TI TRSF3243IDWR

TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
FEATURES
•
•
•
•
•
•
•
•
•
DB, DW, OR PW PACKAGE
(TOP VIEW)
Operates With 3-V to 5.5-V VCC Supply
Always-Active Noninverting Receiver Output
(ROUT2B)
Low Standby Current . . . 1 μA Typ
External Capacitors . . . 4 × 0.1 μF
Accepts 5-V Logic Input With 3.3-V Supply
Inter-Operable With SN65C3238, SN75C3238
Supports Operation From 250 kbit/s to
1 Mbit/s
RS-232 Bus-Pin ESD Protection Exceeds
±15 kV Using Human-Body Model (HBM)
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
C2+
C2−
V−
RIN1
RIN2
RIN3
RIN4
RIN5
DOUT1
DOUT2
DOUT3
DIN3
DIN2
DIN1
APPLICATIONS
•
•
•
•
•
•
1
28
2
27
3
26
4
25
5
24
6
23
7
22
8
21
9
20
10
19
11
18
12
17
13
16
14
15
C1+
V+
VCC
GND
C1−
FORCEON
FORCEOFF
INVALID
ROUT2B
ROUT1
ROUT2
ROUT3
ROUT4
ROUT5
Battery-Powered Systems
PDAs
Notebooks
Laptops
Palmtop PCs
Hand-Held Equipment
DESCRIPTION/ORDERING INFORMATION
The TRSF3243 consists of three line drivers, five line receivers, and a dual charge-pump circuit with ±15-kV
ESD protection pin to pin (serial-port connection pins, including GND). This device provides the electrical
interface between an asynchronous communication controller and the serial-port connector. The charge pump
and four small external capacitors allow operation from a single 3-V to 5.5-V supply. In addition, this device
includes an always-active noninverting output (ROUT2B), which allows applications using the ring indicator to
transmit data while the device is powered down. The device operates at data signaling rates up to 1 Mbit/s and
an increased slew-rate range of 24 V/μs to 150 V/μs.
ORDERING INFORMATION
PACKAGE (1) (2)
TA
SOIC – DW
0°C to 70°C
SSOP – DB
TSSOP – PW
SOIC – DW
–40°C to 85°C
SSOP – DB
TSSOP – PW
(1)
(2)
ORDERABLE PART NUMBER
Tube of 20
TRSF3243CDW
Reel of 1000
TRSF3243CDWR
Reel of 2000
TRSF3243CDBR
Tube of 50
TRSF3243CPW
Reel of 2000
TRSF3243CPWR
Tube of 20
TRSF3243IDW
Reel of 1000
TRSF3243IDWR
Reel of 2000
TRSF3243IDBR
Tube of 50
TRSF3243IPW
Reel of 2000
TRSF3243IPWR
TOP-SIDE MARKING
TRSF3243C
TRSF3243C
RT43C
TRSF3243I
TRSF3243I
RT43I
Package drawings, thermal data, symbolization are available at www.ti.com/sc/packaging.
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2007, Texas Instruments Incorporated
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
Flexible control options for power management are available when the serial port is inactive. The
auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of
operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is
set low, both drivers and receivers (except ROUT2B) are shut off, and the supply current is reduced to 1 μA.
Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur.
Auto-powerdown can be disabled when FORCEON and FORCEOFF are high and should be done when driving
a serial mouse. With auto-powerdown enabled, the device is activated automatically when a valid signal is
applied to any receiver input. The INVALID output is used to notify the user if an RS-232 signal is present at any
receiver input. INVALID is high (valid data) if any receiver input voltage is greater than 2.7 V or less than –2.7 V
or has been between –0.3 V and 0.3 V for less than 30 μs. INVALID is low (invalid data) if all receiver input
voltages are between –0.3 V and 0.3 V for more than 30 μs. Refer to Figure 5 for receiver input levels.
FUNCTION TABLES
EACH DRIVER (1)
INPUTS
DIN
(1)
FORCEON
FORCEOFF
VALID RIN
RS-232
LEVEL
OUTPUT
DOUT
DRIVER STATUS
X
X
L
X
Z
Powered off
L
H
H
X
H
H
H
H
X
L
Normal operation with
auto-powerdown disabled
L
L
H
Yes
H
H
L
H
Yes
L
L
L
H
No
Z
H
L
H
No
Z
Normal operation with
auto-powerdown enabled
Powered off by auto-powerdown
feature
H = high level, L = low level, X = irrelevant, Z = high impedance
EACH RECEIVER (1)
INPUTS
RIN2
RIN1,
RIN3–RIN5
FORCEOFF
VALID RIN
RS-232
LEVEL
ROUT2B
ROUT
L
X
L
X
L
Z
H
X
L
X
H
Z
L
L
H
Yes
L
H
L
H
H
Yes
L
L
H
L
H
Yes
H
H
H
H
H
Yes
H
L
Open
Open
H
No
L
H
(1)
2
OUTPUTS
RECEIVER STATUS
Powered off while
ROUT2B is active
Normal operation with
auto-powerdown
disabled/enabled
H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = input disconnected or
connected driver off
Submit Documentation Feedback
www.ti.com
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
SLLS862 – AUGUST 2007
LOGIC DIAGRAM (POSITIVE LOGIC)
DIN1
DIN2
DIN3
FORCEOFF
FORCEON
ROUT1
ROUT2B
ROUT2
ROUT3
ROUT4
ROUT5
14
9
13
10
12
11
DOUT1
DOUT2
DOUT3
22
23
Auto-Powerdown
19
21
4
INVALID
RIN1
20
18
5
17
6
16
7
15
8
RIN2
RIN3
RIN4
Submit Documentation Feedback
RIN5
3
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range (2)
–0.3
6
V
V+
Positive-output supply voltage range (2)
–0.3
7
V
0.3
–7
V
13
V
V–
Negative-output supply voltage range
V+ – V–
Supply voltage difference (2)
VI
Input voltage range
VO
Output voltage range
θJA
(2)
Package thermal impedance (3) (4)
Operating virtual junction temperature
Tstg
Storage temperature range
(2)
(3)
(4)
–0.3
6
Receiver
–25
25
–13.2
13.2
Driver
TJ
(1)
Driver (FORCEOFF, FORCEON)
DB package
62
DW package
46
PW package
62
–65
UNIT
V
V
°C/W
150
°C
150
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are with respect to network GND.
Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient
temperature is PD = (TJ(max) – TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7.
Recommended Operating Conditions (1)
see Figure 6
VCC = 3.3 V
Supply voltage
VCC = 5 V
VIH
Driver and control high-level input voltage DIN, FORCEOFF, FORCEON
VIL
Driver and control low-level input voltage
DIN, FORCEOFF, FORCEON
VI
Driver and control input voltage
DIN, FORCEOFF, FORCEON
VI
Receiver input voltage
TA
(1)
VCC = 3.3 V
VCC = 5 V
TRSF3243I
Operating free-air temperature
TRSF3243C
MIN
NOM
MAX
3
3.3
3.6
4.5
5
5.5
UNIT
V
2
V
2.4
0.8
V
0
5.5
V
–25
25
V
–40
85
0
70
°C
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
II
ICC
(1)
(2)
4
Input leakage current
TEST CONDITIONS
FORCEOFF, FORCEON
MIN
TYP (2)
MAX
±0.01
±1
μA
0.3
1
mA
Auto-powerdown disabled
No load,
FORCEOFF and FORCEON = VCC
Powered off
No load, FORCEOFF = GND
1
10
Auto-powerdown enabled
No load, FORCEOFF = VCC,
FORCEON = GND,
All RIN are open or grounded,
All DIN are grounded
1
10
Supply current
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
UNIT
μA
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
DRIVER SECTION
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
TEST CONDITIONS
MIN
TYP (2)
MAX
UNIT
VOH
High-level output
voltage
All DOUT at RL = 3 kΩ to GND
5
5.4
V
VOL
Low-level output
voltage
All DOUT at RL = 3 kΩ to GND
–5
–5.4
V
VO
Output voltage
(mouse driveability)
DIN1 = DIN2 = GND, DIN3 = VCC, 3-kΩ to GND at DOUT3,
DOUT1 = DOUT2 = 2.5 mA
±5
IIH
High-level input current VI = VCC
±0.01
±1
μA
IIL
Low-level input current
VI = GND
±0.01
±1
μA
IOS
Short-circuit output
current (3)
VCC = 3.6 V,
VO = 0 V
±35
±60
VCC = 5.5 V,
VO = 0 V
±35
±90
ro
Output resistance
VCC, V+, and V– = 0 V, VO = ±2 V
Ioff
(1)
(2)
(3)
Output leakage current FORCEOFF = GND
V
300
mA
Ω
10M
VO = ±12 V,
VCC = 3 V to 3.6 V
±25
VO = ±10 V,
VCC = 4.5 V to 5.5 V
±25
μA
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one
output should be shorted at a time.
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
MIN TYP (2)
TEST CONDITIONS
CL = 1000 pF
Maximum data rate
(see Figure 1)
RL = 3 kΩ,
One DOUT switching
UNIT
250
CL = 250 pF,
VCC = 3 V to 4.5 V
1000
CL = 1000 pF,
VCC = 4.5 V to 5.5 V
1000
tsk(p)
Pulse skew (3)
CL = 150 pF to 2500 pF,
RL = 3 kΩ to 7 kΩ,
See Figure 2
SR(tr)
Slew rate,
transition region
(see Figure 1)
CL = 150 pF to 1000 pF,
RL = 3 kΩ to 7 kΩ,
VCC = 3.3 V
(1)
(2)
(3)
MAX
kbit/s
25
18
ns
150
V/μs
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
Submit Documentation Feedback
5
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
RECEIVER SECTION
Electrical Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)
PARAMETER
TEST CONDITIONS
VOH
High-level output voltage
IOH = –1 mA
VOL
Low-level output voltage
IOL = 1.6 mA
TYP (2)
VCC – 0.6
VCC – 0.1
MAX
1.6
2.4
VCC = 5 V
1.9
2.4
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input hysteresis (VIT+ – VIT–)
Ioff
Output leakage current (except ROUT2B)
FORCEOFF = 0 V
ri
Input resistance
VI = ±3 V to ±25 V
VCC = 3.3 V
0.6
1.1
VCC = 5 V
0.8
1.4
UNIT
V
0.4
VCC = 3.3 V
VIT+
(1)
(2)
MIN
V
V
V
0.5
V
±0.05
±10
μA
5
7
kΩ
3
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Switching Characteristics (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TYP (2)
UNIT
tPLH
Propagation delay time, low- to high-level output
CL = 150 pF, See Figure 3
150
ns
tPHL
Propagation delay time, high- to low-level output
CL = 150 pF, See Figure 3
150
ns
ten
Output enable time
CL = 150 pF, RL = 3 kΩ, See Figure 4
200
ns
tdis
Output disable time
CL = 150 pF, RL = 3 kΩ, See Figure 4
200
ns
tsk(p)
Pulse skew (3)
See Figure 3
50
ns
(1)
(2)
(3)
6
TEST CONDITIONS
Test conditions are C1–C4 = 0.1 μF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at VCC = 5 V ± 0.5 V.
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Pulse skew is defined as |tPLH – tPHL| of each channel of the same device.
Submit Documentation Feedback
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
AUTO-POWERDOWN SECTION
Electrical Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)
PARAMETER
TEST CONDITIONS
MIN
VT+(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND, FORCEOFF = VCC
VT–(valid)
Receiver input threshold
for INVALID high-level output voltage
FORCEON = GND, FORCEOFF = VCC
–2.7
VT(invalid)
Receiver input threshold
for INVALID low-level output voltage
FORCEON = GND, FORCEOFF = VCC
–0.3
VOH
INVALID high-level output voltage
IOH = –1 mA, FORCEON = GND,
FORCEOFF = VCC
VOL
INVALID low-level output voltage
IOL = 1.6 mA, FORCEON = GND,
FORCEOFF = VCC
MAX
2.7
UNIT
V
V
0.3
VCC – 0.
6
V
V
0.4
V
Switching Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)
PARAMETER
TYP (1)
UNIT
tvalid
Propagation delay time, low- to high-level output
1
μs
tinvalid
Propagation delay time, high- to low-level output
30
μs
ten
Supply enable time
100
μs
(1)
All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
Submit Documentation Feedback
7
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
PARAMETER MEASUREMENT INFORMATION
3V
Generator
(see Note B)
Input
RS-232
Output
50 Ω
RL
CL
(see Note A)
3V
FORCEOFF
TEST CIRCUIT
0V
tTHL
Output
SR(tr) +
6V
t THL or tTLH
tTLH
VOH
3V
3V
−3 V
−3 V
VOL
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 1 Mbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 1. Driver Slew Rate
3V
Generator
(see Note B)
RS-232
Output
50 Ω
RL
Input
1.5 V
1.5 V
0V
CL
(see Note A)
tPHL
tPLH
VOH
3V
FORCEOFF
50%
50%
Output
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 1 Mbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 2. Driver Pulse Skew
3 V or 0 V
FORCEON
3V
Input
1.5 V
1.5 V
−3 V
Output
Generator
(see Note B)
tPHL
50 Ω
3V
FORCEOFF
tPLH
CL
(see Note A)
VOH
50%
Output
50%
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 3. Receiver Propagation Delay Times
8
Submit Documentation Feedback
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
PARAMETER MEASUREMENT INFORMATION (continued)
3V
Input
VCC
3 V or 0 V
FORCEON
S1
1.5 V
0V
tPZH
(S1 at GND)
tPHZ
(S1 at GND)
RL
±3 V
1.5 V
GND
VOH
Output
50%
Output
CL
(see Note A)
FORCEOFF
Generator
(see Note B)
50 Ω
0.3 V
tPLZ
(S1 at VCC)
tPZL
(S1 at VCC)
0.3 V
Output
50%
VOL
TEST CIRCUIT
NOTES: A.
B.
C.
D.
VOLTAGE WAVEFORMS
CL includes probe and jig capacitance.
The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
tPLZ and tPHZ are the same as tdis.
tPZL and tPZH are the same as ten.
Figure 4. Receiver Enable and Disable Times
Submit Documentation Feedback
9
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
PARAMETER MEASUREMENT INFORMATION (continued)
2.7 V
2.7 V
0V
Receiver
Input
0V
−2.7 V
−2.7 V
ROUT
Generator
(see Note B)
50 Ω
3V
tinvalid
tvalid
50% VCC
50% VCC
−3 V
VCC
INVALID
Output
Autopowerdown
FORCEOFF
DIN
ten
INVALID
CL = 30 pF
(see Note A)
FORCEON
0V
≈V+
V+
0.3 V
VCC
0V
0.3 V
Supply
Voltages
DOUT
V−
TEST CIRCUIT
≈V−
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
VOLTAGE WAVEFORMS
Valid RS-232 Level, INVALID High
2.7 V
Indeterminate
0.3 V
0V
−0.3 V
If Signal Remains Within This Region
for More Than 30 µs, INVALID Is Low†
Indeterminate
−2.7 V
Valid RS-232 Level, INVALID High
†
Auto-powerdown disables drivers and reduces supply
current to 1 µA.
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 5 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 5. INVALID Propagation Delay Times and Supply Enabling Time
10
Submit Documentation Feedback
TRSF3243
3-V TO 5.5-V MULTICHANNEL RS-232 COMPATIBLE LINE DRIVER/RECEIVER
www.ti.com
SLLS862 – AUGUST 2007
PARAMETER MEASUREMENT INFORMATION (continued)
C1+
1
+
C2
−
2
3
V−
GND
C1−
RIN2
RIN3
RIN4
RIN5
DOUT1
Serial-Port Outputs
VCC
+
RIN1
Serial-Port Inputs
C2−
DOUT2
4
27
+
−
26
25
C3†
+ CBYPASS
− = 0.1 µF
+
−
C1
24
23
FORCEON
5
AutoPowerdown
C4
−
V+
C2+
28
6
7
22
FORCEOFF
8
21
9
20
10
19
INVALID
ROUT2B
ROUT1
5 kΩ
DOUT3
11
18
ROUT2
5 kΩ
DIN3
12
Logic Outputs
17
ROUT3
5 kΩ
Logic Inputs
DIN2
13
16
ROUT4
5 kΩ
DIN1
14
15
ROUT5
5 kΩ
† C3 can be connected to V
CC or GND.
NOTE A: Resistor values shown are nominal.
VCC vs CAPACITOR VALUES
VCC
C1
C2, C3, and C4
3.3 V ± 0.3 V
5 V ± 0.5 V
3 V to 5.5 V
0.1 µF
0.047 µF
0.1 µF
0.1 µF
0.33 µF
0.47 µF
Figure 6. Typical Operating Circuit and Capacitor Values
Submit Documentation Feedback
11
PACKAGE OPTION ADDENDUM
www.ti.com
26-Sep-2007
PACKAGING INFORMATION
(1)
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TRSF3243CDB
ACTIVE
SSOP
DB
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CDBG4
ACTIVE
SSOP
DB
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CDBR
ACTIVE
SSOP
DB
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CDBRG4
ACTIVE
SSOP
DB
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CDW
ACTIVE
SOIC
DW
28
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CDWG4
ACTIVE
SOIC
DW
28
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CDWR
ACTIVE
SOIC
DW
28
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CDWRG4
ACTIVE
SOIC
DW
28
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CPW
ACTIVE
TSSOP
PW
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CPWG4
ACTIVE
TSSOP
PW
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CPWR
ACTIVE
TSSOP
PW
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243CPWRG4
ACTIVE
TSSOP
PW
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDB
ACTIVE
SSOP
DB
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDBG4
ACTIVE
SSOP
DB
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDBR
ACTIVE
SSOP
DB
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDBRG4
ACTIVE
SSOP
DB
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDW
ACTIVE
SOIC
DW
28
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDWG4
ACTIVE
SOIC
DW
28
20
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDWR
ACTIVE
SOIC
DW
28
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IDWRG4
ACTIVE
SOIC
DW
28
1000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IPW
ACTIVE
TSSOP
PW
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IPWG4
ACTIVE
TSSOP
PW
28
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IPWR
ACTIVE
TSSOP
PW
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TRSF3243IPWRG4
ACTIVE
TSSOP
PW
28
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
The marketing status values are defined as follows:
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
26-Sep-2007
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
TRSF3243CDBR
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SSOP
DB
28
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
TRSF3243CDWR
SOIC
DW
28
1000
330.0
32.4
11.35
18.67
3.1
16.0
32.0
Q1
TRSF3243CPWR
TSSOP
PW
28
2000
330.0
16.4
6.9
10.2
1.8
12.0
16.0
Q1
TRSF3243CPWR
TSSOP
PW
28
2000
330.0
16.4
7.1
10.4
1.6
12.0
16.0
Q1
TRSF3243IDBR
SSOP
DB
28
2000
330.0
16.4
8.2
10.5
2.5
12.0
16.0
Q1
TRSF3243IDWR
SOIC
DW
28
1000
330.0
32.4
11.35
18.67
3.1
16.0
32.0
Q1
TRSF3243IPWR
TSSOP
PW
28
2000
330.0
16.4
6.9
10.2
1.8
12.0
16.0
Q1
TRSF3243IPWR
TSSOP
PW
28
2000
330.0
16.4
7.1
10.4
1.6
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TRSF3243CDBR
SSOP
DB
28
2000
346.0
346.0
33.0
TRSF3243CDWR
SOIC
DW
28
1000
346.0
346.0
49.0
TRSF3243CPWR
TSSOP
PW
28
2000
346.0
346.0
33.0
TRSF3243CPWR
TSSOP
PW
28
2000
346.0
346.0
33.0
TRSF3243IDBR
SSOP
DB
28
2000
346.0
346.0
33.0
TRSF3243IDWR
SOIC
DW
28
1000
346.0
346.0
49.0
TRSF3243IPWR
TSSOP
PW
28
2000
346.0
346.0
33.0
TRSF3243IPWR
TSSOP
PW
28
2000
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated