TSC P6KE

P6KE SERIES
Transient Voltage Suppressor Diodes
Voltage Range
6.8 to 440 Volts
600 Watts Peak Power
5.0 Watts Steady State
DO-15
Features
UL Recognized File # E-96005
Plastic package has Underwriters Laboratory Flammability
Classification 94V-0
Exceeds environmental standards of MIL-STD-19500
600W surge capability at 10 x 100 us waveform, duty cycle:
0.01%
Excellent clamping capability
Low zener impedance
Fast response time: Typically less than 1.0ps from 0 volts to
VBR for unidirectional and 5.0 ns for bidirectional
Typical IR less than 1uA above 10V
High temperature soldering guaranteed: 260°C / 10 seconds
/ .375”,(9.5mm) lead length / 5lbs.,(2.3kg) tension
Mechanical Data
Case: Molded plastic
Lead: Axial leads, solderable per MIL-STD-202,
Lead: Method 208
Polarity: Color band denotes cathode except bipolar
Weight: 0.34gram
Dimensions in inches and (millimeters)
Maximum Ratings and Electrical Characteristics
Rating at 25°C ambient temperature unless otherwise specified.
Single phase, half wave, 60 Hz, resistive or inductive load.
For capacitive load, derate current by 20%
Type Number
Peak Power Dissipation at TA=25OC, Tp=1ms
(Note 1)
Steady State Power Dissipation at TL=75 °C
Lead Lengths .375”, 9.5mm (Note 2)
Peak Forward Surge Current, 8.3 ms Single Half
Sine-wave Superimposed on Rated Load
(JEDEC method) (Note 3)
Maximum Instantaneous Forward Voltage at
50.0A for Unidirectional Only (Note 4)
Operating and Storage Temperature Range
Symbol
Value
Units
PPK
Minimum 600
Watts
PD
5.0
Watts
IFSM
100
Amps
VF
3.5 / 5.0
Volts
TJ, TSTG
-55 to + 175
°C
Notes: 1. Non-repetitive Current Pulse Per Fig. 3 and Derated above TA=25OC Per Fig. 2.
2. Mounted on Copper Pad Area of 1.6 x 1.6” (40 x 40 mm) Per Fig. 4.
3. 8.3ms Single Half Sine-wave or Equivalent Square Wave, Duty Cycle=4 Pulses Per Minutes
Maximum.
4. VF=3.5V for Devices of VBR ≤ 200V and VF=5.0V Max. for Devices of VBR>200V.
Devices for Bipolar Applications
1. For Bidirectional Use C or CA Suffix for Types P6KE6.8 through Types P6KE440.
2. Electrical Characteristics Apply in Both Directions.
- 642 -
RATINGS AND CHARACTERISTIC CURVES (P6KE SERIES)
100
10
1
1.0ms
10ms
100ms
1.0ms
10ms
tp, PULSE WIDTH, sec.
FIG.3- PULSE WAVEFORM
150
PULSE WIDTH (td) is DEFINED
as the POINT WHERE the PEAK
CURRENT DECAYS
to 50% of lPPM
tr=10msec.
PEAK VALUE
lPPM
100
50
25
0
0
25
50
75
100
125
150
175
200
o
TA, AMBIENT TEMPERATURE, C
FIG.4- STEADY STATE POWER DERATING CURVE
5.0
L=0.375"(9.5mm)
LEAD LENGTHS
60Hz
RESISTIVE OR INDUCTIVE LOAD
3.75
HALF VALUE- lPPM
2
10/1000 sec. WAVEFORM
as DEFINED by R.E.A.
50
75
PM(AV), STEADY STATE POWER DISSIPATION,
WATTS
NON-REPETITIVE
PULSE WAVEFORM
SHOWN in FIG.3
TJ=250C
0.1
0.1ms
PEAK PULSE CURRENT - %
FIG.2- PULSE DERATING CURVE
PEAK PULSE POWER (Ppp) or CURRENT (IPPM)
DERATING IN PERCENTAGE, %
100
2.5
1.6 X 1.6 X .040"
(40 X 40 X 1mm.)
COPPER HEAT SINKS
1.25
td
0
0
1.0
2.0
3.0
4.0
lFSM, PEAK FORWARD SURGE CURRENT,
AMPERES
t, TIME, ms
200
0
25
50
75
10
MEASURED at
ZERO BIAS
100
10
NUMBER OF CYCLES AT 60Hz
FIG.6- TYPICAL REVERSE LEAKAGE CHARACTERASTICS
1,000
100
Tj=25 0C
f=1.0MHz
Vsig=50mVp-p
MEASURED at
STAND-OFF
VOLTAGE, VWM
100
10
1
0.1
0.01
TJ=25 0C
0.001
0
100
200
10
V(BR), BREAKDOWN VOLTAGE. VOLTS
MEASURED AT DEVICES
STAND-OFF
VOLTAGE, VWM
1
150
6,000
1,000
10
125
o
8.3ms Single Half Sine Wave
JEDEC Method
1
100
FIG.7- TYPICAL JUNCTION CAPACITANCE
UNIDIRECTIONAL
FIG.5- MAXIMUM NON-REPETITIVE FORWARD SURGE
CURRENT UNIDIRECTIONAL ONLY
100
lD, INSTANTANEOUS REVERSE LEAKAGE
CURRENT, MICROAMPERES
0
TL, LEAD TEMPERATURE, C
CJ, JUNCTION CAPACITANCE.(pF)
PPPM, PEAK PULSE POWER, KW
FIG.1- PEAK PULSE POWER RATING CURVE
300
400
500
V(BR), BREAKDOWN VOLTAGE. VOLTS
- 643 -
100
200
175
200
ELECTRICAL CHARACTERISTICS (TA=25OC unless otherwise noted)
Device
P6KE6.8
P6KE6.8A
P6KE7.5
P6KE7.5A
P6KE8.2
P6KE8.2A
P6KE9.1
P6KE9.1A
P6KE10
P6KE10A
P6KE11
P6KE11A
P6KE12
P6KE12A
P6KE13
P6KE13A
P6KE15
P6KE15A
P6KE16
P6KE16A
P6KE18
P6KE18A
P6KE20
P6KE20A
P6KE22
P6KE22A
P6KE24
P6KE24A
P6KE27
P6KE27A
P6KE30
P6KE30A
P6KE33
P6KE33A
P6KE36
P6KE36A
P6KE39
P6KE39A
P6KE43
P6KE43A
P6KE47
P6KE47A
P6KE51
P6KE51A
P6KE56
P6KE56A
P6KE62
P6KE62A
P6KE68
P6KE68A
P6KE75
P6KE75A
P6KE82
P6KE82A
P6KE91
P6KE91A
P6KE100
P6KE100A
P6KE110
P6KE110A
P6KE120
P6KE120A
P6KE130
P6KE130A
P6KE150
P6KE150A
P6KE160
P6KE160A
P6KE170
P6KE170A
P6KE180
P6KE180A
P6KE200
P6KE200A
P6KE220
P6KE220A
P6KE250
P6KE250A
P6KE300
P6KE300A
P6KE350
P6KE350A
P6KE400
P6KE400A
P6KE440
P6KE440A
Nominal
Voltage
(Volts)
6.8
6.8
7.5
7.5
8.2
8.2
9.1
9.1
10
10
11
11
12
12
13
13
15
15
16
16
18
18
20
20
22
22
24
24
27
27
30
30
33
33
36
36
39
39
43
43
47
47
51
51
56
56
62
62
68
68
75
75
82
82
91
91
100
100
110
110
120
120
130
130
150
150
160
160
170
170
180
180
200
200
220
220
250
250
300
300
350
350
400
400
440
440
Breakdown Voltage
VBR
(Volts) (Note 1)
Min
Max
6.12
6.45
6.75
7.13
7.38
7.79
8.19
8.65
9.00
9.50
9.90
10.5
10.8
11.4
11.7
12.4
13.5
14.3
14.4
15.2
16.2
17.1
18.0
19.0
19.8
20.9
21.6
22.8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
53.2
55.8
58.9
61.2
64.6
67.5
71.3
73.8
77.9
81.9
86.5
90.0
95.0
99.0
105.0
108.0
114.0
117.0
124.0
135.0
143.0
144.0
152.0
153.0
162.0
162.0
171.0
180.0
190.0
198.0
209.0
225.0
237.0
270.0
285.0
315.0
332.0
360.0
380.0
396.0
418.0
7.48
7.14
8.25
7.88
9.02
8.61
10.0
9.55
11.0
10.5
12.1
11.6
13.2
12.6
14.3
13.7
16.5
15.8
17.6
16.8
19.8
18.9
22.0
21.0
24.2
23.1
26.4
25.2
29.7
28.4
33.0
31.5
36.3
34.7
39.6
37.8
42.9
41.0
47.3
45.2
51.7
49.4
56.1
53.6
61.6
58.8
68.2
65.1
74.8
71.4
82.5
78.8
90.2
86.1
100.0
95.5
110.0
105.0
121.0
116.0
132.0
126.0
143.0
137.0
165.0
158.0
176.0
168.0
187.0
179.0
198.0
189.0
220.0
210.0
242.0
231.0
275.0
263.0
330.0
315.0
385.0
368.0
440.0
420.0
484.0
462.0
Test
Current
@IT
(mA)
Stand-Off
Voltage
VWM
(Volts)
10
10
10
10
10
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
5.50
5.80
6.05
6.40
6.63
7.02
7.37
7.78
8.10
8.55
8.92
9.40
9.72
10.2
10.5
11.1
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18.8
19.4
20.5
21.8
23.1
24.3
25.6
26.8
28.2
29.1
30.8
31.6
33.3
34.8
36.8
38.1
40.2
41.3
43.6
45.4
47.8
50.2
53.0
55.1
58.1
60.7
64.1
66.4
70.1
73.7
77.8
81.0
85.5
89.2
94.0
97.2
102.0
105.0
111.0
121.0
128.0
130.0
136.0
138.0
145.0
146.0
154.0
162.0
171.0
175.0
185.0
202.0
214.0
243.0
256.0
284.0
300.0
324.0
342.0
356.0
376.0
Notes:
1. VBR measured after IT applied for 300us, IT=square wave pulse or equivalent.
2. Surge current waverform per Figure 3 and derate per Figure 2.
3. For bipolar types having VWM of 10 volts and under, the ID limit is doubled.
4. All terms and symbols are consistent with ANSI/IEEE C62.35.
- 644 -
Maximum
Maximum
Maximum
Maximum
Reverse Leakage
Peak Pulse
Clamping
Temperature
at VWM
Current IRSM Voltage at IPPM
Coefficient
O
ID (uA)
(Note 2)(Amps)
VC(Volts)
of VBR(% / C)
1000
1000
500
500
200
200
50
50
10
10
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
58
60
53
55
50
52
45
47
42
43
38
40
36
37
33
34
28
29
26
28
23
25
21
22
19
20
18
19
16
16.8
14
15
13.0
13.8
12
12.6
11.1
11.6
10.0
10.6
9.2
9.7
8.5
8.9
7.8
8.1
7.0
7.4
6.4
6.8
5.8
6.1
5.3
5.5
4.8
5.0
4.3
4.5
3.9
4.1
3.6
3.8
3.3
3.5
2.9
3.0
2.7
2.8
2.5
2.6
2.4
2.5
2.1
2.2
1.8
1.9
1.7
1.8
1.4
1.5
1.2
1.3
1.05
1.1
0.99
1.04
10.8
10.5
11.7
11.3
12.5
12.1
13.8
13.4
15.0
14.5
16.2
15.6
17.3
16.7
19.0
18.2
22.0
21.2
23.5
22.5
26.5
25.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
92.0
108.0
103.0
118.0
113.0
131.0
125.0
144.0
137.0
158.0
152.0
173.0
165.0
187.0
179.0
215.0
207.0
230.0
219.0
244.0
234.0
258.0
246.0
287.0
274.0
344.0
328.0
360.0
344.0
430.0
414.0
504.0
482.0
574.0
548.0
631.0
600.0
0.057
0.057
0.061
0.061
0.065
0.065
0.068
0.068
0.073
0.073
0.075
0.075
0.078
0.078
0.081
0.081
0.084
0.084
0.086
0.086
0.088
0.088
0.090
0.090
0.092
0.092
0.094
0.094
0.096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
0.104
0.105
0.105
0.105
0.105
0.106
0.106
0.106
0.106
0.107
0.107
0.107
0.107
0.107
0.107
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.108
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
0.110
TVS APPLICATION NOTES:
Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of
protection. The following is a typical linear power supply with transient voltage suppressor units placed at
different points. All provide protection of the load.
FIGURE 1
Transient Voltage Suppressors 1 provides maximum protection. However, the system will probably require
replacement of the line fuse(F) since it provides a dominant portion of the series impedance when a surge is
encountered.
However, we do not recommend to use the TVS diode here, unless we can know the electric circuit
impedance and the magnitude of surge rushed into the circuit. Otherwise the TVS diode is easy to be
destroyed by voltage surge.
Transient Voltage Suppressor 2 provides execllent protection of circuitry excluding the transformer(T).
However, since the transformer is a large part of the series impedance, the chance of the line fuse opening
during the surge condition is reduced.
Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional
Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse,
transformer, and bridge rectifier(B) so failure of the line fuse is further reduced. If only Transient Voltage
Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current
rating to prevent failure by transients.
Any combination of these three, or any one of these applications, will prevent damage to the load. This would
require varying trade-offs in power supply protection versus maintenance(changing the time fuse).
An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge.
This reduces the parts count and incorporates the protection within the bridge rectifier.
FIGURE 2
- 645 -