SA SERIES CREAT BY ART 500 Watts Transient Voltage Suppressor DO-15 Features Plastic package has Underwriters Laboratory Flammability Classification 94V-0 500W surge capability at 10 X 1000us waveform Excellent clamping capability Low Dynamic impedance Fast response time: Typically less than 1.0ps from 0 volts to VBR for unidirectional and 5.0 ns for bidirectional Typical IR less than 1uA above 10V High temperature soldering guaranteed: 260℃ / 10 seconds / .375",(9.5mm) lead length / 5lbs., (2.3kg) tension Green compound with suffix "G" on packing code & prefix "G" on datecode Mechanical Data Case: Molded plastic Lead: Pure tin plated lead free, solderable per MIL-STD-202, Method 208 Polarity: Color band denotes cathode except bipolar Weight: 0.354 grams Ordering Information (example) Part No. Package Packing INNER TAPE Packing code Packing code (Green) SA5.0 DO-15 1.5K / AMMO box 52mm A0 A0G Maximum Ratings and Electrical Characteristics Rating at 25 ℃ ambient temperature unless otherwise specified. Parameter Symbol Value Units Peak Power Dissipation at TA=25℃, Tp=1ms (Note 1) PPK Minimum 500 Watts Steady State Power Dissipation at TL=75℃ Lead Lengths .375", 9.5mm (Note 2) PD 3 Watts Peak Forward Surge Current, 8.3ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method) (Note 3) IFSM 70 Amps VF 3.5 Volts TJ, TSTG -55 to +175 ℃ Maximum Instantaneous Forward Voltage at 35 A for Unidirectional Only Operating and Storage Temperature Range Note: 1. Non-repetitive Current Pulse Per Fig. 3 and Derated above TA=25℃ Per Fig. 2. 2. Mounted on Copper Pad Area of 0.4 x 0.4" (10 x 10mm) Per Fig. 2. 3. 8.3ms Single Half Sine-wave or Equivalent Square Wave, Duty Cycle=4 Pulses Per Minute Maximum. Devices for Bipolar Applications 1. For Bidrectional Use C or CA Suffix for Types SA5.0 through Types SA170. 2. Electrical Characterstics Apply in Both Directions. Version:G13 RATINGS AND CHARACTERISTIC CURVES (SA SERIES) FIG. 1- PEAK PULSE POWER RATING CURVE FIG.2- POWER DERATING CURVE 125 NON-REPETITIVE PULSE WAVEFORM SHOWN in FIG.3 TA= 25℃ 10 IMPULSE EXPONENTIAL DECAY PPK".5" 1 PEAK POWER (PPP ) DERATING IN PERCENTAGE, % PPPM, PEAK PULSE POWER, KW 100 HALF SINE PPK 0.1 SQUARE PPK 0.01 0 1 10 100 1,000 TL 100 75 TA 50 25 0 0 10,000 25 PEAK PULSE CURRENT- % PULSE WIDTH(td) is DEFINED as the POINT WHERE the PEAK CURRENT DECAYS to 50% OF IPPM Half Value-IPPM/2 10/1000usec, WAVEFORM as DEFINED by R.E.A. 50 td 0 0.0 1.0 2.0 3.0 4.0 t, TIME ms IFSM, PEAK FORWARD SURGE CURRENT, AMPERES 150 Peak Value IPPM 100 125 150 175 200 FIG. 4- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT UNIDIRECTIONAL ONLY FIG. 3- CLAMPING POWER PULSE WAVEFORM 100 75 TEMPERATURE, (oC) tp, PULSE WIDTH, sec tr=10μsec. 50 100 8.3ms Single Half Sine Wave JEDEC Method 10 1 10 100 NUMBER OF CYCLES AT 60 Hz FIG. 5- TYPICAL JUNCTION CAPACITANCE (UNIDIRECTIONAL) CJ, JUNCTION CAPACITANCE. (pF) A 10000 VR=0 1000 TA=25℃ f=1.0MHz Vsig=50mVp-p 100 MEASURED at STAND-OFF VOLTAGE,VWM 10 1 10 100 1000 V(BR), BREAKDOWN VOLTAGE. VOLTS Version:G13 ELECTRICAL CHARACTERISTICS (TA=25℃ unless otherwise noted) General Part Number Breakdown Voltage (Note 1) Test Current Stand-Off Voltage Maximum Reverse Leakage @ VWM Maximum Peak Surge Current Maximum Clamping Voltage @ IPPM Maximum Temperature Coefficient VBR IT VWM ID IPPM Vc VBR V mA V uA A V Mv / oC Min. Max. (Note 2) SA5.0 6.40 7.30 10 5.0 600 54.0 9.6 5 SA5.0A 6.40 7.00 10 5.0 600 57.0 9.2 5 SA6.0 6.67 8.15 10 6.0 600 46.0 11.4 5 SA6.0A 6.67 7.37 10 6.0 600 50.0 10.3 5 SA6.5 7.22 8.82 10 6.5 400 42.0 12.3 5 SA6.5A 7.22 7.98 10 6.5 400 46.0 11.2 5 SA7.0 7.78 9.51 10 7.0 150 39.0 13.3 6 SA7.0A 7.78 8.60 10 7.0 150 43.0 12.0 6 SA7.5 8.33 10.20 1 7.5 50 36.0 14.3 7 SA7.5A 8.33 9.21 1 7.5 50 40.0 12.9 7 SA8.0 8.89 10.9 1 8.0 25 35.0 15.0 7 SA8.0A 8.89 9.83 1 8.0 25 38.0 13.6 7 SA8.5 9.44 11.5 1 8.5 10 33.0 15.9 8 SA8.5A 9.44 10.4 1 8.5 10 36.0 14.4 8 SA9.0 10.0 12.2 1 9.0 5 31.0 16.9 9 SA9.0A 10.0 11.1 1 9.0 5 34.0 15.4 9 SA10 11.1 13.6 1 10 1 27.0 18.8 10 SA10A 11.1 12.3 1 10 1 30.0 17.0 10 SA11 12.2 14.9 1 11 1 26.0 20.1 11 SA11A 12.2 13.5 1 11 1 28.0 18.2 11 SA12 13.3 16.3 1 12 1 23.0 22.0 12 SA12A 13.3 14.7 1 12 1 26.3 19.9 12 SA13 14.4 17.6 1 13 1 22.0 23.8 13 SA13A 14.4 15.9 1 13 1 24.0 21.5 13 SA14 15.6 19.1 1 14 1 20.3 25.8 14 SA14A 15.6 17.2 1 14 1 22.6 23.2 14 SA15 16.7 20.4 1 15 1 19.5 26.9 16 SA15A 16.7 18.5 1 15 1 21.0 24.4 16 SA16 17.8 21.8 1 16 1 18.0 28.8 19 SA16A 17.8 19.7 1 16 1 20.0 26.0 17 SA17 18.9 23.1 1 17 1 17.0 30.5 20 SA17A 18.9 20.9 1 17 1 19.0 27.7 19 SA18 20.0 24.4 1 18 1 16.3 32.2 21 SA18A 20.0 22.1 1 18 1 17.9 39.4 20 SA20 22.2 27.1 1 20 1 14.0 35.5 25 SA20A 22.2 24.5 1 20 1 16.0 43.0 23 SA22 24.4 29.8 1 22 1 13.0 38.9 28 SA22A 24.4 26.9 1 22 1 14.7 46.6 25 SA24 26.7 32.6 1 24 1 12.0 42.1 31 SA24A 26.7 29.5 1 24 1 13.4 50.1 28 SA26 28.9 35.3 1 26 1 11.0 45.4 31 SA26A 28.9 31.9 1 26 1 12.4 53.5 30 SA28 31.1 38.0 1 28 1 10.0 48.4 35 SA28A 31.1 34.4 1 28 1 11.5 59.0 31 SA30 33.3 40.7 1 30 1 9.8 53.3 39 SA30A 33.3 36.8 1 30 1 10.8 64.3 36 SA33 36.7 44.9 1 33 1 8.8 58.1 42 SA33A 36.7 40.6 1 33 1 9.8 71.4 39 Version:G13 ELECTRICAL CHARACTERISTICS (TA=25℃ unless otherwise noted) General Part Number Breakdown Voltage (Note 1) Test Current Stand-Off Voltage Maximum Reverse Leakage @ VWM Maximum Peak Surge Current Maximum Clamping Voltage @ IPPM Maximum Temperature Coefficient VBR IT VWM ID IPPM Vc VBR V mA V uA A V Mv / oC Min. Max. (Note 2) SA36 40.0 48.9 1 36 1 8.1 64.5 46 SA36A 40.0 44.2 1 36.0 1 9.0 58.1 41 SA40 44.4 54.3 1 40 1 7.3 71.4 51 SA40A 44.4 49.1 1 40 1 8.1 64.5 46 SA43 47.8 58.4 1 43 1 6.8 76.7 55 SA43A 47.8 52.8 1 43 1 7.5 69.4 50 SA45 50.0 61.1 1 45 1 6.5 80.3 58 SA45A 50.0 55.3 1 45 1 7.2 72.7 52 SA48 53.3 65.2 1 48 1 6.1 85.5 63 SA48A 53.3 58.9 1 48 1 6.7 77.4 56 SA51 56.7 69.3 1 51 1 5.7 91.1 66 SA51A 56.7 62.7 1 51 1 6.3 82.4 61 SA54 60.0 73.3 1 54 1 5.4 86.3 71 SA54A 60.0 66.3 1 54 1 6.0 87.1 65 SA58 64.4 78.7 1 58 1 5.0 103 78 SA58A 64.4 71.2 1 58 1 5.6 93.6 70 SA60 66.7 81.5 1 60 1 4.9 107 80 SA60A 66.7 73.7 1 60 1 5.4 96.8 71 SA64 71.1 86.9 1 64 1 4.6 114 86 SA64A 71.1 78.6 1 64 1 5.0 103 76 SA70 77.8 95.1 1 70 1 4.2 125 94 SA70A 77.8 86.0 1 70 1 4.6 113 85 SA75 83.3 102 1 75 1 3.9 134 101 SA75A 83.3 92.1 1 75 1 4.3 121 91 SA78 86.7 103 1 78 1 3.7 139 105 SA78A 86.7 95.8 1 78 1 4.1 126 95 SA85 94.4 115 1 85 1 3.4 151 114 SA85A 94.4 104 1 85 1 3.8 137 103 SA90 100 122 1 90 1 3.2 160 121 SA90A 100 111 1 90 1 3.5 146 110 SA100 111 136 1 100 1 2.9 179 135 SA100A 111 123 1 100 1 3.2 162 123 SA110 122 149 1 110 1 2.6 196 148 SA110A 122 135 1 110 1 2.9 177 133 SA120 133 163 1 120 1 2.4 214 162 SA120A 133 147 1 120 1 2.7 193 146 SA130 144 176 1 130 1 2.2 230 175 SA130A 144 159 1 130 1 2.5 209 158 SA150 167 204 1 150 1 1.9 268 203 SA150A 167 185 1 150 1 2.1 243 184 SA160 178 218 1 160 1 2.0 257 217 SA160A 178 197 1 160 1 2.0 259 196 SA170 189 231 1 170 1 1.7 304 230 SA170A 189 209 1 170 1 0.1 275 208 Notes: 1. VBR measure after IT applied for 300us, IT=square wave pulse or equivalent. 2. Surge current waveform per Figure. 3 and derate per Figure. 2. 3. For bipolar types having VWM of 10 volts and under, the ID limit is doubled. 4. All terms and symbols are consistent with ANSI/IEEE C62.35. Version:G13 Ordering information Part No. SAxx (Note) Package Packing INNER TAPE Packing code Packing code (Green) DO-15 1.5K / AMMO box 52mm A0 A0G DO-15 3.5K / 13" Reel 52mm R0 R0G DO-15 1K / Bulk packing B0 B0G Note: "x" is Device Code from "5.0" thru "170A". AXIAL LEAD TAPING SPECIFICATIONS Outline DO-15 A ±0.5 5 B ±1.5 52.4 Z MAX 1.2 T ±0.4 6 E ∣L1-L2∣ MAX MAX 0.8 1 D 330 Suggested Mounting Hole Rule Symbol A B C D Unit(mm) 6.4 0.8 3.0 1.2 D1 ±0.3 85.7 D0 ±0.4 16.6 Unit (mm) W ±1.0 76 Dimensions Unit(mm) DIM. Marking Diagram P/N = Specific Device Code G = Green Compound YWW = Date Code Unit(inch) Min Max Min Max A 2.60 3.60 0.102 0.142 B 0.70 0.90 0.028 0.035 C 25.40 - 1.000 - D 5.80 7.60 0.228 0.299 E 25.40 - 1.000 - TVS APPLICATION NOTES: Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of protection. The following is a typical linear power supply with transient voltage suppressor units placed at different points. All provide protection of the load. FIGURE 1 Transient Voliage Suppressors 1 provides maximum protection. However, the system will probably require replacement of the line fuse(F) since it provides a dominant portion of the series impedance when a surge is encountered. However, we do not recommend to use the TVS diode here, unless we can know the electric circuit impedance and the magnitude of surge rushed into the circuit. Otherwise the TVS diode is easy to be destroyed by voltage surge. Transient Voltage Suppressor 2 provides excellent protection of circuitry excluding the transformer(T). However, since the transformer is a large part of the series impedance, the chance of the line fuse opening during the surge condition is reduced. Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse, transformer, and bridge rectifier(B) so failure of the line fuse is further reduced. If only Transient Voltage Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current rating to prevent failure by transients. Any combination of these three, or any one of these applications, will prevent damage to the load. This would require varying trade-offs in power supply protection versus maintenance(changing the time fuse.) An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge. This reduces the parts count and incorporates the protection within the bridge rectifier. FIGURE 2