107 VSS 227 DQ60 27 DQ18 147 DQ23 67 VREFCA 187 EVENT 108 DQ56 228 DQ61 28 DQ19 148 VSS 68 NC 188 A0 109 DQ57 229 VSS 29 VSS 149 DQ28 69 VDD 189 VDD 110 VSS 230 DM7 30 DQ24 150 DQ29 70 A10/AP 190 BA1 111 DQS7 231 NC 31 DQ25 151 VSS 71 BA0 191 VDD 112 DQS7 232 VSS 32 VSS 152 DM3 72 VDD 192 RAS 113 VSS 233 DQ62 DQ63 33 DQS3 153 NC 73 WE 193 S0 114 DQ58 234 34 DQS3 154 VSS 74 CAS 194 VDD 115 DQ59 235 VSS 35 VSS 155 DQ30 75 VDD 195 ODT0 116 VSS 236 VDDSPD 36 DQ26 156 DQ31 76 S1, NC1 196 A13 117 SA0 237 SA1 37 DQ27 157 VSS 77 ODT1, NC 197 VDD 118 SCL 238 SDA 38 VSS 158 CB4 78 VDD 198 NC 119 SA2 239 VSS 39 CB0 159 CB5 79 NC 199 VSS 120 VTT 240 VTT 80 VSS 200 DQ36 81 DQ32 201 DQ37 40 CB1 160 VSS 41 VSS 161 DM8 1 NOTE : NC = No Connect; NU = Not Used; RFU = Reserved Future Use 1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs 2. CK1,NC and CK1,NC : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated 3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs) SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice. -6- Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 6. Pin Description Pin Name Description Pin Name Description A0-A15 SDRAM address bus SCL I2C serial bus clock for EEPROM BA0-BA2 SDRAM bank select SDA I2C serial bus data line for EEPROM RAS SDRAM row address strobe SA0-SA2 I2C serial address select for EEPROM CAS SDRAM column address strobe VDD* SDRAM core power supply WE SDRAM write enable VDDQ* SDRAM I/O Driver power supply S0, S1 DIMM Rank Select Lines VREFDQ SDRAM I/O reference supply CKE0,CKE1 SDRAM clock enable lines VREFCA SDRAM command/address reference supply ODT0, ODT1 On-die termination control lines VSS Power supply return (ground) DQ0 - DQ63 DIMM memory data bus VDDSPD Serial EEPROM positive power supply CB0 - CB7 DIMM ECC check bits NC Spare Pins(no connect) DQS0 - DQS8 SDRAM data strobes (positive line of differential pair) TEST Used by memory bus analysis tools (unused on memory DIMMs) DQS0-DQS8 SDRAM differential data strobes (negative line of differential pair) RESET Set DRAMs Known State DM0-DM8 SDRAM data masks/high data strobes (x8-based x72 DIMMs) EVENT Reserved for optional temperature-sensing hardware CK0, CK1 SDRAM clocks (positive line of differential pair) VTT SDRAM I/O termination supply CK0, CK1 SDRAM clocks (negative line of differential pair) RFU Reserved for future use NOTE : *The VDD and VDDQ pins are tied common to a single power-plane on these designs. ** DQS8, DQS8, DM8 arefor ECC UDIMM only 7. SPD and Thermal Sensor for ECC UDIMMs On DIMM thermal sensor will provide DRAM temperature readout through a integrated thermal sensor. SCL SDA EVENT WP/EVENT R1 0Ω R2 0Ω SA0 SA1 SA2 SA0 SA1 SA2 NOTE : 1. Raw Cards D (1Rx8 ECC) and E (2Rx8 ECC) support a thermal sensor. 2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not. When only the SPD is placed on the module, R2 is placed but R1 is not. [ Table 1 ] Temperature Sensor Characteristics Temperature Sensor Accuracy Grade Range 75 < Ta < 95 - +/- 0.5 +/- 1.0 B 40 < Ta < 125 - +/- 1.0 +/- 2.0 -20 < Ta < 125 - +/- 2.0 +/- 3.0 Min. Resolution Typ. 0.25 -7- Max. Units NOTE - °C - °C /LSB - - datasheet Unbuffered DIMM Rev. 1.3 DDR3 SDRAM 8. Input/Output Functional Description Symbol Type Function CK0-CK1 CK0-CK1 SSTL CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of crossing) CKE0-CKE1 SSTL Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low initiates the Power Down mode, or the Self-Refresh mode S0-S1 SSTL Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the command decoder is disabled, new command are ignored but previous operations continue. This signal provides for external rank selection on systems with multiple ranks. RAS, CAS, WE SSTL RAS, CAS, and WE (ALONG WITH S) define the command being entered. ODT0-ODT1 SSTL When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming the function is enabled in the Extended Mode Register Set (EMRS). VREFDQ Supply Reference voltage for SSTL 15 I/O inputs. VREFCA Supply Reference voltage for SSTL 15 command/address inputs. VDDQ Supply Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ shares the same power plane as VDD pins. BA0-BA2 SSTL Selects which SDRAM bank of eight is activated. A0-A15 SSTL During a Bank Activate command cycle, Address input defines the row address (RA0-RA13) During a Read or Write command cycle, Address input defines the column address, In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop; Low, burst chopped). DQ0-DQ63 CB0-CB7 SSTL Data and Check Bit Input/Output pins. DM0-DM81 SSTL DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches the DQ and DQS loading. VDD,VSS Supply DQS0-DQS8 Power and ground for DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on these modules. 1 DQS0-DQS81 SSTL Data strobe for input and output data. These signals and tied at the system planar to either VSS or VDDSPD to configure the serial SPD EERPOM address SA0-SA2 - SDA - This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected from the SDA bus line to VDDSPD to act as a pull-up on the system board. SCL - This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL bus time to VDDSPD to act as a pull-up on the system board. VDDSPD Supply RESET - EVENT Output range. Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable from 3.0V to 3.6V. The RESET pin is connected to the RESET pin on each DRAM. When low, all DRAMs are set to a know state. This signal indicates that a thermal event has been detected in the thermal sensing device. The system should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part NOTE : 1. DM8, DQS8 and DQS8 are for ECC UDIMM only -8- Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 8.1 Address Mirroring Feature There is a via grid located under the DRAMs for wiring the CA signals (address, bank address, command, and control lines) to the DRAM pins. The length of the traces from the vias to the DRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces. The pins on the DRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5, A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 DRAM pins are wired straight, with no mismatch between the connector pin assignment and the DRAM pin assignment. Some of the Rank 1 DRAM pins are cross wired as defined in the table. Pins not listed in the table are wired straight. 8.1.1 DRAM Pin Wiring Mirroring Connector Pin DRAM Pin Rank 0 Rank 1 A3 A3 A4 A4 A4 A3 A5 A5 A6 A6 A6 A5 A7 A7 A8 A8 A8 A7 BA0 BA0 BA1 BA1 BA1 BA0 Figure 1illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the DRAM pins, is obviously shorter. The via grid is smaller as well. Figure 1. Wiring Differences for Mirrored and Non-Mirrored Addresses Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. See the DDR3 UDIMM SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the second rank. SAMSUNG DDR3 dual rank UDIMM R/C B(2Rx8) and R/C E(2Rx8) Modules are using Mirrored Addresses mode. -9- Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 9. Function Block Diagram: 9.1 4GB, 512Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DM DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 D0 ZQ DQS1 DQS1 DM1 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D4 ZQ DQS5 DQS5 DM5 DM DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 D1 ZQ DQS2 DQS2 DM2 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D5 ZQ DQS6 DQS6 DM6 DM DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 D2 ZQ DQS3 DQS3 DM3 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D6 ZQ DQS7 DQS7 DM7 DM DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 NU/ CS DQS DQS DM DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 D3 ZQ I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D7 ZQ Serial PD SCL BA0 - BA2 A0 - A13 RAS BA0-BA2 : SDRAMs D0 - D7 A0-A13 : SDRAMs D0 - D7 RAS : SDRAMs D0 - D7 CAS CAS : SDRAMs D0 - D7 CKE0 CKE : SDRAMs D0 - D7 WE ODT0 CK0 WE : SDRAMs D0 - D7 ODT : SDRAMs D0 - D7 CK : SDRAMs D0 - D7 SDA WP A0 A1 A2 SA0 SA1 SA2 VDDSPD NOTE : 1. For each DRAM, a unique ZQ resistor is connected to ground. The ZQ resistor is 240 Ohm +/- 1% 2. One SPD exists per module. SPD VDD/VDDQ D0 - D7 VREFDQ D0 - D7 VSS D0 - D7 VREFCA D0 - D7 - 10 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 9.2 8GB, 1Gx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) S1 S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D0 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS ZQ DQS1 DQS1 DM1 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D1 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS CS DQS DQS D4 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D12 ZQ D9 ZQ I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D5 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D13 ZQ DQS6 DQS6 DM6 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D2 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 D10 ZQ DQS3 DQS3 DM3 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D6 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D14 ZQ DQS7 DQS7 DM7 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D3 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 BA0-BA2 : SDRAMs D0 - D15 A0-A15 : SDRAMs D0 - D15 CKE1 CKE : SDRAMs D8 - D15 CKE0 CKE : SDRAMs D0 - D7 RAS RAS : SDRAMs D0 - D15 CAS CAS : SDRAMs D0 - D15 WE WE : SDRAMs D0 - D15 ODT0 ODT : SDRAMs D0 - D7 ODT1 DM DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 DQS2 DQS2 DM2 A0 - A15 I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 DQS5 DQS5 DM5 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 BA0 - BA2 DM DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 D8 ODT : SDRAMs D8 - D15 CK0 CK : SDRAMs D0 - D7 CK1 CK : SDRAMs D8 - D15 CS DQS DQS DM DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 D11 ZQ I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 Serial PD SCL SDA WP A0 A1 A2 SA0 SA1 SA2 VDDSPD SPD VDD/VDDQ D0 - D15 VREFDQ D0 - D15 VSS D0 - D15 VREFCA D0 - D15 - 11 - CS DQS DQS D7 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D15 ZQ NOTE : 1. For each DRAM, a unique ZQ resistor is connected to ground. The ZQ resistor is 240 Ohm +/- 1% 2. One SPD exists per module. Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 9.3 8GB, 1Gx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) S1 S0 DQS0 DQS0 DM0 DQS4 DQS4 DM4 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D0 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ32 DQ33 DQ34 DQ35 DQ36 DQ37 DQ38 DQ39 D9 ZQ DQS1 DQS1 DM1 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D4 ZQ CS DQS DQS D13 ZQ DQS5 DQS5 DM5 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D1 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ40 DQ41 DQ42 DQ43 DQ44 DQ45 DQ46 DQ47 D10 ZQ DQS2 DQS2 DM2 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D5 ZQ CS DQS DQS D14 ZQ DQS6 DQS6 DM6 DQ16 DQ17 DQ18 DQ19 DQ20 DQ21 DQ22 DQ23 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D2 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ48 DQ49 DQ50 DQ51 DQ52 DQ53 DQ54 DQ55 D11 ZQ DQS3 DQS3 DM3 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D6 ZQ CS DQS DQS D15 ZQ DQS7 DQS7 DM7 DQ24 DQ25 DQ26 DQ27 DQ28 DQ29 DQ30 DQ31 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D3 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DQ56 DQ57 DQ58 DQ59 DQ60 DQ61 DQ62 DQ63 D12 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 D7 ZQ CS DQS DQS D16 ZQ DQS8 DQS8 DM8 Serial PD CB0 CB1 CB2 CB3 CB4 CB5 CB6 CB7 BA0 - BA2 A0 - A15 DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS D8 ZQ DM I/O 0 I/O 1 I/O 2 I/O 3 I/O 4 I/O 5 I/O 6 I/O 7 CS DQS DQS SCL D17 EVENT SDA EVENT A0 A1 A2 SA0 SA2 SA1 ZQ BA0-BA2 : SDRAMs D0 - D17 A0-A15 : SDRAMs D0 - D17 CKE1 CKE : SDRAMs D9 - D17 CKE0 CKE : SDRAMs D0 - D8 RAS RAS : SDRAMs D0 - D17 CAS CAS : SDRAMs D0 - D17 WE WE : SDRAMs D0 - D17 ODT0 ODT : SDRAMs D0 - D8 ODT1 ODT : SDRAMs D9 - D17 CK0 CK : SDRAMs D0 - D8 CK1 CK : SDRAMs D9 - D17 VDDSPD SPD VDD/VDDQ D0 - D17 VREFDQ D0 - D17 VSS D0 - D17 VREFCA D0 - D17 - 12 - NOTE : 1. For each DRAM, a unique ZQ resistor is connected to ground. The ZQ resistor is 240 Ohm +/- 1% 2. Refer to "SPD and Thermal sensor for ECC UDIMMs" for SPD detail. Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 10. Absolute Maximum Ratings 10.1 Absolute Maximum DC Ratings Symbol Parameter Rating Units NOTE VDD Voltage on VDD pin relative to VSS -0.4 V ~ 1.975 V V 1,3 VDDQ Voltage on VDDQ pin relative to VSS -0.4 V ~ 1.975 V V 1,3 VIN, VOUT Voltage on any pin relative to VSS -0.4 V ~ 1.975 V V 1 TSTG Storage Temperature -55 to +100 °C 1, 2 NOTE : 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. 10.2 DRAM Component Operating Temperature Range Symbol Parameter rating Unit NOTE TOPER Operating Temperature Range 0 to 95 °C 1, 2, 3 NOTE : 1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions 3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us. b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range. 11. AC & DC Operating Conditions 11.1 Recommended DC Operating Conditions (SSTL-15) Symbol VDD VDDQ Parameter Rating Units NOTE 1.575 V 1,2 1.575 V 1,2 Min. Typ. Max. Supply Voltage 1.425 1.5 Supply Voltage for Output 1.425 1.5 NOTE: 1. Under all conditions VDDQ must be less than or equal to VDD. 2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together. - 13 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 12. AC & DC Input Measurement Levels 12.1 AC & DC Logic Input Levels for Single-ended Signals [ Table 2 ] Single-ended AC & DC input levels for Command and Address Symbol DDR3-800/1066/1333/1600 Parameter DDR3-1866 Unit NOTE VDD mV 1,5 VSS VREF - 100 mV 1,6 Note 2 - - mV 1,2,7 Min. Max. Min. Max. VIH.CA(DC100) DC input logic high VREF + 100 VDD VREF + 100 VIL.CA(DC100) DC input logic low VSS VREF - 100 VIH.CA(AC175) AC input logic high VREF + 175 Note 2 VIL.CA(AC175) VIL.CA(AC150) VREF - 175 - - mV 1,2,8 VREF+150 Note 2 - - mV 1,2,7 AC input logic low VIH.CA(AC150) AC input logic high Note 2 VREF-150 - - mV 1,2,8 VIH.CA(AC135) AC input logic high - - VREF + 135 Note 2 mV 1,2,7 VIL.CA(AC135) - - Note 2 VREF - 135 mV 1,2,8 VIH.CA(AC125) AC input logic high - - VREF+125 Note 2 mV 1,2,7 VIL.CA(AC125) - - Note 2 VREF-125 mV 1,2,8 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 VREFCA(DC) AC input logic low AC input logic low AC input logic low Reference Voltage for ADD, CMD inputs NOTE : 1. For input only pins except RESET, VREF = VREFCA(DC) 2. See ’Overshoot/Undershoot Specification’ on page 18. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100) 7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135) and VIH.CA(AC125); VIH.CA(AC175) value is used when VREF + 175mV is referenced , VIH.CA(AC150) value is used when VREF + 150mV is referenced, VIH.CA(AC135) value is used when VREF + 135mV is referenced and VIH.CA(AC125) value is used when VREF + 125mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when VREF - 175mV is referenced, VIL.CA(AC150) value is used when VREF - 150mV is referenced, VIL.CA(AC135) value is used when VREF - 135mV is referenced and VIL.CA(AC125) value is used when VREF - 125mV is referenced. [ Table 3 ] Single-ended AC & DC input levels for DQ and DM Symbol Parameter DDR3-800/1066 Min. DDR3-1333/1600 Max. Min. DDR3-1866 Max. Min. Max. Unit NOTE VIH.DQ(DC100) DC input logic high VREF + 100 VDD VREF + 100 VDD VREF + 100 VDD mV 1,5 VIL.DQ(DC100) DC input logic low VSS VREF - 100 VSS VREF - 100 VSS VREF - 100 mV 1,6 VIH.DQ(AC175) AC input logic high VREF + 175 NOTE 2 - - - - mV 1,2,7 VIL.DQ(AC175) AC input logic low NOTE 2 VREF - 175 - - - - mV 1,2,8 VIH.DQ(AC150) AC input logic high VREF + 150 NOTE 2 VREF + 150 NOTE 2 - - mV 1,2,7 VIL.DQ(AC150) AC input logic low NOTE 2 VREF - 150 NOTE 2 VREF - 150 - - mV 1,2,8 VIH.DQ(AC135) AC input logic high - - - - VREF + 135 NOTE 2 mV 1,2,7 VIL.DQ(AC135) AC input logic low - - - - NOTE 2 VREF - 135 mV 1,2,8 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD 0.49*VDD 0.51*VDD V 3,4 VREFDQ(DC) Reference Voltage for DQ, DM inputs NOTE : 1. For input only pins except RESET, VREF = VREFDQ(DC) 2. See ’Overshoot/Undershoot Specification’ on page 18. 3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV) 4. For reference : approx. VDD/2 ± 15mV 5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100) 6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100) 7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) and VIH.DQ(AC135) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced, VIH.DQ(AC150) value is used when VREF + 150mV is referenced. 8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when VREF - 150mV is referenced. - 14 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 12.2 VREF Tolerances. The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 2. It shows a valid reference voltage VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise). VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD. voltage VDD VSS time Figure 2. Illustration of VREF(DC) tolerance and VREF ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF. "VREF" shall be understood as VREF(DC), as defined in Figure 2. This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise. Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings. - 15 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 12.3 AC and DC Logic Input Levels for Differential Signals 12.3.1 Differential Signals Definition tDVAC Differential Input Voltage (i.e. DQS-DQS, CK-CK) VIH.DIFF.AC.MIN VIH.DIFF.MIN 0.0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Figure 3. Definition of differential ac-swing and "time above ac level" tDVAC 12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) Symbol Parameter VIHdiff DDR3-800/1066/1333/1600/1866 unit NOTE NOTE 3 V 1 NOTE 3 -0.2 V 1 differential input high ac 2 x (VIH(AC) - VREF) NOTE 3 V 2 differential input low ac NOTE 3 2 x (VIL(AC) - VREF) V 2 min max differential input high +0.2 VILdiff differential input low VIHdiff(AC) VILdiff(AC) NOTE : 1. Used to define a differential signal slew-rate. 2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL need to be within the respective limits (VIH(DC) max, VIL(DC)min) for singleended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification" [ Table 4 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS. Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff(AC)| = 350mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 300mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 270mV tDVAC [ps] @ |VIH/Ldiff(AC)| = 250mV min max min max min max min max > 4.0 75 - 175 - TBD - TBD - 4.0 57 - 170 - TBD - TBD - 3.0 50 - 167 - TBD - TBD - 2.0 38 - 163 - TBD - TBD - 1.8 34 - 162 - TBD - TBD - 1.6 29 - 161 - TBD - TBD - 1.4 22 - 159 - TBD - TBD - 1.2 13 - 155 - TBD - TBD - 1.0 0 - 150 - TBD - TBD - < 1.0 0 - 150 - TBD - TBD - - 16 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 12.3.3 Single-ended Requirements for Differential Signals Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every half-cycle. DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD signals, then these ac-levels apply also for the single-ended signals CK and CK . VDD or VDDQ VSEH min VSEH VDD/2 or VDDQ/2 CK or DQS VSEL max VSEL VSS or VSSQ time Figure 4. Single-ended requirement for differential signals Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. [ Table 5 ] Single ended levels for CK, DQS, CK, DQS Symbol VSEH VSEL Parameter DDR3-800/1066/1333/1600/1866 Unit NOTE NOTE 3 V 1, 2 (VDD/2)+0.175 NOTE 3 V 1, 2 NOTE 3 (VDD/2)-0.175 V 1, 2 NOTE 3 (VDD/2)-0.175 V 1, 2 Min Max Single-ended high-level for strobes (VDD/2)+0.175 Single-ended high-level for CK, CK Single-ended low-level for strobes Single-ended low-level for CK, CK NOTE : 1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs. 2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here 3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification" - 17 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 12.3.4 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to the mid level between of VDD and VSS. VDD CK, DQS VIX VDD/2 VIX VIX CK, DQS VSS Figure 5. VIX Definition [ Table 6 ] Cross point voltage for differential input signals (CK, DQS) Symbol DDR3-800/1066/1333/1600/1866 Parameter VIX Differential Input Cross Point Voltage relative to VDD/2 for CK,CK VIX Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS Unit NOTE 150 mV 2 175 mV 1 150 mV 2 Min Max -150 -175 -150 NOTE : 1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2 ±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns. 2. The relation between VIX Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + VIX(Min) - VSEL ≥ 25mV VSEH - ((VDD/2) + VIX(Max)) ≥ 25mV 12.4 Slew Rate Definition for Single Ended Input Signals See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals. See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals. 12.5 Slew rate definition for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below. [ Table 7 ] Differential input slew rate definition Measured Description Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by From To VILdiffmax VIHdiffmin VIHdiffmin VILdiffmax NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds VIHdiffmin 0 VILdiffmax delta TRdiff delta TFdiff Figure 6. Differential input slew rate definition for DQS, DQS and CK, CK - 18 - VIHdiffmin - VILdiffmax Delta TRdiff VIHdiffmin - VILdiffmax Delta TFdiff Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 13. AC & DC Output Measurement Levels 13.1 Single Ended AC and DC Output Levels [ Table 8 ] Single Ended AC and DC output levels Symbol Parameter VOH(DC) DC output high measurement level (for IV curve linearity) DDR3-800/1066/1333/1600/1866 Units 0.8 x VDDQ V NOTE VOM(DC) DC output mid measurement level (for IV curve linearity) 0.5 x VDDQ V VOL(DC) DC output low measurement level (for IV curve linearity) 0.2 x VDDQ V VOH(AC) AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 VOL(AC) AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2. 13.2 Differential AC and DC Output Levels [ Table 9 ] Differential AC and DC output levels Symbol Parameter DDR3-800/1066/1333/1600/1866 Units NOTE VOHdiff(AC) AC differential output high measurement level (for output SR) +0.2 x VDDQ V 1 VOLdiff(AC) AC differential output low measurement level (for output SR) -0.2 x VDDQ V 1 NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test load of 25Ω to VTT=VDDQ/2 at each of the differential outputs. 13.3 Single-ended Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals as shown in below. [ Table 10 ] Single ended Output slew rate definition Measured Description Single ended output slew rate for rising edge From To VOL(AC) VOH(AC) VOH(AC) Single ended output slew rate for falling edge Defined by VOH(AC)-VOL(AC) Delta TRse VOH(AC)-VOL(AC) VOL(AC) Delta TFse NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 11 ] Single ended output slew rate Parameter Single ended output slew rate Symbol SRQse DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Min Max Min Max Min Max Min Max Min Max 2.5 5 2.5 5 2.5 5 2.5 5 2.5 51) Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) se : Single-ended Signals For Ron = RZQ/7 setting Units V/ns NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. - Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ signals in the same byte lane are static (i.e they stay at either high or low). - Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies. VOH(AC) VTT VOL(AC) delta TFse delta TRse Figure 7. Single-ended Output Slew Rate Definition - 19 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 13.4 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below. [ Table 12 ] Differential Output slew rate definition Measured Description Differential output slew rate for rising edge From To VOLdiff(AC) VOHdiff(AC) VOHdiff(AC) Differential output slew rate for falling edge Defined by VOHdiff(AC)-VOLdiff(AC) Delta TRdiff VOHdiff(AC)-VOLdiff(AC) VOLdiff(AC) Delta TFdiff NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test. [ Table 13 ] Differential Output slew rate Parameter Differential output slew rate Symbol SRQdiff DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Min Max Min Max Min Max Min Max Min Max 5 10 5 10 5 10 5 10 5 12 Description : SR : Slew Rate Q : Query Output (like in DQ, which stands for Data-in, Query-Output) diff : Differential Signals For Ron = RZQ/7 setting VOHdiff(AC) VTT VOLdiff(AC) delta TFdiff delta TRdiff Figure 8. Differential output slew rate definition - 20 - Units V/ns Unbuffered DIMM datasheet Rev. 1.3 DDR3 SDRAM 14. DIMM IDD specification definition Symbol Description IDD0 Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD1 Operating One Bank Active-Read-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD2N Precharge Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD2P0 Precharge Power-Down Current Slow Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3) IDD2P1 Precharge Power-Down Current Fast Exit CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3) IDD2Q Precharge Quiet Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 IDD3N Active Standby Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD3P Active Power-Down Current CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0 IDD4R Operating Burst Read Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD4W Operating Burst Write Current CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address, Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern IDD5B Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD6 Self Refresh Current: Normal Temperature Range TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING IDD6ET Self-Refresh Current: Extended Temperature Range (optional)6) TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK: LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING IDD7 Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern IDD8 RESET Low Current RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal : FLOATING - 21 - Unbuffered DIMM datasheet Rev. 1.3 DDR3 SDRAM NOTE : 1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B 2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B 3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit 4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature 5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range 6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device 7) IDD current measure method and detail patterns are described on DDR3 component datasheet 8) VDD and VDDQ are merged on module PCB. 9) DIMM IDD SPEC is measured with Qoff condition (IDDQ values are not considered) - 22 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 15. IDD SPEC Table M378B5173BH0 : 4GB(512MX64) Module Symbol CH9 (DDR3-1333@CL=9) CK0 (DDR3-1600@CL=11) CMA (DDR3-1866@CL=13) Unit IDD0 320 360 360 mA IDD1 400 440 440 mA IDD2P0(slow exit) 120 120 120 mA IDD2P1(fast exit) 120 120 120 mA IDD2N 160 160 160 mA IDD2Q 160 160 160 mA IDD3P 160 160 160 mA IDD3N 240 240 240 mA IDD4R 680 800 840 mA mA IDD4W 720 880 920 IDD5B 1160 1160 1160 mA IDD6 120 120 120 mA IDD7 1360 1400 1400 mA IDD8 120 120 120 mA NOTE M378B1G73BH0 : 8GB(1Gx64) Module Symbol CF8 (DDR3-1066@CL=7) CH9 (DDR3-1333@CL=9) CK0 (DDR3-1600@CL=11) CMA (DDR3-1866@CL=13) Unit NOTE IDD0 480 480 520 520 mA 1 IDD1 560 560 600 600 mA 1 IDD2P0(slow exit) 240 240 240 240 mA IDD2P1(fast exit) 240 240 240 240 mA IDD2N 320 320 320 320 mA IDD2Q 320 320 320 320 mA IDD3P 320 320 320 320 mA IDD3N 400 400 400 400 mA IDD4R 720 840 960 1000 mA 1 IDD4W 760 880 1040 1080 mA 1 IDD5B 1120 1320 1320 1320 mA 1 IDD6 240 240 240 240 mA IDD7 1200 1520 1560 1560 mA IDD8 240 240 240 240 mA NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N. - 23 - 1 Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM M391B1G73BH0 : 8GB(1Gx72) Module Symbol CF8 (DDR3-1066@CL=7) CH9 (DDR3-1333@CL=9) CK0 (DDR3-1600@CL=11) CMA (DDR3-1866@CL=13) Unit NOTE IDD0 540 540 585 585 mA 1 IDD1 630 630 675 675 mA 1 IDD2P0(slow exit) 270 270 270 270 mA IDD2P1(fast exit) 270 270 270 270 mA IDD2N 360 360 360 360 mA IDD2Q 360 360 360 360 mA IDD3P 360 360 360 360 mA IDD3N 450 450 450 450 mA IDD4R 810 945 1080 1125 mA 1 IDD4W 855 990 1170 1215 mA 1 IDD5B 1260 1485 1485 1485 mA 1 mA IDD6 270 270 270 270 IDD7 1350 1710 1755 1755 mA IDD8 270 270 270 270 mA NOTE : 1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N. - 24 - 1 Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 16. Input/Output Capacitance [ Table 14 ] Input/Output Capacitance DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Min Max Min Max Min Max Min Max Min Max CIO 1.4 3.0 1.4 2.7 1.4 2.5 1.4 2.3 1.4 CCK 0.8 1.6 0.8 1.6 0.8 1.4 0.8 1.4 CDCK 0 0.15 0 0.15 0 0.15 0 CI 0.75 1.4 0.75 1.35 0.75 1.3 CDDQS 0 0.2 0 0.2 0 CDI_CTRL -0.5 0.3 -0.5 0.3 CDI_ADD_CMD -0.5 0.5 -0.5 Input/output capacitance delta (DQ, DM, DQS, DQS, TDQS, TDQS) CDIO -0.5 0.3 Input/output capacitance of ZQ pin CZQ - 3 Parameter Symbol Input/output capacitance (DQ, DM, DQS, DQS, TDQS, TDQS) Input capacitance (CK and CK) Input capacitance delta (CK and CK) Input capacitance (All other input-only pins) Input capacitance delta (DQS and DQS) Input capacitance delta (All control input-only pins) Input capacitance delta (all ADD and CMD input-only pins) Units NOTE 2.2 pF 1,2,3 0.8 1.3 pF 2,3 0.15 0 0.15 pF 2,3,4 0.75 1.3 0.75 1.2 pF 2,3,6 0.15 0 0.15 0 0.15 pF 2,3,5 -0.4 0.2 -0.4 0.2 -0.4 0.2 pF 2,3,7,8 0.5 -0.4 0.4 -0.4 0.4 -0.4 0.4 pF 2,3,9,10 -0.5 0.3 -0.5 0.3 -0.5 0.3 -0.5 0.3 pF 2,3,11 - 3 - 3 - 3 - 3 pF 2, 3, 12 NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance. 1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS 2. This parameter is not subject to production test. It is verified by design and characterization. The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off. 3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here 4. Absolute value of CCK-CCK 5. Absolute value of CIO(DQS)-CIO(DQS) 6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE. 7. CDI_CTRL applies to ODT, CS and CKE 8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK)) 9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE 10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK)) 11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS)) 12. Maximum external load capacitance on ZQ pin: 5pF - 25 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 17. Electrical Characteristics and AC timing (0 °C<TCASE ≤95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V) 17.1 Refresh Parameters by Device Density Parameter Symbol 1Gb 2Gb 4Gb 8Gb Units tRFC All Bank Refresh to active/refresh cmd time Average periodic refresh interval tREFI 110 160 260 350 ns 0 °C ≤ TCASE ≤ 85°C 7.8 7.8 7.8 7.8 μs 85 °C < TCASE ≤ 95°C 3.9 3.9 3.9 3.9 μs NOTE 1 NOTE : 1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in this material. 17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin Speed DDR3-800 DDR3-1066 DDR3-1333 DDR3-1600 DDR3-1866 Bin (CL - tRCD - tRP) 6-6-6 7-7-7 9-9-9 11-11-11 13-13-13 Parameter min min min min min CL 6 7 9 11 13 tCK tRCD 15 13.13 13.5 13.75 13.91 ns tRP 15 13.13 13.5 13.75 13.91 ns tRAS 37.5 37.5 36 35 34 ns tRC 52.5 50.63 49.5 48.75 47.91 ns tRRD 10 7.5 6.0 6.0 5.0 ns tFAW 40 37.5 30 30 27 ns Units NOTE 17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. [ Table 15 ] DDR3-800 Speed Bins Speed DDR3-800 CL-nRCD-nRP Parameter Internal read command to first data ACT to internal read or write delay time 6-6-6 Units Symbol min max tAA 15 20 ns tRCD 15 - ns PRE command period tRP 15 - ns ACT to ACT or REF command period tRC 52.5 - ns tRAS 37.5 9*tREFI ns tCK(AVG) 2.5 3.3 ns ACT to PRE command period CL = 6 / CWL = 5 Supported CL Settings 6 nCK Supported CWL Settings 5 nCK - 26 - NOTE 1,2,3 Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 16 ] DDR3-1066 Speed Bins Speed DDR3-1066 CL-nRCD-nRP 7-7-7 Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period CL = 7 CL = 8 Symbol min max tAA 13.125 20 ns tRCD 13.125 - ns tRP 13.125 - ns NOTE tRC 50.625 - ns tRAS 37.5 9*tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,5 CWL = 6 tCK(AVG) ns 1,2,3,4 CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) ACT to PRE command period CL = 6 Units Reserved Reserved 1.875 <2.5 Reserved 1.875 <2.5 Supported CL Settings Supported CWL Settings ns 4 ns 1,2,3,4,9 ns 4 ns 1,2,3 6,7,8 nCK 5,6 nCK [ Table 17 ] DDR3-1333 Speed Bins Speed DDR3-1333 CL-nRCD-nRP 9 -9 - 9 Parameter Internal read command to first data ACT to internal read or write delay time PRE command period ACT to ACT or REF command period ACT to PRE command period CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 Units Symbol min max tAA 13.5 (13.125)9 20 ns (13.125)9 - ns tRP 13.5 (13.125)9 - ns tRC (49.125)9 tRCD 13.5 49.5 NOTE - ns 9*tREFI ns 3.3 ns 1,2,3,6 ns 1,2,3,4,6 Reserved ns 4 Reserved ns 4 ns 1,2,3,4,6 ns 1,2,3,4 tRAS 36 CWL = 5 tCK(AVG) 2.5 CWL = 6 tCK(AVG) Reserved CWL = 7 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) 1.875 <2.5 Reserved Reserved 1.875 <2.5 ns 4 ns 1,2,3,6 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6 tCK(AVG) Reserved ns 4 ns 1,2,3,4,9 ns 4 ns 1,2,3 CWL = 7 tCK(AVG) CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) 1.5 <1.875 Reserved 1.5 Supported CL Settings Supported CWL Settings - 27 - <1.875 6,7,8,9,10 nCK 5,6,7 nCK Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 18 ] DDR3-1600 Speed Bins Speed DDR3-1600 CL-nRCD-nRP 11-11-11 Parameter Units NOTE Symbol min max tAA 13.75 (13.125)9 20 ns tRCD 13.75 (13.125)9 - ns PRE command period tRP 13.75 (13.125)9 - ns ACT to ACT or REF command period tRC 48.75 (48.125)9 - ns tRAS 35 9*tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,7 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 7, 8 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 8 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,7 Intermal read command to first data ACT to internal read or write delay time ACT to PRE command period CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 CL = 11 1.875 <2.5 1.875 <2.5 CWL = 8 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6 tCK(AVG) Reserved ns 4 CWL = 7 tCK(AVG) ns 1,2,3,4,7 CWL = 8 tCK(AVG) ns 1,2,3,4 CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) 1.5 <1.875 Reserved Reserved 1.5 <1.875 ns 4 ns 1,2,3,7 CWL = 8 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6,7 tCK(AVG) Reserved ns 4 CWL = 8 tCK(AVG) ns 1,2,3,9 1.25 Supported CL Settings Supported CWL Settings - 28 - <1.5 6,7,8,9,10,11 nCK 5,6,7,8 nCK Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 19 ] DDR3-1866 Speed Bins Speed DDR3-1866 CL-nRCD-nRP 13-13-13 Parameter Units NOTE Symbol min max tAA 13.91 (13.125)10 20 ns tRCD 13.91 (13.125)10 - ns PRE command period tRP 13.91 (13.125)10 - ns ACT to ACT or REF command period tRC 47.91 (47.125)10 - ns tRAS 34 9*tREFI ns CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3,8 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,8 CWL = 7,8,9 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 ns 1,2,3,4,8 ns 4 Internal read command to first data ACT to internal read or write delay time ACT to PRE command period CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 CL = 11 CL = 12 CL = 13 CWL = 6 tCK(AVG) CWL = 7,8,9 tCK(AVG) CWL = 5 tCK(AVG) CWL = 6 tCK(AVG) 1.875 2.5 Reserved Reserved 1.875 <2.5 ns 4 ns 1,2,3,8 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4,8 CWL = 8,9 tCK(AVG) Reserved ns 4 CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) CWL = 8 tCK(AVG) CWL = 9 tCK(AVG) CWL = 5,6 tCK(AVG) CWL = 7 tCK(AVG) Reserved ns 4 ns 1,2,3,4,8 Reserved ns 4 Reserved ns 4 1.5 1.875 Reserved 1.5 <1.875 ns 4 ns 1,2,3,8 CWL = 8 tCK(AVG) Reserved ns 1,2,3,4,8 CWL = 5,6,7 tCK(AVG) Reserved ns 4 CWL = 8 tCK(AVG) ns 1,2,3,4,8 CWL = 9 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6,7,8 tCK(AVG) Reserved ns 4 CWL = 9 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5,6,7,8 tCK(AVG) CWL = 9 tCK(AVG) 1.25 1.5 Reserved 1.071 Supported CL Settings Supported CWL Settings - 29 - <1.25 ns 4 ns 1,2,3,9 6,7,8,9,10,11,13 nCK 5,6,7,8,9 nCK Unbuffered DIMM datasheet Rev. 1.3 DDR3 SDRAM 17.3.1 Speed Bin Table Notes Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V); NOTE : 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next "SupportedCL". 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED. 4. "Reserved" settings are not allowed. User must program a different value. 5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 8. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/ Characterization. 9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1866(CL13) devices supporting downshift to DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600 devices supporting down binning to DDR3-1333 or DDR3-1066 should program 13.125ns in SPD byte for tAAmin (Byte 16), tRCDmin (Byte 18) and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accodingly. For example, 49.125ns, (tRASmin + tRPmin = 36ns + 13.125ns) for DDR3-1333 and 48.125ns (tRASmin + tRPmin = 35ns + 13.125ns) for DDR31600. 10. For devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example, DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte16), tRCDmin(Byte18) and tRPmin (byte20). Once tRP (Byte20) is programmed to 13.125ns, tRCmin (Byte21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin = 34ns + 13.125ns) - 30 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 18. Timing Parameters by Speed Grade [ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.) Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 Symbol MIN MAX MIN MAX MIN MAX tCK(DLL_OFF) 8 - 8 - 8 - Units NOTE ns 6 Clock Timing Minimum Clock Cycle Time (DLL off mode) Average Clock Period tCK(avg) Clock Period tCK(abs) tCK(avg)min + tJIT(per)min tCK(avg)max + tJIT(per)max tCK(avg)min + tJIT(per)min tCK(avg)max + tJIT(per)max tCK(avg)min + tJIT(per)min tCK(avg)max + tJIT(per)max ps Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 0.47 0.53 tCK(avg) Clock Period Jitter tJIT(per) -100 100 -90 90 -80 80 ps tJIT(per, lck) -90 90 -80 80 -70 70 ps Clock Period Jitter during DLL locking period Cycle to Cycle Period Jitter ps See Speed Bins Table tJIT(cc) 200 180 160 Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 180 160 140 Cumulative error across 2 cycles tERR(2per) - 147 147 - 132 132 - 118 118 ps Cumulative error across 3 cycles tERR(3per) - 175 175 - 157 157 - 140 140 ps Cumulative error across 4 cycles tERR(4per) - 194 194 - 175 175 - 155 155 ps Cumulative error across 5 cycles tERR(5per) - 209 209 - 188 188 - 168 168 ps Cumulative error across 6 cycles tERR(6per) - 222 222 - 200 200 - 177 177 ps Cumulative error across 7 cycles tERR(7per) - 232 232 - 209 209 - 186 186 ps Cumulative error across 8 cycles tERR(8per) - 241 241 - 217 217 - 193 193 ps Cumulative error across 9 cycles tERR(9per) - 249 249 - 224 224 - 200 200 ps Cumulative error across 10 cycles tERR(10per) - 257 257 - 231 231 - 205 205 ps Cumulative error across 11 cycles tERR(11per) - 263 263 - 237 237 - 210 210 ps Cumulative error across 12 cycles tERR(12per) - 269 269 - 242 242 - 215 215 ps Cumulative error across n = 13, 14 ... 49, 50 cycles ps ps tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min tERR(nper)max = (1 + 0.68ln(n))*tJIT(per)max tERR(nper) ps 24 Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - 0.43 - tCK(avg) 25 Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - 0.43 - tCK(avg) 26 tDQSQ - 200 - 150 - 125 ps 13 tQH 0.38 - 0.38 - 0.38 - tCK(avg) 13, g DQ low-impedance time from CK, CK tLZ(DQ) -800 400 -600 300 -500 250 ps 13,14, f DQ high-impedance time from CK, CK tHZ(DQ) - 400 - 300 - 250 ps 13,14, f tDS(base) AC175 75 - 25 - - - ps d, 17 tDS(base) AC150 125 - 75 - 30 - ps d, 17 tDH(base) DC100 150 - 100 - 65 - ps d, 17 tDIPW 600 - 490 - 400 - ps 28 DQS, DQS differential READ Preamble tRPRE 0.9 NOTE 19 0.9 NOTE 19 0.9 NOTE 19 tCK(avg) 13, 19, g DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 0.3 NOTE 11 tCK(avg) 11, 13, b DQS, DQS differential output high time tQSH 0.38 - 0.38 - 0.4 - tCK(avg) 13, g DQS, DQS differential output low time tQSL 0.38 - 0.38 - 0.4 - tCK(avg) 13, g tWPRE 0.9 - 0.9 - 0.9 - tCK(avg) Data Timing DQS,DQS to DQ skew, per group, per access DQ output hold time from DQS, DQS Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels Data hold time to DQS, DQS referenced to VIH(DC)VIL(DC) levels DQ and DM Input pulse width for each input Data Strobe Timing DQS, DQS differential WRITE Preamble DQS, DQS differential WRITE Postamble tWPST 0.3 - 0.3 - 0.3 - tCK(avg) DQS, DQS rising edge output access time from rising CK, CK tDQSCK -400 400 -300 300 -255 255 ps 13,f DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -800 400 -600 300 -500 250 ps 13,14,f DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 400 - 300 - 250 ps 12,13,14 DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 0.45 0.55 tCK(avg) 29, 31 DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 0.45 0.55 tCK(avg) 30, 31 DQS, DQS rising edge to CK, CK rising edge tDQSS -0.25 0.25 -0.25 0.25 -0.25 0.25 tCK(avg) c DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.2 - 0.2 - 0.2 - tCK(avg) c, 32 DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.2 - 0.2 - 0.2 - tCK(avg) c, 32 - 31 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.) Speed Parameter DDR3-800 Symbol DDR3-1066 MIN MAX tDLLK 512 internal READ Command to PRECHARGE Command delay tRTP max (4nCK,7.5ns) Delay from start of internal write transaction to internal read command tWTR DDR3-1333 MIN MAX - 512 - max (4nCK,7.5ns) max (4nCK,7.5ns) - Units NOTE MIN MAX - 512 - - max (4nCK,7.5ns) - e max (4nCK,7.5ns) - max (4nCK,7.5ns) - e,18 Command and Address Timing DLL locking time WRITE recovery time nCK tWR 15 - 15 - 15 - ns Mode Register Set command cycle time tMRD 4 - 4 - 4 - nCK Mode Register Set command update delay tMOD max (12nCK,15ns) - max (12nCK,15ns) - max (12nCK,15ns) - tCCD 4 - 4 - 4 - 1 - CAS to CAS command delay Auto precharge write recovery + precharge time Multi-Purpose Register Recovery Time tDAL(min) tMPRR WR + roundup (tRP / tCK(AVG)) 1 - 1 - e nCK nCK 22 ns e tRAS ACTIVE to ACTIVE command period for 1KB page size tRRD max (4nCK,10ns) - max (4nCK,7.5ns) - max (4nCK,6ns) - e ACTIVE to ACTIVE command period for 2KB page size tRRD max (4nCK,10ns) - max (4nCK,10ns) - max (4nCK,7.5ns) - e Four activate window for 1KB page size tFAW 40 - 37.5 - 30 - ns e Four activate window for 2KB page size tFAW 50 - 50 - 45 - ns e tIS(base) AC175 200 - 125 - 65 - ps b,16 tIS(base) AC150 200+150 - 125+150 - 65+125 - ps b,16,27 tIH(base) DC100 275 - 200 - 140 - ps b,16 tIPW 900 - 780 - 620 - ps 28 Power-up and RESET calibration time tZQinitI 512 - 512 - 512 - nCK Normal operation Full calibration time tZQoper 256 - 256 - 256 - nCK Normal operation short calibration time tZQCS 64 - 64 - 64 - nCK tXPR max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - tXS max(5nCK,tRF C + 10ns) - max(5nCK,tRF C + 10ns) - max(5nCK,tRF C + 10ns) - tXSDLL tDLLK(min) - tDLLK(min) - tDLLK(min) - Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK - tCKE(min) + 1tCK - tCKE(min) + 1tCK - Valid Clock Requirement after Self Refresh Entry (SRE) or PowerDown Entry (PDE) tCKSRE max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - Valid Clock Requirement before Self Refresh Exit (SRX) or PowerDown Exit (PDX) or Reset Exit tCKSRX max(5nCK, 10ns) - max(5nCK, 10ns) - max(5nCK, 10ns) - Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels Command and Address hold time from CK, CK referenced to VIH(DC) / VIL(DC) levels Control & Address Input pulse width for each input See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 nCK ACTIVE to PRECHARGE command period Calibration Timing Reset Timing Exit Reset from CKE HIGH to a valid command Self Refresh Timing Exit Self Refresh to commands not requiring a locked DLL Exit Self Refresh to commands requiring a locked DLL - 32 - nCK 23 Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 Speed Parameter DDR3-800 DDR3-1066 DDR3-1333 Symbol MIN MAX MIN MAX MIN MAX Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL tXP max (3nCK, 7.5ns) - max (3nCK, 7.5ns) - max (3nCK,6ns) - Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL tXPDLL max (10nCK, 24ns) - max (10nCK, 24ns) - max (10nCK, 24ns) - tCKE max (3nCK, 7.5ns) - max (3nCK, 5.625ns) - max (3nCK, 5.625ns) - Units NOTE Power Down Timing CKE minimum pulse width Command pass disable delay 2 tCPDED 1 - 1 - 1 - nCK tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK(avg) 15 Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - 1 - nCK 20 Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - 1 - nCK 20 Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 - RL + 4 +1 - Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) tWRPDEN WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL+4+WR +1 - WL+4+WR+1 - WL+4+WR+1 - nCK 10 tWRPDEN WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - nCK 9 Timing of WRA command to Power Down entry (BC4MRS) tWRAPDEN WL +2 +WR +1 - WL +2 +WR +1 - WL +2 +WR +1 - nCK Timing of REF command to Power Down entry tREFPDEN 1 - 1 - 1 - Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) - tMOD(min) - ODT high time without write command or with write command and BC4 ODTH4 4 - 4 - 4 - nCK ODT high time with Write command and BL8 ODTH8 6 - 6 - 6 - nCK Asynchronous RTT turn-on delay (Power-Down with DLL frozen) tAONPD 2 8.5 2 8.5 2 8.5 ns Asynchronous RTT turn-off delay (Power-Down with DLL frozen) tAOFPD 2 8.5 2 8.5 2 8.5 ns RTT turn-on tAON -400 400 -300 300 -250 250 ps 7,f RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) 8,f RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 0.3 0.7 tCK(avg) f Power Down Entry to Exit Timing Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) 10 20,21 ODT Timing Write Leveling Timing First DQS/DQS rising edge after write leveling mode is programmed tWLMRD 40 - 40 - 40 - tCK(avg) 3 tWLDQSEN 25 - 25 - 25 - tCK(avg) 3 Write leveling setup time from rising CK, CK crossing to rising DQS, DQS crossing tWLS 325 - 245 - 195 - ps Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing tWLH 325 - 245 - 195 - ps Write leveling output delay tWLO 0 9 0 9 0 9 ns Write leveling output error tWLOE 0 2 0 2 0 2 ns DQS/DQS delay after write leveling mode is programmed - 33 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.) Speed Parameter DDR3-1600 DDR3-1866 Symbol MIN MAX MIN MAX tCK(DLL_OFF) 8 - 8 - Units NOTE ns 6 Clock Timing Minimum Clock Cycle Time (DLL off mode) Average Clock Period tCK(avg) Clock Period tCK(abs) tCK(avg)min + tJIT(per)min tCK(avg)max + tJIT(per)max tCK(avg)min + tJIT(per)min tCK(avg)max + tJIT(per)max ps Average high pulse width tCH(avg) 0.47 0.53 0.47 0.53 tCK(avg) Average low pulse width tCL(avg) 0.47 0.53 0.47 0.53 tCK(avg) Clock Period Jitter tJIT(per) -70 70 -60 60 ps tJIT(per, lck) -60 60 -50 50 ps Clock Period Jitter during DLL locking period Cycle to Cycle Period Jitter See Speed Bins Table ps tJIT(cc) 140 120 Cycle to Cycle Period Jitter during DLL locking period tJIT(cc, lck) 120 100 Cumulative error across 2 cycles tERR(2per) -103 103 -88 88 ps Cumulative error across 3 cycles tERR(3per) -122 122 -105 105 ps Cumulative error across 4 cycles tERR(4per) -136 136 -117 117 ps Cumulative error across 5 cycles tERR(5per) -147 147 -126 126 ps Cumulative error across 6 cycles tERR(6per) -155 155 -133 133 ps Cumulative error across 7 cycles tERR(7per) -163 163 -139 139 ps Cumulative error across 8 cycles tERR(8per) -169 169 -145 145 ps Cumulative error across 9 cycles tERR(9per) -175 175 -150 150 ps Cumulative error across 10 cycles tERR(10per) -180 180 -154 154 ps Cumulative error across 11 cycles tERR(11per) -184 184 -158 158 ps Cumulative error across 12 cycles tERR(12per) -188 188 -161 161 ps Cumulative error across n = 13, 14 ... 49, 50 cycles ps ps tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min tERR(nper)max = (1 + 0.68ln(n))*tJIT(per)max tERR(nper) ps 24 Absolute clock HIGH pulse width tCH(abs) 0.43 - 0.43 - tCK(avg) 25 Absolute clock Low pulse width tCL(abs) 0.43 - 0.43 - tCK(avg) 26 tDQSQ - 100 - 85 ps 13 tQH 0.38 - 0.38 - tCK(avg) 13, g DQ low-impedance time from CK, CK tLZ(DQ) -450 225 -390 195 ps 13,14, f DQ high-impedance time from CK, CK tHZ(DQ) - 225 - 195 ps 13,14, f tDS(base) AC150 10 - - - ps d, 17 tDS(base) AC135 - - 0 - ps d, 17 tDH(base) DC100 45 - 20 - ps d, 17 tDIPW 360 - 320 - ps 28 DQS, DQS differential READ Preamble tRPRE 0.9 NOTE 19 0.9 NOTE 19 tCK(avg) 13, 19, g DQS, DQS differential READ Postamble tRPST 0.3 NOTE 11 0.3 NOTE 11 tCK(avg) 11, 13, b DQS, DQS differential output high time tQSH 0.4 - 0.4 - tCK(avg) 13, g DQS, DQS differential output low time tQSL 0.4 - 0.4 - tCK(avg) 13, g tWPRE 0.9 - 0.9 - tCK(avg) Data Timing DQS,DQS to DQ skew, per group, per access DQ output hold time from DQS, DQS Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels Data hold time to DQS, DQS referenced to VIH(DC)VIL(DC) levels DQ and DM Input pulse width for each input Data Strobe Timing DQS, DQS differential WRITE Preamble DQS, DQS differential WRITE Postamble tWPST 0.3 - 0.3 - tCK(avg) DQS, DQS rising edge output access time from rising CK, CK tDQSCK -225 225 -195 195 ps 13,f DQS, DQS low-impedance time (Referenced from RL-1) tLZ(DQS) -450 225 -390 195 ps 13,14,f DQS, DQS high-impedance time (Referenced from RL+BL/2) tHZ(DQS) - 225 - 195 ps 12,13,14 DQS, DQS differential input low pulse width tDQSL 0.45 0.55 0.45 0.55 tCK(avg) 29, 31 DQS, DQS differential input high pulse width tDQSH 0.45 0.55 0.45 0.55 tCK(avg) 30, 31 DQS, DQS rising edge to CK, CK rising edge tDQSS -0.27 0.27 -0.27 0.27 tCK(avg) c DQS,DQS falling edge setup time to CK, CK rising edge tDSS 0.18 - 0.18 - tCK(avg) c, 32 DQS,DQS falling edge hold time to CK, CK rising edge tDSH 0.18 - 0.18 - tCK(avg) c, 32 - 34 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.) Speed Parameter DDR3-1600 Symbol DDR3-1866 MIN MAX tDLLK 512 internal READ Command to PRECHARGE Command delay tRTP max (4nCK,7.5ns) Delay from start of internal write transaction to internal read command tWTR Units NOTE MIN MAX - 512 - - max (4nCK,7.5ns) - e max (4nCK,7.5ns) - max (4nCK,7.5ns) - e,18 Command and Address Timing DLL locking time WRITE recovery time nCK tWR 15 - 15 - ns Mode Register Set command cycle time tMRD 4 - 4 - nCK Mode Register Set command update delay tMOD max (12nCK,15ns) - max (12nCK,15ns) - CAS to CAS command delay tCCD 4 - 4 - Auto precharge write recovery + precharge time Multi-Purpose Register Recovery Time ACTIVE to PRECHARGE command period WR + roundup (tRP / tCK(AVG)) tDAL(min) tMPRR tRAS 1 - 1 e nCK nCK - See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42 nCK 22 ns e ACTIVE to ACTIVE command period for 1KB page size tRRD max (4nCK,6ns) ACTIVE to ACTIVE command period for 2KB page size tRRD max (4nCK,7.5ns) - max (4nCK, 6ns) - Four activate window for 1KB page size tFAW 30 - 27 - ns e Four activate window for 2KB page size tFAW 40 - 35 - ns e tIS(base) AC175 45 - - - ps b,16 tIS(base) AC150 170 - - - ps b,16 tIS(base) AC135 - - 65 ps b,16 tIS(base) AC125 - - 150 - ps b,16,27 tIH(base) DC100 120 - 100 - ps b,16 tIPW 560 - 535 - ps 28 Power-up and RESET calibration time tZQinitI 512 - max(512nCK,640ns) - nCK Normal operation Full calibration time tZQoper 256 - max(256nCK,320ns) - nCK tZQCS 64 - max(64nCK,80ns) - nCK tXPR max(5nCK, tRFC + 10ns) - max(5nCK, tRFC + 10ns) - tXS max(5nCK,tRFC + 10ns) - max(5nCK,tRFC + 10ns) - Exit Self Refresh to commands requiring a locked DLL tXSDLL tDLLK(min) - tDLLK(min) - Minimum CKE low width for Self refresh entry to exit timing tCKESR tCKE(min) + 1tCK - tCKE(min) + 1nCK - Valid Clock Requirement after Self Refresh Entry (SRE) or PowerDown Entry (PDE) tCKSRE max(5nCK, 10ns) - max(5nCK, 10ns) - Valid Clock Requirement before Self Refresh Exit (SRX) or PowerDown Exit (PDX) or Reset Exit tCKSRX max(5nCK, 10ns) - max(5nCK, 10ns) - Command and Address setup time to CK, CK referenced to VIH(AC) / VIL(AC) levels Command and Address hold time from CK, CK referenced to VIH(DC) / VIL(DC) levels Control & Address Input pulse width for each input - max (4nCK, 5ns) - e e Calibration Timing Normal operation short calibration time Reset Timing Exit Reset from CKE HIGH to a valid command Self Refresh Timing Exit Self Refresh to commands not requiring a locked DLL - 35 - nCK 23 Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM [ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 Speed Parameter DDR3-1600 DDR3-1866 Symbol MIN MAX MIN MAX Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL frozen to commands not requiring a locked DLL tXP max (3nCK,6ns) - max(3nCK,6ns) - Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL tXPDLL max (10nCK, 24ns) - max(10nCK,24ns) - tCKE max (3nCK,5ns) - max(3nCK,5ns) - Units NOTE Power Down Timing CKE minimum pulse width Command pass disable delay 2 tCPDED 1 - 2 - nCK tPD tCKE(min) 9*tREFI tCKE(min) 9*tREFI tCK(avg) 15 Timing of ACT command to Power Down entry tACTPDEN 1 - 1 - nCK 20 Timing of PRE command to Power Down entry tPRPDEN 1 - 1 - nCK 20 Timing of RD/RDA command to Power Down entry tRDPDEN RL + 4 +1 - RL + 4 +1 - Timing of WR command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) tWRPDEN WL + 4 +(tWR/ tCK(avg)) - WL + 4 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL + 4 +WR +1 - WL + 4 +WR +1 - nCK 10 tWRPDEN WL + 2 +(tWR/ tCK(avg)) - WL + 2 +(tWR/ tCK(avg)) - nCK 9 tWRAPDEN WL +2 +WR +1 - WL +2 +WR +1 - nCK 10 Power Down Entry to Exit Timing Timing of WRA command to Power Down entry (BL8OTF, BL8MRS, BC4OTF) Timing of WR command to Power Down entry (BC4MRS) Timing of WRA command to Power Down entry (BC4MRS) Timing of REF command to Power Down entry tREFPDEN 1 - 1 - Timing of MRS command to Power Down entry tMRSPDEN tMOD(min) - tMOD(min) - 20,21 ODT high time without write command or with write command and BC4 ODTH4 4 - 4 - nCK ODT high time with Write command and BL8 ODTH8 6 - 6 - nCK Asynchronous RTT turn-on delay (Power-Down with DLL frozen) tAONPD 2 8.5 2 8.5 ns Asynchronous RTT turn-off delay (Power-Down with DLL frozen) ns ODT Timing tAOFPD 2 8.5 2 8.5 RTT turn-on tAON -225 225 -195 195 ps 7,f RTT_NOM and RTT_WR turn-off time from ODTLoff reference tAOF 0.3 0.7 0.3 0.7 tCK(avg) 8,f RTT dynamic change skew tADC 0.3 0.7 0.3 0.7 tCK(avg) f tWLMRD 40 - 40 - tCK(avg) 3 3 Write Leveling Timing First DQS/DQS rising edge after write leveling mode is programmed DQS/DQS delay after write leveling mode is programmed tWLDQSEN 25 - 25 - tCK(avg) Write leveling setup time from rising CK, CK crossing to rising DQS, DQS crossing tWLS 165 - 140 - ps Write leveling hold time from rising DQS, DQS crossing to rising CK, CK crossing tWLH 165 - 140 - ps Write leveling output delay tWLO 0 7.5 0 7.5 ns Write leveling output error tWLOE 0 2 0 2 ns - 36 - Unbuffered DIMM datasheet Rev. 1.3 DDR3 SDRAM 18.1 Jitter Notes Specific Note a Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm, another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min. Specific Note b These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is, these parameters should be met whether clock jitter is present or not. Specific Note c These parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the clock signal crossing. That is, these parameters should be met whether clock jitter is present or not. Specific Note d These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal (DQS, DQS) crossing. Specific Note e For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)}, which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter. Specific Note f When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = + 193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the min/max usage!) Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <= 12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12. Specific Note g When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min + tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) = tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/ max usage!) - 37 - Unbuffered DIMM datasheet Rev. 1.3 DDR3 SDRAM 18.2 Timing Parameter Notes 1. Actual value dependant upon measurement level definitions which are TBD. 2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands. 3. The max values are system dependent. 4. WR as programmed in mode register 5. Value must be rounded-up to next higher integer value 6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI. 7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet" 8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet". 9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer. 10. WR in clock cycles as programmed in MR0 11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing Diagram Datasheet. 12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated by TBD 13. Value is only valid for RON34 14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method. 15. tREFI depends on TOPER 16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals, VREF(DC) = VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC). See "Address/Command Setup, Hold and Derating" on component datasheet. 17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals, VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC). See "Data Setup, Hold and Slew Rate Derating" on component datasheet. 18. Start of internal write transaction is defined as follows ; For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL. For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL 19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram Datasheet" 20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down IDD spec will not be applied until finishing those operations. 21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet". 22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function. 23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters. One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula: ZQCorrection (TSens x Tdriftrate) + (VSens x Vdriftrate) where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities. For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as: 0.5 (1.5 x 1) + (0.15 x 15) = 0.133 ~ ~ 128ms 24. n = from 13 cycles to 50 cycles. This row defines 38 parameters. 25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge. 26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge. 27. The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR31333/1600 of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to account for the earlier reference point [(175mv - 150 mV) / 1 V/ns]. 28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC) 29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge. 30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge. 31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. 32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application. 33. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75ps for DDR3-1866 to accommodate for the lower alternate threshold of 125mV and another 10ps to account for the earlier reference point [(135mv - 125mV) / 1 V/ns]. - 38 - Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 19. Physical Dimensions 19.1 512Mbx8 based 512M x64 Module (1 Rank) - M378B5173BH0 Units : Millimeters 128.95 ECC SPD 17.30 9.50 N/A (for x64) 2.30 (for x72) 30.00 ± 0.15 (4X)3.00 ± 0.1 133.35 ± 0.15 (2) 2.50 54.675 A B 47.00 Max 4.0 71.00 2.50 ± 0.20 1.270 ± 0.10 5.00 0.80 ± 0.05 3.80 0.2 ± 0.15 1.50±0.10 1.00 2.50 Detail A Detail B The used device is 512M x8 DDR3 SDRAM, FBGA. DDR3 SDRAM Part NO : K4B4G0846B-HC∗∗ * NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified. - 39 - 2x 2.10 ± 0.15 Rev. 1.3 datasheet Unbuffered DIMM DDR3 SDRAM 19.2 512Mbx8 based 1Gx64/x72 Module (2 Ranks) - M378/91B1G73BH0 Units : Millimeters 128.95 ECC SPD 17.30 9.50 N/A (for x64) 2.30 (for x72) 30.00 ± 0.15 (4X)3.00 ± 0.1 133.35 ± 0.15 (2) 2.50 54.675 A B 47.00 Max 4.0 71.00 N/A (for x64) ECC (for x72) 2.50 ± 0.20 1.270 ± 0.10 5.00 0.80 ± 0.05 3.80 0.2 ± 0.15 1.50±0.10 1.00 2.50 Detail A Detail B The used device is 512M x8 DDR3 SDRAM, FBGA. DDR3 SDRAM Part NO : K4B4G0846B-HC∗∗ * NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified. - 40 - 2x 2.10 ± 0.15