TI SNJ54LVTH373W

SCBS689H − MAY 1997 − REVISED OCTOBER 2003
D Support Mixed-Mode Signal Operation
D
D
D
D
OE
1Q
1D
2D
2Q
3Q
3D
4D
4Q
GND
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
8Q
8D
7D
7Q
6Q
6D
5D
5Q
LE
SN54LVTH373 . . . FK PACKAGE
(TOP VIEW)
description/ordering information
2D
2Q
3Q
3D
4D
These octal latches are designed specifically for
low-voltage (3.3-V) VCC operation, but with the
capability to provide a TTL interface to a
5-V system environment.
4
2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
8D
7D
7Q
6Q
6D
4Q
GND
LE
5Q
5D
While the latch-enable (LE) input is high, the Q
outputs follow the data (D) inputs. When LE is
taken low, the Q outputs are latched at the logic
levels set up at the D inputs.
3
8Q
D
(5-V Input and Output Voltages With
3.3-V VCC)
Typical VOLP (Output Ground Bounce)
<0.8 V at VCC = 3.3 V, TA = 25°C
Support Unregulated Battery Operation
Down to 2.7 V
Ioff and Power-Up 3-State Support Hot
Insertion
Bus Hold on Data Inputs Eliminates the
Need for External Pullup/Pulldown
Resistors
Latch-Up Performance Exceeds 500 mA Per
JESD 17
ESD Protection Exceeds JESD 22
− 2000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
1D
1Q
OE
VCC
D
SN54LVTH373 . . . J OR W PACKAGE
SN74LVTH373 . . . DB, DW, NS, OR PW PACKAGE
(TOP VIEW)
A buffered output-enable (OE) input can be used to place the eight outputs in either a normal logic state (high
or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive
the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus
lines without need for interface or pullup components.
ORDERING INFORMATION
PACKAGE†
ORDERABLE
PART NUMBER
Tube
SN74LVTH373DW
Tape and reel
SN74LVTH373DWR
SOP − NS
Tape and reel
SN74LVTH373NSR
LVTH373
SSOP − DB
Tape and reel
SN74LVTH373DBR
LXH373
Tube
SN74LVTH373PW
Tape and reel
SN74LVTH373PWR
CDIP − J
Tube
SNJ54LVTH373J
SNJ54LVTH373J
CFP − W
Tube
SNJ54LVTH373W
SNJ54LVTH373W
LCCC - FK
Tube
SNJ54LVTH373FK
TA
SOIC − DW
−40°C to 85°C
TSSOP − PW
−55°C
−55
C to 125
125°C
C
TOP-SIDE
MARKING
LVTH373
LXH373
SNJ54LVTH373FK
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design
guidelines are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
&0$'"& &# !+" '# 0 1%&!'"& '"+
!"# !0$ " #+!&0&!'"&# + ",+ "+$# 0 +2'# #"$+"#
#"'' -''"/ !"& !+##&. +# " +!+##'&%/ &!%+
"+#"&. 0 '%% ''$+"+#
!"# !$%&'" " ()* '%% ''$+"+# '+ "+#"+
%+## ",+-&#+ "+ '%% ",+ !"# !"&
!+##&. +# " +!+##'&%/ &!%+ "+#"&. 0 '%% ''$+"+#
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCBS689H − MAY 1997 − REVISED OCTOBER 2003
description/ordering information (continued)
OE does not affect the internal operations of the latches. Old data can be retained or new data can be entered
while the outputs are in the high-impedance state.
When VCC is between 0 and 1.5 V, the devices are in the high-impedance state during power up or power down.
However, to ensure the high-impedance state above 1.5 V, OE should be tied to VCC through a pullup resistor;
the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors
with the bus-hold circuitry is not recommended.
These devices are fully specified for hot-insertion applications using Ioff and power-up 3-state. The Ioff circuitry
disables the outputs, preventing damaging current backflow through the devices when they are powered down.
The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down,
which prevents driver conflict.
FUNCTION TABLE
(each latch)
INPUTS
OE
LE
D
OUTPUT
Q
L
H
H
H
L
H
L
L
L
L
X
Q0
H
X
X
Z
logic diagram (positive logic)
OE
LE
1
11
C1
1D
3
2
1D
To Seven Other Channels
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1Q
SCBS689H − MAY 1997 − REVISED OCTOBER 2003
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4.6 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high-impedance
or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Voltage range applied to any output in the high state, VO (see Note 1) . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Current into any output in the low state, IO: SN54LVTH373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 mA
SN74LVTH373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 mA
Current into any output in the high state, IO (see Note 2): SN54LVTH373 . . . . . . . . . . . . . . . . . . . . . . . 48 mA
SN74LVTH373 . . . . . . . . . . . . . . . . . . . . . . . 64 mA
Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −50 mA
Package thermal impedance, θJA (see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. This current flows only when the output is in the high state and VO > VCC.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 4)
SN54LVTH373
SN74LVTH373
MIN
MAX
MIN
MAX
2.7
3.6
2.7
3.6
UNIT
VCC
VIH
Supply voltage
VIL
VI
Low-level input voltage
Input voltage
5.5
5.5
V
IOH
IOL
High-level output current
−24
−32
mA
Low-level output current
48
64
mA
∆t/∆v
Input transition rise or fall rate
∆t/∆VCC
TA
Power-up ramp rate
200
Operating free-air temperature
−55
High-level input voltage
2
2
0.8
Outputs enabled
V
0.8
10
10
−40
V
ns/V
µs/V
200
125
V
85
°C
NOTE 4: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SCBS689H − MAY 1997 − REVISED OCTOBER 2003
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
TEST CONDITIONS
VCC = 2.7 V,
VCC = 2.7 V to 3.6 V,
II = −18 mA
IOH = −100 µA
VCC = 2.7 V,
IOH = −8 mA
IOH = −24 mA
VCC = 3 V
VCC = 2.7 V
VOL
VCC = 3 V
II
Control
inputs
Data
inputs
Ioff
II(hold)
SN74LVTH373
TYP†
MAX
MIN
−1.2
VCC−0.2
2.4
−1.2
2
0.2
0.2
IOL = 24 mA
IOL = 16 mA
0.5
0.5
0.4
0.4
IOL = 32 mA
IOL = 48 mA
0.5
0.5
10
10
VCC = 3.6 V,
VI = VCC or GND
±1
±1
1
1
VCC = 3.6 V
VI = VCC
VI = 0
−5
−5
VI = 2 V
V
0.55
VCC = 0 or 3.6 V,
VCC = 3 V
V
V
2
IOH = −32 mA
IOL = 100 µA
VI or VO = 0 to 4.5 V
VI = 0.8 V
UNIT
VCC−0.2
2.4
IOL = 64 mA
VI = 5.5 V
VCC = 0,
Data
inputs
SN54LVTH373
TYP†
MAX
MIN
0.55
±100
75
75
−75
−75
500
−750
µA
µA
µA
VCC = 3.6 V‡,
VI = 0 to 3.6 V
IOZH
IOZL
VCC = 3.6 V,
VCC = 3.6 V,
VO = 3 V
VO = 0.5 V
5
5
µA
−5
−5
µA
IOZPU
VCC = 0 to 1.5 V, VO = 0.5 V to 3 V,
OE = don’t care
±100∗
±100
µA
IOZPD
VCC = 1.5 V to 0, VO = 0.5 V to 3 V,
OE = don’t care
±100∗
±100
µA
VCC = 3.6 V,
IO = 0,
VI = VCC or GND
0.19
0.19
ICC
Outputs high
Outputs low
Outputs disabled
∆ICC§
VCC = 3 V to 3.6 V, One input at VCC − 0.6 V,
Other inputs at VCC or GND
Ci
VI = 3 V or 0
VO = 3 V or 0
Co
5
5
0.19
0.19
0.2
0.2
3
3
7
7
mA
mA
pF
pF
∗ On products compliant to MIL-PRF-38535, this parameter is not production tested.
† All typical values are at VCC = 3.3 V, TA = 25°C.
‡ This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.
§ This is the increase in supply current for each input that is at the specified TTL voltage level, rather than VCC or GND.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCBS689H − MAY 1997 − REVISED OCTOBER 2003
timing requirements over recommended operating free-air temperature range (unless otherwise
noted) (see Figure 1)
SN54LVTH373
VCC = 3.3 V
± 0.3 V
MIN
MAX
SN74LVTH373
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MIN
MAX
MIN
MAX
VCC = 2.7 V
MIN
UNIT
MAX
tw
tsu
Pulse duration, LE high
3
3
3
3
ns
Setup time, data before LE↓
1.1
0.4
1.1
0.4
ns
th
Hold time, data after LE↓
1.7
2
1.4
1.4
ns
switching characteristics over recommended free-air temperature, CL = 50 pF (unless otherwise
noted) (see Figure 1)
SN54LVTH373
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
tPLH
tPHL
D
Q
tPLH
tPHL
LE
Q
tPZH
tPZL
OE
Q
tPHZ
tPLZ
OE
Q
VCC = 3.3 V
± 0.3 V
SN74LVTH373
VCC = 2.7 V
VCC = 3.3 V
± 0.3 V
VCC = 2.7 V
MAX
MIN
TYP†
MAX
4.1
4.7
1.5
2.6
3.9
4.5
4.1
4.7
1.5
2.6
3.9
4.5
1.6
4.4
5.1
1.7
2.7
4.2
4.9
1.6
4.4
5.1
1.7
2.7
4.2
4.9
1.2
5
6.1
1.3
3
4.8
5.9
1.2
5
5.7
1.3
3
4.8
5.5
1.6
5.5
5.7
1.9
3
4.6
4.9
0.8
4.8
4.9
1.9
3
4.5
4.6
MIN
MAX
1.4
1.4
MIN
MIN
UNIT
MAX
ns
ns
ns
ns
† All typical values are at VCC = 3.3 V, TA = 25°C.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SCBS689H − MAY 1997 − REVISED OCTOBER 2003
PARAMETER MEASUREMENT INFORMATION
500 Ω
From Output
Under Test
6V
Open
S1
GND
CL = 50 pF
(see Note A)
500 Ω
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
6V
GND
2.7 V
LOAD CIRCUIT
Timing Input
1.5 V
0V
tw
tsu
2.7 V
Input
1.5 V
1.5 V
th
2.7 V
Data Input
1.5 V
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
2.7 V
1.5 V
Input
1.5 V
0V
tPHL
tPLH
VOH
1.5 V
Output
1.5 V
VOL
1.5 V
1.5 V
1.5 V
VOL
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
1.5 V
0V
tPZL
tPLZ
3V
1.5 V
tPZH
VOH
Output
Output
Waveform 1
S1 at 6 V
(see Note B)
tPLH
tPHL
2.7 V
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one transition per measurement.
E. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
23-Apr-2008
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
5962-9950901Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9950901QRA
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
1
TBD
Call TI
N / A for Pkg Type
TBD
Call TI
Call TI
Lead/Ball Finish
MSL Peak Temp (3)
POST-PLATE N / A for Pkg Type
5962-9950901QSA
ACTIVE
CFP
W
20
SN74LVTH373DBLE
OBSOLETE
SSOP
DB
20
SN74LVTH373DBR
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DBRE4
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DBRG4
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DW
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DWE4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DWG4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DWR
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DWRE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373DWRG4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373NSR
ACTIVE
SO
NS
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373NSRE4
ACTIVE
SO
NS
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373NSRG4
ACTIVE
SO
NS
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373PW
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373PWE4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373PWG4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373PWLE
OBSOLETE
TSSOP
PW
20
SN74LVTH373PWR
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373PWRE4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74LVTH373PWRG4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SNJ54LVTH373FK
ACTIVE
LCCC
FK
20
1
TBD
SNJ54LVTH373J
ACTIVE
CDIP
J
20
1
TBD
A42 SNPB
N / A for Pkg Type
SNJ54LVTH373W
ACTIVE
CFP
W
20
1
TBD
Call TI
N / A for Pkg Type
TBD
(1)
Call TI
Call TI
POST-PLATE N / A for Pkg Type
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
23-Apr-2008
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
SN74LVTH373DBR
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
SSOP
DB
20
2000
330.0
16.4
8.2
7.5
2.5
12.0
16.0
Q1
SN74LVTH373DWR
SOIC
DW
20
2000
330.0
24.4
10.8
13.0
2.7
12.0
24.0
Q1
SN74LVTH373PWR
TSSOP
PW
20
2000
330.0
16.4
6.95
7.1
1.6
8.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
11-Mar-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
SN74LVTH373DBR
SSOP
DB
20
2000
346.0
346.0
33.0
SN74LVTH373DWR
SOIC
DW
20
2000
346.0
346.0
41.0
SN74LVTH373PWR
TSSOP
PW
20
2000
346.0
346.0
33.0
Pack Materials-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated