SAMSUNG M378B1G73BH0

Rev. 1.3, May. 2012
M378B5173BH0
M378B1G73BH0
M391B1G73BH0
240pin Unbuffered DIMM
based on 4Gb B-die
78FBGA with Lead-Free & Halogen-Free
(RoHS compliant)
datasheet
SAMSUNG ELECTRONICS RESERVES THE RIGHT TO CHANGE PRODUCTS, INFORMATION AND
SPECIFICATIONS WITHOUT NOTICE.
Products and specifications discussed herein are for reference purposes only. All information discussed
herein is provided on an "AS IS" basis, without warranties of any kind.
This document and all information discussed herein remain the sole and exclusive property of Samsung
Electronics. No license of any patent, copyright, mask work, trademark or any other intellectual property
right is granted by one party to the other party under this document, by implication, estoppel or otherwise.
Samsung products are not intended for use in life support, critical care, medical, safety equipment, or
similar applications where product failure could result in loss of life or personal or physical harm, or any
military or defense application, or any governmental procurement to which special terms or provisions
may apply.
For updates or additional information about Samsung products, contact your nearest Samsung office.
All brand names, trademarks and registered trademarks belong to their respective owners.
ⓒ 2012 Samsung Electronics Co., Ltd. All rights reserved.
-1-
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
Revision History
Revision No.
History
Draft Date
Remark
Editor
1.0
- First SPEC. Release
May. 2011
-
J.Y.Lee
1.1
- Changed timing parameters(Setup/Hold time)
Jul. 2011
-
J.Y.Lee
1.2
- Changed Input/Output Capacitance on page 23
Jan. 2012
-
J.Y.Lee
- Corrected Typo
1.21
- Corrected Typo (tCKmin)
Mar. 2012
-
J.Y.Lee
1.3
- Added Module line up (4GB NON ECC UDIMM)
May. 2012
-
J.Y.Lee
- Added IDD(1866Mbps) values
-2-
Unbuffered DIMM
datasheet
Rev. 1.3
DDR3 SDRAM
Table Of Contents
240pin Unbuffered DIMM based on 4Gb B-die
1. DDR3 Unbuffered DIMM Ordering Information ............................................................................................................. 4
2. Key Features................................................................................................................................................................. 4
3. Address Configuration .................................................................................................................................................. 4
4. x64 DIMM Pin Configurations (Front side/Back side) ................................................................................................... 5
5. x72 DIMM Pin Configurations (Front side/Back side) ................................................................................................... 6
6. Pin Description ............................................................................................................................................................. 7
7. SPD and Thermal Sensor for ECC UDIMMs ................................................................................................................ 7
8. Input/Output Functional Description.............................................................................................................................. 8
8.1 Address Mirroring Feature ....................................................................................................................................... 9
8.1.1. DRAM Pin Wiring Mirroring .............................................................................................................................. 9
9. Function Block Diagram: ............................................................................................................................................... 10
9.1 4GB, 512Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs) ..................................................... 10
9.2 8GB, 1Gx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ....................................................... 11
9.3 8GB, 1Gx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs) ............................................................... 12
10. Absolute Maximum Ratings ........................................................................................................................................ 13
10.1 Absolute Maximum DC Ratings............................................................................................................................. 13
10.2 DRAM Component Operating Temperature Range .............................................................................................. 13
11. AC & DC Operating Conditions................................................................................................................................... 13
11.1 Recommended DC Operating Conditions (SSTL-15)............................................................................................ 13
12. AC & DC Input Measurement Levels .......................................................................................................................... 14
12.1 AC & DC Logic Input Levels for Single-ended Signals .......................................................................................... 14
12.2 VREF Tolerances.................................................................................................................................................... 15
12.3 AC and DC Logic Input Levels for Differential Signals .......................................................................................... 16
12.3.1. Differential Signals Definition ......................................................................................................................... 16
12.3.2. Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS) ............................................. 16
12.3.3. Single-ended Requirements for Differential Signals ...................................................................................... 17
12.3.4. Differential Input Cross Point Voltage ............................................................................................................ 18
12.4 Slew Rate Definition for Single Ended Input Signals ............................................................................................. 18
12.5 Slew rate definition for Differential Input Signals ................................................................................................... 18
13. AC & DC Output Measurement Levels ....................................................................................................................... 19
13.1 Single Ended AC and DC Output Levels ............................................................................................................... 19
13.2 Differential AC and DC Output Levels ................................................................................................................... 19
13.3 Single-ended Output Slew Rate ............................................................................................................................ 19
13.4 Differential Output Slew Rate ................................................................................................................................ 20
14. DIMM IDD specification definition ............................................................................................................................... 21
15. IDD SPEC Table ......................................................................................................................................................... 23
16. Input/Output Capacitance ........................................................................................................................................... 25
17. Electrical Characteristics and AC timing ..................................................................................................................... 26
17.1 Refresh Parameters by Device Density................................................................................................................. 26
17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin ................................................................ 26
17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin ................................................................. 26
17.3.1. Speed Bin Table Notes .................................................................................................................................. 30
18. Timing Parameters by Speed Grade .......................................................................................................................... 31
18.1 Jitter Notes ............................................................................................................................................................ 37
18.2 Timing Parameter Notes........................................................................................................................................ 38
19. Physical Dimensions................................................................................................................................................... 39
19.1 512Mbx8 based 512M x64 Module (1 Rank) - M378B5173BH0 ........................................................................... 39
19.2 512Mbx8 based 1Gx64/x72 Module (2 Ranks) - M378/91B1G73BH0 .................................................................. 40
-3-
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
1. DDR3 Unbuffered DIMM Ordering Information
Part Number2
Density
Organization
Component Composition1
Number of
Rank
Height
M378B5173BH0-CH9/K0/MA
4GB
512Mx64
512Mx8(K4B4G0846B-HC##)*8
1
30mm
M378B1G73BH0-CF8/H9/K0/MA
8GB
1Gx64
512Mx8(K4B4G0846B-HC##)*16
2
30mm
M391B1G73BH0-CF8/H9/K0/MA
8GB
1Gx72
512Mx8(K4B4G0846B-HC##)*18
2
30mm
NOTE :
1. "##" - F8/H9/K0/MA
2. F8 - 1066Mbps 7-7-7/ H9 - 1333Mbps 9-9-9 / K0 - 1600Mbps 11-11-11 / MA - 1866Mbps 13-13-13
- DDR3-1866(13-13-13) is backward compatible to DDR3-1600(11-11-11), DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1600(11-11-11) is backward compatible to DDR3-1333(9-9-9), DDR3-1066(7-7-7)
- DDR3-1333(9-9-9) is backward compatible to DDR3-1066(7-7-7)
2. Key Features
Speed
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
DDR3-1866
6-6-6
7-7-7
9-9-9
11-11-11
13-13-13
Unit
tCK(min)
2.5
1.875
1.5
1.25
1.071
ns
CAS Latency
6
7
9
11
13
nCK
tRCD(min)
15
13.125
13.5
13.75
13.91
ns
tRP(min)
15
13.125
13.5
13.75
13.91
ns
tRAS(min)
37.5
37.5
36
35
34
ns
tRC(min)
52.5
50.625
49.5
48.75
47.91
ns
• JEDEC standard 1.5V ± 0.075V Power Supply
• VDDQ = 1.5V ± 0.075V
• 400MHz fCK for 800Mb/sec/pin, 533MHz fCK for 1066Mb/sec/pin, 667MHz fCK for 1333Mb/sec/pin, 800MHz fCK for 1600Mb/sec/pin,
933MHz fCK for 1866Mb/sec/pin
• 8 independent internal bank
• Programmable CAS Latency: 6,7,8,9,10,11,13
• Programmable Additive Latency(Posted CAS) : 0, CL - 2, or CL - 1 clock
• Programmable CAS Write Latency(CWL) = 5 (DDR3-800), 6 (DDR3-1066), 7 (DDR3-1333), 8 (DDR3-1600) and 9 (DDR3-1866)
• Burst Length: 8 (Interleave without any limit, sequential with starting address “000” only), 4 with tCCD = 4 which does not allow seamless read or
write [either On the fly using A12 or MRS]
• Bi-directional Differential Data Strobe
• On Die Termination using ODT pin
• Average Refresh Period 7.8us at lower then TCASE 85°C, 3.9us at 85°C < TCASE ≤ 95°C
• Asynchronous Reset
3. Address Configuration
Organization
Row Address
Column Address
Bank Address
Auto Precharge
512Mx8(4Gb) based Module
A0-A15
A0-A9
BA0-BA2
A10/AP
-4-
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
4. x64 DIMM Pin Configurations (Front side/Back side)
Pin
Front
Pin
Back
Pin
Front
Pin
Back
Pin
Front
Pin
Back
1
VREFDQ
121
VSS
42
NC
162
NC
82
DQ33
202
VSS
2
VSS
122
DQ4
43
NC
163
VSS
83
VSS
203
DM4
3
DQ0
123
DQ5
44
VSS
164
NC
84
DQS4
204
NC
4
DQ1
124
VSS
45
NC
165
NC
85
DQS4
205
VSS
5
VSS
125
DM0
46
NC
166
VSS
86
VSS
206
DQ38
6
DQS0
126
NC
47
VSS
167
NC (TEST)3
87
DQ34
207
DQ39
7
DQS0
127
VSS
48
NC
168
Reset
88
DQ35
208
VSS
8
VSS
128
DQ6
89
VSS
209
DQ44
9
DQ2
129
DQ7
49
NC
169
CKE1,NC1
90
DQ40
210
DQ45
10
DQ3
130
VSS
50
CKE0
170
VDD
91
DQ41
211
VSS
11
VSS
131
DQ12
51
VDD
171
A15
92
VSS
212
DM5
12
DQ8
132
DQ13
52
BA2
172
A14
93
DQS5
213
NC
13
DQ9
133
VSS
53
NC
173
VDD
94
DQS5
214
VSS
14
VSS
134
DM1
54
VDD
174
A12/BC
95
VSS
215
DQ46
15
DQS1
135
NC
55
A11
175
A9
96
DQ42
216
DQ47
16
DQS1
136
VSS
56
A7
176
VDD
97
DQ43
217
VSS
17
VSS
137
DQ14
57
VDD
177
A8
98
VSS
218
DQ52
18
DQ10
138
DQ15
58
A5
178
A6
99
DQ48
219
DQ53
19
DQ11
139
VSS
59
A4
179
VDD
100
DQ49
220
VSS
20
VSS
140
DQ20
60
VDD
180
A3
101
VSS
221
DM6
21
DQ16
141
DQ21
61
A2
181
A1
102
DQS6
222
NC
22
DQ17
142
VSS
62
VDD
182
VDD
103
DQS6
223
VSS
23
VSS
143
DM2
63
CK1,NC
183
VDD
104
VSS
224
DQ54
24
DQS2
144
NC
64
CK1,NC
184
CK0
105
DQ50
225
DQ55
25
DQS2
145
VSS
65
VDD
185
CK0
106
DQ51
226
VSS
KEY
26
VSS
146
DQ22
66
VDD
186
VDD
107
VSS
227
DQ60
27
DQ18
147
DQ23
67
VREFCA
187
NC
108
DQ56
228
DQ61
28
DQ19
148
VSS
68
NC
188
A0
109
DQ57
229
VSS
29
VSS
149
DQ28
69
VDD
189
VDD
110
VSS
230
DM7
30
DQ24
150
DQ29
70
A10/AP
190
BA1
111
DQS7
231
NC
31
DQ25
151
VSS
71
BA0
191
VDD
112
DQS7
232
VSS
32
VSS
152
DM3
72
VDD
192
RAS
113
VSS
233
DQ62
DQ63
33
DQS3
153
NC
73
WE
193
S0
114
DQ58
234
34
DQS3
154
VSS
74
CAS
194
VDD
115
DQ59
235
VSS
35
VSS
155
DQ30
75
VDD
195
ODT0
116
VSS
236
VDDSPD
36
DQ26
156
DQ31
76
S1, NC1
196
A13
117
SA0
237
SA1
37
DQ27
157
VSS
77
ODT1, NC
197
VDD
118
SCL
238
SDA
38
VSS
158
NC
78
VDD
198
NC
119
SA2
239
VSS
39
NC
159
NC
79
NC
199
VSS
120
VTT
240
VTT
80
VSS
200
DQ36
81
DQ32
201
DQ37
40
NC
160
VSS
41
VSS
161
NC
1
NOTE :
NC = No Connect; NU = Not Used; RFU = Reserved Future Use
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs
2. CK1,NC and CK1,NC : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
-5-
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
5. x72 DIMM Pin Configurations (Front side/Back side)
Pin
Front
Pin
Back
Pin
Front
Pin
Back
Pin
Front
Pin
Back
1
VREFDQ
121
VSS
42
DQS8
162
NC
82
DQ33
202
VSS
2
VSS
122
DQ4
43
DQS8
163
VSS
83
VSS
203
DM4
3
DQ0
123
DQ5
44
VSS
164
CB6
84
DQS4
204
NC
4
DQ1
124
VSS
45
CB2
165
CB7
85
DQS4
205
VSS
5
VSS
125
DM0
46
CB3
166
VSS
86
VSS
206
DQ38
6
DQS0
126
NC
47
VSS
167
NC (TEST)3
87
DQ34
207
DQ39
7
DQS0
127
VSS
48
NC
168
Reset
88
DQ35
208
VSS
8
VSS
128
DQ6
89
VSS
209
DQ44
9
DQ2
129
DQ7
49
NC
169
CKE1,NC1
90
DQ40
210
DQ45
10
DQ3
130
VSS
50
CKE0
170
VDD
91
DQ41
211
VSS
11
VSS
131
DQ12
51
VDD
171
A15
92
VSS
212
DM5
12
DQ8
132
DQ13
52
BA2
172
A14
93
DQS5
213
NC
13
DQ9
133
VSS
53
NC
173
VDD
94
DQS5
214
VSS
14
VSS
134
DM1
54
VDD
174
A12/BC
95
VSS
215
DQ46
15
DQS1
135
NC
55
A11
175
A9
96
DQ42
216
DQ47
16
DQS1
136
VSS
56
A7
176
VDD
97
DQ43
217
VSS
17
VSS
137
DQ14
57
VDD
177
A8
98
VSS
218
DQ52
18
DQ10
138
DQ15
58
A5
178
A6
99
DQ48
219
DQ53
19
DQ11
139
VSS
59
A4
179
VDD
100
DQ49
220
VSS
20
VSS
140
DQ20
60
VDD
180
A3
101
VSS
221
DM6
21
DQ16
141
DQ21
61
A2
181
A1
102
DQS6
222
NC
22
DQ17
142
VSS
62
VDD
182
VDD
103
DQS6
223
VSS
23
VSS
143
DM2
63
CK1,NC
183
VDD
104
VSS
224
DQ54
24
DQS2
144
NC
64
CK1,NC
184
CK0
105
DQ50
225
DQ55
25
DQS2
145
VSS
65
VDD
185
CK0
106
DQ51
226
VSS
KEY
26
VSS
146
DQ22
66
VDD
186
VDD
107
VSS
227
DQ60
27
DQ18
147
DQ23
67
VREFCA
187
EVENT
108
DQ56
228
DQ61
28
DQ19
148
VSS
68
NC
188
A0
109
DQ57
229
VSS
29
VSS
149
DQ28
69
VDD
189
VDD
110
VSS
230
DM7
30
DQ24
150
DQ29
70
A10/AP
190
BA1
111
DQS7
231
NC
31
DQ25
151
VSS
71
BA0
191
VDD
112
DQS7
232
VSS
32
VSS
152
DM3
72
VDD
192
RAS
113
VSS
233
DQ62
DQ63
33
DQS3
153
NC
73
WE
193
S0
114
DQ58
234
34
DQS3
154
VSS
74
CAS
194
VDD
115
DQ59
235
VSS
35
VSS
155
DQ30
75
VDD
195
ODT0
116
VSS
236
VDDSPD
36
DQ26
156
DQ31
76
S1, NC1
196
A13
117
SA0
237
SA1
37
DQ27
157
VSS
77
ODT1, NC
197
VDD
118
SCL
238
SDA
38
VSS
158
CB4
78
VDD
198
NC
119
SA2
239
VSS
39
CB0
159
CB5
79
NC
199
VSS
120
VTT
240
VTT
80
VSS
200
DQ36
81
DQ32
201
DQ37
40
CB1
160
VSS
41
VSS
161
DM8
1
NOTE :
NC = No Connect; NU = Not Used; RFU = Reserved Future Use
1. S1, ODT1, CKE1: Used for dual-rank UDIMMs; NC on single-rank UDIMMs
2. CK1,NC and CK1,NC : Used for dual-rank UDIMMs; not used on single-rank UDIMMs, but terminated
3. TEST (pin 167) used by memory bus analysis tools (unused on memory DIMMs)
SAMSUNG ELECTRONICS CO., Ltd. reserves the right to change products and specifications without notice.
-6-
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
6. Pin Description
Pin Name
Description
Pin Name
Description
A0-A15
SDRAM address bus
SCL
I2C serial bus clock for EEPROM
BA0-BA2
SDRAM bank select
SDA
I2C serial bus data line for EEPROM
RAS
SDRAM row address strobe
SA0-SA2
I2C serial address select for EEPROM
CAS
SDRAM column address strobe
VDD*
SDRAM core power supply
WE
SDRAM write enable
VDDQ*
SDRAM I/O Driver power supply
S0, S1
DIMM Rank Select Lines
VREFDQ
SDRAM I/O reference supply
CKE0,CKE1
SDRAM clock enable lines
VREFCA
SDRAM command/address reference supply
ODT0, ODT1
On-die termination control lines
VSS
Power supply return (ground)
DQ0 - DQ63
DIMM memory data bus
VDDSPD
Serial EEPROM positive power supply
CB0 - CB7
DIMM ECC check bits
NC
Spare Pins(no connect)
DQS0 - DQS8
SDRAM data strobes
(positive line of differential pair)
TEST
Used by memory bus analysis tools
(unused on memory DIMMs)
DQS0-DQS8
SDRAM differential data strobes
(negative line of differential pair)
RESET
Set DRAMs Known State
DM0-DM8
SDRAM data masks/high data strobes
(x8-based x72 DIMMs)
EVENT
Reserved for optional temperature-sensing hardware
CK0, CK1
SDRAM clocks
(positive line of differential pair)
VTT
SDRAM I/O termination supply
CK0, CK1
SDRAM clocks
(negative line of differential pair)
RFU
Reserved for future use
NOTE :
*The VDD and VDDQ pins are tied common to a single power-plane on these designs.
** DQS8, DQS8, DM8 arefor ECC UDIMM only
7. SPD and Thermal Sensor for ECC UDIMMs
On DIMM thermal sensor will provide DRAM temperature readout through a integrated thermal sensor.
SCL
SDA
EVENT
WP/EVENT
R1
0Ω
R2
0Ω
SA0
SA1
SA2
SA0
SA1
SA2
NOTE :
1. Raw Cards D (1Rx8 ECC) and E (2Rx8 ECC) support a thermal sensor.
2. When the SPD and the thermal sensor are placed on the module, R1 is placed but R2 is not.
When only the SPD is placed on the module, R2 is placed but R1 is not.
[ Table 1 ] Temperature Sensor Characteristics
Temperature Sensor Accuracy
Grade
Range
75 < Ta < 95
-
+/- 0.5
+/- 1.0
B
40 < Ta < 125
-
+/- 1.0
+/- 2.0
-20 < Ta < 125
-
+/- 2.0
+/- 3.0
Min.
Resolution
Typ.
0.25
-7-
Max.
Units
NOTE
-
°C
-
°C /LSB
-
-
datasheet
Unbuffered DIMM
Rev. 1.3
DDR3 SDRAM
8. Input/Output Functional Description
Symbol
Type
Function
CK0-CK1
CK0-CK1
SSTL
CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl inputs are sampled on the crossing of positive
edge of CK and negative edge of CK. Output (read) data is reference to the crossing of CK and CK (Both directions of
crossing)
CKE0-CKE1
SSTL
Activates the SDRAM CK signal when high and deactivates the CK signal when low. By deactivating the clocks, CKE low
initiates the Power Down mode, or the Self-Refresh mode
S0-S1
SSTL
Enables the associated SDRAM command decoder when low and disables the command decoder when high. When the
command decoder is disabled, new command are ignored but previous operations continue. This signal provides for
external rank selection on systems with multiple ranks.
RAS, CAS, WE
SSTL
RAS, CAS, and WE (ALONG WITH S) define the command being entered.
ODT0-ODT1
SSTL
When high, termination resistance is enabled for all DQ, DQS, DQS and DM pins, assuming the function is enabled in the
Extended Mode Register Set (EMRS).
VREFDQ
Supply
Reference voltage for SSTL 15 I/O inputs.
VREFCA
Supply
Reference voltage for SSTL 15 command/address inputs.
VDDQ
Supply
Power supply for the DDR3 SDRAM output buffers to provide improved noise immunity. For all current DDR3 unbuffered
DIMM designs, VDDQ shares the same power plane as VDD pins.
BA0-BA2
SSTL
Selects which SDRAM bank of eight is activated.
A0-A15
SSTL
During a Bank Activate command cycle, Address input defines the row address (RA0-RA13)
During a Read or Write command cycle, Address input defines the column address, In addition to the column address,
AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high, autoprecharge is
selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which bank(s) to precharge. If AP is
high, all banks will be precharged regardless of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used
to define which bank to precharge. A12(BC) is sampled during READ and WRITE commands to determine if burst chop
(on-the-fly) will be performed (HIGH, no burst chop; Low, burst chopped).
DQ0-DQ63
CB0-CB7
SSTL
Data and Check Bit Input/Output pins.
DM0-DM81
SSTL
DM is an input mask signal for write data. Input data is masked when DM is sampled High coincident with that input data
during a write access. DM is sampled on both edges of DQS. Although DM pins are input only, the DM loading matches
the DQ and DQS loading.
VDD,VSS
Supply
DQS0-DQS8
Power and ground for DDR3 SDRAM input buffers, and core logic. VDD and VDDQ pins are tied to VDD/VDDQ planes on
these modules.
1
DQS0-DQS81
SSTL
Data strobe for input and output data.
These signals and tied at the system planar to either VSS or VDDSPD to configure the serial SPD EERPOM address
SA0-SA2
-
SDA
-
This bidirectional pin is used to transfer data into or out of the SPD EEPROM. An external resistor may be connected
from the SDA bus line to VDDSPD to act as a pull-up on the system board.
SCL
-
This signal is used to clock data into and out of the SPD EEPROM. An external resistor may be connected from the SCL
bus time to VDDSPD to act as a pull-up on the system board.
VDDSPD
Supply
RESET
-
EVENT
Output
range.
Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ power plane. EEPROM supply is operable
from 3.0V to 3.6V.
The RESET pin is connected to the RESET pin on each DRAM. When low, all DRAMs are set to a know state.
This signal indicates that a thermal event has been detected in the thermal sensing device. The system should guarantee
the electrical level requirement is met for the EVENT pin on TS/SPD part
NOTE :
1. DM8, DQS8 and DQS8 are for ECC UDIMM only
-8-
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
8.1 Address Mirroring Feature
There is a via grid located under the DRAMs for wiring the CA signals (address, bank address, command, and control lines) to the DRAM pins. The length
of the traces from the vias to the DRAMs places limitations on the bandwidth of the module. The shorter these traces, the higher the bandwidth. To extend
the bandwidth of the CA bus for DDR3 modules, a scheme was defined to reduce the length of these traces.
The pins on the DRAM are defined in a manner that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical
support pins, do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are address pins A3, A4, A5,
A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 DRAM pins are wired straight, with no mismatch between the connector pin
assignment and the DRAM pin assignment. Some of the Rank 1 DRAM pins are cross wired as defined in the table. Pins not listed in the table are wired
straight.
8.1.1 DRAM Pin Wiring Mirroring
Connector Pin
DRAM Pin
Rank 0
Rank 1
A3
A3
A4
A4
A4
A3
A5
A5
A6
A6
A6
A5
A7
A7
A8
A8
A8
A7
BA0
BA0
BA1
BA1
BA1
BA0
Figure 1illustrates the wiring in both the mirrored and non-mirrored case. The lengths of the traces to the DRAM pins, is obviously shorter. The via grid is smaller as well.
Figure 1. Wiring Differences for Mirrored and Non-Mirrored Addresses
Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. See the DDR3 UDIMM SPD specification for these details. The controller must read the SPD and have the capability of de-mirroring the address when accessing the second rank.
SAMSUNG DDR3 dual rank UDIMM R/C B(2Rx8) and R/C E(2Rx8) Modules are using Mirrored Addresses mode.
-9-
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
9. Function Block Diagram:
9.1 4GB, 512Mx64 Non ECC Module (Populated as 1 rank of x8 DDR3 SDRAMs)
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DM
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
D0
ZQ
DQS1
DQS1
DM1
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D4
ZQ
DQS5
DQS5
DM5
DM
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
D1
ZQ
DQS2
DQS2
DM2
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D5
ZQ
DQS6
DQS6
DM6
DM
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
D2
ZQ
DQS3
DQS3
DM3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D6
ZQ
DQS7
DQS7
DM7
DM
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
NU/ CS
DQS DQS
DM
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
D3
ZQ
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D7
ZQ
Serial PD
SCL
BA0 - BA2
A0 - A13
RAS
BA0-BA2 : SDRAMs D0 - D7
A0-A13 : SDRAMs D0 - D7
RAS : SDRAMs D0 - D7
CAS
CAS : SDRAMs D0 - D7
CKE0
CKE : SDRAMs D0 - D7
WE
ODT0
CK0
WE : SDRAMs D0 - D7
ODT : SDRAMs D0 - D7
CK : SDRAMs D0 - D7
SDA
WP
A0
A1
A2
SA0
SA1
SA2
VDDSPD
NOTE :
1. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
2. One SPD exists per module.
SPD
VDD/VDDQ
D0 - D7
VREFDQ
D0 - D7
VSS
D0 - D7
VREFCA
D0 - D7
- 10 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
9.2 8GB, 1Gx64 Non ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
S1
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D0
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
ZQ
DQS1
DQS1
DM1
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D1
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
CS
DQS DQS
D4
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D12
ZQ
D9
ZQ
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D5
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D13
ZQ
DQS6
DQS6
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D2
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
D10
ZQ
DQS3
DQS3
DM3
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D6
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D14
ZQ
DQS7
DQS7
DM7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D3
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
BA0-BA2 : SDRAMs D0 - D15
A0-A15 : SDRAMs D0 - D15
CKE1
CKE : SDRAMs D8 - D15
CKE0
CKE : SDRAMs D0 - D7
RAS
RAS : SDRAMs D0 - D15
CAS
CAS : SDRAMs D0 - D15
WE
WE : SDRAMs D0 - D15
ODT0
ODT : SDRAMs D0 - D7
ODT1
DM
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQS2
DQS2
DM2
A0 - A15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS5
DQS5
DM5
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
BA0 - BA2
DM
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
D8
ODT : SDRAMs D8 - D15
CK0
CK : SDRAMs D0 - D7
CK1
CK : SDRAMs D8 - D15
CS
DQS DQS
DM
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
D11
ZQ
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
Serial PD
SCL
SDA
WP
A0
A1
A2
SA0
SA1
SA2
VDDSPD
SPD
VDD/VDDQ
D0 - D15
VREFDQ
D0 - D15
VSS
D0 - D15
VREFCA
D0 - D15
- 11 -
CS
DQS DQS
D7
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D15
ZQ
NOTE :
1. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
2. One SPD exists per module.
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
9.3 8GB, 1Gx72 ECC Module (Populated as 2 ranks of x8 DDR3 SDRAMs)
S1
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D0
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
D9
ZQ
DQS1
DQS1
DM1
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D4
ZQ
CS
DQS DQS
D13
ZQ
DQS5
DQS5
DM5
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D1
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
D10
ZQ
DQS2
DQS2
DM2
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D5
ZQ
CS
DQS DQS
D14
ZQ
DQS6
DQS6
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D2
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
D11
ZQ
DQS3
DQS3
DM3
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D6
ZQ
CS
DQS DQS
D15
ZQ
DQS7
DQS7
DM7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D3
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
D12
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D7
ZQ
CS
DQS DQS
D16
ZQ
DQS8
DQS8
DM8
Serial PD
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
BA0 - BA2
A0 - A15
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
D8
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQS DQS
SCL
D17
EVENT
SDA
EVENT
A0
A1
A2
SA0
SA2
SA1
ZQ
BA0-BA2 : SDRAMs D0 - D17
A0-A15 : SDRAMs D0 - D17
CKE1
CKE : SDRAMs D9 - D17
CKE0
CKE : SDRAMs D0 - D8
RAS
RAS : SDRAMs D0 - D17
CAS
CAS : SDRAMs D0 - D17
WE
WE : SDRAMs D0 - D17
ODT0
ODT : SDRAMs D0 - D8
ODT1
ODT : SDRAMs D9 - D17
CK0
CK : SDRAMs D0 - D8
CK1
CK : SDRAMs D9 - D17
VDDSPD
SPD
VDD/VDDQ
D0 - D17
VREFDQ
D0 - D17
VSS
D0 - D17
VREFCA
D0 - D17
- 12 -
NOTE :
1. For each DRAM, a unique ZQ resistor is connected to
ground. The ZQ resistor is 240 Ohm +/- 1%
2. Refer to "SPD and Thermal sensor for ECC UDIMMs"
for SPD detail.
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
10. Absolute Maximum Ratings
10.1 Absolute Maximum DC Ratings
Symbol
Parameter
Rating
Units
NOTE
VDD
Voltage on VDD pin relative to VSS
-0.4 V ~ 1.975 V
V
1,3
VDDQ
Voltage on VDDQ pin relative to VSS
-0.4 V ~ 1.975 V
V
1,3
VIN, VOUT
Voltage on any pin relative to VSS
-0.4 V ~ 1.975 V
V
1
TSTG
Storage Temperature
-55 to +100
°C
1, 2
NOTE :
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions
for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must be not greater than 0.6 x VDDQ, When VDD and VDDQ are less than 500mV; VREF may be
equal to or less than 300mV.
10.2 DRAM Component Operating Temperature Range
Symbol
Parameter
rating
Unit
NOTE
TOPER
Operating Temperature Range
0 to 95
°C
1, 2, 3
NOTE :
1. Operating Temperature TOPER is the case surface temperature on the center/top side of the DRAM. For measurement conditions, please refer to the JEDEC document
JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0-85°C under all operating conditions
3. Some applications require operation of the Extended Temperature Range between 85°C and 95°C case temperature. Full specifications are guaranteed in this range, but the
following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the refresh interval tREFI to 3.9us.
b) If Self-Refresh operation is required in the Extended Temperature Range, then it is mandatory to either use the Manual Self-Refresh mode with Extended Temperature
Range capability (MR2 A6 = 0b and MR2 A7 = 1b), in this case IDD6 current can be increased around 10~20% than normal Temperature range.
11. AC & DC Operating Conditions
11.1 Recommended DC Operating Conditions (SSTL-15)
Symbol
VDD
VDDQ
Parameter
Rating
Units
NOTE
1.575
V
1,2
1.575
V
1,2
Min.
Typ.
Max.
Supply Voltage
1.425
1.5
Supply Voltage for Output
1.425
1.5
NOTE:
1. Under all conditions VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD and VDDQ tied together.
- 13 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
12. AC & DC Input Measurement Levels
12.1 AC & DC Logic Input Levels for Single-ended Signals
[ Table 2 ] Single-ended AC & DC input levels for Command and Address
Symbol
DDR3-800/1066/1333/1600
Parameter
DDR3-1866
Unit
NOTE
VDD
mV
1,5
VSS
VREF - 100
mV
1,6
Note 2
-
-
mV
1,2,7
Min.
Max.
Min.
Max.
VIH.CA(DC100) DC input logic high
VREF + 100
VDD
VREF + 100
VIL.CA(DC100) DC input logic low
VSS
VREF - 100
VIH.CA(AC175) AC input logic high
VREF + 175
Note 2
VIL.CA(AC175)
VIL.CA(AC150)
VREF - 175
-
-
mV
1,2,8
VREF+150
Note 2
-
-
mV
1,2,7
AC input logic low
VIH.CA(AC150) AC input logic high
Note 2
VREF-150
-
-
mV
1,2,8
VIH.CA(AC135) AC input logic high
-
-
VREF + 135
Note 2
mV
1,2,7
VIL.CA(AC135)
-
-
Note 2
VREF - 135
mV
1,2,8
VIH.CA(AC125) AC input logic high
-
-
VREF+125
Note 2
mV
1,2,7
VIL.CA(AC125)
-
-
Note 2
VREF-125
mV
1,2,8
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
VREFCA(DC)
AC input logic low
AC input logic low
AC input logic low
Reference Voltage for ADD,
CMD inputs
NOTE :
1. For input only pins except RESET, VREF = VREFCA(DC)
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.CA(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.CA(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.CA(AC175), VIH.CA(AC150), VIH.CA(AC135) and VIH.CA(AC125); VIH.CA(AC175) value is used when VREF + 175mV is referenced
, VIH.CA(AC150) value is used when VREF + 150mV is referenced, VIH.CA(AC135) value is used when VREF + 135mV is referenced and VIH.CA(AC125) value is used when
VREF + 125mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.CA(AC175) and VIL.CA(AC150), VIL.CA(AC135) and VIL.CA(AC125); VIL.CA(AC175) value is used when VREF - 175mV is referenced, VIL.CA(AC150) value is used when VREF - 150mV is referenced, VIL.CA(AC135) value is used when VREF - 135mV is referenced and VIL.CA(AC125) value is used
when VREF - 125mV is referenced.
[ Table 3 ] Single-ended AC & DC input levels for DQ and DM
Symbol
Parameter
DDR3-800/1066
Min.
DDR3-1333/1600
Max.
Min.
DDR3-1866
Max.
Min.
Max.
Unit
NOTE
VIH.DQ(DC100) DC input logic high
VREF + 100
VDD
VREF + 100
VDD
VREF + 100
VDD
mV
1,5
VIL.DQ(DC100) DC input logic low
VSS
VREF - 100
VSS
VREF - 100
VSS
VREF - 100
mV
1,6
VIH.DQ(AC175) AC input logic high
VREF + 175
NOTE 2
-
-
-
-
mV
1,2,7
VIL.DQ(AC175) AC input logic low
NOTE 2
VREF - 175
-
-
-
-
mV
1,2,8
VIH.DQ(AC150) AC input logic high
VREF + 150
NOTE 2
VREF + 150
NOTE 2
-
-
mV
1,2,7
VIL.DQ(AC150) AC input logic low
NOTE 2
VREF - 150
NOTE 2
VREF - 150
-
-
mV
1,2,8
VIH.DQ(AC135) AC input logic high
-
-
-
-
VREF + 135
NOTE 2
mV
1,2,7
VIL.DQ(AC135) AC input logic low
-
-
-
-
NOTE 2
VREF - 135
mV
1,2,8
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
0.49*VDD
0.51*VDD
V
3,4
VREFDQ(DC)
Reference Voltage for DQ,
DM inputs
NOTE :
1. For input only pins except RESET, VREF = VREFDQ(DC)
2. See ’Overshoot/Undershoot Specification’ on page 18.
3. The AC peak noise on VREF may not allow VREF to deviate from VREF(DC) by more than ± 1% VDD (for reference : approx. ± 15mV)
4. For reference : approx. VDD/2 ± 15mV
5. VIH(dc) is used as a simplified symbol for VIH.DQ(DC100)
6. VIL(dc) is used as a simplified symbol for VIL.DQ(DC100)
7. VIH(ac) is used as a simplified symbol for VIH.DQ(AC175), VIH.DQ(AC150) and VIH.DQ(AC135) ; VIH.DQ(AC175) value is used when VREF + 175mV is referenced,
VIH.DQ(AC150) value is used when VREF + 150mV is referenced.
8. VIL(ac) is used as a simplified symbol for VIL.DQ(AC175), VIL.DQ(AC150) ; VIL.DQ(AC175) value is used when VREF - 175mV is referenced, VIL.DQ(AC150) value is used when
VREF - 150mV is referenced.
- 14 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
12.2 VREF Tolerances.
The dc-tolerance limits and ac-noise limits for the reference voltages VREFCA and VREFDQ are illustrate in Figure 2. It shows a valid reference voltage
VREF(t) as a function of time. (VREF stands for VREFCA and VREFDQ likewise).
VREF(DC) is the linear average of VREF(t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements of VREF. Furthermore VREF(t) may temporarily deviate from VREF(DC) by no more than ± 1% VDD.
voltage
VDD
VSS
time
Figure 2. Illustration of VREF(DC) tolerance and VREF ac-noise limits
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on VREF.
"VREF" shall be understood as VREF(DC), as defined in Figure 2.
This clarifies, that dc-variations of VREF affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to
which setup and hold is measured. System timing and voltage budgets need to account for VREF(DC) deviations from the optimum position within the
data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VREF ac-noise.
Timing and voltage effects due to ac-noise on VREF up to the specified limit (+/-1% of VDD) are included in DRAM timings and their associated deratings.
- 15 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
12.3 AC and DC Logic Input Levels for Differential Signals
12.3.1 Differential Signals Definition
tDVAC
Differential Input Voltage (i.e. DQS-DQS, CK-CK)
VIH.DIFF.AC.MIN
VIH.DIFF.MIN
0.0
half cycle
VIL.DIFF.MAX
VIL.DIFF.AC.MAX
tDVAC
time
Figure 3. Definition of differential ac-swing and "time above ac level" tDVAC
12.3.2 Differential Swing Requirement for Clock (CK - CK) and Strobe (DQS - DQS)
Symbol
Parameter
VIHdiff
DDR3-800/1066/1333/1600/1866
unit
NOTE
NOTE 3
V
1
NOTE 3
-0.2
V
1
differential input high ac
2 x (VIH(AC) - VREF)
NOTE 3
V
2
differential input low ac
NOTE 3
2 x (VIL(AC) - VREF)
V
2
min
max
differential input high
+0.2
VILdiff
differential input low
VIHdiff(AC)
VILdiff(AC)
NOTE :
1. Used to define a differential signal slew-rate.
2. for CK - CK use VIH/VIL(AC) of ADD/CMD and VREFCA; for DQS - DQS use VIH/VIL(AC) of DQs and VREFDQ; if a reduced ac-high or ac-low level is used for a signal group,
then the reduced level applies also here.
3. These values are not defined, however they single-ended signals CK, CK, DQS, DQS, DQSL need to be within the respective limits (VIH(DC) max, VIL(DC)min) for singleended signals as well as the limitations for overshoot and undershoot. Refer to "overshoot and Undersheet Specification"
[ Table 4 ] Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS.
Slew Rate [V/ns]
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 350mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 300mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 270mV
tDVAC [ps] @ |VIH/Ldiff(AC)|
= 250mV
min
max
min
max
min
max
min
max
> 4.0
75
-
175
-
TBD
-
TBD
-
4.0
57
-
170
-
TBD
-
TBD
-
3.0
50
-
167
-
TBD
-
TBD
-
2.0
38
-
163
-
TBD
-
TBD
-
1.8
34
-
162
-
TBD
-
TBD
-
1.6
29
-
161
-
TBD
-
TBD
-
1.4
22
-
159
-
TBD
-
TBD
-
1.2
13
-
155
-
TBD
-
TBD
-
1.0
0
-
150
-
TBD
-
TBD
-
< 1.0
0
-
150
-
TBD
-
TBD
-
- 16 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
12.3.3 Single-ended Requirements for Differential Signals
Each individual component of a differential signal (CK, DQS, CK, DQS) has also to comply with certain requirements for single-ended signals.
CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels ( VIH(AC) / VIL(AC) ) for ADD/CMD signals) in every
half-cycle.
DQS, DQS have to reach VSEHmin / VSELmax (approximately the ac-levels ( VIH(AC) / VIL(AC) ) for DQ signals) in every half-cycle proceeding and following a valid transition.
Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g. if VIH150(AC)/VIL150(AC) is used for ADD/CMD
signals, then these ac-levels apply also for the single-ended signals CK and CK .
VDD or VDDQ
VSEH min
VSEH
VDD/2 or VDDQ/2
CK or DQS
VSEL max
VSEL
VSS or VSSQ
time
Figure 4. Single-ended requirement for differential signals
Note that while ADD/CMD and DQ signal requirements are with respect to VREF, the single-ended components of differential signals have a requirement
with respect to VDD/2; this is nominally the same. The transition of single-ended signals through the ac-levels is used to measure setup time. For singleended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common
mode characteristics of these signals.
[ Table 5 ] Single ended levels for CK, DQS, CK, DQS
Symbol
VSEH
VSEL
Parameter
DDR3-800/1066/1333/1600/1866
Unit
NOTE
NOTE 3
V
1, 2
(VDD/2)+0.175
NOTE 3
V
1, 2
NOTE 3
(VDD/2)-0.175
V
1, 2
NOTE 3
(VDD/2)-0.175
V
1, 2
Min
Max
Single-ended high-level for strobes
(VDD/2)+0.175
Single-ended high-level for CK, CK
Single-ended low-level for strobes
Single-ended low-level for CK, CK
NOTE :
1. For CK, CK use VIH/VIL(AC) of ADD/CMD; for strobes (DQS, DQS) use VIH/VIL(AC) of DQs.
2. VIH(AC)/VIL(AC) for DQs is based on VREFDQ; VIH(AC)/VIL(AC) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the
reduced level applies also here
3. These values are not defined, however the single-ended signals CK, CK, DQS, DQS need to be within the respective limits (VIH(DC) max, VIL(DC)min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specification"
- 17 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
12.3.4 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input
signals (CK, CK and DQS, DQS) must meet the requirements in below table. The differential input cross point voltage VIX is measured from the actual
cross point of true and complement signal to the mid level between of VDD and VSS.
VDD
CK, DQS
VIX
VDD/2
VIX
VIX
CK, DQS
VSS
Figure 5. VIX Definition
[ Table 6 ] Cross point voltage for differential input signals (CK, DQS)
Symbol
DDR3-800/1066/1333/1600/1866
Parameter
VIX
Differential Input Cross Point Voltage relative to VDD/2 for CK,CK
VIX
Differential Input Cross Point Voltage relative to VDD/2 for DQS,DQS
Unit
NOTE
150
mV
2
175
mV
1
150
mV
2
Min
Max
-150
-175
-150
NOTE :
1. Extended range for VIX is only allowed for clock and if single-ended clock input signals CK and CK are monotonic, have a single-ended swing VSEL / VSEH of at least VDD/2
±250 mV, and the differential slew rate of CK-CK is larger than 3 V/ ns.
2. The relation between VIX Min/Max and VSEL/VSEH should satisfy following.
(VDD/2) + VIX(Min) - VSEL ≥ 25mV
VSEH - ((VDD/2) + VIX(Max)) ≥ 25mV
12.4 Slew Rate Definition for Single Ended Input Signals
See "Address / Command Setup, Hold and Derating" for single-ended slew rate definitions for address and command signals.
See "Data Setup, Hold and Slew Rate Derating" for single-ended slew rate definitions for data signals.
12.5 Slew rate definition for Differential Input Signals
Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in below.
[ Table 7 ] Differential input slew rate definition
Measured
Description
Differential input slew rate for rising edge (CK-CK and DQS-DQS)
Differential input slew rate for falling edge (CK-CK and DQS-DQS)
Defined by
From
To
VILdiffmax
VIHdiffmin
VIHdiffmin
VILdiffmax
NOTE : The differential signal (i.e. CK - CK and DQS - DQS) must be linear between these thresholds
VIHdiffmin
0
VILdiffmax
delta TRdiff
delta TFdiff
Figure 6. Differential input slew rate definition for DQS, DQS and CK, CK
- 18 -
VIHdiffmin - VILdiffmax
Delta TRdiff
VIHdiffmin - VILdiffmax
Delta TFdiff
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
13. AC & DC Output Measurement Levels
13.1 Single Ended AC and DC Output Levels
[ Table 8 ] Single Ended AC and DC output levels
Symbol
Parameter
VOH(DC)
DC output high measurement level (for IV curve linearity)
DDR3-800/1066/1333/1600/1866
Units
0.8 x VDDQ
V
NOTE
VOM(DC)
DC output mid measurement level (for IV curve linearity)
0.5 x VDDQ
V
VOL(DC)
DC output low measurement level (for IV curve linearity)
0.2 x VDDQ
V
VOH(AC)
AC output high measurement level (for output SR)
VTT + 0.1 x VDDQ
V
1
VOL(AC)
AC output low measurement level (for output SR)
VTT - 0.1 x VDDQ
V
1
NOTE : 1. The swing of +/-0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2.
13.2 Differential AC and DC Output Levels
[ Table 9 ] Differential AC and DC output levels
Symbol
Parameter
DDR3-800/1066/1333/1600/1866
Units
NOTE
VOHdiff(AC)
AC differential output high measurement level (for output SR)
+0.2 x VDDQ
V
1
VOLdiff(AC)
AC differential output low measurement level (for output SR)
-0.2 x VDDQ
V
1
NOTE : 1. The swing of +/-0.2xVDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40Ω and an effective test
load of 25Ω to VTT=VDDQ/2 at each of the differential outputs.
13.3 Single-ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC)
for single ended signals as shown in below.
[ Table 10 ] Single ended Output slew rate definition
Measured
Description
Single ended output slew rate for rising edge
From
To
VOL(AC)
VOH(AC)
VOH(AC)
Single ended output slew rate for falling edge
Defined by
VOH(AC)-VOL(AC)
Delta TRse
VOH(AC)-VOL(AC)
VOL(AC)
Delta TFse
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 11 ] Single ended output slew rate
Parameter
Single ended output slew rate
Symbol
SRQse
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
DDR3-1866
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
2.5
5
2.5
5
2.5
5
2.5
5
2.5
51)
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
se : Single-ended Signals
For Ron = RZQ/7 setting
Units
V/ns
NOTE : 1) In two cased, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane.
- Case_1 is defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low of low to high) while all remaining DQ
signals in the same byte lane are static (i.e they stay at either high or low).
- Case_2 is defined for a single DQ signals in the same byte lane are switching into the opposite direction (i.e. from low to high or high to low respectively). For the
remaining DQ signal switching into the opposite direction, the regular maximum limit of 5 V/ns applies.
VOH(AC)
VTT
VOL(AC)
delta TFse
delta TRse
Figure 7. Single-ended Output Slew Rate Definition
- 19 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
13.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC)
for differential signals as shown in below.
[ Table 12 ] Differential Output slew rate definition
Measured
Description
Differential output slew rate for rising edge
From
To
VOLdiff(AC)
VOHdiff(AC)
VOHdiff(AC)
Differential output slew rate for falling edge
Defined by
VOHdiff(AC)-VOLdiff(AC)
Delta TRdiff
VOHdiff(AC)-VOLdiff(AC)
VOLdiff(AC)
Delta TFdiff
NOTE : Output slew rate is verified by design and characterization, and may not be subject to production test.
[ Table 13 ] Differential Output slew rate
Parameter
Differential output slew rate
Symbol
SRQdiff
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
DDR3-1866
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
5
10
5
10
5
10
5
10
5
12
Description : SR : Slew Rate
Q : Query Output (like in DQ, which stands for Data-in, Query-Output)
diff : Differential Signals
For Ron = RZQ/7 setting
VOHdiff(AC)
VTT
VOLdiff(AC)
delta TFdiff
delta TRdiff
Figure 8. Differential output slew rate definition
- 20 -
Units
V/ns
Unbuffered DIMM
datasheet
Rev. 1.3
DDR3 SDRAM
14. DIMM IDD specification definition
Symbol
Description
IDD0
Operating One Bank Active-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT and PRE;
Command, Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD1
Operating One Bank Active-Read-Precharge Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between ACT, RD
and PRE; Command, Address, Bank Address Inputs, Data IO: partially toggling ; DM:stable at 0; Bank Activity: Cycling with one bank active at a time:
0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD2N
Precharge Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD2P0
Precharge Power-Down Current Slow Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exit3)
IDD2P1
Precharge Power-Down Current Fast Exit
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exit3)
IDD2Q
Precharge Quiet Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registers2);
ODT Signal: stable at 0
IDD3N
Active Standby Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: partially toggling ; Data IO: FLOATING; DM:stable at 0;Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode
Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD3P
Active Power-Down Current
CKE: Low; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: stable at 1; Command, Address, Bank
Address Inputs: stable at 0; Data IO: FLOATING;DM:stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registers2); ODT
Signal: stable at 0
IDD4R
Operating Burst Read Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between RD; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless read data burst with different data between one burst and the next one ; DM:stable at 0; Bank
Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD4W
Operating Burst Write Current
CKE: High; External clock: On; tCK, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between WR; Command, Address,
Bank Address Inputs: partially toggling ; Data IO: seamless write data burst with different data between one burst and the next one ; DM: stable at 0; Bank
Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,... ; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: stable
at HIGH; Pattern Details: Refer to Component Datasheet for detail pattern
IDD5B
Burst Refresh Current
CKE: High; External clock: On; tCK, CL, nRFC: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS: High between REF; Command,
Address, Bank Address Inputs: partially toggling ; Data IO: FLOATING;DM:stable at 0; Bank Activity: REF command every nRFC ; Output Buffer and
RTT: Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD6
Self Refresh Current: Normal Temperature Range
TCASE: 0 - 85°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Normal5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD6ET
Self-Refresh Current: Extended Temperature Range (optional)6)
TCASE: 0 - 95°C; Auto Self-Refresh (ASR): Disabled4); Self-Refresh Temperature Range (SRT): Extended5); CKE: Low; External clock: Off; CK and CK:
LOW; CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: 0; CS, Command, Address, Bank Address, Data IO: FLOATING;DM:stable at 0;
Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registers2); ODT Signal: FLOATING
IDD7
Operating Bank Interleave Read Current
CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, nRRD, nFAW, CL: Refer to Component Datasheet for detail pattern ; BL: 81); AL: CL-1; CS: High
between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling ; Data IO: read data bursts with different data between one burst and
the next one ; DM:stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1, ...7) with different addressing ; Output Buffer and RTT:
Enabled in Mode Registers2); ODT Signal: stable at 0; Pattern Details: Refer to Component Datasheet for detail pattern
IDD8
RESET Low Current
RESET : Low; External clock : off; CK and CK : LOW; CKE : FLOATING ; CS, Command, Address, Bank Address, Data IO : FLOATING ; ODT Signal :
FLOATING
- 21 -
Unbuffered DIMM
datasheet
Rev. 1.3
DDR3 SDRAM
NOTE :
1) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B
2) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B
3) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12=1B for Fast Exit
4) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature
5) Self-Refresh Temperature Range (SRT): set MR2 A7=0B for normal or 1B for extended temperature range
6) Refer to DRAM supplier data sheet and/or DIMM SPD to determine if optional features or requirements are supported by DDR3 SDRAM device
7) IDD current measure method and detail patterns are described on DDR3 component datasheet
8) VDD and VDDQ are merged on module PCB.
9) DIMM IDD SPEC is measured with Qoff condition
(IDDQ values are not considered)
- 22 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
15. IDD SPEC Table
M378B5173BH0 : 4GB(512MX64) Module
Symbol
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13)
Unit
IDD0
320
360
360
mA
IDD1
400
440
440
mA
IDD2P0(slow exit)
120
120
120
mA
IDD2P1(fast exit)
120
120
120
mA
IDD2N
160
160
160
mA
IDD2Q
160
160
160
mA
IDD3P
160
160
160
mA
IDD3N
240
240
240
mA
IDD4R
680
800
840
mA
mA
IDD4W
720
880
920
IDD5B
1160
1160
1160
mA
IDD6
120
120
120
mA
IDD7
1360
1400
1400
mA
IDD8
120
120
120
mA
NOTE
M378B1G73BH0 : 8GB(1Gx64) Module
Symbol
CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13)
Unit
NOTE
IDD0
480
480
520
520
mA
1
IDD1
560
560
600
600
mA
1
IDD2P0(slow exit)
240
240
240
240
mA
IDD2P1(fast exit)
240
240
240
240
mA
IDD2N
320
320
320
320
mA
IDD2Q
320
320
320
320
mA
IDD3P
320
320
320
320
mA
IDD3N
400
400
400
400
mA
IDD4R
720
840
960
1000
mA
1
IDD4W
760
880
1040
1080
mA
1
IDD5B
1120
1320
1320
1320
mA
1
IDD6
240
240
240
240
mA
IDD7
1200
1520
1560
1560
mA
IDD8
240
240
240
240
mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
- 23 -
1
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
M391B1G73BH0 : 8GB(1Gx72) Module
Symbol
CF8
(DDR3-1066@CL=7)
CH9
(DDR3-1333@CL=9)
CK0
(DDR3-1600@CL=11)
CMA
(DDR3-1866@CL=13)
Unit
NOTE
IDD0
540
540
585
585
mA
1
IDD1
630
630
675
675
mA
1
IDD2P0(slow exit)
270
270
270
270
mA
IDD2P1(fast exit)
270
270
270
270
mA
IDD2N
360
360
360
360
mA
IDD2Q
360
360
360
360
mA
IDD3P
360
360
360
360
mA
IDD3N
450
450
450
450
mA
IDD4R
810
945
1080
1125
mA
1
IDD4W
855
990
1170
1215
mA
1
IDD5B
1260
1485
1485
1485
mA
1
mA
IDD6
270
270
270
270
IDD7
1350
1710
1755
1755
mA
IDD8
270
270
270
270
mA
NOTE :
1. DIMM IDD SPEC is calculated with considering de-actived rank(IDLE) is IDD2N.
- 24 -
1
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
16. Input/Output Capacitance
[ Table 14 ] Input/Output Capacitance
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
DDR3-1866
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
CIO
1.4
3.0
1.4
2.7
1.4
2.5
1.4
2.3
1.4
CCK
0.8
1.6
0.8
1.6
0.8
1.4
0.8
1.4
CDCK
0
0.15
0
0.15
0
0.15
0
CI
0.75
1.4
0.75
1.35
0.75
1.3
CDDQS
0
0.2
0
0.2
0
CDI_CTRL
-0.5
0.3
-0.5
0.3
CDI_ADD_CMD
-0.5
0.5
-0.5
Input/output capacitance delta
(DQ, DM, DQS, DQS, TDQS, TDQS)
CDIO
-0.5
0.3
Input/output capacitance of ZQ pin
CZQ
-
3
Parameter
Symbol
Input/output capacitance
(DQ, DM, DQS, DQS, TDQS, TDQS)
Input capacitance
(CK and CK)
Input capacitance delta
(CK and CK)
Input capacitance
(All other input-only pins)
Input capacitance delta
(DQS and DQS)
Input capacitance delta
(All control input-only pins)
Input capacitance delta
(all ADD and CMD input-only pins)
Units
NOTE
2.2
pF
1,2,3
0.8
1.3
pF
2,3
0.15
0
0.15
pF
2,3,4
0.75
1.3
0.75
1.2
pF
2,3,6
0.15
0
0.15
0
0.15
pF
2,3,5
-0.4
0.2
-0.4
0.2
-0.4
0.2
pF
2,3,7,8
0.5
-0.4
0.4
-0.4
0.4
-0.4
0.4
pF
2,3,9,10
-0.5
0.3
-0.5
0.3
-0.5
0.3
-0.5
0.3
pF
2,3,11
-
3
-
3
-
3
-
3
pF
2, 3, 12
NOTE : This parameter is Component Input/Output Capacitance so that is different from Module level Capacitance.
1. Although the DM, TDQS and TDQS pins have different functions, the loading matches DQ and DQS
2. This parameter is not subject to production test. It is verified by design and characterization.
The capacitance is measured according to JEP147("PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER( VNA)") with
VDD, VDDQ, VSS, VSSQ applied and all other pins floating (except the pin under test, CKE, RESET and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die
termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK
5. Absolute value of CIO(DQS)-CIO(DQS)
6. CI applies to ODT, CS, CKE, A0-A15, BA0-BA2, RAS, CAS, WE.
7. CDI_CTRL applies to ODT, CS and CKE
8. CDI_CTRL=CI(CTRL)-0.5*(CI(CLK)+CI(CLK))
9. CDI_ADD_CMD applies to A0-A15, BA0-BA2, RAS, CAS and WE
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK))
11. CDIO=CIO(DQ,DM) - 0.5*(CIO(DQS)+CIO(DQS))
12. Maximum external load capacitance on ZQ pin: 5pF
- 25 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
17. Electrical Characteristics and AC timing
(0 °C<TCASE ≤95 °C, VDDQ = 1.5V ± 0.075V; VDD = 1.5V ± 0.075V)
17.1 Refresh Parameters by Device Density
Parameter
Symbol
1Gb
2Gb
4Gb
8Gb
Units
tRFC
All Bank Refresh to active/refresh cmd time
Average periodic refresh interval
tREFI
110
160
260
350
ns
0 °C ≤ TCASE ≤ 85°C
7.8
7.8
7.8
7.8
μs
85 °C < TCASE ≤ 95°C
3.9
3.9
3.9
3.9
μs
NOTE
1
NOTE :
1. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM devices support the following options or requirements referred to in
this material.
17.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS for Corresponding Bin
Speed
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
DDR3-1866
Bin (CL - tRCD - tRP)
6-6-6
7-7-7
9-9-9
11-11-11
13-13-13
Parameter
min
min
min
min
min
CL
6
7
9
11
13
tCK
tRCD
15
13.13
13.5
13.75
13.91
ns
tRP
15
13.13
13.5
13.75
13.91
ns
tRAS
37.5
37.5
36
35
34
ns
tRC
52.5
50.63
49.5
48.75
47.91
ns
tRRD
10
7.5
6.0
6.0
5.0
ns
tFAW
40
37.5
30
30
27
ns
Units
NOTE
17.3 Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin
DDR3 SDRAM Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin.
[ Table 15 ] DDR3-800 Speed Bins
Speed
DDR3-800
CL-nRCD-nRP
Parameter
Internal read command to first data
ACT to internal read or write delay time
6-6-6
Units
Symbol
min
max
tAA
15
20
ns
tRCD
15
-
ns
PRE command period
tRP
15
-
ns
ACT to ACT or REF command period
tRC
52.5
-
ns
tRAS
37.5
9*tREFI
ns
tCK(AVG)
2.5
3.3
ns
ACT to PRE command period
CL = 6 / CWL = 5
Supported CL Settings
6
nCK
Supported CWL Settings
5
nCK
- 26 -
NOTE
1,2,3
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 16 ] DDR3-1066 Speed Bins
Speed
DDR3-1066
CL-nRCD-nRP
7-7-7
Parameter
Internal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
CL = 7
CL = 8
Symbol
min
max
tAA
13.125
20
ns
tRCD
13.125
-
ns
tRP
13.125
-
ns
NOTE
tRC
50.625
-
ns
tRAS
37.5
9*tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,5
CWL = 6
tCK(AVG)
ns
1,2,3,4
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
ACT to PRE command period
CL = 6
Units
Reserved
Reserved
1.875
<2.5
Reserved
1.875
<2.5
Supported CL Settings
Supported CWL Settings
ns
4
ns
1,2,3,4,9
ns
4
ns
1,2,3
6,7,8
nCK
5,6
nCK
[ Table 17 ] DDR3-1333 Speed Bins
Speed
DDR3-1333
CL-nRCD-nRP
9 -9 - 9
Parameter
Internal read command to first data
ACT to internal read or write delay time
PRE command period
ACT to ACT or REF command period
ACT to PRE command period
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
Units
Symbol
min
max
tAA
13.5 (13.125)9
20
ns
(13.125)9
-
ns
tRP
13.5 (13.125)9
-
ns
tRC
(49.125)9
tRCD
13.5
49.5
NOTE
-
ns
9*tREFI
ns
3.3
ns
1,2,3,6
ns
1,2,3,4,6
Reserved
ns
4
Reserved
ns
4
ns
1,2,3,4,6
ns
1,2,3,4
tRAS
36
CWL = 5
tCK(AVG)
2.5
CWL = 6
tCK(AVG)
Reserved
CWL = 7
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
1.875
<2.5
Reserved
Reserved
1.875
<2.5
ns
4
ns
1,2,3,6
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6
tCK(AVG)
Reserved
ns
4
ns
1,2,3,4,9
ns
4
ns
1,2,3
CWL = 7
tCK(AVG)
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
1.5
<1.875
Reserved
1.5
Supported CL Settings
Supported CWL Settings
- 27 -
<1.875
6,7,8,9,10
nCK
5,6,7
nCK
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 18 ] DDR3-1600 Speed Bins
Speed
DDR3-1600
CL-nRCD-nRP
11-11-11
Parameter
Units
NOTE
Symbol
min
max
tAA
13.75
(13.125)9
20
ns
tRCD
13.75
(13.125)9
-
ns
PRE command period
tRP
13.75
(13.125)9
-
ns
ACT to ACT or REF command period
tRC
48.75
(48.125)9
-
ns
tRAS
35
9*tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,7
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 7, 8
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,4,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4,7
CWL = 8
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
CWL = 6
tCK(AVG)
ns
1,2,3,7
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4,7
Intermal read command to first data
ACT to internal read or write delay time
ACT to PRE command period
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
CL = 11
1.875
<2.5
1.875
<2.5
CWL = 8
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6
tCK(AVG)
Reserved
ns
4
CWL = 7
tCK(AVG)
ns
1,2,3,4,7
CWL = 8
tCK(AVG)
ns
1,2,3,4
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
1.5
<1.875
Reserved
Reserved
1.5
<1.875
ns
4
ns
1,2,3,7
CWL = 8
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6,7
tCK(AVG)
Reserved
ns
4
CWL = 8
tCK(AVG)
ns
1,2,3,9
1.25
Supported CL Settings
Supported CWL Settings
- 28 -
<1.5
6,7,8,9,10,11
nCK
5,6,7,8
nCK
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 19 ] DDR3-1866 Speed Bins
Speed
DDR3-1866
CL-nRCD-nRP
13-13-13
Parameter
Units
NOTE
Symbol
min
max
tAA
13.91
(13.125)10
20
ns
tRCD
13.91
(13.125)10
-
ns
PRE command period
tRP
13.91
(13.125)10
-
ns
ACT to ACT or REF command period
tRC
47.91
(47.125)10
-
ns
tRAS
34
9*tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
ns
1,2,3,8
CWL = 6
tCK(AVG)
Reserved
ns
1,2,3,4,8
CWL = 7,8,9
tCK(AVG)
Reserved
ns
4
CWL = 5
tCK(AVG)
Reserved
ns
4
ns
1,2,3,4,8
ns
4
Internal read command to first data
ACT to internal read or write delay time
ACT to PRE command period
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
CL = 11
CL = 12
CL = 13
CWL = 6
tCK(AVG)
CWL = 7,8,9
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
1.875
2.5
Reserved
Reserved
1.875
<2.5
ns
4
ns
1,2,3,8
CWL = 7
tCK(AVG)
Reserved
ns
1,2,3,4,8
CWL = 8,9
tCK(AVG)
Reserved
ns
4
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 8
tCK(AVG)
CWL = 9
tCK(AVG)
CWL = 5,6
tCK(AVG)
CWL = 7
tCK(AVG)
Reserved
ns
4
ns
1,2,3,4,8
Reserved
ns
4
Reserved
ns
4
1.5
1.875
Reserved
1.5
<1.875
ns
4
ns
1,2,3,8
CWL = 8
tCK(AVG)
Reserved
ns
1,2,3,4,8
CWL = 5,6,7
tCK(AVG)
Reserved
ns
4
CWL = 8
tCK(AVG)
ns
1,2,3,4,8
CWL = 9
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6,7,8
tCK(AVG)
Reserved
ns
4
CWL = 9
tCK(AVG)
Reserved
ns
1,2,3,4
CWL = 5,6,7,8
tCK(AVG)
CWL = 9
tCK(AVG)
1.25
1.5
Reserved
1.071
Supported CL Settings
Supported CWL Settings
- 29 -
<1.25
ns
4
ns
1,2,3,9
6,7,8,9,10,11,13
nCK
5,6,7,8,9
nCK
Unbuffered DIMM
datasheet
Rev. 1.3
DDR3 SDRAM
17.3.1 Speed Bin Table Notes
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);
NOTE :
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements
from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],
rounding up to the next "SupportedCL".
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or
1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED.
4. "Reserved" settings are not allowed. User must program a different value.
5. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
6. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
7. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
8. Any DDR3-1866 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/
Characterization.
9. For devices supporting optional downshift to CL=7 and CL=9, tAA/tRCD/tRP min must be 13.125 ns or lower. SPD settings must be programmed to match. For example,
DDR3-1333(CL9) devices supporting downshift to DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte
20). DDR3-1600(CL11) devices supporting downshift to DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in SPD bytes for tAAmin (Byte16), tRCDmin (Byte
18), and tRPmin (Byte 20). DDR3-1866(CL13) devices supporting downshift to DDR3-1600(CL11) or DDR3-1333(CL9) or DDR3-1066(CL7) should program 13.125 ns in
SPD bytes for tAAmin (Byte16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600 devices supporting down binning to DDR3-1333 or DDR3-1066 should program
13.125ns in SPD byte for tAAmin (Byte 16), tRCDmin (Byte 18) and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be
programmed accodingly. For example, 49.125ns, (tRASmin + tRPmin = 36ns + 13.125ns) for DDR3-1333 and 48.125ns (tRASmin + tRPmin = 35ns + 13.125ns) for DDR31600.
10. For devices supporting optional down binning to CL=11, CL=9 and CL=7, tAA/tRCD/tRPmin must be 13.125ns. SPD setting must be programed to match. For example,
DDR3-1866 devices supporting down binning to DDR3-1600 or DDR3-1333 or 1066 should program 13.125ns in SPD bytes for tAAmin(byte16), tRCDmin(Byte18) and tRPmin (byte20). Once tRP (Byte20) is programmed to 13.125ns, tRCmin (Byte21,23) also should be programmed accordingly. For example, 47.125ns (tRASmin + tRPmin =
34ns + 13.125ns)
- 30 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
18. Timing Parameters by Speed Grade
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
tCK(DLL_OFF)
8
-
8
-
8
-
Units
NOTE
ns
6
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
tCK(avg)
Clock Period
tCK(abs)
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
ps
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
0.47
0.53
tCK(avg)
Clock Period Jitter
tJIT(per)
-100
100
-90
90
-80
80
ps
tJIT(per, lck)
-90
90
-80
80
-70
70
ps
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
ps
See Speed Bins Table
tJIT(cc)
200
180
160
Cycle to Cycle Period Jitter during DLL locking period
tJIT(cc, lck)
180
160
140
Cumulative error across 2 cycles
tERR(2per)
- 147
147
- 132
132
- 118
118
ps
Cumulative error across 3 cycles
tERR(3per)
- 175
175
- 157
157
- 140
140
ps
Cumulative error across 4 cycles
tERR(4per)
- 194
194
- 175
175
- 155
155
ps
Cumulative error across 5 cycles
tERR(5per)
- 209
209
- 188
188
- 168
168
ps
Cumulative error across 6 cycles
tERR(6per)
- 222
222
- 200
200
- 177
177
ps
Cumulative error across 7 cycles
tERR(7per)
- 232
232
- 209
209
- 186
186
ps
Cumulative error across 8 cycles
tERR(8per)
- 241
241
- 217
217
- 193
193
ps
Cumulative error across 9 cycles
tERR(9per)
- 249
249
- 224
224
- 200
200
ps
Cumulative error across 10 cycles
tERR(10per)
- 257
257
- 231
231
- 205
205
ps
Cumulative error across 11 cycles
tERR(11per)
- 263
263
- 237
237
- 210
210
ps
Cumulative error across 12 cycles
tERR(12per)
- 269
269
- 242
242
- 215
215
ps
Cumulative error across n = 13, 14 ... 49, 50 cycles
ps
ps
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 + 0.68ln(n))*tJIT(per)max
tERR(nper)
ps
24
Absolute clock HIGH pulse width
tCH(abs)
0.43
-
0.43
-
0.43
-
tCK(avg)
25
Absolute clock Low pulse width
tCL(abs)
0.43
-
0.43
-
0.43
-
tCK(avg)
26
tDQSQ
-
200
-
150
-
125
ps
13
tQH
0.38
-
0.38
-
0.38
-
tCK(avg)
13, g
DQ low-impedance time from CK, CK
tLZ(DQ)
-800
400
-600
300
-500
250
ps
13,14, f
DQ high-impedance time from CK, CK
tHZ(DQ)
-
400
-
300
-
250
ps
13,14, f
tDS(base)
AC175
75
-
25
-
-
-
ps
d, 17
tDS(base)
AC150
125
-
75
-
30
-
ps
d, 17
tDH(base)
DC100
150
-
100
-
65
-
ps
d, 17
tDIPW
600
-
490
-
400
-
ps
28
DQS, DQS differential READ Preamble
tRPRE
0.9
NOTE 19
0.9
NOTE 19
0.9
NOTE 19
tCK(avg)
13, 19, g
DQS, DQS differential READ Postamble
tRPST
0.3
NOTE 11
0.3
NOTE 11
0.3
NOTE 11
tCK(avg)
11, 13, b
DQS, DQS differential output high time
tQSH
0.38
-
0.38
-
0.4
-
tCK(avg)
13, g
DQS, DQS differential output low time
tQSL
0.38
-
0.38
-
0.4
-
tCK(avg)
13, g
tWPRE
0.9
-
0.9
-
0.9
-
tCK(avg)
Data Timing
DQS,DQS to DQ skew, per group, per access
DQ output hold time from DQS, DQS
Data setup time to DQS, DQS referenced
to VIH(AC)VIL(AC) levels
Data hold time to DQS, DQS referenced
to VIH(DC)VIL(DC) levels
DQ and DM Input pulse width for each input
Data Strobe Timing
DQS, DQS differential WRITE Preamble
DQS, DQS differential WRITE Postamble
tWPST
0.3
-
0.3
-
0.3
-
tCK(avg)
DQS, DQS rising edge output access time from rising CK, CK
tDQSCK
-400
400
-300
300
-255
255
ps
13,f
DQS, DQS low-impedance time (Referenced from RL-1)
tLZ(DQS)
-800
400
-600
300
-500
250
ps
13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2)
tHZ(DQS)
-
400
-
300
-
250
ps
12,13,14
DQS, DQS differential input low pulse width
tDQSL
0.45
0.55
0.45
0.55
0.45
0.55
tCK(avg)
29, 31
DQS, DQS differential input high pulse width
tDQSH
0.45
0.55
0.45
0.55
0.45
0.55
tCK(avg)
30, 31
DQS, DQS rising edge to CK, CK rising edge
tDQSS
-0.25
0.25
-0.25
0.25
-0.25
0.25
tCK(avg)
c
DQS,DQS falling edge setup time to CK, CK rising edge
tDSS
0.2
-
0.2
-
0.2
-
tCK(avg)
c, 32
DQS,DQS falling edge hold time to CK, CK rising edge
tDSH
0.2
-
0.2
-
0.2
-
tCK(avg)
c, 32
- 31 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333 (Cont.)
Speed
Parameter
DDR3-800
Symbol
DDR3-1066
MIN
MAX
tDLLK
512
internal READ Command to PRECHARGE Command delay
tRTP
max
(4nCK,7.5ns)
Delay from start of internal write transaction to internal read command
tWTR
DDR3-1333
MIN
MAX
-
512
-
max
(4nCK,7.5ns)
max
(4nCK,7.5ns)
-
Units
NOTE
MIN
MAX
-
512
-
-
max
(4nCK,7.5ns)
-
e
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
e,18
Command and Address Timing
DLL locking time
WRITE recovery time
nCK
tWR
15
-
15
-
15
-
ns
Mode Register Set command cycle time
tMRD
4
-
4
-
4
-
nCK
Mode Register Set command update delay
tMOD
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
tCCD
4
-
4
-
4
-
1
-
CAS to CAS command delay
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
tDAL(min)
tMPRR
WR + roundup (tRP / tCK(AVG))
1
-
1
-
e
nCK
nCK
22
ns
e
tRAS
ACTIVE to ACTIVE command period for 1KB page size
tRRD
max
(4nCK,10ns)
-
max
(4nCK,7.5ns)
-
max
(4nCK,6ns)
-
e
ACTIVE to ACTIVE command period for 2KB page size
tRRD
max
(4nCK,10ns)
-
max
(4nCK,10ns)
-
max
(4nCK,7.5ns)
-
e
Four activate window for 1KB page size
tFAW
40
-
37.5
-
30
-
ns
e
Four activate window for 2KB page size
tFAW
50
-
50
-
45
-
ns
e
tIS(base)
AC175
200
-
125
-
65
-
ps
b,16
tIS(base)
AC150
200+150
-
125+150
-
65+125
-
ps
b,16,27
tIH(base)
DC100
275
-
200
-
140
-
ps
b,16
tIPW
900
-
780
-
620
-
ps
28
Power-up and RESET calibration time
tZQinitI
512
-
512
-
512
-
nCK
Normal operation Full calibration time
tZQoper
256
-
256
-
256
-
nCK
Normal operation short calibration time
tZQCS
64
-
64
-
64
-
nCK
tXPR
max(5nCK,
tRFC + 10ns)
-
max(5nCK,
tRFC + 10ns)
-
max(5nCK,
tRFC + 10ns)
-
tXS
max(5nCK,tRF
C + 10ns)
-
max(5nCK,tRF
C + 10ns)
-
max(5nCK,tRF
C + 10ns)
-
tXSDLL
tDLLK(min)
-
tDLLK(min)
-
tDLLK(min)
-
Minimum CKE low width for Self refresh entry to exit timing
tCKESR
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
tCKE(min) +
1tCK
-
Valid Clock Requirement after Self Refresh Entry (SRE) or PowerDown Entry (PDE)
tCKSRE
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
Valid Clock Requirement before Self Refresh Exit (SRX) or PowerDown Exit (PDX) or Reset Exit
tCKSRX
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
Command and Address setup time to CK, CK referenced to
VIH(AC) / VIL(AC) levels
Command and Address hold time from CK, CK referenced to
VIH(DC) / VIL(DC) levels
Control & Address Input pulse width for each input
See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42
nCK
ACTIVE to PRECHARGE command period
Calibration Timing
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL
Exit Self Refresh to commands requiring a locked DLL
- 32 -
nCK
23
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 20 ] Timing Parameters by Speed Bins for DDR3-800 to DDR3-1333
Speed
Parameter
DDR3-800
DDR3-1066
DDR3-1333
Symbol
MIN
MAX
MIN
MAX
MIN
MAX
Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL
frozen to commands not requiring a locked DLL
tXP
max
(3nCK,
7.5ns)
-
max
(3nCK,
7.5ns)
-
max
(3nCK,6ns)
-
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL
tXPDLL
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
max
(10nCK,
24ns)
-
tCKE
max
(3nCK,
7.5ns)
-
max
(3nCK,
5.625ns)
-
max
(3nCK,
5.625ns)
-
Units
NOTE
Power Down Timing
CKE minimum pulse width
Command pass disable delay
2
tCPDED
1
-
1
-
1
-
nCK
tPD
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCK(avg)
15
Timing of ACT command to Power Down entry
tACTPDEN
1
-
1
-
1
-
nCK
20
Timing of PRE command to Power Down entry
tPRPDEN
1
-
1
-
1
-
nCK
20
Timing of RD/RDA command to Power Down entry
tRDPDEN
RL + 4 +1
-
RL + 4 +1
-
RL + 4 +1
-
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF)
tWRPDEN
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
WL + 4
+(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL+4+WR +1
-
WL+4+WR+1
-
WL+4+WR+1
-
nCK
10
tWRPDEN
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
WL + 2
+(tWR/
tCK(avg))
-
nCK
9
Timing of WRA command to Power Down entry
(BC4MRS)
tWRAPDEN
WL +2 +WR
+1
-
WL +2 +WR
+1
-
WL +2 +WR
+1
-
nCK
Timing of REF command to Power Down entry
tREFPDEN
1
-
1
-
1
-
Timing of MRS command to Power Down entry
tMRSPDEN
tMOD(min)
-
tMOD(min)
-
tMOD(min)
-
ODT high time without write command or with write command
and BC4
ODTH4
4
-
4
-
4
-
nCK
ODT high time with Write command and BL8
ODTH8
6
-
6
-
6
-
nCK
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)
tAONPD
2
8.5
2
8.5
2
8.5
ns
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)
tAOFPD
2
8.5
2
8.5
2
8.5
ns
RTT turn-on
tAON
-400
400
-300
300
-250
250
ps
7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference
tAOF
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
8,f
RTT dynamic change skew
tADC
0.3
0.7
0.3
0.7
0.3
0.7
tCK(avg)
f
Power Down Entry to Exit Timing
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF)
Timing of WR command to Power Down entry
(BC4MRS)
10
20,21
ODT Timing
Write Leveling Timing
First DQS/DQS rising edge after write leveling mode is programmed
tWLMRD
40
-
40
-
40
-
tCK(avg)
3
tWLDQSEN
25
-
25
-
25
-
tCK(avg)
3
Write leveling setup time from rising CK, CK crossing to rising
DQS, DQS crossing
tWLS
325
-
245
-
195
-
ps
Write leveling hold time from rising DQS, DQS crossing to rising
CK, CK crossing
tWLH
325
-
245
-
195
-
ps
Write leveling output delay
tWLO
0
9
0
9
0
9
ns
Write leveling output error
tWLOE
0
2
0
2
0
2
ns
DQS/DQS delay after write leveling mode is programmed
- 33 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed
Parameter
DDR3-1600
DDR3-1866
Symbol
MIN
MAX
MIN
MAX
tCK(DLL_OFF)
8
-
8
-
Units
NOTE
ns
6
Clock Timing
Minimum Clock Cycle Time (DLL off mode)
Average Clock Period
tCK(avg)
Clock Period
tCK(abs)
tCK(avg)min + tJIT(per)min
tCK(avg)max +
tJIT(per)max
tCK(avg)min +
tJIT(per)min
tCK(avg)max +
tJIT(per)max
ps
Average high pulse width
tCH(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Average low pulse width
tCL(avg)
0.47
0.53
0.47
0.53
tCK(avg)
Clock Period Jitter
tJIT(per)
-70
70
-60
60
ps
tJIT(per, lck)
-60
60
-50
50
ps
Clock Period Jitter during DLL locking period
Cycle to Cycle Period Jitter
See Speed Bins Table
ps
tJIT(cc)
140
120
Cycle to Cycle Period Jitter during DLL locking period
tJIT(cc, lck)
120
100
Cumulative error across 2 cycles
tERR(2per)
-103
103
-88
88
ps
Cumulative error across 3 cycles
tERR(3per)
-122
122
-105
105
ps
Cumulative error across 4 cycles
tERR(4per)
-136
136
-117
117
ps
Cumulative error across 5 cycles
tERR(5per)
-147
147
-126
126
ps
Cumulative error across 6 cycles
tERR(6per)
-155
155
-133
133
ps
Cumulative error across 7 cycles
tERR(7per)
-163
163
-139
139
ps
Cumulative error across 8 cycles
tERR(8per)
-169
169
-145
145
ps
Cumulative error across 9 cycles
tERR(9per)
-175
175
-150
150
ps
Cumulative error across 10 cycles
tERR(10per)
-180
180
-154
154
ps
Cumulative error across 11 cycles
tERR(11per)
-184
184
-158
158
ps
Cumulative error across 12 cycles
tERR(12per)
-188
188
-161
161
ps
Cumulative error across n = 13, 14 ... 49, 50 cycles
ps
ps
tERR(nper)min = (1 + 0.68ln(n))*tJIT(per)min
tERR(nper)max = (1 + 0.68ln(n))*tJIT(per)max
tERR(nper)
ps
24
Absolute clock HIGH pulse width
tCH(abs)
0.43
-
0.43
-
tCK(avg)
25
Absolute clock Low pulse width
tCL(abs)
0.43
-
0.43
-
tCK(avg)
26
tDQSQ
-
100
-
85
ps
13
tQH
0.38
-
0.38
-
tCK(avg)
13, g
DQ low-impedance time from CK, CK
tLZ(DQ)
-450
225
-390
195
ps
13,14, f
DQ high-impedance time from CK, CK
tHZ(DQ)
-
225
-
195
ps
13,14, f
tDS(base)
AC150
10
-
-
-
ps
d, 17
tDS(base)
AC135
-
-
0
-
ps
d, 17
tDH(base)
DC100
45
-
20
-
ps
d, 17
tDIPW
360
-
320
-
ps
28
DQS, DQS differential READ Preamble
tRPRE
0.9
NOTE 19
0.9
NOTE 19
tCK(avg)
13, 19, g
DQS, DQS differential READ Postamble
tRPST
0.3
NOTE 11
0.3
NOTE 11
tCK(avg)
11, 13, b
DQS, DQS differential output high time
tQSH
0.4
-
0.4
-
tCK(avg)
13, g
DQS, DQS differential output low time
tQSL
0.4
-
0.4
-
tCK(avg)
13, g
tWPRE
0.9
-
0.9
-
tCK(avg)
Data Timing
DQS,DQS to DQ skew, per group, per access
DQ output hold time from DQS, DQS
Data setup time to DQS, DQS referenced to VIH(AC)VIL(AC) levels
Data hold time to DQS, DQS referenced to VIH(DC)VIL(DC) levels
DQ and DM Input pulse width for each input
Data Strobe Timing
DQS, DQS differential WRITE Preamble
DQS, DQS differential WRITE Postamble
tWPST
0.3
-
0.3
-
tCK(avg)
DQS, DQS rising edge output access time from rising CK, CK
tDQSCK
-225
225
-195
195
ps
13,f
DQS, DQS low-impedance time (Referenced from RL-1)
tLZ(DQS)
-450
225
-390
195
ps
13,14,f
DQS, DQS high-impedance time (Referenced from RL+BL/2)
tHZ(DQS)
-
225
-
195
ps
12,13,14
DQS, DQS differential input low pulse width
tDQSL
0.45
0.55
0.45
0.55
tCK(avg)
29, 31
DQS, DQS differential input high pulse width
tDQSH
0.45
0.55
0.45
0.55
tCK(avg)
30, 31
DQS, DQS rising edge to CK, CK rising edge
tDQSS
-0.27
0.27
-0.27
0.27
tCK(avg)
c
DQS,DQS falling edge setup time to CK, CK rising edge
tDSS
0.18
-
0.18
-
tCK(avg)
c, 32
DQS,DQS falling edge hold time to CK, CK rising edge
tDSH
0.18
-
0.18
-
tCK(avg)
c, 32
- 34 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866 (Cont.)
Speed
Parameter
DDR3-1600
Symbol
DDR3-1866
MIN
MAX
tDLLK
512
internal READ Command to PRECHARGE Command delay
tRTP
max
(4nCK,7.5ns)
Delay from start of internal write transaction to internal read command
tWTR
Units
NOTE
MIN
MAX
-
512
-
-
max
(4nCK,7.5ns)
-
e
max
(4nCK,7.5ns)
-
max
(4nCK,7.5ns)
-
e,18
Command and Address Timing
DLL locking time
WRITE recovery time
nCK
tWR
15
-
15
-
ns
Mode Register Set command cycle time
tMRD
4
-
4
-
nCK
Mode Register Set command update delay
tMOD
max
(12nCK,15ns)
-
max
(12nCK,15ns)
-
CAS to CAS command delay
tCCD
4
-
4
-
Auto precharge write recovery + precharge time
Multi-Purpose Register Recovery Time
ACTIVE to PRECHARGE command period
WR + roundup (tRP /
tCK(AVG))
tDAL(min)
tMPRR
tRAS
1
-
1
e
nCK
nCK
-
See “Speed Bins and CL, tRCD, tRP, tRC and tRAS for corresponding Bin” on page 42
nCK
22
ns
e
ACTIVE to ACTIVE command period for 1KB page size
tRRD
max
(4nCK,6ns)
ACTIVE to ACTIVE command period for 2KB page size
tRRD
max
(4nCK,7.5ns)
-
max
(4nCK, 6ns)
-
Four activate window for 1KB page size
tFAW
30
-
27
-
ns
e
Four activate window for 2KB page size
tFAW
40
-
35
-
ns
e
tIS(base)
AC175
45
-
-
-
ps
b,16
tIS(base)
AC150
170
-
-
-
ps
b,16
tIS(base)
AC135
-
-
65
ps
b,16
tIS(base)
AC125
-
-
150
-
ps
b,16,27
tIH(base)
DC100
120
-
100
-
ps
b,16
tIPW
560
-
535
-
ps
28
Power-up and RESET calibration time
tZQinitI
512
-
max(512nCK,640ns)
-
nCK
Normal operation Full calibration time
tZQoper
256
-
max(256nCK,320ns)
-
nCK
tZQCS
64
-
max(64nCK,80ns)
-
nCK
tXPR
max(5nCK, tRFC +
10ns)
-
max(5nCK, tRFC +
10ns)
-
tXS
max(5nCK,tRFC +
10ns)
-
max(5nCK,tRFC +
10ns)
-
Exit Self Refresh to commands requiring a locked DLL
tXSDLL
tDLLK(min)
-
tDLLK(min)
-
Minimum CKE low width for Self refresh entry to exit timing
tCKESR
tCKE(min) + 1tCK
-
tCKE(min) + 1nCK
-
Valid Clock Requirement after Self Refresh Entry (SRE) or PowerDown Entry (PDE)
tCKSRE
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
Valid Clock Requirement before Self Refresh Exit (SRX) or PowerDown Exit (PDX) or Reset Exit
tCKSRX
max(5nCK,
10ns)
-
max(5nCK,
10ns)
-
Command and Address setup time to CK, CK referenced to
VIH(AC) / VIL(AC) levels
Command and Address hold time from CK, CK referenced to
VIH(DC) / VIL(DC) levels
Control & Address Input pulse width for each input
-
max
(4nCK, 5ns)
-
e
e
Calibration Timing
Normal operation short calibration time
Reset Timing
Exit Reset from CKE HIGH to a valid command
Self Refresh Timing
Exit Self Refresh to commands not requiring a locked DLL
- 35 -
nCK
23
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
[ Table 21 ] Timing Parameters by Speed Bins for DDR3-1600, DDR3-1866
Speed
Parameter
DDR3-1600
DDR3-1866
Symbol
MIN
MAX
MIN
MAX
Exit Power Down with DLL on to any valid command;Exit Precharge Power Down with DLL
frozen to commands not requiring a locked DLL
tXP
max
(3nCK,6ns)
-
max(3nCK,6ns)
-
Exit Precharge Power Down with DLL frozen to commands requiring a locked DLL
tXPDLL
max
(10nCK,
24ns)
-
max(10nCK,24ns)
-
tCKE
max
(3nCK,5ns)
-
max(3nCK,5ns)
-
Units
NOTE
Power Down Timing
CKE minimum pulse width
Command pass disable delay
2
tCPDED
1
-
2
-
nCK
tPD
tCKE(min)
9*tREFI
tCKE(min)
9*tREFI
tCK(avg)
15
Timing of ACT command to Power Down entry
tACTPDEN
1
-
1
-
nCK
20
Timing of PRE command to Power Down entry
tPRPDEN
1
-
1
-
nCK
20
Timing of RD/RDA command to Power Down entry
tRDPDEN
RL + 4 +1
-
RL + 4 +1
-
Timing of WR command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF)
tWRPDEN
WL + 4 +(tWR/
tCK(avg))
-
WL + 4 +(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL + 4 +WR +1
-
WL + 4 +WR +1
-
nCK
10
tWRPDEN
WL + 2 +(tWR/
tCK(avg))
-
WL + 2 +(tWR/
tCK(avg))
-
nCK
9
tWRAPDEN
WL +2 +WR +1
-
WL +2 +WR +1
-
nCK
10
Power Down Entry to Exit Timing
Timing of WRA command to Power Down entry
(BL8OTF, BL8MRS, BC4OTF)
Timing of WR command to Power Down entry
(BC4MRS)
Timing of WRA command to Power Down entry
(BC4MRS)
Timing of REF command to Power Down entry
tREFPDEN
1
-
1
-
Timing of MRS command to Power Down entry
tMRSPDEN
tMOD(min)
-
tMOD(min)
-
20,21
ODT high time without write command or with write command
and BC4
ODTH4
4
-
4
-
nCK
ODT high time with Write command and BL8
ODTH8
6
-
6
-
nCK
Asynchronous RTT turn-on delay (Power-Down with DLL frozen)
tAONPD
2
8.5
2
8.5
ns
Asynchronous RTT turn-off delay (Power-Down with DLL frozen)
ns
ODT Timing
tAOFPD
2
8.5
2
8.5
RTT turn-on
tAON
-225
225
-195
195
ps
7,f
RTT_NOM and RTT_WR turn-off time from ODTLoff reference
tAOF
0.3
0.7
0.3
0.7
tCK(avg)
8,f
RTT dynamic change skew
tADC
0.3
0.7
0.3
0.7
tCK(avg)
f
tWLMRD
40
-
40
-
tCK(avg)
3
3
Write Leveling Timing
First DQS/DQS rising edge after write leveling mode is programmed
DQS/DQS delay after write leveling mode is programmed
tWLDQSEN
25
-
25
-
tCK(avg)
Write leveling setup time from rising CK, CK crossing to rising
DQS, DQS crossing
tWLS
165
-
140
-
ps
Write leveling hold time from rising DQS, DQS crossing to rising
CK, CK crossing
tWLH
165
-
140
-
ps
Write leveling output delay
tWLO
0
7.5
0
7.5
ns
Write leveling output error
tWLOE
0
2
0
2
ns
- 36 -
Unbuffered DIMM
datasheet
Rev. 1.3
DDR3 SDRAM
18.1 Jitter Notes
Specific Note a
Unit ’tCK(avg)’ represents the actual tCK(avg) of the input clock under operation. Unit ’nCK’ represents one clock cycle of the
input clock, counting the actual clock edges.ex) tMRD = 4 [nCK] means; if one Mode Register Set command is registered at Tm,
another Mode Register Set command may be registered at Tm+4, even if (Tm+4 - Tm) is 4 x tCK(avg) + tERR(4per),min.
Specific Note b
These parameters are measured from a command/address signal (CKE, CS, RAS, CAS, WE, ODT, BA0, A0, A1, etc.) transition
edge to its respective clock signal (CK/CK) crossing. The spec values are not affected by the amount of clock jitter applied (i.e.
tJIT(per), tJIT(cc), etc.), as the setup and hold are relative to the clock signal crossing that latches the command/address. That is,
these parameters should be met whether clock jitter is present or not.
Specific Note c
These parameters are measured from a data strobe signal (DQS, DQS) crossing to its respective clock signal (CK, CK) crossing.
The spec values are not affected by the amount of clock jitter applied (i.e. tJIT(per), tJIT(cc), etc.), as these are relative to the
clock signal crossing. That is, these parameters should be met whether clock jitter is present or not.
Specific Note d
These parameters are measured from a data signal (DM, DQ0, DQ1, etc.) transition edge to its respective data strobe signal
(DQS, DQS) crossing.
Specific Note e
For these parameters, the DDR3 SDRAM device supports tnPARAM [nCK] = RU{ tPARAM [ns] / tCK(avg) [ns] }, which is in clock
cycles, assuming all input clock jitter specifications are satisfied. For example, the device will support tnRP = RU{tRP / tCK(avg)},
which is in clock cycles, if all input clock jitter specifications are met. This means: For DDR3-800 6-6-6, of which tRP = 15ns, the
device will support tnRP = RU{tRP / tCK(avg)} = 6, as long as the input clock jitter specifications are met, i.e. Precharge command at Tm and Active command at Tm+6 is valid even if (Tm+6 - Tm) is less than 15ns due to input clock jitter.
Specific Note f
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tERR(mper),act of the input
clock, where 2 <= m <= 12. (output deratings are relative to the SDRAM input clock.)
For example, if the measured jitter into a DDR3-800 SDRAM has tERR(mper),act,min = - 172 ps and tERR(mper),act,max = +
193 ps, then tDQSCK,min(derated) = tDQSCK,min - tERR(mper),act,max = - 400 ps - 193 ps = - 593 ps and tDQSCK,max(derated) = tDQSCK,max - tERR(mper),act,min = 400 ps + 172 ps = + 572 ps. Similarly, tLZ(DQ) for DDR3-800 derates to
tLZ(DQ),min(derated) = - 800 ps - 193 ps = - 993 ps and tLZ(DQ),max(derated) = 400 ps + 172 ps = + 572 ps. (Caution on the
min/max usage!)
Note that tERR(mper),act,min is the minimum measured value of tERR(nper) where 2 <= n <=
12, and tERR(mper),act,max is the maximum measured value of tERR(nper) where 2 <= n <= 12.
Specific Note g
When the device is operated with input clock jitter, this parameter needs to be derated by the actual tJIT(per),act of the input
clock. (output deratings are relative to the SDRAM input clock.) For example, if the measured jitter into a DDR3-800 SDRAM has
tCK(avg),act = 2500 ps, tJIT(per),act,min = - 72 ps and tJIT(per),act,max = + 93 ps, then tRPRE,min(derated) = tRPRE,min +
tJIT(per),act,min = 0.9 x tCK(avg),act + tJIT(per),act,min = 0.9 x 2500 ps - 72 ps = + 2178 ps. Similarly, tQH,min(derated) =
tQH,min + tJIT(per),act,min = 0.38 x tCK(avg),act + tJIT(per),act,min = 0.38 x 2500 ps - 72 ps = + 878 ps. (Caution on the min/
max usage!)
- 37 -
Unbuffered DIMM
datasheet
Rev. 1.3
DDR3 SDRAM
18.2 Timing Parameter Notes
1. Actual value dependant upon measurement level definitions which are TBD.
2. Commands requiring a locked DLL are: READ (and RAP) and synchronous ODT commands.
3. The max values are system dependent.
4. WR as programmed in mode register
5. Value must be rounded-up to next higher integer value
6. There is no maximum cycle time limit besides the need to satisfy the refresh interval, tREFI.
7. For definition of RTT turn-on time tAON see "Device Operation & Timing Diagram Datasheet"
8. For definition of RTT turn-off time tAOF see "Device Operation & Timing Diagram Datasheet".
9. tWR is defined in ns, for calculation of tWRPDEN it is necessary to round up tWR / tCK to the next integer.
10. WR in clock cycles as programmed in MR0
11. The maximum read postamble is bound by tDQSCK(min) plus tQSH(min) on the left side and tHZ(DQS)max on the right side. See "Device Operation & Timing
Diagram Datasheet.
12. Output timing deratings are relative to the SDRAM input clock. When the device is operated with input clock jitter, this parameter needs to be derated
by TBD
13. Value is only valid for RON34
14. Single ended signal parameter. Refer to chapter 8 and chapter 9 for definition and measurement method.
15. tREFI depends on TOPER
16. tIS(base) and tIH(base) values are for 1V/ns CMD/ADD single-ended slew rate and 2V/ns CK, CK differential slew rate, Note for DQ and DM signals,
VREF(DC) = VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Address/Command Setup, Hold and Derating" on component datasheet.
17. tDS(base) and tDH(base) values are for 1V/ns DQ single-ended slew rate and 2V/ns DQS, DQS differential slew rate. Note for DQ and DM signals,
VREF(DC)= VREFDQ(DC). For input only pins except RESET, VREF(DC)=VREFCA(DC).
See "Data Setup, Hold and Slew Rate Derating" on component datasheet.
18. Start of internal write transaction is defined as follows ;
For BL8 (fixed by MRS and on-the-fly) : Rising clock edge 4 clock cycles after WL.
For BC4 (on-the-fly) : Rising clock edge 4 clock cycles after WL
For BC4 (fixed by MRS) : Rising clock edge 2 clock cycles after WL
19. The maximum read preamble is bound by tLZDQS(min) on the left side and tDQSCK(max) on the right side. See "Device Operation & Timing Diagram
Datasheet"
20. CKE is allowed to be registered low while operations such as row activation, precharge, autoprecharge or refresh are in progress, but power-down
IDD spec will not be applied until finishing those operations.
21. Although CKE is allowed to be registered LOW after a REFRESH command once tREFPDEN(min) is satisfied, there are cases where additional time
such as tXPDLL(min) is also required. See "Device Operation & Timing Diagram Datasheet".
22. Defined between end of MPR read burst and MRS which reloads MPR or disables MPR function.
23. One ZQCS command can effectively correct a minimum of 0.5 % (ZQCorrection) of RON and RTT impedance error within 64 nCK for all speed bins assuming
the maximum sensitivities specified in the ’Output Driver Voltage and Temperature Sensitivity’ and ’ODT Voltage and Temperature Sensitivity’ tables. The
appropriate interval between ZQCS commands can be determined from these tables and other application specific parameters.
One method for calculating the interval between ZQCS commands, given the temperature (Tdriftrate) and voltage (Vdriftrate) drift rates that the SDRAM is subject to in the application, is illustrated. The interval could be defined by the following formula:
ZQCorrection
(TSens x Tdriftrate) + (VSens x Vdriftrate)
where TSens = max(dRTTdT, dRONdTM) and VSens = max(dRTTdV, dRONdVM) define the SDRAM temperature and voltage sensitivities.
For example, if TSens = 1.5% /°C, VSens = 0.15% / mV, Tdriftrate = 1°C / sec and Vdriftrate = 15 mV / sec, then the interval between ZQCS commands is calculated as:
0.5
(1.5 x 1) + (0.15 x 15)
= 0.133 ~
~ 128ms
24. n = from 13 cycles to 50 cycles. This row defines 38 parameters.
25. tCH(abs) is the absolute instantaneous clock high pulse width, as measured from one rising edge to the following falling edge.
26. tCL(abs) is the absolute instantaneous clock low pulse width, as measured from one falling edge to the following rising edge.
27. The tIS(base) AC150 specifications are adjusted from the tIS(base) AC175 specification by adding an additional 125 ps for DDR3-800/1066 or 100ps for DDR31333/1600 of derating to accommodate for the lower alternate threshold of 150mV and another 25ps to account for the earlier reference point [(175mv - 150
mV) / 1 V/ns].
28. Pulse width of a input signal is defined as the width between the first crossing of VREF(DC) and the consecutive crossing of VREF(DC)
29. tDQSL describes the instantaneous differential input low pulse width on DQS-DQS, as measured from one falling edge to the next consecutive rising edge.
30. tDQSH describes the instantaneous differential input high pulse width on DQS-DQS, as measured from one rising edge to the next consecutive falling edge.
31. tDQSH, act + tDQSL, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
32. tDSH, act + tDSS, act = 1 tCK, act ; with tXYZ, act being the actual measured value of the respective timing parameter in the application.
33. The tIS(base) AC125 specifications are adjusted from the tIS(base) AC135 specification by adding an additional 75ps for DDR3-1866 to accommodate for the
lower alternate threshold of 125mV and another 10ps to account for the earlier reference point [(135mv - 125mV) / 1 V/ns].
- 38 -
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
19. Physical Dimensions
19.1 512Mbx8 based 512M x64 Module (1 Rank) - M378B5173BH0
Units : Millimeters
128.95
ECC
SPD
17.30
9.50
N/A
(for x64)
2.30
(for x72)
30.00 ± 0.15
(4X)3.00 ± 0.1
133.35 ± 0.15
(2)
2.50
54.675
A
B
47.00
Max 4.0
71.00
2.50 ± 0.20
1.270 ± 0.10
5.00
0.80 ± 0.05
3.80
0.2 ± 0.15
1.50±0.10
1.00
2.50
Detail A
Detail B
The used device is 512M x8 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B4G0846B-HC∗∗
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
- 39 -
2x 2.10 ± 0.15
Rev. 1.3
datasheet
Unbuffered DIMM
DDR3 SDRAM
19.2 512Mbx8 based 1Gx64/x72 Module (2 Ranks) - M378/91B1G73BH0
Units : Millimeters
128.95
ECC
SPD
17.30
9.50
N/A
(for x64)
2.30
(for x72)
30.00 ± 0.15
(4X)3.00 ± 0.1
133.35 ± 0.15
(2)
2.50
54.675
A
B
47.00
Max 4.0
71.00
N/A
(for x64)
ECC
(for x72)
2.50 ± 0.20
1.270 ± 0.10
5.00
0.80 ± 0.05
3.80
0.2 ± 0.15
1.50±0.10
1.00
2.50
Detail A
Detail B
The used device is 512M x8 DDR3 SDRAM, FBGA.
DDR3 SDRAM Part NO : K4B4G0846B-HC∗∗
* NOTE : Tolerances on all dimensions ±0.15 unless otherwise specified.
- 40 -
2x 2.10 ± 0.15