L9958 Low RDSON SPI controlled H-Bridge Datasheet − production data Features ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Programmable current regulation peak threshold by SPI up to 8.6 A typ. Operating battery supply voltage 4.0 V to 28 V Operating Vdd supply voltage 4.5 V to 5.5 V All pins withstand 19 V, Vs and output pins withstand 40 V Full path Ron from 100 mΩ (at Tj = -40 °C) to 300 mΩ (at Tj =150 °C) Logic inputs TTL/CMOS-compatible Operating frequency up to 20 kHz 16-bit SPI interface for configuration/diagnostics, daisy chain capability Over temperature and short circuit protection VS undervoltage disable function Vdd undervoltage and overvoltage protection Vdd overvoltage detection Open-load detection in ON condition Full diagnostics in OFF state Enable and disable input Low stand by current (<10 µA) Voltage and current slew-rate control for low EMI, programmable through SPI Available in three power packages The L9958 is an SPI controlled H-Bridge, designed for the control of DC and stepper motors in safety critical applications and under extreme environmental conditions. The H-Bridge is protected against over temperature, short circuits and has an undervoltage lockout for all the supply voltages Vs and Vdd, and for overvoltage on Vdd. All malfunctions cause the output stages to go tristate. This is information on a product in full production. *$3*36 *$3*36 PowerSO16 Detailed failure diagnostics on each channel is provided via SPI: short circuit to battery, short circuit to ground, short circuit overload, over temperature. Open-load can be detected in ON condition, for the widest application ranges. Current regulation threshold can be set by SPI from 2.5 A to 8.6 A (Typ.), in 4 steps. Guaranteed accuracy is ±10 % on all temp range, using an external reference resistor with 1% accuracy over all temp range. Current limitation threshold is linearly reduced by temperature over 165 °C.and a thermal warning bit is set by SPI. The H-Bridge contains integrated free-wheel diodes. In case of free-wheeling condition, the low side transistor is switched on in parallel of its diode to reduce power dissipation. A multiple wire bonding technique, as well as ST proprietary package design is making L9958 compatible with three power packages, for maximum flexibility: PowerSO-20 package (medium power, JEDEC standard MO166); Description September 2013 *$3*36 PowerSO-20 PowerSSO24 PowerSO16 package (medium power, lower cost); PowerSSO24 package (low power, very low cost JEDEC standard MO271A). Table 1. Device summary Order code Package Packing L9958 PowerSO-20 Tube L9958SB PowerSO16 Tube L9958XP PowerSSO24 Tube Doc ID 17269 Rev 5 1/38 www.st.com 1 Contents L9958 Contents 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 2.1 PowerSO-20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 PowerSO16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.3 PowerSSO24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Device description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.1 Supply range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2 Control inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 3.2.1 DI and EN inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.2 DIR and PWM inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3.1 4 5 3.4 SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 SPI communication failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.6 5 V and 3.3 V output compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.1 Temperature-dependent current regulation . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 Current regulation with low-inductive loads . . . . . . . . . . . . . . . . . . . . . . . 17 4.3 Slew rate control in case of current limitation on low-side . . . . . . . . . . . . 17 Diagnostics and protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1 5.2 2/38 Daisy chain operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Diagnosis reset strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.1 Reset requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 5.1.2 Diagnosis reset bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Protection and on state diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.1 Over-current on high-side - short to ground . . . . . . . . . . . . . . . . . . . . . . 20 5.2.2 Over-current on low-side - short to Vs . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.3 Short circuit over-load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.4 Open load in on state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 5.2.5 Over-temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Doc ID 17269 Rev 5 L9958 Contents 5.3 5.4 6 5.2.6 Vs under-voltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5.2.7 Vdd over-voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.8 Vdd under-voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 5.2.9 Output short protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Off-state diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.1 Off-state detection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.3.2 Open load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 H-Bridge functional status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 6.3 Range of functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6.4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.4.1 Device supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.4.2 Device supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.4.3 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 6.4.4 Digital inputs: TTL // 3.3V / 5V CMOS compatible . . . . . . . . . . . . . . . . . 29 6.4.5 Bridge output drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6.4.6 Over-temperature monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 6.4.7 Current limitation and over-current detection . . . . . . . . . . . . . . . . . . . . . 30 6.4.8 Diagnostic of open-load in on-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4.9 Off-state diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6.4.10 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Doc ID 17269 Rev 5 3/38 List of tables L9958 List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. 4/38 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 PowerSO-20 pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PowerSO16 pin function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 PowerSSO24 pin function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Control pins EN, DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Control pins DIR, PWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Configuration protocol (CFG_REG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Diagnosis protocol (DIA_REG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Current limitation programmability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Slew rate control on low side MOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Diagnosis reset strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Over-temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Vs under-voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Vdd over-voltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Range of functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Device supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Device supply monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Digital inputs: TTL // 3.3V / 5V CMOS compatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Bridge output drivers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Over-temperature monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Current limitation and over-current detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Diagnostic of open-load in on-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Off-state diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Doc ID 17269 Rev 5 L9958 List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 PowerSO-20 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 PowerSO16 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 PowerSSO24 pin connection (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 H-Bridge configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SPI protocol structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 FSI bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Daisy chain topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 SPI zero clock communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Current limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Temperature dependent current regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Current regulation with different loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Slew rate switching strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Diagnostics for SCB / SCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Open load in on state - Low-side current recirculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Off-state detection scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Open load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Off-state diagnostic principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Thermal impedance (junction-ambient) of power packages . . . . . . . . . . . . . . . . . . . . . . . . 26 Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 PowerSO-20 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 34 PowerSO16 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . 35 PowerSSO24 mechanical data and package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 36 Doc ID 17269 Rev 5 5/38 Block diagram L9958 1 Block diagram Figure 1. Block diagram &3 96 8QGHUYROWDJH 96 7R&RQWURO/RJLF%ORFN &KDUJH3XPS 9'' 2YHU&XUUHQW 'HWHFWLRQ 8QGHU2YHUYROWDJH 9'' ',5 3:0 ', (1 7R&RQWURO/RJLF%ORFN &RQWURO/RJLF *$7( 287 'LDJQRVWLF 287 '5,9(5 2YHU&XUUHQW 'HWHFWLRQ 9'',2 6&. &6 6, 62 5(;7 63, 2YHUWHPSHUDWXUH 5HIHUHQFH FXUUHQWJHQHUDWRU 7R&RQWURO/RJLF%ORFN &XUUHQW/LPLWDWLRQ &XUUHQW 0RQLWRU *1' *$3*36 6/38 Doc ID 17269 Rev 5 L9958 Pins description 2 Pins description 2.1 PowerSO-20 The exposed slug must be soldered on the PCB and connected to GND. Table 2. PowerSO-20 pin function Pin N° Name 1 GND 2 SO 3 VDDIO 4 CS Chip select 5 CP Charge pump 6 VS Supply voltage 7 DIR Direction input 8 OUT1 Output 1 9 DI Disable 10 GND Ground 11 GND Ground 12 EN Enable 13 OUT2 Output 2 14 PWM PWM input 15 REXT External reference resistor 16 SI Serial in 17 SCK SPI clock 18 VDD Supply voltage 19 N.C. Not connected (To be connected to GND on the PCB) 20 GND Ground Figure 2. Description Ground Serial out Supply voltage for SPI PowerSO-20 pin connection (top view) *1' *1' 62 1& 9'',2 9'' &6 6&. &3 6, 96 5(;7 ',5 3:0 287 287 ', (1 *1' *1' *$3*36 Doc ID 17269 Rev 5 7/38 Pins description 2.2 L9958 PowerSO16 The exposed slug must be soldered on the PCB and connected to GND Table 3. PowerSO16 pin function Pin Nº Name 1 GND 2 SO Serial Out 3 CS Chip Select 4 CP Charge pump 5 DIR Direction Input 6 OUT1 Output 1 7 DI Disable 8 PGND 9 EN 10 OUT2 Output 2 11 PWM PWM Input 12 REXT External Reference Resistor 13 VS Supply Voltage 14 SI Serial In 15 SCK SPI Clock 16 VDD Supply Voltage Figure 3. Description Ground Power Ground Enable PowerSO16 pin connection (top view) *1' 9'' 62 6&. &6 6, &3 96 ',5 5(;7 287 3:0 ', 287 3*1' (1 *$3*36 8/38 Doc ID 17269 Rev 5 L9958 2.3 Pins description PowerSSO24 Although this package has two separate pins for the ground (pin11 = PGND = Power Ground and pin22 = GND = Logic Ground), the device is designed to work with shortening ground and is mandatory that the two pins have to be connected nearby the IC on the PCB. The exposed slug must be soldered on the PCB and connected to GND. Table 4. PowerSSO24 pin function Pin Nº Name 1, 2, 12, 13, 14, 23, 24 N.C. Not Connected 3 SO Serial Out 4 VDDIO 5 CS Chip Select 6 CP Supply Voltage for SPI 7 VS Supply Voltage 8 DIR Direction Input 9 OUT1 Output 1 10 DI Disable 11 PGND 15 EN 16 OUT2 Output 2 17 PWM PWM Input 18 REXT External Reference Resistor 19 SI 20 SCK SPI Clock 21 VDD Supply Voltage 22 GND Ground Figure 4. Description Supply Voltage for SPI Power Ground Enable Serial In PowerSSO24 pin connection (top view) 1& 1& 1& 1& 62 *1' 9'',2 9'' &6 6&. &3 6, 96 5(;7 ',5 3:0 287 287 ', (1 3*1' 1& 1& 1& *$3*36 Doc ID 17269 Rev 5 9/38 Device description L9958 3 Device description 3.1 Supply range The L9958 has an operating supply range from "Vs_uv" (battery monitoring) up to 28 V. However, the device is tested until 16 V; the functionality of the device is guaranteed until 28 V. The absolute maximum rating is defined to 40 V DC. 3.2 Control inputs The bridge is controlled by the Inputs PWM, DIR, EN and DI. All the digital inputs and outputs of the L9958 are compatible with 3.3 V and 5 V CMOS. The power stages output OUT1 and OUT2 are controlled by the direct inputs DIR and PWM as given in Table 5. The DIR input gives the direction of output current, while the PWM input controls whether the current is increased or reduced. 3.2.1 DI and EN inputs The pin DI is internally pulled-up and high active. When DI is active (set to HIGH), the bridge is set to tristate, whatever the state of the DIR and PWM inputs. All the data stored in SPI registers are not reset and SPI communication with the MCU is still possible. When DI is inactive (set to LOW), the bridge is controlled by the DIR and PWM inputs. The pin EN is internally pulled down and high active. When EN is inactive (set to LOW), the bridge is set to tri-state, whatever the state of the DIR and PWM inputs. All the data stored in SPI registers are not reset and SPI communication with the MCU is still possible. When EN is active (set to HIGH), the bridge is controlled by the DIR and PWM inputs. The coding is performed as shown in the next table. The state of the bridge is transferred in the diagnostic register in a bit called "ACT". Table 5. 10/38 Control pins EN, DI EN DI Bit “ACT” Bridge status 0 0 0 Tri-state 0 1 0 Tri-state 1 0 1 On-state 1 1 0 Tri-state Doc ID 17269 Rev 5 L9958 3.2.2 Device description DIR and PWM inputs The pins DIR and PWM are internally pulled down. The bridge is controlled by these two inputs according to the table below. Table 6. Control pins DIR, PWM DIR PWM OUT1 OUT2 Bridge Status H H H L Forward L L L L Freewheeling Low L H L H Reverse H L L L Freewheeling low Figure 5. H-Bridge configurations ,/ ,/ 287 287 287 287 9 9 ',5 3:0 )RUZDUG ',5 3:0 )UHHZKHHOLQJ /6 ,/ ,/ 287 287 287 287 9 9 ',5 3:0 5HYHUVH ',5 3:0 )UHHZKHHOLQJ /6 *$3*36 The outputs can be disabled (set to tri-state) by the Disable and Enable inputs DI and EN. Input DI has an internal pull-up. Input EN has an internal pull-down. During freewheeling phase, an active freewheeling on the Low-Side MOS is automatically set, switching ON the power transistor in parallel to the internal freewheeling diode. Doc ID 17269 Rev 5 11/38 Device description 3.3 L9958 Serial peripheral interface (SPI) The SPI is used for bidirectional communication with a control unit, allowing IC configuration, diagnosis and identification. L9958 can also be used in daisy-chain configuration (number of device in the daisy chain is not limited). The SPI interface of L9958 is a slave SPI interface: the master is the µC which provides CS and SCK to L9958. Transfer format uses 16 bits word in case of single device configuration and multiple of 16 bits word in case of daisy chain configuration. The first answer after Power-ON-Reset is the IC identifier. A command sent by the µC during transfer N is answered during transfer N+1. SO is clocked on SCK rising edge. SI is sampled on falling edge. When CS = '1' and during powerON reset, SO is in tri-state. Otherwise, the SPI interface is always active. Settings made by the SPI control word become active at the end of the SPI transmission and remain valid until a different control word is transmitted or a power on reset occurs. At each SPI transmission, the diagnosis bits as currently valid in the error logic are transmitted. Details on diagnosis are described in Section 5. Figure 6. SPI protocol structure &6 6, &RPPDQG1 62 $QVZHUWRFPG1 &RPPDQG1 $QVZHUWRFPG1 *$3*36 Between CS falling edge and SCK rising edge, an internal signal called "FSI bit" is set asynchronously on SO output. This can be useful to have internal information on the device without stimulating the SCK clock. The definition of the FSI bit is presented in the diagnostics chapter. Figure 7. FSI bit &6 6&. 62 /6% )6,ELW 06% *$3*36 Except the Enable / Disable bit (“ACT” pin), all the bits of diagnosis register are latched and can be released by: ● Diagnosis register read by SPI ● Power-On-Reset condition. The coding for the Configuration and Diagnosis Registers is reported in the table below. 12/38 Doc ID 17269 Rev 5 L9958 Device description Table 7. Table 8. Configuration protocol (CFG_REG) Bit Name 0 - LSB RES 1 DR 2 Config. value after reset Description Reserved — Diagnostic Reset Bit 0 CL_1 Bit1 for Regulation Current Level 0 3 CL_2 Bit2 for Regulation Current Level 1 4 RES Reserved — 5 RES Reserved — 6 RES Reserved — 7 RES Reserved — 8 VSR Voltage Slew Rate Control Value 0 9 ISR Current Slew Rate Control Value 0 10 ISR_DIS Current Slew Rate Control Disable 0 11 OL_ON Open Load in ON state Enable 0 12 RES Reserved — 13 RES Reserved — 14 0 “0” to be written — 15-MSB 0 “0” to be written — Diagnosis protocol (DIA_REG) Bit Name Description Status after reset Bit state DR impact H-bridge status 0-LSB OL_OFF Open Load in OFF condition 0 Latched – – 1 OL_ON Open Load in ON condition 0 Latched – – 2 VS_UV Vs undervoltage 0 Not latched – Hi-Z if “1” 3 VDD_OV Vdd overvoltage 0 Latched X Hi-Z if “1” 4 ILIM 5 TWARN Current Limitation reached 0 Latched – – Temperature warning 0 Latched – – 6 TSD Over-temperature Shutdown 0 Latched X Hi-Z if “1” 7 ACT Bridge enable 1 Not latched – Hi-Z if “0” 8 OC_LS1 Over-Current on Low Side 1 0 Latched X Hi-Z if “1” 9 OC_LS2 Over-Current on Low Side 2 0 Latched X Hi-Z if “1” 10 OC_HS1 Over-Current on High Side 1 0 Latched X Hi-Z if “1” 11 OC_HS2 Over-Current on High Side 2 0 Latched X Hi-Z if “1” 12 Null Not Used – – – – 13 Null Not Used – – – – 14 SGND_OFF Short to GND in OFF condition 0 Latched – – 15-MSB SBAT_OFF Short to Battery in OFF condition 0 Latched – – Doc ID 17269 Rev 5 13/38 Device description 3.3.1 L9958 Daisy chain operation Several L9958 can be connected to one SPI connection in daisy chain operation to save µC interface pins. The number of devices connected in daisy chain is unlimited. Figure 8. Daisy chain topology & 62 6&. &6 &6 &6 &6ORZIRUFORFNV6&. UHDGVIURP,&$& 6&. 6&. &6 ,&$ 6, 6, VKLIWUHJLVWHU ZULWHVLQWR,&$& 6&. &6 ,&% VKLIWUHJLVWHU 62 6, &6 ,&& VKLIWUHJLVWHU 62 6, VKLIWUHJLVWHU 62 7KUHHGHYLVHVLQRQHGDLV\FKDLQ UHDGVIURP,&'( &6ORZIRUFORFNV6&. &6 6&. ,&' 6, ZULWHVIURP,&'( &6 6&. ,&( VKLIWUHJLVWHU 6, 62 VKLIWUHJLVWHU 62 7ZRGHYLVHVLQRQHGDLV\FKDLQ &6ORZIRUFORFNV6&. UHDGVIURP,&) ZULWHVIURP,&) &6 6&. ,&) 6, VKLIWUHJLVWHU '2 VLQJOHFKDLQ *$3*36 3.4 SPI timing Figure 9. SPI timing &6 W&11&6 WVFOFK 6&. WFVGY 62 WKFOFO WFOK WSFOG WKFOFK WSFKG] )6, /6% WVFOG 6, WVFOFO WFOO 06% WKFOG /6% 06% *$3*36 14/38 Doc ID 17269 Rev 5 L9958 3.5 Device description SPI communication failure In case of "no SCK edge" when CS = '0', the transfer is considered as valid: no error is returned to the µC. The answer of last command is sent during next transfer. When the number of SCK period is different from 0 or multiple of 16, next SPI answer is all zero. Figure 10. SPI zero clock communication &6 6, &RPPDQG1 &RPPDQG1 62 $QVZHUWRFPG1 $QVZHUWRFPG1 )6,ELW *$3*36 3.6 5 V and 3.3 V output compatibility In order to ensure a full compatibility with 5V and 3.3V MCU peripherals, the pin VDDIO is dedicated to supply the output buffer of SO. The overall current consumption on Vddio is "Ivddio". A parasitic current from the pin SO could flow through the pin VDDIO in case of over-voltage on SO pin vs. VDDIO pin. Doc ID 17269 Rev 5 15/38 Current regulation 4 L9958 Current regulation To protect the actuator and limit power dissipation, a two-level chopper current limitation is integrated as shown in figure below. The current is measured by sense cells integrated in the low-side switches. As soon the upper current limit “IH” is reached, both low-side drivers are switched on to allow free-wheeling recirculation, until the lower current limit “IL” is reached. During the current regulation, all the slew rate controls are disabled in order to minimize the power dissipation. Four current limit levels can be set by the SPI control bits 0 and 1. In order to achieve very precise current threshold and ripple, an external resistance is required (1 % accuracy on all temp range/lifetime) to generate a current reference. Detailed values for current thresholds and ripple are reported in Table 9. Figure 11. Current limitation &XUUHQW /LPLWDWLRQ&XUUHQW ,+ ,/ WE%ODQNLQJWLPH WE%ODQNLQJWLPH WLPH *$3*36 Table 9. 4.1 Current limitation programmability CL_2 CL_1 Current limit (typical values) 0 0 2.5 A 0 1 4A 1 0 6.6 A (default value) 1 1 8.6 A Temperature-dependent current regulation In order to reduce power dissipation and thus the junction temperature, above a temperature Twarn = 160 °C, current regulation high limit linearly decreases with temperature, to reach about 2.5 A at Tsd = 175 °C (shutdown temperature). When this thermal threshold is reached during a current limitation phase, the information is stored and latched in a coding of bits called "Twarn". This bit can be reset only if the settings conditions (Tj > Twarn and ILIM = 0) are not present anymore. This feature is mainly used to reduce the power dissipation and thus the junction temperature. 16/38 Doc ID 17269 Rev 5 L9958 Current regulation Figure 12. Temperature dependent current regulation , 7ZDUQ 4.2 7VG 7M *$3*36 Current regulation with low-inductive loads Each time output stages are turned off, an internal timing starts for duration Toff-min. Whenever turn-on is reached in a time Toff that is shorter than Toff-min, output stages are kept OFF, until Toff-min is reached. In such case the ripple control could be not so precise as specified. Figure 13. Current regulation with different loads &XUUHQW +LJK,QGXFWLYH/RDG /RZ,QGXFWLYH/RDG ,+ ,/ 7RII 7RII 7RIIPLQ 7RIIPLQ WE WE WE 287 WLPH *$3*36 4.3 Slew rate control in case of current limitation on low-side The slew rate control can be done on voltage and current or only on voltage. This can be selected by SPI through the bit ISR_DIS. The slew rate of each high-side power transistor of the bridge is controlled either during turn-on and turn-off (current AND voltage slew rate). The same setting is applied for both switching. Moreover, this slew rate is configurable by SPI in order to get the best trade-off between conducted/radiated EMI and power dissipation during switching. The slew rate Doc ID 17269 Rev 5 17/38 Current regulation L9958 selection can be done "on the fly" by SPI. The corresponding bits are called "VSR" and "ISR". No external component is needed to select the slew rate range. Only the power transistors not used for freewheeling can be adjusted, the two others can be controlled with a preset slew rate. The couples of value defined to fulfill most of the application requirements are described in the table below. The required accuracy is ±50 % for an output current from 1A to 8A and with output voltage up to 19 V. The overall delay implemented between high-side and lowside transistor switching must be adjusted automatically to avoid any cross-conduction through one half-bridge in all conditions. Table 10. Slew rate control on low side MOS Range VSR ISR dV/dt (V/µs) dI/dt (A/µs) 1 (default value) 0 0 4 3 2 0 1 4 0.3 3 1 0 2 3 4 1 1 2 0.3 14 14 No SR control Not selectable In case of current limitation and any detection that put the bridge in tri-state, the slew rate is not related anymore to the preset bits "VSR"; "ISR" but to a dedicated faster slew rate control named "SUPER FAST" mode. The automatic change from SPI selectable to SUPER FAST slew rate is described hereafter. Figure 14. Slew rate switching strategy ,/6 WRIIPLQWLPHLVVWDUWHGDWHDFK+6VZLWFKHG2))ZKLOHLQ6)56PRGH HQGRIEODQNLQJ253:0IDOOLQJHGJH ,+ ,/ 2QFH,!,+ ZHVWDUWEODQNLQJ DQGLQ6)65 WRIIPLQ WRIIPLQ WRIIPLQ W 3:0 WE ,JQRUHG WRIIBPLQ 2QFH,,/ DQGDIWHUWRIIPLQ /OHDYHV FXUUHQWOLPLWDWLRQ WE %/$1.,1* &855(17B/,0 6/(:5$7( 165 1651RUPDO6OHZ5DWH 6)656XSHU)DVW6OHZ5DWH 6)65 :KHQ,,/ DQGDIWHUWRIIPLQ DQGLBSZP /JREDFNWR165 RWKHUZLVH/UHPDLQV LQ6)65PRGH 165 1RWH&XUUHQWOLPLWDWLRQVWDWHLVUHDFKHGZKHQ,!,/WKHHQGRIEODQNLQJ026LVVZLWFKHG2))E\WKHGHYLFHXVHUORRVHVFRQWURO 7KLVLQIRUPDWLRQLVODWFKHGLQ,/,063,ELW:KHQWRIIPLQLVVWDUWHGGXHWR3:0IDOOLQJHGJHLQ6)65WKH,/,063,ELWLVQRW VHW026LVVZLWFKHG2))E\XVHU 3:0FRQWUROUHPDLQVDFWLYHGXULQJEODQNLQJXVHUFDQVZLWFKRII *$3*36 18/38 Doc ID 17269 Rev 5 L9958 5 Diagnostics and protections Diagnostics and protections A detailed diagnostic of the H-bridge is available through SPI communication. The 16 bits diagnostic word is sent back to the MCU in return of a command word. The diagnostic word is used to report two kinds of information: ● ● H-Bridge failures: – Over-current on each transistor in on-state, – Vps under-voltage, – Vdd over-voltage, – Over-temperature, – Open-load in on-state, – Off-state diagnostic. H-bridge functional status: – Current limitation condition, – Current limitation decreasing condition, – Disable / Enable status. 5.1 Diagnosis reset strategy 5.1.1 Reset requests Except "ACT" and "VS_UV" bits, all the others are latched and can only be released by: ● Transition from "Disable" to "Enable" on DI / EN pins, ● Diagnostic register read by SPI (see details on each failure release) depending on bit "DR", ● Power-On-Reset condition. When the diagnostic register is reset, the bridge is switched back to normal mode driven by DIR and PWM. All the settings are kept as before the failure. In case of SPI read, no additional action on DI / EN is needed. 5.1.2 Diagnosis reset bit In case of "DR" set to LOW (default value), all the bits of the diagnostic register can be reset by the three possibilities described in previous section. In case of "DR" set to HIGH, the over-current, Vdd over-voltage and over-temperature diagnostic bits can NOT be reset by SPI read and therefore, the bridge is kept in tri-state until a transition from "Disable" to "Enable" on DI/EN pins or Power-on-Reset condition. Table 11. DR Diagnosis reset strategy Diagnosis reset strategy 0 All diagnostic bits reset at each SPI reading (Default) 1 Over current bits (8..11) + Temp. shutdown TSD bit (6) + Vdd over voltage bit (3) NOT reset by SPI Doc ID 17269 Rev 5 19/38 Diagnostics and protections 5.2 L9958 Protection and on state diagnostics L9958 is protected against short circuits, overload and invalid supply voltage by the following measures. 5.2.1 Over-current on high-side - short to ground The high-side switches are protected against a short of the output to ground by an overcurrent shutdown. If a high-side switch is turned on and the current rises above the short circuit detection current Ioc all output transistors are turned off after a filter time Toc_ls and the error bits "overcurrent on high side 1 (2)", OC_HS1 (OC_HS2) are stored in the internal status register. 5.2.2 Over-current on low-side - short to Vs Due to the chopper current regulation, the low-side switches are already protected against a short to the supply voltage. To be able to distinguish a short circuit from normal current limit operation, the current limitation is deactivated for the blanking time tb after the current has exceeded the current limit threshold IH. If the short circuit detection current Ioc is reached within this blanking time, a short circuit is detected. All output transistors are turned OFF and the according error bit “Over-Current on Low Side 1 (2)”, OC_LS1 (OC_LS2) is set. 5.2.3 Short circuit over-load If, during the Blanking time (tb) of the current regulation mode, the current reaches the Ioc threshold; after a filtering time, the output MOS are switched OFF and the “Short circuit over load” can be checked by the reading of the overcurrent bits of the DIA_REG (please refer to Table 8 bit 8, 9,10 and 11). Figure 15. Diagnostics for SCB / SCOL 2YHUFXUUHQW IDXOWGHWHFWHG &XUUHQW ,RF 7UDFNLQJ ,+ ,/ WE%ODQNLQJWLPH WE%ODQNLQJWLPH 2XWSXW 21 VWDJH 2)) WLPH *$3*36 5.2.4 Open load in on state To perform the Open Load diagnosis in ON state, the flag OL_ON has to be set high through SPI. After every open load diagnosis in ON state, the OL_ON flag is resetted, to perform a new open load diagnosis in ON state the OL_ON flag has to be set again. 20/38 Doc ID 17269 Rev 5 L9958 Diagnostics and protections This disable the turning on of the low-side drivers during current recirculation. The current flows through the body diode of the low-side MOS for a fixed time. At the end of this fixed time the Vout voltage is sampled and the possible open load condition detected (see Figure 16). Figure 16. Open load in on state - Low-side current recirculation 'LDQJRQVLV 2)) 'LDQJRQVLV 21 9287[ /6 026 21 /6 02621 23(1/2$'2&&855(' *1' 9 3:0 UHVHW UHVHW 2/B21 /6026 2)) 63, DFWLYLW\ WRZULWH2/B21%LW 7XF VHW /6026 2)) 7XF VHW )$8/7 23(1/2$''(7(&7(' /2:6,'( 5(&,5&8/$7,21 *$3*36 5.2.5 Over-temperature When Twarn is reached, thermal current reduction is activated, and the information is stored and latched. When Tsd is reached, the “TSD” bit is set and all output transistors are put in tri-state conditions as long as a reset is applied. Table 12. Over-temperature TSD 5.2.6 Comments Bridge state FSI 1 Tj > TSD Tri-state- 1 0 (default) Tj < TSD - 0 Vs under-voltage shutdown If the supply-voltage at the VS pins falls below the under-voltage detection threshold Vs_uv_off, the outputs are set to tri-state and the error bit "Undervoltage at VS" is set. A filtering time "Tuv_Vs" is implemented to avoid unwanted detection due to parasitic glitches. The information is transferred into the SPI register in a bit called "VS_UV". This bit is NOT latched. As soon as the voltage rises again above the Vs under-voltage threshold (hysteresis implemented), the bridge is switched back to normal mode driven by DIR and PWM. All the settings are kept as before the under-voltage event. Doc ID 17269 Rev 5 21/38 Diagnostics and protections L9958 Figure 17. Battery voltage monitoring W7XYBYV 9V 7XYBYV 9VBXY 96B89 %ULGJH 6WDWH 2167$7( 75,67$7( 2167$7( *$3*36 Table 13. 5.2.7 Vs under-voltage VS_UV Comments Bridge state FSI 1 Vs < Vs_uv_off Hi Z 1 (not latched) 0 (default) Vs > Vs_uv_on - 0 Vdd over-voltage detection Although the Vdd input pin and all I/O's are able to withstand up to 19 V, an over-voltage circuitry is implemented to ensure that the bridge is kept in tri-state when the Vdd voltage is higher than the Vdd overvoltage threshold "Vdd_ov_off" for duration longer than "Tov_Vdd". The information is detected and stored into the SPI register in a bit called "VDD_OV". The bridge is kept in tri-state as long as an appropriate reset is not requested (see Section 5.1). Table 14. 5.2.8 Vdd over-voltage detection VDD_OV Comments Bridge state FSI 1 Vdd > Vdd_ov_off Hi-Z 1 (latched) 0 (default) Vdd < Vdd_ov_on - 0 Vdd under-voltage detection When the Vdd voltage falls below the under-voltage detection threshold "Vdd_uv_off" for duration longer than "Tuv_vdd", the bridge is switched to tri-state. In such a condition, the L9958 is going in sleep mode. When the voltage increases above the threshold (hysteresis implemented), the L9958 starts with all the settings reset to their default values (Power On Reset). 5.2.9 Output short protection The L9958 can sustain short on the outputs. In case of short to GND, short to battery or short between outputs the battery voltage cannot exceed 18 V. The connection of a 100 µF decoupling capacitor as close as possible to Vs pin and the GND connection of the slug or of the exposed pad is mandatory to improve the robustness. 22/38 Doc ID 17269 Rev 5 L9958 5.3 Diagnostics and protections Off-state diagnosis This diagnostic is performed in any off-state condition, just after ignition key-on or during an off-state phase occurring after an on-state phase of the bridge. 5.3.1 Off-state detection scheme In order to avoid any wrong diagnostic, a filtering time "Tdiag_off" is applied before performing the detection if the bridge was in on-state before. This filtering time is not applied in case of detection after key on. Figure 18. Off-state detection scheme 325 ', (1 2)) 21 2)) 21 7GLDJBRII 2)) 21 7GLDJBRII 2)) 6/((3 ',$* 63, 'LDJ 'LDJ 1R 1R 1R 1R 1R 1R 'LDJ 'LDJ 1R 1R 1R 1R 1R 1R 1R 1R 'RQH 'RQH 'LDJ 'LDJ 'LDJ 'LDJ 'LDJ 'LDJ 'RQH 'RQH 'LDJ 'LDJ 'LDJ 'LDJ 'LDJ 'LDJ 'LDJ 'LDJ *$3*36 Open load detection An equivalent resistor of 100 kΩ (typ.) is targeted for open-load detection. In order to avoid any unwanted supply of the bridge through the high-side transistor body diode during off-state measurement, the current source is connected only if Vs is higher than the Vs under-voltage threshold. Figure 19. Open load detection 7\SLFDOYDOXH IRUGHWHFWLRQ 23(1/2$' /2$'&211(&7(' 5.3.2 N N N *$3*36 The diagnostic is based on a closed loop voltage control on OUT1 and associated current measurement. A voltage amplifier forces a constant voltage on OUT1 through two current sources (highside source and low-side current sink). The OUT2 is pulled-down through a constant current sink. Based on the current flowing out of the amplifier (Ip – In) compared to several current thresholds, open-load as well as short-circuit to ground and battery can be detected. Doc ID 17269 Rev 5 23/38 Diagnostics and protections L9958 Figure 20. Off-state diagnostic principle 9SV 9SV &XUUHQW0LUURU DQG&RPSDUDWRU ,SO ,SK FPGBGLDJ 9GG FPGBGLDJ 9GG ,Q 9B%,$6 ,Q ,BGLDJ /2$' 9GG 6:,7&+$ &XUUHQW0LUURU DQG&RPSDUDWRU 6:,7&+% &855(176,1. *$3*36 5.4 H-Bridge functional status Three bits in the diagnosis register are used to give a feedback about the state of the HBridge. Status are Current Limitation (bit 4 "C_LIM"), Temperature Warning (bit 5 "T_WRN") and Bridge Enable Status (bit 7 "ACT"). Those bits do not report a failure but only a functional state of the H-bridge that could be useful to change the control strategy mainly in term of power dissipation. 24/38 Doc ID 17269 Rev 5 L9958 Electrical specifications 6 Electrical specifications 6.1 Absolute maximum ratings The component must withstand the overall following stimulus without any damage or latchup. Beyond these values, damage to the component may occur. Table 15. Symbol Absolute maximum ratings Parameter Test condition Min. Max. Unit -1 -2 40 40 V Vps Supply voltage Continuous Transient (0.5 s; I ≤ 10 A) Vdd Logic supply voltage 0 V < Vps < 40 V -0.3 19 V Vddio SDO supply voltage 0 V < Vps < 40 V -0.3 19 V Vi Logic input voltage 0 V < Vps < 40 V 0 V < Vdd < 19 V -0.3 19 V Vo Logic output voltage 0 V < Vps < 40 V 0 V < Vdd < 18.7V -0.3 Vddio+0.3 V ±4 - Output pins (OUTx, VPS) ESD Compliance EIA/JESD22-A114-B Input pins - ISO 7637 pulses Cf. standards - Latch-up immunity Jedec standard kV ±2 - - - - -100 +100 mA Note: In case of load dump condition, status of device outputs is kept unchanged. 6.2 Thermal data Table 16. Thermal data Symbol Parameter Test condition Min. Max. Failure condition -40 OTsd Lifetime -40 150 Unit Tj Junction temperature Tstg Storage temperature - -55 150 °C Tamb Ambient temperature 0 V < Vps < 40 V -40 125 °C Package PowerSO-20 - 1 Package PowerSO16 - 1 Package PowerSSO24 - 2 Rthj-case °C Thermal resistance junction to case(1) °C/W 1. Guaranteed by design and package characterization. Doc ID 17269 Rev 5 25/38 Electrical specifications L9958 Figure 21. Thermal impedance (junction-ambient) of power packages 3Z662RQVS 3Z662RQVSWKHQK 3Z62RQVS =7+&: 3Z62RQVSWKHQK 7LPHV *$3*36 6.3 Range of functionality Within the range of functionality, all L9958 functionalities have to be guaranteed. All voltages refers to GND. Currents are positive into and negative out of the specified pin. Table 17. Range of functionality Pos. Symbol Parameter FR1 Vps FR2 dVps/dt FR3 Vdd FR4 Vi FR5 Vddio SDO output voltage FR6 fspi SPI clock frequency Test condition Min. Typ. Max. Unit Supply voltage - Vps_uv_off 14 28(1) V Supply voltage slew rate - -20 - 20 V/µs Logic supply voltage - Vdd_uv_off 5 Vdd_ov_off V -0.3 - Vdd_ov_off V - 3 - 5.5 V - - - 5 MHz Logic input voltage (SDI, See alsoTable 15: SCLK, NCS, DI, EN, DIR, Absolute maximum PWM) ratings. 1. In load dump conditions Vps ranges between 28V and 40V. During load dump, status of device outputs is kept unchanged, 26/38 Doc ID 17269 Rev 5 L9958 Electrical specifications 6.4 Electrical characteristics Tcase = -40 °C ... 125 °C unless otherwise specified, Vdd = 4.5 V ... 5.5 V unless otherwise specified Vps = 4 V ... 28 V unless otherwise specified All voltages refer to Gnd. Currents are positive into and negative out of the specified pin. 6.4.1 Device supply Table 18. Device supply Pos. Symbol 1.1 Ips 1.2 Iout 1.3 Icc Parameter Power supply current Leakage current on output Logic-supply current 6.4.2 Device supply monitoring Table 19. Device supply monitoring Pos. Symbol Test condition Min. Typ. Max. Unit Vdd < 0.7 V; Vps = 16 V from -40 °C to 25 °C - - 20 µA Vdd < 0.7 V; Vps = 16 V at 125 °C - - 35 µA Fpwm = 0, Iout = 0 - - 20 mA Bridge in tri-state - - 100 µA Vdd >Vdd_uv_on FPWM = 0 - - 5 mA FPWM = 20 kHz (Average value) - - 5 mA Min. Typ. Max. Unit Parameter Test condition 2.1 Vps_uv_off Vps under-voltage threshold Vps decreasing - - 4 V 2.2 Vps_uv_on Vps under-voltage threshold Vps increasing - - 4.5 V 2.3 Vps_uv_hyst Vps under-voltage hysteresis - 0.1 - - V 2.4 Tuv_vps Vps under-voltage filtering time Vps decreasing 1 - 3 µs 2.5 Vdd_uv_off Vdd under-voltage threshold Vdd decreasing 3 - 3.7 V 2.6 Vdd_uv_on Vdd under-voltage threshold Vdd increasing 3.3 - 4 V 2.7 Vdd_uv_hyst Vdd under-voltage hysteresis - 0.1 - - V 2.8 Tuv_Vdd Vdd under-voltage filtering time Vdd decreasing 1 - 4 µs 2.9 Vdd_ov_off Vdd over-voltage threshold Vdd increasing 5.8 - 6.8 V 2.10 Vdd-ov_on Vdd over-voltage threshold Vdd decreasing 5.5 - 6.5 V 2.11 Vdd over-voltage hysteresis - 0.1 - - V Vdd over-voltage filtering time Vdd increasing 60 100 140 µs Vdd_ov_hyst 2.12 Tov_Vdd Doc ID 17269 Rev 5 27/38 Electrical specifications 6.4.3 SPI Table 20. SPI Pos. Symbol 3.1 fspi 3.2 L9958 Parameter Test condition Clock frequency (50 % duty cycle) Tsdo_trans SDO transition speed, 20-80 % Min. Typ. Max. Unit - - - 5 MHz Vsdo = 5V, Cload = 50 pF (1) 5 - 30 ns Vsdo = 5 V, Cload = 150 pF 5 - 50 ns 3.3 Tclh Minimum time SCLK = HIGH - 75 - ns 3.4 Tcll Minimum time SCLK = LOW - 75 - ns 3.5 Tpcld Propagation delay (SCLK to data at 10% of SDO rising edge) - - 40 ns 3.6 Tcsdv NCS = LOW to data at SDO active - - - 85 ns 3.7 Tsclch SCLK low before NCS low (setup time SCLK to NCS change H/L) - 75 - - ns 3.8 Thclcl SCLK change L/H after NCS = low - 75 - - ns 3.9 Tscld SDI input setup time (SCLK change H/L after SDI data valid) 40 - - ns 3.10 Thcld SDI input hold time (SDI data hold after SCLK change H/L) - 40 - - ns 3.11 Tsclcl SCLK low before NCS high - 100 - - ns 3.12 Thclch SCLK high after NCS high - 100 - - ns 3.13 Tpchdz NCS L/H to SDO @ high impedance - - - 75 ns 3.14 Tonncs NCS min. high time - 300 - ns - Capacitance at SDI, SCLK; NCS - - - 14 pF - Capacitance at SDO - - - 19 pF 3.15 3.16 Tfncs NCS Filter time will be ignored) Guaranteed by design (Pulses = TfNCS Guaranteed by design 10 - 40 ns 3.17 Vddio Supply voltage for SDO output buffer - 3 - 5.5 V 3.18 Ivddio Current consumption on Vddio (2) - - 1 mA 3.19 sdo_H High output level on SDO Isdo = 1.5 mA Vddio0.4 - - V 3.20 sdo_L Low output level on SDO Isdo = 2 mA - - 0.4 V 3.21 Isdo Tri state leakage current NCS = HIGH VDDIO = 5 V -5 - 5 µA 1. Not tested – guaranteed by Cload = 150 pF measurement 2. Measured for PSO16 at wafer sort level only. 28/38 Doc ID 17269 Rev 5 L9958 Electrical specifications 6.4.4 Digital inputs: TTL // 3.3V / 5V CMOS compatible Table 21. Digital inputs: TTL // 3.3V / 5V CMOS compatible Pos. Symbol 4.1 Vih Input voltage HIGH 4.2 Vil 4.3 4.4 4.5 Parameter Test condition Min. Typ. Max. Unit - 2 - Vdd+0.3 V Input voltage LOW - -0.3 - 0.8 V Hysteresis of input voltage - 200 - - mV Vin = 0 V -100 - -30 - - 5 30 - 100 -5 - - - - 1.24 - V - - 10 - kΩ Overall tolerance can be taken as 3.5 % - 1 - % Min. Typ. Max. Unit Tj = 150 °C, Iout = 3 A 4 V < Vps < 5 V - - 300 Tj = 150 °C, Iout = 3 A Vps > 5 V - - 150 Tj = 150 °C, Iout = 3 A 4 V < Vps < 5 V - - 300 Tj = 150 °C, Iout = 3 A Vps > 5 V - - 150 Iinl Input current source for: DI / NCS / SCLK / SDI Iinh Input current sink for: EN / DIR / Vin = 5 V PWM Vin = 0 V Vin = 5 V No back supply allowed Vrext External resistor 4.6 Rext 6.4.5 Bridge output drivers Table 22. Bridge output drivers Pos. 5.1 5.2 Symbol Rdson_h Rdson_l Parameter Test condition High-side transistor Rdson Low-side transistor Rdson µA µA mΩ mΩ 5.3 Vbd_h Body diode forward voltage drop high-side transistor Idiode = 3 A - 1.2 2 V 5.4 Vbd_l Body diode forward voltage drop low-side transistor Idiode = 3 A - 1.2 2 V Doc ID 17269 Rev 5 29/38 Electrical specifications L9958 6.4.6 Over-temperature monitoring Table 23. Over-temperature monitoring Pos. Symbol 6.1 OTwarn 6.2 Parameter Test condition Min. Typ. Max. Unit Over-temperature warning - 150 - 170 °C OTsd Over-temperature shut-down - 170 - 200 °C 6.3 OThyst Over-temperature hysteresis - 10 - - °C 6.4 TTSD Over-temperature filtering time Guaranteed by clock measurement - 36 - µs Unit 6.4.7 Current limitation and over-current detection Table 24. Current limitation and over-current detection Pos. 7.1 Symbol Ilim_H Parameter Current limitation high threshold Test condition Min. Typ. Max. CL1:0 = 00; -40 °C ≤ Tj ≤ 150 °C 2 2.5 3.1 CL1:0 = 01; -40 °C ≤ Tj ≤ 150 °C 3.5 4 4.85 CL1:0 = 10; -40 °C ≤ Tj < 25 °C 5.5 6.75 8 CL1:0 = 10; 25 °C ≤ Tj ≤ 150 °C 5.5 6.6 7.7 CL1:0 = 11; -40 °C ≤ Tj < 25 °C 7.8 9.1 10.4 CL1:0 = 11; 25 °C ≤ Tj ≤ 150°C 7.6 8.6 9.6 2 2.5 3 Ilim_H0.5 Ilim_H0.8 CL1:0 = XX, Tj = OTsd CL1:0 = 0X; -40 °C ≤ Tj ≤ 150 °C Ilim_H–0.2 7.2 Ilim_L Current limitation low threshold CL1:0 = 10; -40°C ≤ Tj < 25 °C Ilim_H– 0.35 Ilim_H- Ilim_H0.65 0.95 CL1:0 = 10; 25 °C ≤ Tj ≤ 150°C Ilim_H– 0.35 Ilim_H- Ilim_H0.55 0.85 CL1:0 = 11; -40°C ≤ Tj < 25°C Ilim_H– 0.4 Ilim_H- Ilim_H0.7 1 CL1:0 = 11; 25 °C ≤ Tj ≤ 150°C Ilim_H– 0.4 Ilim_H- Ilim_H0.55 0.95 7.3 Tlimh High current limitation threshold filtering time can be included in Tblanck 7.4 Tliml Low current limitation threshold filtering time 7.5 Toffmin 7.6 Tb 30/38 A A 0.1 - 1 µs - 1 - 3 µs Current limitation delay time 30 - 45 µs Blanking time 4.9 - 8.7 µs - Doc ID 17269 Rev 5 L9958 Electrical specifications Table 24. Pos. Current limitation and over-current detection (continued) Symbol Ioc_ls Ioc-hs 7.7 Parameter Low-side over-current threshold High-side over-current threshold Tracking Test condition Min. Typ. Max. CL1:0 = 0X; -40 °C ≤ Tj ≤ 150 °C 5.5 7.7 9.9 CL1:0 = 1X; -40°C ≤ Tj < 25 °C 9.3 12 15 CL1:0 = 1X; 25 °C ≤ Tj ≤ 150°C 9.3 11.5 14 Ilim_h+2 - - Ilim_h+1.3 - - 0.8 - 2.5 µs Min. Typ. Max. Unit 50 - 120 CL1:0 = 0X; CL1:0 = 10; -40 °C ≤ Tj ≤ 150 °C CL1:0 = 11; -40 °C ≤ Tj ≤ 150 °C 7.8 Toc_ls Toc_hs Low-side & high-side over-current detection filtering time - 6.4.8 Diagnostic of open-load in on-state Table 25. Diagnostic of open-load in on-state Pos. Symbol Parameter Test condition Tj = -40 °C (go-no-go functional test) 8.1 8.2 Is_OL-on Current source Tj = 25 °C to 150 °C (go-no-go functional test) Tmeas_on Detection time (settling time) 6.4.9 Off-state diagnostic Table 26. Off-state diagnostic - Pos. Symbol 9.1 ROL 9.2 Tdiag_off Delay time before enabling offstate diagnostic structure Tdiag-off_1 used each time OUT pins are released from Off-state diag filtering time Vps (after release of when OUT 1 and/or 2 decrease SCB, after Tdiag_off) from Vps Guaranteed through SCAN 9.4 Tdiag_off_2 Off-state diagnostic filtering time on failure detection One symmetric filter for each failure type (OL, SCG, SCB) Guaranteed through SCAN 9.5 Tclock Oscillator frequency - 9.3 Parameter Test condition Load detection threshold diag after on-state Guaranteed through SCAN Doc ID 17269 Rev 5 Unit A µA 50 - 100 - 3 5 µs Min. Typ. Max. Unit 10 60 200 kΩ 100 125 150 ms 2.4 3 3.6 ms 200 250 300 µs 4 - 6 MHz 31/38 Electrical specifications L9958 6.4.10 Timing characteristics Table 27. Timing characteristics Pos. Symbol 10.1 fpwm PWM frequency Tdon 10.2 Parameter Test condition Min. Typ. Max. Unit - - - 20 kHz Delay time for switch-on Rload @ Iout = 3 A PWM → 90% Vout (or 10 % Iout) - - 10 µs Tdoff Delay time for switch-off Rload @ Iout = 3 A PWM → 10 % Vout (or 90% Iout) - - 10 µs ΔTd Delay time: symmetry PWM accuracy = 1% @ 2kHz - - 5 µs 10.3 Td_dis Disable delay time DI / EN → 90% OUTx @ Iout = 3 A - - 6 µs 10.4 Td_en Enable delay time DI / EN → 10 % OUT - - 6 µs - - 200 µs 1 - 3 µs 10.5 Td_pow Power-on delay time DIR= PWM=EN=1 / DI=0 no load / VPS = Vdd increasing Vps = Vdd → 10 % Vout1 (= Vps) 10.6 Td_filter DI / EN digital filter time - 10.7 Trise_H Low-side transistor rise time Non selectable by SPI 0.04 - 0.2 µs 10.8 Tfall_H Low-side transistor fall time Non selectable by SPI 1 - 3 µs 7 14 24 2 4 6 1 2 3 1.5 3 4.5 0.15 0.3 0.45 35 - 55 10.9 10.10 10.11 32/38 dVout/dt dIout/dt Tdiag Voltage slew rate for high-side super fast mode transistors VSR = 0 (Measurement is performed between 30 % and 70 % of the VSR = 1 slope) Current slew rate for high-side ISR=0 transistors (Measurement is performed between 40 % and 60 % of the ISR=1 slope) Timing for reliable diagnostic Guaranteed through SCAN pattern Doc ID 17269 Rev 5 V/µs A/µs µs L9958 7 Application circuit Application circuit Figure 22. Application circuit %$77(5< 9 ) ) Q) &3 96 9'' 9 3RZHU6XSSO\ 99 Q) N: ', (1 287 3:0 ',5 & Q) N: 9'',2 Q) '& / ) 1&6 287 6&. Q) 6, 62 5(;7 N: *1'V *$3*36 Doc ID 17269 Rev 5 33/38 Package information 8 L9958 Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. Figure 23. PowerSO-20 mechanical data and package dimensions ',0 PP 0,1 7<3 $ D LQFK 0$; 0,1 7<3 D D E F ' ' ( H H ( ( ( * + K / 1 W\S 6 PD[ 7 :HLJKW JU 287/,1($1 ' 0(&+$1,&$/'$7$ 0$; -('(&02 3RZHU62 ³'DQG(´GRQRWLQFOXGHPROGIODVKRUSURWXVLRQV 0ROGIODVKRUSURWXVLRQVVKDOOQRWH[FHHGPP´ &ULWLFDOGLPHQVLRQV³(´³*´DQG³D´ )RUVXEFRQWUDFWRUVWKHOLPLWLVWKHRQHTXRWHGLQMHGHF02 1 5 1 D E $ H '(7$,/$ F D '(7$,/% ( H + '(7$,/$ OHDG ' VOXJ D '(7$,/% *DJH3ODQH & 6 6($7,1*3/$1( / * ( ( %277209,(: & &23/$1$5,7< 7 ( K[ 3620(& ' , *$3*36 34/38 Doc ID 17269 Rev 5 L9958 Package information Figure 24. PowerSO16 mechanical data and package dimensions ',0 0,1 $ $ $ $ D E F ' ' G ( ( ( ( H H ) * / 5 5 7 7 7 PP 7<3 0$; 0,1 LQFK 7<3 287/,1($1' 0(&+$1,&$/'$7$ 0$; PLQW\SPD[ W\S W\S 3RZHU62 5HVLQSURWUXVLRQVQRWLQFOXGHGPD[YDOXHPPSHUVLGH E / D 0 / 0 & 8 7 7 ) * 0 ( ( ( 5 ( 5 H H 6(7'(7$,/. ' ' 7 6(7'(7$,/. '(7$,/7 5 $ & $ 5 $ $ 7 6(('(7$,/- 6($7,1* 3/$1( G & /HDGVFRSODQDULW\ / *$8*(3/$1( 3620(& *$3*36 Doc ID 17269 Rev 5 35/38 Package information L9958 Figure 25. PowerSSO24 mechanical data and package dimensions 'LP $ $ D E F ' ( H H ) * * + K N / 2 4 6 7 8 1 ; < 0LQ PP 7\S 0D[ 0D[ 287/,1($1' 0(&+$1,&$/ '$7 $ PLQPD[ LQFK 7\S 0LQ PD[ ³'DQG(´GRQRWLQFOXGHPROGIODVKRUSURWXVLRQV 0ROGIODVKRUSURWXVLRQVVKDOOQRWH[FHHGPP´ 1RLQWUXVLRQDOORZHGLQZDUGVWKHOHDGV )ODVKRUEOHHGVRQH[SRVHGGLHSDGVKDOOQRWH[FHHGPPSHUVLGH 9DULDWLRQIRUVPDOOZLQGRZOHDGIUDPHRSWLRQ 3RZ HU662 ([SR VHGSDGGRZ Q *$3*36 36/38 Doc ID 17269 Rev 5 L9958 9 Revision history Revision history Table 28. Document revision history Date Revision Changes 16-Mar-2010 1 Initial release. 08-Apr-2011 2 Updated Table 27: Timing characteristics on page 32 (Pos. 10.8). 03-Aug-2011 3 Updated Table 17, Table 20, Table 24 and Table 27. 23-Mar-2012 4 Updated: Table 17: Range of functionality; Table 20: SPI. 19-Sep-2013 5 Updated disclaimer. Doc ID 17269 Rev 5 37/38 L9958 Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 38/38 Doc ID 17269 Rev 5