STMICROELECTRONICS L99MC6TR-LF

L99MC6
Configurable 6-channel device
Features
■
3 independently self configuring high-/low-side
channels
■
3 low-side channels
■
RON = 0.7 Ω (typ) at Tj = 25 °C
■
Current limit of each output at min. 0.6 A
■
PWM direct mode
■
Bulb mode with recovery mode
■
LED mode with slew rate control
■
Bridge mode with crosscurrent protection
■
SPI interface for data communication
■
Temperature warning
■
All outputs overtemperature protected
■
All outputs short-circuit protected
■
Configurable open-load detection in off mode
■
VCC supply voltage 3.0 V to 5.25 V
The L99MC6 IC is a highly flexible monolithic
medium current output driver that incorporates 3
dedicated low-side outputs (channels 4 to 6) and
3 independently self configuring outputs
(channels 1 to 3) that can be used as either lowside or high-side drivers in any combination. The
L99MC6 can control inductive loads,
incandescent bulbs or LEDs.
■
Very low current consumption in standby mode
5 µA (typ)
The L99MC6 can be used in a half bridge
configuration with crosscurrent protection.
■
Internal clamp diodes
■
HS switches operate down to 3 V crank voltage
Applications
■
Relay driver
■
LED driver
■
Motor driver
■
Mirror adjustment
Table 1.
PowerSSO-16
Description
The channel 2 can be controlled directly via the
IN/PWM pin for PWM applications. The IN/PWM
signal can be applied to any other output.
The integrated 16-bit standard serial peripheral
interface (SPI) controls all outputs and provides
diagnostic information: normal operation, openload in off-state, overcurrent, temperature
warning, overtemperature.
Device summary
Order codes
Package
PowerSSO-16
November 2009
Part number (tube)
Part number (tape & reel)
L99MC6-LF
L99MC6TR-LF
Doc ID 16523 Rev 1
1/55
www.st.com
1
Contents
L99MC6
Contents
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1
Dual power supply: VS and VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.1
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2
Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3
Inductive loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4
Diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1
Direct input IN/PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2
Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . 14
2.4.3
Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.4
Overload detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5
Bridge mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6
LED mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7
Bulb mode (programmable soft start function to drive loads with higher
inrush current) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1
6
7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2
Undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3
Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
SPI electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.1
2/55
Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . 19
DC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Doc ID 16523 Rev 1
L99MC6
8
Contents
7.2
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
7.3
Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
7.4
SPI timing parameter definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Functional description of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1
8.2
9
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.1
Serial clock (SCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.2
Serial data input (SDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.3
Serial data output (SDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.1.4
Chip select not (CSN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SPI communication flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2.1
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2.2
Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.2.3
Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.3
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.5
Read and Clear Status operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.6
Read Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
SPI control and status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.1
RAM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.2
ROM memory map (access with OC0 and OC1 set to ‘1’) . . . . . . . . . . . . 34
9.3
Control and status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
9.4
9.3.1
Channel configuration decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.3.2
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.4.1
Example 1:Switch on channel 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.4.2
Example 2: Bridge mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4.3
Example 3: Open-load detection in off-state in bridge configuration . . . 40
10
Maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
11
Application examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
12
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
12.1
PowerSSO-16 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Doc ID 16523 Rev 1
3/55
Contents
13
L99MC6
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.1
ECOPACK® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.2
PowerSSO-16 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
13.3
Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Appendix A Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4/55
Doc ID 16523 Rev 1
L99MC6
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Temperature warning and thermal shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Dynamic characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Command byte - general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Data byte - general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Command byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Operating code definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Global status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Global status register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Command byte for Write mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Command byte for Read mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Command byte for Read and Clear Status operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Command byte for Read Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
RAM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
ROM memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Control register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Control register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Control register 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Status register 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Status register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Channel configuration decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Command byte - example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Data byte - example 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Data byte description - example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Command byte 1 - example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Data byte 1 - example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Data byte description 1 - example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Command byte 2 - example 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Data byte 2 - example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Data byte description 2 - example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Command byte 1 - example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Data byte 1 - example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Data byte description 1 - example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Command byte 2 - example 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Data byte 2 - example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Data byte description 2 - example 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Auto and mutual thermal resistance - footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Auto and mutual thermal resistance - 2 cm2 of Cu heatsink. . . . . . . . . . . . . . . . . . . . . . . . 48
Auto and mutual thermal resistance - 8 cm2 of Cu heatsink. . . . . . . . . . . . . . . . . . . . . . . . 49
Doc ID 16523 Rev 1
5/55
List of tables
Table 49.
Table 50.
Table 51.
6/55
L99MC6
PowerSSO-16 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Doc ID 16523 Rev 1
L99MC6
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Configuration diagram (top view) not in scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output voltage clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Example of bridge configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Example of programmable soft start function for inductive loads and incandescent bulbs. 16
Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Serial input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Output turn on/off delays and slew rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Clock polarity and clock phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
SPI frame structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Indication of the global error flag on DO when CSN is low and SCK is stable . . . . . . . . . . 31
Bridge mode drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Open-load in bridge mode drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Configurable switch HSD - maximum turn-off current versus inductance. . . . . . . . . . . . . . 42
Configurable switch LSD - maximum turn-off current versus inductance . . . . . . . . . . . . . . 43
Fixed LSD switch - maximum turn-off current versus inductance. . . . . . . . . . . . . . . . . . . . 44
L99MC6 as driver for incandescent bulb, LEDs and high-side or low-side relays . . . . . . . 45
L99MC6 as motor driver (for example, for mirror adjustment) . . . . . . . . . . . . . . . . . . . . . . 46
L99MC6 as driver for unipolar stepper motor driver, relay and LEDs. . . . . . . . . . . . . . . . . 47
PowerSSO-16 PC board(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
PowerSSO-16 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
PowerSSO-16 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
PowerSSO-16 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Doc ID 16523 Rev 1
7/55
Introduction
L99MC6
1
Introduction
1.1
Application diagram
Figure 1.
Application diagram
VBat
Active reverse
polarity protection
VREG
Charge
Pump
Driver and
Protections
OL
Config. OUT1
Vcc
PWM / IN
Driver and
Protections
M
OL
Config. OUT2
Driver and
Protections
CONTROL
LOGIC
OL
Config. OUT3
Driver and
Protections
Microcontroller
OL
LSD OUT4
Driver and
Protections
OL
LSD OUT5
CSN
SCK
DI
DO
Driver and
Protections
SPI
LSD OUT6
GND
8/55
Doc ID 16523 Rev 1
OL
L99MC6
Introduction
1.2
Block diagram and pin description
Figure 2.
Block diagram
Charge
Pump
VCP
VDrive1-3
Open Load Drain [Out1]
VOLD 1
VDrive1-3
OL
DRN1
ON/OFF [Out1]
Short Circuit [Out1]
Open Load Source [Out1]
SRC1
VOLS 1
VCC
Open Load Drain [Out2]
ON/OFF [Out2]
IN/PWM
VOLD 2
VDrive1-3
OL
DRN2
=1
Short Circuit [Out2]
Open Load Source [Out2]
Open Load Drain [Out3]
SRC2
VOLS2
VOLD 3
VDrive1-3
OL
DRN3
ON/OFF [Out3]
Short Circuit [Out3]
Open Load Source [Out3]
SRC3
VOLS 3
CONTROL LOGIC
VCC
Open Load Drain [Out4]
DRN4
VOLD 4
VCC
OL
VOLD 5
VCC
OL
DRN5
OL
DRN6
ON/OFF [Out4]
CSN
Short Circuit [Out4]
SCK
SPI
Open Load Drain [Out5]
ON/OFF [Out5]
DI
Short Circuit [Out5]
0
DO
Open Load Drain [Out6]
VOLD 6
VCC
ON/OFF [Out6]
Short Circuit [Out6]
GND
Doc ID 16523 Rev 1
9/55
Introduction
Table 2.
10/55
L99MC6
Pin functions
Pin
Symbol
Function
1 / TAB
GND
6
IN/PWM
IN/PWM direct mode:
Direct input for channel 2. Other channels can be driven in PWM mode via SPI.
8
VCC
Logic voltage supply 3.3 V/5 V:
For this input a ceramic capacitor as close as possible to GND is recommended
3
SRC1
Source of configurable channel 1
4
DRN1
Drain of self configurable channel 1, in HS mode also VS supply
5
DRN2
Drain of self configurable channel 2
15
SRC2
Source of self configurable channel 2
12
DRN3
Drain of self configurable channel 3
13
SRC3
Source of self configurable channel 3
2
DRN4
Drain of channel 4
16
DRN5
Drain of channel 5
14
DRN6
Drain of channel 6
Ground:
Reference potential
11
DI
SPI data in:
The input requires CMOS logic levels and receives serial data from the
microcontroller. The data is a 16-bit control word and the most significant bit
(MSB, bit 7) is transferred first.
9
DO
SPI data out:
The diagnosis data is available via the SPI and this tristate-output. The output
remains in tristate, if the chip is not selected by the input CSN (CSN = high).
7
CSN
SPI chip select not (active low):
This input is low active and requires CMOS logic levels. The serial data transfer
between the L99MC6 and microcontroller is enabled by pulling the input CSN to
low-level.
10
SCK
SPI serial clock input:
This input controls the internal shift register of the SPI and requires CMOS logic
levels.
Doc ID 16523 Rev 1
L99MC6
Introduction
Figure 3.
Configuration diagram (top view) not in scale
GND
1
16
DRN5
DRN4
2
15
SRC2
SRC1
3
14
DRN6
DRN1
4
13
SRC3
DRN2
5
12
DRN3
PWM/IN
6
11
DI
CSN
7
8
SCK
VCC
8
9
DO
PowerSSO-16
The tab must be connected to GND
TAB = GND
Doc ID 16523 Rev 1
11/55
Description
L99MC6
2
Description
2.1
Dual power supply: VS and VCC
The supply voltage VCC (3.3 V/5 V) supplies the whole device. In case of power-on (VCC
increases from undervoltage to VPOR OFF = 2.7 V, typical) the circuit is initialized by an
internally generated power-on reset (POR). If the voltage VCC decreases under the
minimum threshold (VPOR ON = 2.4 V, typical), the outputs are switched-off (highimpedance) and the status registers are cleared (see Figure 4).
Figure 4.
Power-on reset
VCC
VPOR OFF
VPOR hyst.
VPOR ON
IC is disabled
All Status Registers are cleared
2.1.1
Channels
The channels 1 to 3 are self configuring high-side or low-side n-channel mosfets. This
flexibility allows the user to connect loads in high-side or low-side configuration in any
combination.
In order to provide low Rdson values for high-side configured switches (channels 1 to 3), a
charge pump (CP) to drive the internal gate voltage(s) is implemented. If the charge pump is
activated (ENCP1 = 1, DISCP2 = 0, see Section 9.3: Control and status registers), the
internal charge-pump uses VS from the drain of channel 1, as its power source. Otherwise
VCC is used to drive all channels.
The channels 4 to 6 are n-channel low-side drivers. The source of the respective mosfet are
internally connected to the device GND.
Caution:
For any high-side configuration, channel 1 must be used as a high-side switch.
If channel 1 is configured as low-side, the charge pump has to be deactivated to avoid
charge pump current from the drain.
Caution:
The charge pump may not be deactivated (see Section 9.3: Control and status registers) if
one of the channels is in high-side configuration, while a short-circuit from the source to the
battery is present. If these conditions occur, the voltage of the shorted source is applied to
the VCC pin.
12/55
Doc ID 16523 Rev 1
L99MC6
2.2
Description
Standby mode
The standby mode of the L99MC6 is activated by SPI command (EN bit of CTRL 0 reset to
0, see Section 9.3.2: Register description). The inputs and outputs are switched-off. The
status registers are cleared and the control registers are reset to their default values.
In the standby mode the current consumption is 5 µA (typical value). A SPI command is
needed to switch the L99MC6 in normal mode.
2.3
Inductive loads
Each switch is built by a power DMOS transistor. For low-side configured outputs an internal
zener clamp from the drain to gate with a breakdown of 31 V minimum provides for fast turnoff of inductive loads.
For high-side configured outputs, an internal zener clamp with a breakdown of -15 V
maximum provides for fast turn-off of inductive loads (Figure 5).
The maximum clamping energy is specified in Chapter 10.
Figure 5.
Output voltage clamping
High Side Configuration
Low Side Configuration
Output Current
Drain Clamp
Voltage
Output Current
(VDRN_CL1-6) = 35V)
Drain Voltage
VS
GND
Time
VS
Time Source Clamp
Voltage
(VSRC_CL1-3) = -19V)
GND
2.4
Source Voltage
Diagnostic functions
All diagnostic functions (overload, open-load, temperature warning and thermal shutdown)
are internally filtered and the condition has to be valid for at least 32 µs (open-load: typ.
400 µs, respectively) before the corresponding status bit in the status registers are set. The
filters are used to improve the noise immunity of the device. Open-load and temperature
warning function are intended for information purpose and do not change the state of the
output drivers. On contrary, the overload and thermal shutdown condition disable the
corresponding driver (overload) or all drivers (thermal shutdown), respectively. Without
setting the overcurrent recovery bit in the input data register to logic high, the microcontroller
has to clear the overcurrent status bit to reactivate the corresponding driver. (All switches
have a corresponding overcurrent recovery bit) If this bit is set, the device automatically
switches-on the outputs again after a short recovery time. With this feature the device can
drive loads with start-up currents higher than the overcurrent limits (that is inrush current of
incandescent lamps, cold resistance of motors and heaters, Figure 7).
Doc ID 16523 Rev 1
13/55
Description
2.4.1
L99MC6
Direct input IN/PWM
The IN/PWM input allows channel 2 to be enabled without the use of SPI. The IN/PWM pin
is OR-ed with the SPI command bit. This pin can be left open if the channel 2 is controlled
only via the SPI. This input has an internal pull-down.
The IN/PWM signal can also be applied to any other switches by the activation of the PWM
mode.
This input is suited for non-inductive loads that are pulse width modulated. This allows PWM
control without further use of the SPI.
2.4.2
Temperature warning and thermal shutdown
If the junction temperature rises above Tj TW a temperature warning flag is set and is
detectable via the SPI. If the junction temperature increases above the second threshold
Tj SD, the thermal shutdown bit is set and power DMOS transistors of all output stages are
switched-off to protect the device. Temperature warning flag and thermal shutdown bits are
latched. In order to reactivate the output stages, the junction temperature must decrease
below Tj SD - Tj SD HYS and the thermal shutdown bit has to be cleared by the
microcontroller.
2.4.3
Open-load detection in off-state
The open-load detection monitors the load at each output stage in off mode. A current
source of 150 µA (IOLD1-6, IOLS 1-3) is connected between drain and source or GND. An
open-load failure is detected if the drain or source voltage reaches an internal VOLD/S (2.0 V)
for at least 3 ms (tdOL typ.). The corresponding open-load bit is set in the status register. In
LED mode the open-load detection is disabled and the current source is switched-off, which
avoids a turn-on of the LEDs in off-state.
2.4.4
Overload detection
In case of an overcurrent condition, a flag is set in the corresponding status register. If the
overcurrent signal is valid for at least tISC = 32 µs, the overcurrent flag is set and the
corresponding driver is switched-off to reduce the power dissipation and to protect the
integrated circuit. If the overcurrent recovery bit of the output is zero the microcontroller has
to clear the status bit to reactivate the corresponding driver.
2.5
Bridge mode
The L99MC6 can be configured as bridge driver. Up to three half bridges can be used. In
Bridge mode the device is crosscurrent protected by an internal delay time. If one driver (LS
or HS) is turned-off the activation of the other driver of the same half bridge is automatically
delayed by the crosscurrent protection time. After the crosscurrent protection time is expired
the slew rate limited switch-off phase of the driver is changed to a fast turn-off phase and the
opposite driver is turned-on with slew-rate limitation. Due to this behavior it is always
guaranteed that the previously activated driver is totally turned-off before the opposite driver
starts to conduct.
Due to the built-in reverse diodes of the output transistors, inductive loads can be driven at
the outputs without external free-wheeling diodes.
14/55
Doc ID 16523 Rev 1
L99MC6
Description
The following combination must be used: channel 1 + 4, channel 2 + 5, channel 3 + 6
(Figure 6).
A VS voltage exceeding the low-side clamping voltage (VDRN_CL1-6) , while the high one of
the high-side drivers is turned on, may cause a destruction of the device.
Caution:
In bridge mode using channels 2 and 5, the IN/PWM pin has to be grounded. Therefore
PWM mode on other channels is not possible.
Figure 6.
Example of bridge configuration
VDD 5V
VS 12V
Out1
Out2
IN/PWM
=1
M
GND
Out3
M
Control
Out4
SCK
CSN
DO
Out5
SPI
Out6
DI
GND
2.6
LED mode
Open-load detection in off-state can be deactivated to avoid the turn on of the LEDs by the
current source (150 µA typ.) when the channel is switched-off.
Moreover, it is possible to select a high slew rate to support PWM operations with small duty
cycle (see Section 9.3.1: Channel configuration decoding).
Doc ID 16523 Rev 1
15/55
Description
2.7
L99MC6
Bulb mode (programmable soft start function to drive loads
with higher inrush current)
Loads with start-up currents higher than the overcurrent limits (for example inrush current of
lamps, start current of motors and cold resistance of heaters) can be driven by using the
programmable soft start function (that is overcurrent recovery mode). Each driver has a
corresponding overcurrent recovery bit. If this bit is set, the device automatically switches-on
the outputs again after a fixed recovery time. The PWM modulated current provides
sufficient average current to power up the load (for example heat up the bulb) until the load
reaches operating condition (Figure 6).
The device itself cannot distinguish between a real overload and a non linear load like a light
bulb. A real overload condition can only be qualified by time. As an example the
microcontroller can switch-on light bulbs by setting the overcurrent recovery bit for the first
50 ms. After clearing the recovery bit, the output is automatically disabled if the overload
condition still exits.
Figure 7.
Example of programmable soft start function for inductive loads and incandescent
bulbs
Load Current
Unlimited Inrush Current
Load Current
Limited Inrush Current in
overcurrent recovery
mode with inductive load
t
16/55
Doc ID 16523 Rev 1
Unlimited Inrush Current
Limited Inrush Current in
overcurrent recovery mode
with incandescent bulb
t
L99MC6
3
Absolute maximum ratings
Absolute maximum ratings
Stressing the device above the rating listed in Table 3 may cause permanent damage to the
device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics™ SURE program and other relevant quality
document.
Table 3.
Absolute maximum ratings
Symbol
Parameter
Value
Unit
-0.3 to 28
V
40
V
Single pulse tmax < 400 ms in bridge mode
VDRN_CL1-6
V
Stabilized supply voltage, logic supply
-0.3 to 5.5
V
-0.3 to VCC + 0.3
V
DC supply voltage
VS (DRN1 HS Single pulse tmax < 400 ms in HS or LS
config)
configuration with Rload min = 40 Ω(1)
VCC
DI, DO, SCK,
CSN, IN
Digital input/output voltage
DRN 1-6
Output current capability
±1,65
A
SRC 1-3
Output current capability
±1,65
A
Current capability
3,30
A
-40 to 150
°C
GND
Tj
Operating junction temperature
1. The device requires a minimum load impedance of 40 Ω to sustain a load dump pulse of 40 V according to
the ISO 7637 pulse 5b.
All maximum ratings are absolute ratings. Leaving the limitation of any of these values may
cause an irreversible damage of the integrated circuit.
Doc ID 16523 Rev 1
17/55
ESD protection
4
L99MC6
ESD protection
Table 4.
ESD protection
Parameter
Value
Unit
All pins
±2(1)
kV
Output pins: DRN1 – DRN6; SRC1, SRC3, SRC5
±4(2)
kV
Machine model (CDF-AEC-Q100-03 rev. F)
±200
V
Charged device model (CDF-AEC-Q100-011 Rev. F)
±1500
V
1.
HBM according to MIL 883C, Method 3015.7 or EIA/JESD22-A114-A
2. HBM with all unzapped pins grounded
18/55
Doc ID 16523 Rev 1
L99MC6
Thermal data
5
Thermal data
5.1
Temperature warning and thermal shutdown
Table 5.
Temperature warning and thermal shutdown
Item
Symbol
Parameter
Min.
5.2.1
TjTW ON
Temperature warning threshold
junction temperature
Tj increasing
5.2.2
TjTW OFF
Temperature warning threshold
junction temperature
Tj decreasing
5.2.3
TjTW HYS Temperature warning hysteresis
5.2.4
TjSD ON
Thermal shutdown threshold
junction temperature
Tj increasing
5.2.5
TjSD OFF
Thermal shutdown threshold
junction temperature
Tj decreasing
5.2.6
TjSD HYS Thermal shutdown hysteresis
Max.
Unit
150
°C
130
-
-
Typ.
°C
5
K
170
°C
150
°C
5
K
For additional information, please refer to Chapter 12: Package and PCB thermal data.
Doc ID 16523 Rev 1
19/55
Electrical characteristics
6
L99MC6
Electrical characteristics
VS = 6 V to 16 V, VCC = 3.0 V to 5.3 V, Tj = -40 °C to 150 °C, unless otherwise specified.
The voltages are referred to GND and currents are assumed positive, when the current
flows into the pin.
6.1
Supply
Table 6.
Supply
Item
Symbol
6.1.1
VS
6.1.2
6.1.3
6.1.4
IS
IVS
VCC
6.1.5
ICC
6.1.6
Parameter
Test condition
Max.
Unit
28
V
1.5
2.0
mA
VS = 13 V, VCC = 5 V
standby mode
DRN1 = VS
TTest = -40 °C, 25 °C
Outputs floating
3
10
μA
TTest =130 °C
6
20
μA
5.3
V
Operating supply voltage
range
VS = 13 V, VCC = 5.0 V
active mode
DRN1 = VS
Outputs floating
VS DC supply current
VS quiescent supply current
Operating supply voltage
range
3.0
VCC DC supply current
VS = 13 V, VCC = 5.0 V
active mode
1.3
2
mA
VCC quiescent supply
current
VS = 13 V, VCC = 5.0 V
CSN = VCC
standby mode
Outputs floating
5
20
µA
Typ.
Max.
Unit
3.0
V
Undervoltage detection
Table 7.
Undervoltage detection
Symbol
Parameter
Test Condition
6.2.1
VPOR OFF Power-on reset threshold
VCC increasing
6.2.2
VPOR ON
Power-on reset threshold
VCC decreasing
6.2.3
VPOR hyst
Power-on reset hysteresis VPOR OFF - VPOR ON
20/55
Typ.
6
6.2
Item
Min.
Doc ID 16523 Rev 1
Min.
2.2
V
0.3
V
L99MC6
Electrical characteristics
6.3
Channels
Table 8.
Channels
Item
6.3.1
6.3.2
6.3.3
Symbol
rON SWI1-3
rON SWI1-6
ISC1-6
Parameter
Test condition
On resistance drain to
source in HS configuration
On resistance drain to
source or GND,
in LS configuration
Overcurrent protection
Min.
Typ.
Max.
Unit
VS=13.5 V, Tj = 25 °C,
CP on, Iload = 250 mA
-
700
900
mΩ
VS=13.5 V, Tj = 125 °C,
CP on, Iload = 250 mA
-
1100
1500
mΩ
VS = 6.0 V Tj = 25 °C,
CP on, Iload = 125 mA
-
700
900
mΩ
VS = 6.0 V, Tj = 125 °C,
CP on, Iload = 125 mA
-
1100
1500
mΩ
VS = 4.5 V Tj = 25 °C,
CP on, Iload = 125 mA
-
800
1500
mΩ
VS = 4.5 V, Tj = 125 °C,
CP on, Load = 125 mA
-
1300
2000
mΩ
VS = 3 V, Tj = 25 °C,
CP on, Iload = 125 mA
-
1600
2600
mΩ
VCC=5.0 V, Tj = 25 °C,
Load = 250 mA
-
750
1000
mΩ
VCC = 5.0 V, Tj = 125 °C,
Iload = 250 mA
-
1100
1500
mΩ
VCC = 3.3 V, Tj = 25 °C,
Iload = 250 mA
-
900
1250
mΩ
VCC = 3.3 V, Tj = 125 °C,
Iload = 250 mA
-
1400
1800
mΩ
Channels 1 to 3
0.7
1.0
1.4
A
Channels 4 to 6
0.6
0.8
1.0
A
6.3.4
td ON1-6
Output delay time,
switch-on
VS = 13.5 V, VCC = 5.0 V
-
50
100
μs
6.3.5
td OFF1-6
Output delay time,
switch-off
VS = 13.5 V, VCC = 5.0 V
-
50
100
μs
6.3.6
td ONLED1-6
Output delay time,
switch-on LED
VS = 13.5 V, VCC = 5.0 V
-
15
40
μs
6.3.7
tdOFFLED1-6
Output delay time,
switch-off LED
VS = 13.5 V, VCC = 5.0 V
-
15
40
μs
6.3.8
tDHL
Crosscurrent protection
time
Only in Bridge mode
-
200
500
μs
VDRN2-6 = VS, LED mode,
CP off
0
-
5
µA
IQLD
Switched-off output current
DRN 1-6
VDRN1
-
20
6.3.9
Doc ID 16523 Rev 1
µA
21/55
Electrical characteristics
Table 8.
L99MC6
Channels (continued)
Item
Symbol
Parameter
Min.
Typ.
Max.
Unit
6.3.10
IQLS
Switched-off output current
SRC 1-3
-
-15
-25
µA
6.3.11
VOLD1-6
Drain open-load detection
voltage on drain
1,1
2,0
2,5
V
6.3.12
IOLD1-6
Open-load detection
current on drain
80
190
280
µA
6.3.13
VOLS1-3
Source open-load detection
voltage on source
1,1
2,0
2,5
V
6.3.14
IOLS1-3
Open-load detection
current on source
@ VOLS
-80
-190
-280
µA
6.3.15
tdOL
Minimum duration of openload condition to set the
status bit
Guaranteed by design
2
3
4
ms
6.3.16
tISC
Minimum duration of
overcurrent condition to
switch-off the driver
Guaranteed by design
10
-
100
µs
6.3.17
dVOUT1/dt
Slew rate of channel 1 to 6
VS = 13.5 V, VCC = 5.0 V
Iload = 54 Ω
0.1
0.25
0.4
V/µs
6.3.18
dVOUT1LED/dt
Slew rate of channel 1 to 6
in LED mode
VS = 13.5 V, VCC = 5.0 V
Iload = 54 Ω
0.5
1.25
2.0
V/µs
6.3.19
VDRN_CL1-6
Drain clamp voltage
(low-side)
Source = GND
Iload = 0.25 A
31
35
39
V
Drain = VS, Iload = 0.25 A
-19
-15
V
VSRC_CL1-3
Source clamp voltage
(high-side)
-22
6.3.20
Standby
-22
10
-1,5
V
22/55
Test condition
VSRC1-3 = GND,
LED mode
@ VOLD
Doc ID 16523 Rev 1
L99MC6
7
SPI electrical characteristics
SPI electrical characteristics
VS = 6 V to 16 V, VCC = 3.0 V to 5.3 V, Tj = -40 °C to 150 °C, unless otherwise specified.
The voltages are referred to GND and currents are assumed positive, when the current
flows into the pin
7.1
DC characteristics
Table 9.
DC characteristics
Symbol
Parameter
Test condition
Min
Typ
Max
Unit
0.3VDD
V
DI, SCK, CSN, PWM
VIL
Low-level input voltage
-
VIH
High-level input voltage
-
0.7VDD
RCSN in
Pull-up resistor at input CSN
-
20
50
80
kΩ
RCLK in
Pull-down resistor at input CLK
-
20
50
80
kΩ
Pull-down resistor at input DI
-
20
50
80
kΩ
0.3VDD
V
RDI in
V
DO
VOL
Low-level output voltage
IOUT = 5 mA
VOH
High-level output voltage
IOUT = 5 mA
0.7VDD
Test condition
Min
Typ
Max
Unit
VOUT = 0 to 5 V
-
-
10
pF
Input capacitance (DI)
VIN = 0 to 5 V
-
-
10
pF
Input capacitance (other pins)
VIN = 0 to 5 V
-
-
10
pF
7.2
AC characteristics
Table 10.
AC characteristics
Symbol
Parameter
V
DI, DO, SCK, CSN
COUT
CIN
Output capacitance (DO)
Doc ID 16523 Rev 1
23/55
SPI electrical characteristics
L99MC6
7.3
Dynamic characteristics
Table 11.
Dynamic characteristic
Symbol
fC
Parameter
Test condition
Min
Typ
Max
Unit
-
-
-
1
MHz
Clock frequency
tSCSN
CSN low setup time
see Figure 8
120
-
-
ns
tHCSN
CSN high setup time
see Figure 8
1
-
-
μs
tCSNQV
CSN falling until DO valid
-
5
130
250
ns
tCSNQT
CSN rising until DO tristate
-
150
650
1000
ns
tSSCK
SCK setup time before CSN
rising
-
200
-
-
ns
tSSDI
Data in setup time
see Figure 8
20
-
-
ns
tCHDX
Data hold setup time
see Figure 8
30
-
-
ns
tHSCK
SCK high time
see Figure 8
115
-
-
ns
tLSCK
SCK low time
see Figure 8
115
-
-
ns
tSCKQV
Clock high to output valid
COUT = 100 pF
-
150
-
ns
tQLQH
Output rise time
COUT = 100 pF
-
110
-
ns
tQHQL
Output fall time
COUT = 100 pF
-
110
-
ns
tenDOtriH
DO enable time from tristate to
high-level
COUT = 100 pF, IOUT = -1 mA,
pull-down load to GND
-
100
250
ns
tenDOtriL
DO enable time from tristate to
low-level
COUT = 100 pF, IOUT=1 mA,
pull-up load to VCC
-
100
250
ns
tdisDOHtri
DO disable time from high-level
to tristate
COUT = 100 pF, IOUT = -4 mA,
pull-down load to GND
-
625
720
ns
tdisDOLtri
DO disable time from low-level
to tristate
COUT = 100 pF, IOUT = 4 mA,
pull-up load to VCC
-
540
620
ns
24/55
Doc ID 16523 Rev 1
L99MC6
SPI electrical characteristics
7.4
SPI timing parameter definition
Figure 8.
Serial input timing
tHCSN
CSN
tCSNQV
tCSNQT
Data out
Data out
SDO
t SCKQV
tSCSN
t SSCK
SCK
t SSDI
SDI
Figure 9.
tHSCK
tLSCK
Data in
Data in
Serial input timing
CSN
SDO
pull-up load to VC C
CL=100pF
tenD O t ri L
td isD O L t ri
tenD O t ri H
td isD O H t ri
SDO
pull-down load to GN D
CL=100pF
Doc ID 16523 Rev 1
25/55
SPI electrical characteristics
L99MC6
Figure 10. Output turn on/off delays and slew rates
VINIPWM
VDD
VIN/PWM
VDD
50%
50%
GND
GND
Vsource X
Vsource X
90%
Lowside
90%
Lowside
80%
20%
10%
GND
Vdrain X
GND
Vdrain X
80%
High Side
10%
High Side
90%
80%
20%
20%
GND
Tdoff1-6
Tdon1-6
dVout1x/dt
dVout1x/dt
26/55
20%
Doc ID 16523 Rev 1
L99MC6
Functional description of the SPI
8
Functional description of the SPI
8.1
Signal description
8.1.1
Serial clock (SCK)
This input signal provides the timing of the serial interface. Data present at serial data input
(SDI) is latched on the rising edge of serial clock (SCK). Data on serial data output (SDO) is
shifted out at the falling edge of serial clock (see Figure 11).
The SPI can be driven by a microcontroller with its SPI peripherals running in following
mode: CPOL = 0 and CPHA = 0 (see Figure 11).
8.1.2
Serial data input (SDI)
This input is used to transfer data serially into the device. It receives the data to be written.
Values are latched on the rising edge of serial clock (SCK).
8.1.3
Serial data output (SDO)
This output signal is used to transfer data serially out of the device. Data is shifted out on the
falling edge of serial clock (SCK).
DO also reflects the status of the <Global Error Flag> (<Global Status Register>, bit 7) while
CSN is low and no clock signal is present
8.1.4
Chip select not (CSN)
When this input signal is high, the device is deselected and serial data output (SDO) is highimpedance. Driving this input low enables the communication. The communication must
start and stop on a low-level of serial clock (SCK).
Figure 11.
Clock polarity and clock phase
Doc ID 16523 Rev 1
27/55
Functional description of the SPI
L99MC6
Figure 12. SPI frame structure
SPI-Frame Structure
Write Operation
CS N
S DI
MSB
Comm a nd Byte
(8 bit)
Data
(8, 16 or 24 bit)
LSB
L SB
Data
Glob al Status Byte
(8 b it)
S DO
MSB
(previous content of register)
M SB
LSB
Read Operation
CS N
S DI
S DO
28/55
MSB
Com m and Byte
(8 b it)
Glob al Status Byte
(8 b it)
Do n’t care
(8, 16 or 24 bit)
LSB
MSB
L SB
Data
(8, 16 or 24 bit)
M SB
Doc ID 16523 Rev 1
LSB
L99MC6
Functional description of the SPI
8.2
SPI communication flow
8.2.1
General description
The proposed SPI communication is based on a standard SPI interface structure using CSN
(chip select not), SDI (serial data in), SDO (serial data out/error) and SCK (serial clock)
signal lines.
At the beginning of each communication the master reads the <SPI-frame-ID> register
(ROM address 3EH) of the slave device. This 8-bit register indicates the SPI frame length
(16 bit for the L99MC6) and the availability of additional features.
Each communication frame consists of an instruction byte which is followed by 1 data byte
(see Figure 12).
The data returned on SDO within the same frame always starts with the <Global Status>
register. It provides general status information about the device. It is followed by 1 byte (that
is ‘In-frame-response’, see Figure 12).
For Write cycles the <Global Status> register is followed by the previous content of the
addressed register.
For Read cycles the <Global Status> register is followed by the content of the addressed
register.
Table 12.
Command byte - general description
MSB
LSB
Operating code
OC1
Table 13.
Address
OC0
A5
A4
A3
A2
A1
Data byte - general description
MSB
Bit7
8.2.2
A0
LSB
Bit6
Bit5
Bi4
Bit3
Bit2
Bit1
Bit0
Command byte
Each communication frame starts with a command byte. It consists of an operating code
which specifies the type of operation (<Read>, <Write>, <Read and Clear Status>, <Read
Device Information>) and a 6-bit address.
Table 14.
Command byte
MSB
LSB
Operating code
OC1
OC0
Address
A5
A4
Doc ID 16523 Rev 1
A3
A2
A1
A0
29/55
Functional description of the SPI
L99MC6
Operating code definition
Table 15.
Operating code definition
OC1
OC0
Meaning
0
0
<Write mode>
0
1
<Read mode>
1
0
<Read and Clear Status>
1
1
<Read Device Information>
The <Write mode> and <Read mode> operations allow access to the RAM of the device,
that is write to control registers or read status information.
A <Read and Clear Status> operation addressed to a device specific status register reads
back and subsequently clear this status register. A <Read and Clear Status> operation with
address 3FH clears all status registers at a time.
A <Read and Clear Status> operation addressed to an unused RAM address or
configuration register address is identical to a <Read mode> operation (in case of unused
RAM address, the second byte is equal to 00H).
<Read Device Information> allows access to the ROM area which contains device related
information such as the product family, product name, silicon version and register width.
8.2.3
Global status register
Table 16.
Global status register
Bit 7
Bit 6
Global error flag
(GEF)
Bit 3
Bit 2
Bit 1
Bit 0
Global status register description
Description
Polarity
Comment
0
Unused
Active high
Always returns ‘0’
1
Overcurrent detected
Active high
Set by any overcurrent event
2
Open-load detected
Active high
Set by any open-load event
3
Temperature warning
Active high
-
4
Thermal shutdown / chip
overload
Active high
-
Active low
Activated by all internal reset events that change
device state or configuration registers (for
example software reset, VCC undervoltage, etc.).
The bit is cleared after a valid communication
with any register. This bit is initially ‘0’ and is set
to ‘1’ by a valid SPI communication
5
30/55
Bit 4
Communication
TSD
Temperature Open-load Overcurrent
Chip reset
Unused
error
Chip overload
warning
detected
detected
Table 17.
Bit
Bit 5
Chip reset
Doc ID 16523 Rev 1
L99MC6
Functional description of the SPI
Table 17.
Bit
Global status register description (continued)
Description
Polarity
Comment
6
Communication error
Active high
Bit is set if the number of clock cycles during
CSN = low does not match with the specified
frame width or if an invalid bus condition is
detected (DI always 1).
DI always 0 automatically leads to clearing the
enable bit in CTRL0 and is not signaled as
communication error.
7
Global Error flag
Active high
Logic OR combination of all failures in the
<Global Status Byte>.
The <Global Error Flag> is generated by an OR-combination of all failure events of the
device (that is <Global Status Register>, [0:6]).
Figure 13. Indication of the global error flag on DO when CSN is low and SCK is stable
1. The last transferred SPI command is still valid in the input shift register. If SCK is stable (high or low) during a CSN low
pulse, at the rising edge of CSN the last transferred SPI command is still valid in the input shift register and is repeated.
Therefore, it is recommended to send a complete SPI frame to monitor the status of the L99MC6.
Writing to the selected data input register is only enabled if exactly one frame length is
transmitted within one communication frame (that is CSN low). If more or less clock pulses
are counted within one frame, the complete frame is ignored and a SPI frame error is
signaled in the Global Status register. This safety function is implemented to avoid
an unwanted activation of output stages by a wrong communication frame.
Doc ID 16523 Rev 1
31/55
Functional description of the SPI
L99MC6
For Read operations, the <communication error> bit in the <Global Status Register> is set,
but the register to be read is still transferred to the DO pin. If the number of clock cycles is
smaller than the frame width, the data at DO is truncated. If the number of clock cycles is
larger than the frame width, the data at DO is filled with ‘0’ bits.
Due to this safety functionality a daisy chaining of SPI is not possible. Instead, a parallel
operation of the SPI bus by controlling the CSN signal of the connected ICs is
recommended.
Note:
If the frame width is greater than 16 bits, initial Read of <SPI-frame-ID> using a 16-bit
communication sets the <communication Error bit> of the <Global Status> register. A
subsequent correct length transaction is necessary to correct this bit.
8.3
Write operation
OC0, OC1: operating code (00 for ‘Write’ mode)
Table 18.
Command byte for Write mode
MSB
LSB
Operating code
0
0
Address
A5
A4
A3
A2
A1
A0
The Write operation starts with a command byte followed by 1 data byte.
For Write cycles the <Global Status> register is followed by the previous content of the
addressed register.
The RAM memory area consists of 8-bit registers. All unused RAM addresses are read as
‘0’.
Failures are indicated by activating the corresponding bit of the <Global Status> register.
Note:
The register definition for RAM address 00H is device specific.
A register value of all 0 causes a device reset (interpreted as ‘Data-in short to GND’).
8.4
Read operation
OC0, OC1: operating code (01 for ‘Read’ mode)
Table 19.
Command byte for Read mode
MSB
LSB
Operating code
0
1
Address
A5
A4
A3
A2
A1
A0
The Read operation starts with a command byte followed by 1 data byte. The content of the
data byte is ‘do not care’. The content of the addressed register is shifted out at SDO within
the same frame (‘in-frame response’).
The returned data byte represents the content of the register to be read.
Failures are indicated by activating the corresponding bit of the <Global Status> register.
32/55
Doc ID 16523 Rev 1
L99MC6
8.5
Functional description of the SPI
Read and Clear Status operation
OC0, OC1: operating code (10 for ‘Read and Clear Status’ mode)
Table 20.
Command byte for Read and Clear Status operation
MSB
LSB
Operating code
1
0
Address
A5
A4
A3
A2
A1
A0
The ‘Read and Clear Status’ operation starts with a command byte followed by 1 data byte.
The content of the data byte is ‘do not care’. The content of the addressed status register is
transferred to SDO within the same frame (‘in-frame response’) and is subsequently
cleared.
A <Read and Clear Status> operation with address 3FH clears all status registers
simultaneously.
A <Read and Clear Status> operation addressed to an unused RAM address or to the
configuration register (3FH) is identical to a <Read mode> operation (in case of unused
RAM address, the second byte is equal to 00H).
The returned data byte represents the content of the register to be read.
Failures are indicated by activating the corresponding bit of the <Global Status> register.
8.6
Read Device Information
OC0, OC1: operating code (11 for ‘Read Device Information’ mode)
Table 21.
Command byte for Read Device Information
MSB
LSB
Operating code
1
1
Address
A5
A4
A3
A2
A1
A0
The device information is stored at the ROM. In the ROM memory area, the first 8 bits are
used.
All unused ROM addresses is read as ‘0’.
Note:
ROM address 3FH is unused. An attempt to access this address is recognized as a
communication line error (‘Data-in stuck to VCC’) and the standby mode is automatically
entered (all internal registers are cleared).
Doc ID 16523 Rev 1
33/55
SPI control and status register
L99MC6
9
SPI control and status register
9.1
RAM memory map
Table 22.
9.2
RAM memory map
Address
Name
Access
Content
00h
CTRL 0
Read/Write
Global enable, channels 3 and 6 control register
01h
CTRL 1
Read/Write
CP, channels 2 and 5 control register
02h
CTRL 2
Read/Write
CP, channels 1 and 4 control register
03h
Unused
-
04h
STAT 0
Read only
Open-load / thermal status register
05h
STAT 1
Read only
Overcurrent / thermal status register
-
ROM memory map (access with OC0 and OC1 set to ‘1’)
Table 23.
ROM memory map
Address
Name
Access
Content
00h
ID Header
Read only
42h (device class ASSP, 2 additional information bytes)
01h
Product ID
Read only
06H
02h
Category /
Version
Read only
18h (multi channel driver,
last 3 LSB = 0: engineering samples)
3Eh
SPI-Frame ID
Read only
01h (no burst mode, no watchdog, 16 bit frame SPI)
9.3
Control and status registers
Table 24.
Control register 0
Data Byte
Adress
Access
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Global enable, Channel 3&6 control
00h
R/W
Default
34/55
EN
CH6
[2]
CH6
[1]
CH6
[0]
Bridge
3&6
CH3
[2]
CH3
[1]
CH3
[0]
0
0
0
0
0
0
0
0
Doc ID 16523 Rev 1
L99MC6
Table 25.
SPI control and status register
Control register 1
Data Byte
Adress
Access
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Bit 2
Bit 1
Bit 0
Channel 2&5 control
01h
R/W
Default
Table 26.
ENCP
CH5
[2]
CH5
[1]
CH5
[0]
Bridge
2&5
CH2
[2]
CH2
[1]
CH2
[0]
1
0
0
0
0
0
0
0
Bit 3
Bit 2
Bit 1
Bit 0
Control register 2
Data Byte
Adress
Access
Bit 7
Bit 6
Bit 5
Bit 4
Channel 1&4 control
02h
R/W
Default
Table 27.
DISCP
CH4
[2]
CH4
[1]
CH4
[0]
Bridge
1&4
CH1
[2]
CH1
[1]
CH1
[0]
0
0
0
0
0
0
0
0
Bit 3
Bit 2
Bit 1
Bit 0
OL
CH3
OL
CH2
OL
CH1
Bit 2
Bit 1
Bit 0
OC
CH3
OC
CH2
OC
CH1
Status register 0
Data Byte
Adress
Access
Bit 7
Bit 6
Bit 5
Bit 4
Open-load, thermal status
04h
Table 28.
R
TSD
TWARN
OL
CH6
OL
CH5
OL
CH4
Status register 1
Data Byte
Adress
Access
Bit 7
Bit 6
Bit 5
Bit 4
Bit 3
Overcurrent, thermal status
05h
R
TSD
TWARN
OC
CH6
OC
CH5
Doc ID 16523 Rev 1
OC
CH4
35/55
SPI control and status register
L99MC6
9.3.1
Channel configuration decoding
Table 29.
Channel configuration decoding
CHx
CHx
CHx
[2]
[1]
[0]
PWM
CHx
mode
Overcurrent
recovery
Slew Rate
Open-load
detection
No
-
High
Off
0
0
0
Off(1)
1
1
1
Off(1)
No
-
Low
On
0
0
1
On
No
No
High
-
0
1
0
On
No
No
Low
-
0
1
1
On
No
Yes
Low
-
1
0
1
IN/PWM(2)
Yes
No
High
Off
0
(2)
Yes
No
Low
On
1
1
IN/PWM
1. The state of the channel 2 is according to the IN/PWM signal
2. The output state is according to the IN/PWM signal, note that bridge mode and PWM mode may not be activated at the
same time for channels 2 and 5.
9.3.2
Register description
Table 30.
Register description(1)
Name
Comment
EN
Global device enable bit. If this bit is reset, the device goes in standby mode.
CHx
[2:0]
Channel output configuration (see Figure 29).
Note that channel 2 is directly driven by the external IN/PWM pin and thus can not be configured
independently from the PWM configuration of other channels.
Bridge
Activate Bridge mode between channels 3 and 6, channels 2 and 5, channels 1 and 4. Any
polarity change is delayed by masking time of cross conduction protection
If wrong SPI commands try to turn on the channels 3 and 6, channels 2 and 5, channels 1 and 4
simultaneously, the high-side (channels 3, 2, 1) has the priority whereas channels 6, 5, 4 is (or
stay) deactivated.
ENCP
This bit is preset to ‘1’ at startup. To deactivate the internal charge pump ENCP has to be reset
together with setting DISCP (CTRL 2). This mechanism avoids unwanted charge pump
deactivation after an undetected communication error.
It is recommended to check the state of the charge pump deactivation bits at every access of
CTRL 1 and CTRL 2.
DISCP
This bit is reset to ‘0’ at startup. To deactivate the internal charge pump DISCP has to be set
together with resetting ENCP (CTRL 1)
TSD
Overtemperature detected: all the drivers are shutdown
TWARN
Overtemperature warning level detected, information only
OL [6:1]
Open-load error detected, information only
OC [6:1]
Overcurrent error detected, drivers are deactivated and re-enabled cyclically when bulb mode is
configured. Note: in order to detect a real overload condition, the application software must make
sure, that the corresponding OC bit remains cleared after a maximum heat up time of the load.
1. Every output stage is protected against overtemperature and overcurrent. While still configured as ON, the output stage
can be deactivated by the corresponding error bits in the status registers. In order to reactivate the drivers, the status
registers have to be cleared by a specific SPI command.
36/55
Doc ID 16523 Rev 1
L99MC6
SPI control and status register
9.4
Examples
9.4.1
Example 1:Switch on channel 1
It is assumed that the charge pump is already activated (ENCP1 = 1 and DISCP2 = 0, POR
default)
Table 31.
Command byte - example 1
MSB
LSB
Operating code
0
Table 32.
Address
0
0
0
0
0
1
0
Data byte - example 1
MSB
LSB
0
0
0
0
0
0
0
1
From Table 31 and Table 32 follow that the value 01h is written at RAM address 02h (control
register 2).
Table 33 describe more in detail the data byte structure.
Table 33.
DISCP
0
Data byte description - example 1
CH1
CH1
CH1
[0]
Bridge
1&4
[2]
[1]
[0]
0
0
0
0
1
CH4
CH4
CH4
[2]
[1]
0
0
Hereafter the actions linked to each value of bit or group of bits:
●
DISCP = 0: Charge pump stays activated
●
CH4[2:0] = 000b: Channel 4 is off, open-load detection in off-state disabled
●
BRIDGE_1&4 = 0: Bridge mode disabled
●
CH4[2:0] = 001b: Channel 1 is on, high slew rate, PWM not activated, overcurrent
recovery deactivated.
Doc ID 16523 Rev 1
37/55
SPI control and status register
9.4.2
L99MC6
Example 2: Bridge mode configuration
Table 34.
Command byte 1 - example 2
MSB
LSB
Operating code
0
Table 35.
Address
0
0
0
0
0
0
1
Data byte 1 - example 2
MSB
LSB
1
0
1
0
1
0
0
0
From Table 34 and Table 35 follow that the value A8h is written at RAM address 01h (control
register 1).
Table 36 describe more in detail the data byte structure.
Table 36.
ENCP
1
Data byte description 1 - example 2
CH5
CH5
CH5
CH2
CH2
[1]
[0]
Bridge
2&5
CH2
[2]
[2]
[1]
[0]
0
1
0
1
0
0
0
Hereafter the actions linked to each value of bit or group of bits:
●
ENCP = 1: Charge pump stays activated
●
CH5[2:0] = 010b: Channel 5 is on, PWM disabled, overcurrent recovery mode
disabled, low slew rate
●
BRIDGE_2&5 = 1: Bridge mode for channel 2 and channel 5 activated
●
CH2[2:0] = 000b: Channel 2 is off, open-load detection in off-state disabled
Table 37.
Command byte 2 - example 2
MSB
LSB
Operating code
0
Table 38.
Address
0
0
0
0
0
1
Data byte 2 - example 2
MSB
0
0
LSB
0
0
0
1
0
1
0
From Table 37 and Table 38 follow that the value 0Ah is written at RAM address 02h (control
register 2).
Table 39 describe more in detail the data byte structure.
38/55
Doc ID 16523 Rev 1
L99MC6
SPI control and status register
Table 39.
DISCP
Data byte description 2 - example 2
CH1
CH1
CH1
[0]
Bridge
1&4
[2]
[1]
[0]
0
1
0
1
0
CH4
CH4
CH4
[2]
[1]
0
0
0
Hereafter the actions linked to each value of bit or group of bits:
●
DISCP = 0: Charge pump stays activated
●
CH4[2:0] = 000b: Channel 4 is off, open-load detection in off-state disabled
●
BRIDGE_1&4 = 1: Bridge mode for channel 1 and channel 4 activated
●
CH4[2:0] = 010b: Channel 1 is on, PWM disabled, overcurrent recovery mode
disabled, low slew rate
Figure 14. Bridge mode drawing
Vs
CH 2 OFF
CH1 ON
M
CH4 OFF
CH 5 ON
Doc ID 16523 Rev 1
39/55
SPI control and status register
9.4.3
L99MC6
Example 3: Open-load detection in off-state in bridge configuration
Table 40.
Command byte 1 - example 3
MSB
LSB
Operating code
0
Table 41.
Address
0
0
0
0
0
0
1
Data byte 1 - example 3
MSB
LSB
1
1
1
1
1
0
0
0
From Table 40 and Table 41 follow that the value F8h is written at RAM address 01h (control
register 1).
Table 42 describe more in detail the data byte structure.
Table 42.
ENCP
1
Data byte description 1 - example 3
CH5
CH5
CH5
CH2
CH2
[1]
[0]
Bridge
2&5
CH2
[2]
[2]
[1]
[0]
1
1
1
1
0
0
0
Hereafter the actions linked to each value of bit or group of bits:
●
ENCP = 1: Charge pump stays activated
●
CH5[2:0] = 111b: Channel 5 is off, open-load detection in off-state enabled
●
BRIDGE_2&5 = 1: Bridge mode for channel 2 and channel 5 activated
●
CH2[2:0] = 000b: Channel 2 is off, open-load detection in off-state disabled
Table 43.
Command byte 2 - example 3
MSB
LSB
Operating code
0
Table 44.
Address
0
0
0
0
0
1
Data byte 2 - example 3
MSB
0
0
LSB
0
0
0
1
0
1
0
From Table 43 and Table 44 follow that the value 0Ah is written at RAM address 02h (control
register 2).
Table 45 describe more in detail the data byte structure.
40/55
Doc ID 16523 Rev 1
L99MC6
SPI control and status register
Table 45.
DISCP
0
Data byte description 2 - example 3
CH1
CH1
CH1
[0]
Bridge
1&4
[2]
[1]
[0]
0
1
0
1
0
CH4
CH4
CH4
[2]
[1]
0
0
Hereafter the actions linked to each value of bit or group of bits:
●
DISCP = 0: Charge pump stays activated
●
CH4[2:0] = 000b: Channel 4 is off, open-load detection in off-state disabled
●
BRIDGE_1&4 = 1: Bridge mode for channel 1 and channel 4 activated
●
CH1[2:0] = 010b: Channel 1 is on, PWM disabled, overcurrent recovery mode
disabled, low slew rate
Figure 15. Open-load in bridge mode drawing
Vs
CH2 OFF
OL detection OFF
CH1 ON
OL detection OFF
M
CH4 OFF
OL detection OFF
CH5 OFF
OL detection ON
There are two operating conditions:
●
Case 1: The motor is connected, drain of channel 5 is pulled up by channel 1 (on)
through the motor, then no open-load detected on channel 5
●
Case 2: The motor is not connected and the drain voltage of channel 5 is below the
open-load threshold, then open-load detected on channel 5
Doc ID 16523 Rev 1
41/55
Maximum demagnetization energy
10
L99MC6
Maximum demagnetization energy
Figure 16. Configurable switch HSD - maximum turn-off current versus inductance
1
B
A
I (A)
C
0.1
100
L (mH)
A: Single pulse, Tj = 150 °C
B: Repetitive pulse, Tj = 100 °C
C: Repetitive pulse, Tj = 125 °C
42/55
Doc ID 16523 Rev 1
1000
L99MC6
Maximum demagnetization energy
Figure 17. Configurable switch LSD - maximum turn-off current versus inductance
1
A
B
I (A)
C
0.1
100
L (mH)
1000
A: Single pulse, Tj = 150 °C
B: Repetitive pulse, Tj = 100 °C
C: Repetitive pulse, Tj = 125 °C
Doc ID 16523 Rev 1
43/55
Maximum demagnetization energy
L99MC6
Figure 18. Fixed LSD switch - maximum turn-off current versus inductance
1
A
I (A)
B
C
0.1
100
L (mH)
A: Single pulse, Tj = 150 °C
B: Repetitive pulse, Tj = 100 °C
C: Repetitive pulse, Tj = 125 °C
44/55
Doc ID 16523 Rev 1
1000
L99MC6
11
Application examples
Application examples
Figure 19. L99MC6 as driver for incandescent bulb, LEDs and high-side or low-side
relays
VDD 5V
V S 12V
Out1
Out2
IN/PWM
=1
Out3
Control
Out4
SCK
CSN
Out5
DO
SPI
DI
Out6
GND
Doc ID 16523 Rev 1
45/55
Application examples
L99MC6
Figure 20. L99MC6 as motor driver (for example, for mirror adjustment)
VDD 5V
VS 12V
Out1
Out2
IN/PWM
=1
M
GND
Out3
M
Control
Out4
SCK
CSN
DO
Out5
SPI
Out6
DI
GND
46/55
Doc ID 16523 Rev 1
L99MC6
Application examples
Figure 21. L99MC6 as driver for unipolar stepper motor driver, relay and LEDs
VDD 5V
VS 12V
Out1
Out2
=1
IN/PWM
Out3
Control
Out4
SCK
SM
CSN
DO
Out5
SPI
Out6
DI
GND
Doc ID 16523 Rev 1
47/55
Package and PCB thermal data
L99MC6
12
Package and PCB thermal data
12.1
PowerSSO-16 thermal data
Figure 22. PowerSSO-16 PC board(1)
.
1. Layout condition of thermal resistance measurements (PCB: double layer, thermal vias,
FR4 area = 77 mm x 86 mm, PCB thickness =1.6 mm, Cu thickness = 70 µm (front and back side) thermal
vias separation 1.2 mm, thermal via diameter 0.3 mm +/- 0.08 mm, Cu thickness on vias 25 µm,
footprint dimension 2.5 mm x 4.2 mm ).
Table 46.
HSD 1
HSD 2
HSD 3
LSD 4
LSD 5
LSD 6
HSD 1
89.57
85.83
84.41
88.89
87.06
85.84
HSD 2
85.83
89.57
84.41
87.06
88.89
87.06
HSD 3
84.41
84.41
89.57
85.84
87.06
88.89
LSD 4
88.89
87.06
85.84
93.58
90.54
89.08
LSD 5
87.06
88.89
87.06
90.54
93.58
90.54
LSD 5
85.84
87.06
88.89
89.08
90.54
93.58
Table 47.
48/55
Auto and mutual thermal resistance - footprint
Auto and mutual thermal resistance - 2 cm2 of Cu heatsink
HSD 1
HSD 2
HSD 3
LSD 4
LSD 5
LSD 6
HSD 1
59.96
55.06
54.23
58.25
56.08
54.71
HSD 2
55.06
59.96
54.23
56.08
58.25
56.08
HSD 3
54.23
54.23
59.96
54.71
56.08
58.25
LSD 4
58.25
56.08
54.71
61.80
60.37
59.45
LSD 5
56.08
58.25
56.08
60.37
61.80
60.37
LSD 5
54.71
56.08
58.25
59.45
60.37
61.80
Doc ID 16523 Rev 1
L99MC6
Package and PCB thermal data
Table 48.
Auto and mutual thermal resistance - 8 cm2 of Cu heatsink
HSD 1
HSD 2
HSD 3
LSD 4
LSD 5
LSD 6
HSD 1
46.51
43.16
41.49
45.19
43.06
42.08
HSD 2
43.16
46.51
41.49
43.06
45.19
43.06
HSD 3
41.49
41.49
46.51
42.08
43.06
45.19
LSD 4
45.19
43.06
42.08
47.19
46.31
45.19
LSD 5
43.06
45.19
43.06
46.31
47.19
46.31
LSD 5
42.08
43.06
45.19
45.19
46.31
47.19
Equation 1 represents ΔTj-amb calculation of a full loaded device for the HSD1 junction.
Equation 1
ΔTHSD1 = RthHSD1 ∗ PdHSD1 + RthHSD1, HSD2 ∗ PdHSD2 + RthHSD1, HSD3 ∗ PdHSD3 +
+ RthHSD1, LSD 4 ∗ PdLSD 4 + RthHSD1, LSD5 ∗ PdLSD5 + RthHSD1, LSD 6 ∗ PdLSD6
Doc ID 16523 Rev 1
49/55
Package and packing information
L99MC6
13
Package and packing information
13.1
ECOPACK®
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
13.2
PowerSSO-16 package information
Figure 23. PowerSSO-16 package dimensions
50/55
Doc ID 16523 Rev 1
L99MC6
Package and packing information
PowerSSO-16 mechanical data(1)
Table 49.
Symbol
Millimeters
Min.
Typ.
Max.
A
1.25
-
1.72
A1
0.00
-
0.10
A2
1.10
-
1.62
B
0.18
-
0.36
C
0.19
-
0.25
D(2)
4.80
-
5.00
E
3.80
-
4.00
e
-
0.50
-
H
5.80
-
6.20
h
0.25
-
0.50
L
0.40
-
1.27
k
0d
-
8d
X
1.90
-
2.50
Y
3.60
-
4.20
-
0.10
ddd
1. Drawings dimensions include single and matrix versions.
2. Dimensions D does not include mold flash protrusions or gate burrs.
Mold flash protrusions or gate burrs shall not exceed 0.15 mm in total (both side).
Doc ID 16523 Rev 1
51/55
Package and packing information
13.3
L99MC6
Packing information
Figure 24. PowerSSO-16 tube shipment (no suffix)
B
Base Q.ty
Bulk Q.ty
Tube length (± 0.5)
A
B
C (± 0.1)
C
A
100
2000
532
1.85
6.75
0.6
All dimensions are in mm.
Figure 25. PowerSSO-16 tape and reel shipment (suffix “TR”)
REEL DIMENSIONS
Base q.ty
Bulk q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
2500
2500
330
1.5
13
20.2
12.4
60
18.4
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
Tape width
Tape hole spacing
Component spacing
Hole diameter
Hole diameter
Hole position
Compartment depth
Hole spacing
W
P0 (± 0.1)
P
D (± 0.05)
D1 (min)
F (± 0.1)
K (max)
P1 (± 0.1)
12
4
8
1.5
1.5
5.5
4.5
2
End
All dimensions are in mm.
Start
Top
cover
tape
No components
Components
No components
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
52/55
Doc ID 16523 Rev 1
500mm min
L99MC6
Acronyms
Appendix A
Acronyms
Table 50.
Acronyms
Acronym
Name
CSN
Chip select not
CTRL
Control register
POR
Power-on reset
SCK
Serial clock
SDI
Serial data input
SDO
Serial data output
SPI
Serial peripheral interface
SR
Slew rate
STAT
Status register
Doc ID 16523 Rev 1
53/55
Revision history
L99MC6
Revision history
Table 51.
54/55
Document revision history
Date
Revision
18-Nov-2009
1
Changes
Initial release.
Doc ID 16523 Rev 1
L99MC6
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 16523 Rev 1
55/55