TI TLV2442AIDRG4

TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
D
D
D
D
D
D
Output Swing Includes Both Supply Rails
Extended Common-Mode Input Voltage
Range . . . 0 V to 4.25 V (Min) at 5-V Single
Supply
No Phase Inversion
Low Noise . . . 16 nV/√Hz Typ at f = 1 kHz
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV244xA)
Low Input Bias Current . . . 1 pA Typ
D
D
D
D
D
600-Ω Output Drive
High-Gain Bandwidth . . . 1.8 MHz Typ
Low Supply Current . . . 750 µA Per Channel
Typ
Macromodel Included
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control/Print Support
Qualification to Automotive Standards
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
description
3
VDD = 3 V
VOH – High-Level Output Voltage – V
The TLV244x and TLV244xA are low-voltage
operational amplifiers from Texas Instruments.
The common-mode input voltage range of these
devices has been extended over typical standard
CMOS amplifiers, making them suitable for a wide
range of applications. In addition, these devices
do not phase invert when the common-mode input
is driven to the supply rails. This satisfies most
design requirements without paying a premium
for rail-to-rail input performance. They also exhibit
rail-to-rail output performance for increased
dynamic range in single- or split-supply
applications. This family is fully characterized at
3-V and 5-V supplies and is optimized for
low-voltage operation. Both devices offer
comparable ac performance while having lower
noise, input offset voltage, and power dissipation
than existing CMOS operational amplifiers. The
TLV244x has increased output drive over
previous rail-to-rail operational amplifiers and can
drive 600-Ω loads for telecommunications
applications.
2.5
2
TA = – 40°C
1.5
1
TA = 125°C
0.5
TA = 85°C TA = 25°C
0
0
2
4
6
8
10
12
IOH – High-Level Output Current – mA
Figure 1
The other members in the TLV244x family are the low-power, TLV243x, and micro-power, TLV2422, versions.
The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV244xA is available with
a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output
operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal
for high density, battery-powered equipment.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments.
Copyright  2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TLV2442 AVAILABLE OPTIONS
PACKAGED DEVICES
VIOmax
AT 25°C
TA
SMALL
OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
TSSOP
(PW)
CERAMIC FLAT
PACK
(U)
0°C to 70°C
2.5 mV
TLV2442CD
—
—
TLV2442CPW
—
– 40°C to 85°C
950 µ
µV
2.5 mV
TLV2442AID
TLV2442ID
—
—
—
—
TLV2442AIPW
—
—
—
– 40°C to 125°C
950 µ
µV
2.5 mV
TLV2442AQD
TLV2442QD
—
—
—
—
TLV2442AQPW
TLV2442QPW
—
—
– 55°C to 125°C
950 µV
µ
2.5 mV
—
—
TLV2442AMFK
TLV2442MFK
TLV2442AMJG
TLV2442MJG
—
—
TLV2442AMU
TLV2442MU
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2442CDR).
TLV2444 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(D)
TSSOP
(PW)
0°C to 70°C
2.5 mV
TLV2444CD
TLV2444CPW
– 40°C to 125°C
950 µ
µV
2.5 mV
TLV2444AID
TLV2444ID
TLV2444AIPW
TLV2444IPW
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2444CDR).
TLV2442
D OR JG PACKAGE
(TOP VIEW)
1OUT
1IN –
1IN +
VDD – /GND
1
8
2
7
3
6
4
5
NC
1OUT
NC
VDD+
NC
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN –
NC
NC
1OUT
1IN –
1IN +
VDD – /GND
1
10
2
9
3
8
4
7
5
6
POST OFFICE BOX 655303
8
7
6
5
VDD +
2OUT
2IN –
2IN +
TLV2444
D OR PW PACKAGE
(TOP VIEW)
NC
VDD +
2OUT
2IN –
2IN +
NC – No internal connection
2
1
2
3
4
TLV2442
U PACKAGE
(TOP VIEW)
NC
VDD– /GND
NC
2IN+
NC
4
1OUT
1IN–
1IN +
VDD – / GND
VDD +
2OUT
2IN –
2IN +
TLV2442
FK PACKAGE
(TOP VIEW)
NC
1IN –
NC
1IN +
NC
TLV2442
PW PACKAGE
(TOP VIEW)
• DALLAS, TEXAS 75265
1OUT
1IN –
1IN+
VDD+
2IN+
2IN –
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN –
4IN+
VDD–/GND
3IN+
3IN –
3OUT
equivalent schematic (each amplifier)
COMPONENT
COUNT
Q22
Q29
Q31
Q34
Transistors
Diodes
Resistors
Capacitors
Q36
VB3
69
5
26
6
Q26
Q24
Q32
VB2
VB1
VDD+
Q25
Q35
Q33
Q27
Q30
Q37
R10
D1
R9
R3
Q3
R4
R7
Q13
IN–
Q1
Q6
Q4
Q8
Q15
Q10
Q18
Q7
R5
Q9
C2
VDD–/GND
C1
VB3
Q11
Q16
R6
OUT
C3
VB2
Q2
Q14
Q5
Q17
Q12
R1
Q21
Q19
R2
R8
VB4
3
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
Q20
IN+
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Q23
VB4
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD
Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix (dual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
I suffix (quad) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD –.
2. Differential voltages are at IN+ with respect to IN –. Excessive current will flow if input is brought below VDD – – 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D (8)
D (14)
FK
JG
PW (8)
PW (14)
U
725 mW
1022 mW
1375 mW
1050 mW
525 mW
720 mW
675 mW
5.8 mW/°C
7.6 mW/°C
11.0 mW/°C
8.4 mW/°C
4.2 mW/°C
5.6 mW/°C
5.4 mW/°C
464 mW
900 mW
880 mW
672 mW
336 mW
634 mW
432 mW
377 mW
777 mW
715 mW
546 mW
273 mW
547 mW
350 mW
145 mW
450 mW
275 mW
210 mW
105 mW
317 mW
135 mW
recommended operating conditions
C SUFFIX
MIN
Supply voltage, VDD
MAX
M SUFFIX
MAX
10
2.7
VDD –
VDD + – 1.3
VDD –
VDD + – 1.3
V
Common-mode input voltage,
VIC
VDD –
VDD + – 1
VDD –
VDD + – 1
VDD – + 2
VDD + – 1.3
VDD – + 2
VDD + – 1.3
V
125
– 40
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
– 55
10
UNIT
VDD + – 1
125
2.7
MAX
VDD –
– 40
10
MIN
VDD + – 1
70
2.7
Q SUFFIX
MIN
VDD –
0
10
I SUFFIX
MIN
Input voltage range, VI
Operating free-air temperature,
TA
2.7
MAX
125
V
°C
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV244xC
TLV244xI
VIO
Input offset voltage
TLV244xAI
TLV2442AQ
TLV2442AM
αVIO
Temperature coefficient of input
offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
TA†
TLV2442
MIN
25°C
Input offset current
Input bias current
300
Full range
25°C
300
High-level output voltage
IO = – 3 mA
VIC = 1.5 V,
25°C
0.002
µV/mo
25°C
0.5
VOL
AVD
Low-level output voltage
Large-signal
L
i
l diff
differential
ti l
voltage am
amplification
lification
VIC = 1
1.5
5V
V,
VO = 1 V to 2 V
IO = 3
mA
RL = 600 Ω
RL = 1 MΩ
rid
Differential input resistance
ri
Common-mode input resistance
ci
Common-mode input capacitance
f = 10 kHz
60
150
1
150
125°C
350
Full range
260
0
to
2.25
0
to
2.25
125°C
0
to
2
pA
–0.25
to
2.5
0
to
2
25°C to
–55°C
pA
60
–40°C to
85°C
V
–0.25
to
2.5
25°C
2.98
25°C
2.5
Full range
IO = 100 µA
950
1600
µV/°C
RS = 50 Ω
IO = – 100 µA
VOH
µV
2
Full range
|VIO| ≤ 5 mV
mV,
950
1500
Full range
25°C
Common-mode input voltage
g
range
2000
Full range
TLV2442Q/AQ
TLV2442M/AM
VICR
300
UNIT
2500
25°C
25°C
IIB
MAX
Full range
25°C
to 85°C
VIC = 1
1.5
5V
V,
VO = 1.5 V,
RS = 50 Ω
TYP
V
2.25
25°C
0.02
25°C
0.63
Full range
V
1
25°C
0.7
Full range
0.4
1
V/mV
25°C
750
25°C
1000
GΩ
25°C
1000
GΩ
25°C
8
pF
zo
Closed-loop output impedance
f = 1 MHz,
AV = 10
25°C
130
Ω
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
(continued)
PARAMETER
CMRR Common-mode rejection ratio
TA†
TEST CONDITIONS
VIC = 0 tto 2
2.25
25 V
V,
VO = 1
1.5
5V
V,
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VDD ± /∆VIO)
VDD = 2.7 V to 8 V,,
No load
IDD
Supply current (per channel)
VO = 1.5 V,
No load
TLV2442Q/AQ
TLV2442M/AM
TLV2442
MIN
TYP
25°C
65
75
Full range
55
Full range
50
25°C
80
Full range
80
VIC = VDD/2,,
25°C
MAX
UNIT
dB
95
725
Full range
dB
1100
1100
µA
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
SR
TEST CONDITIONS
VO = 1 V to 2 V,
RL = 600 Ω,
CL = 100 pF
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
BOM
ts
φm
Total harmonic distortion plus noise
TLV2442Q/AQ
TLV2442M/AM
TLV244x
MIN
TYP
25°C
0.65
1.3
Full
range
0.65
Full
range
0.4
25°C
170
f = 1 kHz
25°C
18
f = 0.1 Hz to 1 Hz
25°C
2.6
f = 0.1 Hz to 10 Hz
25°C
5.1
25°C
VO = 0.5 V to 2.5 V,
RL = 600 Ω,
f = 1 kHz
AV = 1
AV = 10
RL = 600 Ω,,
output swing bandwidth
Maximum output-swing
VO(PP) = 1 V,,
AV = 1,
RL = 600 Ω,,
CL = 100 pF
Settling time
AV = – 1,
Step = – 2.3 V to 2.3 V,,
RL = 600 Ω,
CL = 100 pF
RL = 600 Ω
Ω,
25°C
0.6
nV/√Hz
µV
fA/√Hz
0.3%
2%
25°C
1 75
1.75
MHz
25°C
09
0.9
MHz
To 0.1%
0 1%
15
1.5
µs
25°C
0 01%
To 0.01%
CL = 100 pF
UNIT
0.08%
AV = 100
f =10 kHz,,
CL = 100 pF
MAX
V/µs
f = 10 Hz
Gain bandwidth product
Gain-bandwidth
Phase margin at unity gain
TA†
32
3.2
25°C
65°
Gain margin
25°C
9
dB
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV244xC
TLV244xI
VIO
Input offset voltage
TLV244xA
TLV2442AQ
TLV2442AM
αVIO
Temperature coefficient of input
offset voltage
Input offset voltage long-term
drift (see Note 4)
IIO
TA†
TLV244x
MIN
25°C
VIC = 0,
RS = 50 Ω
Input offset current
Input bias current
300
Full range
|VIO| ≤ 5 mV
mV,
25°C
300
VOL
AVD
High-level output voltage
25°C
0.002
µV/mo
25°C
0.5
Low-level output voltage
Large-signal
L
i
l diff
differential
ti l
voltage am
amplification
lification
1
150
125°C
350
Full range
260
0
to
4.25
pA
60
–40°C to
85°C
–0.25
to
4.5
pA
V
0
to
4
4.97
25°C
4
Full range
4
V
4.35
VIC = 2.5 V,
IOL = 100 µA
VIC = 2
2.5
5V
V,
IOL = 5
RL = 600 Ω‡
25°C
0.9
VIC = 2.5
2 5 V,
V
VO = 1 V to 4 V
Full range
0.5
RL = 1 Mه
25°C
950
mA
60
150
25°C
IOH = – 5 mA
950
1600
µV/°C
Full range
VOH
µV
2
RS = 50 Ω
IOH = – 100 µA
950
1500
Full range
25°C
Common-mode input voltage
g
range
2000
Full range
TLV2442Q/AQ
TLV2442M/AM
VICR
300
UNIT
2500
25°C
25°C
IIB
MAX
Full range
25°C
to 85°C
VDD ± = ± 2.5 V,
VO = 0,
TYP
25°C
0.01
25°C
0.8
Full range
V
1.25
1.3
V/mV
rid
Differential input resistance
25°C
1000
GΩ
ri
Common-mode input resistance
25°C
1000
GΩ
ci
Common-mode input
capacitance
f = 10 kHz
25°C
8
pF
zo
Closed-loop output impedance
f = 1 MHz,
AV = 10
25°C
140
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = 0 to 4.25 V,,
RS = 50 Ω
VO = 2.5 V,,
25°C
70
Full range
70
75
dB
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
kSVR
Supply voltage rejection ratio (∆VDD /∆VIO)
Supply-voltage
VDD = 4.4 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current (per channel)
VO = 2
2.5
5V
V,
No load
TA†
TLV244x
MIN
TYP
25°C
80
95
Full range
80
25°C
750
Full range
MAX
UNIT
dB
1100
1100
µA
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
SR
Slew rate at unity gain
TEST CONDITIONS
VO = 0.5
0 5 V to
t 2.5
2 5 V,
V
RL = 600 Ω‡,
CL = 100 pF‡
TLV2442Q/AQ
TLV2442M/AM
TYP
1.4
25°C
0.75
Full range
0.75
Full range
0.5
130
25°C
16
f = 0.1 Hz to 1 Hz
25°C
1.8
f = 0.1 Hz to 10 Hz
25°C
3.6
25°C
0.6
Peak-to-peak equivalent
q
input noise
voltage
In
Equivalent input noise current
THD + N
Total harmonic distortion plus noise
VO = 1.5 V to 3.5 V,
f = 1 kHz,
RL = 600 Ω‡
Gain-bandwidth product
f =10 kHz,
CL = 100 pF‡
RL = 600 Ω‡,
BOM
Maximum output-swing bandwidth
VO(PP) = 2 V,
RL = 600 Ω‡,
AV = 1,
CL = 100 pF‡
ts
Settling time
AV = – 1,
Step = 0.5 V to 2.5 V,,
RL = 600 Ω‡,
CL = 100 pF‡
RL = 600 Ω‡,
AV = 1
AV = 10
UNIT
nV/√Hz
µV
fA/√Hz
0.017%
25°C
AV = 100
0.17%
1.5%
25°C
1.81
MHz
25°C
0.5
MHz
To 0.1%
1.5
µs
25°C
To 0.01%
CL = 100 pF‡
MAX
V/µs
25°C
VN(PP)
Gain margin
MIN
f = 1 kHz
Equivalent input noise voltage
Phase margin at unity gain
TLV244x
f = 10 Hz
Vn
φm
TA†
2.6
25°C
68°
8
dB
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
‡ Referenced to 2.5 V
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25°C
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
Table of Graphs†
FIGURE
VIO
Input offset voltage
Distribution
vs Common-mode input voltage
αVIO
IIB /IIO
Input offset voltage temperature coefficient
Distribution
Input bias and input offset currents
vs Free-air temperature
VOH
VOL
High-level output voltage
vs High-level output current
9, 10
Low-level output voltage
vs Low-level output current
11, 12
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
13
IOS
Short circuit output current
Short-circuit
vs Supplyy voltage
g
vs Free-air temperature
14
15
VO
AVD
Output voltage
vs Differential Input voltage
Differential voltage amplification
vs Load resistance
Large signal differential voltage amplification and phase margin
Large-signal
vs Frequency
19 20
19,
Large signal differential voltage amplification
Large-signal
Free air temperature
vs Free-air
21 22
21,
zo
Output impedance
vs Frequency
23, 24
CMRR
Common mode rejection ratio
Common-mode
vs Frequency
q
y
vs Free-air temperature
25
26
kSVR
Supply voltage rejection ratio
Supply-voltage
vs Frequency
q
y
vs Free-air temperature
27,, 28
29
IDD
Supply current
vs Supply voltage
30
SR
Slew rate
vs Load capacitance
vs Free-air temperature
31
32
AVD
VO
THD + N
φm
6, 7
8
16, 17
18
Inverting large-signal pulse response
33, 34
Voltage-follower large-signal pulse response
35, 36
Inverting small-signal pulse response
37, 38
Voltage-follower small-signal pulse response
Vn
2,, 3
4, 5
39, 40
Equivalent input noise voltage
vs Frequency
Noise voltage
Over a 10-second period
Total harmonic distortion plus noise
vs Frequency
Gain bandwidth product
Gain-bandwidth
vs Free-air temperature
vs Supply voltage
Phase margin
vs Frequency
q
y
vs Load capacitance
19,, 20
48
Gain margin
vs Load capacitance
49
vs Load capacitance
50
B1
Unity-gain bandwidth
† For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41, 42
43
44, 45
46
47
9
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
18
10
8
6
4
12
10
8
6
4
0
–700
–600
–500
–400
600
700
800
900
0
–300
–200
–100
0
100
200
300
400
500
2
–700
2
VIO – Input Offset Voltage – µV
VIO – Input Offset Voltage – µV
Figure 2
Figure 3
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
2
VDD = 3 V
TA = 25°C
1.5
VIO – Input Offset Voltage – mV
VIO – Input Offset Voltage – mV
1.5
1
0.5
0
–0.5
–1
–1.5
–2
–0.5
VDD = 5 V
TA = 25°C
1
0.5
0
–0.5
–1
–1.5
0
0.5
1
1.5
2
2.5
3
–2
–0.5
0
VIC – Common-Mode Input Voltage – V
0.5
1
1.5
2
Figure 5
POST OFFICE BOX 655303
2.5
3
3.5
4
VIC – Common-Mode Input Voltage – V
Figure 4
10
500
600
700
800
900
12
14
300
400
14
16
–100
0
100
200
TA = 25°C
868 Amplifiers From
1 Wafer Lot
VDD = ± 2.5 V
TA = 25°C
–300
–200
16
20
Percentage of Amplifiers – %
18
868 Amplifiers From
1 Wafer Lot
VDD = ± 1.5 V
–600
–500
–400
Percentage of Amplifiers – %
20
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
• DALLAS, TEXAS 75265
4.5
5
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
15
18
32 Amplifiers From 1
Wafer Lot
VDD = ± 1.5 V
P Package
25°C to 125°C
15
Percentage of Amplifiers – %
Percentage of Amplifiers – %
12
32 Amplifiers From 2
Wafer Lots
VDD = ± 2.5 V
P Package
25°C to 125°C
9
6
3
12
9
6
3
0
–8 –7 –6
0
–5 –4 –3 –2 –1
0
1
2
3
4
–8 –7 –6
αVIO – Temperature Coefficient – µV/°C
0
1
2
3
4
Figure 7
Figure 6
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
3
35
VDD = ± 2.5 V
VIC = 0
VO = 0
RS = 50 Ω
30
VDD = 3 V
25
20
IIB
15
IIO
10
5
0
VOH – High-Level Output Voltage – V
IIB
I IO – Input Bias and Input Offset Currents – pA
IIB and IIO
–5 –4 –3 –2 –1
αVIO – Temperature Coefficient – µV/°C
2.5
2
TA = – 40°C
1.5
1
TA = 125°C
0.5
TA = 85°C TA = 25°C
0
25
45
65
85
105
125
TA – Free-Air Temperature – °C
0
2
4
6
8
10
12
IOH – High-Level Output Current – mA
Figure 8
Figure 9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
3
VDD = 5 V
VDD = 3 V
4
TA = – 40°C
3.5
VOL – Low-Level Output Voltage – V
VOH – High-Level Output Voltage – V
4.5
TA = 25°C
3
2.5
2
TA = 125°C
1.5
TA = 85°C
1
0.5
0
2.5
TA = 125°C
2
TA = 85°C
1.5
1
TA = 25°C
TA = – 40°C
0.5
0
0
5
10
15
20
25
0
2
IOH – High-Level Output Current – mA
Figure 10
2
TA = 125°C
1.5
TA = 85°C
1
TA = 25°C
0.5
TA = – 40°C
0
6
8
10
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
VOL – Low-Level Output Voltage – V
VDD = 5 V
4
10
5
RL = 600 Ω
VDD = 5 V
4
3
VDD = 3 V
2
1
0
100
IOL – Low-Level Output Current – mA
1k
10 k
Figure 13
POST OFFICE BOX 655303
100 k
f – Frequency – Hz
Figure 12
12
8
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
2.5
2
6
Figure 11
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
4
IOL – Low-Level Output Current – mA
• DALLAS, TEXAS 75265
1M
10 M
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
25
VO = VDD/2
VIC = VDD/2
TA = 25°C
20
I OS – Short-Circuit Output Current – mA
I OS – Short-Circuit Output Current – mA
25
VID = –100 mV
15
10
5
0
–5
–10
–15
VID = 100 mV
–20
–25
2
3
4
5
6
7
8
9
15
VID = –100 mV
10
5
0
–5
–10
VID = 100 mV
–15
–20
–25
–75
10
VDD = 5 V
VO = 2.5 V
20
–50
Figure 14
25
50
75
100
125
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
5
3
VDD = 3 V
VIC = 1.5 V
RL = 600 Ω
TA = 25°C
4
VO – Output Voltage – V
VO – Output Voltage – V
0
Figure 15
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
2.5
–25
TA – Free-Air Temperature – °C
VDD – Supply Voltage – V
2
1.5
1
VDD = 5 V
VIC = 2.5 V
RL = 600 Ω
TA = 25°C
3
2
1
0.5
0
–1000 –750 –500 –250
0
250
500
750
1000
0
–1000 –750 –500 –250
0
250
500
750
1000
VID – Differential Input Voltage – µV
VID – Differential Input Voltage – µV
Figure 16
Figure 17
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
A VD – Differential Voltage Amplification – V/mV
100
VO(PP) = 2 V
TA = 25°C
VDD = 5 V
VDD = 3 V
10
1
0.1
1
10
100
1000
RL – Load Resistance – kΩ
Figure 18
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
VDD = 3 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
AVD
AVD– Large-Signal Differential
Voltage Amplification – dB
60
ÁÁ
ÁÁ
ÁÁ
135°
40
90°
20
45°
0
0°
– 20
– 40
10 k
– 45°
100 k
1M
f – Frequency – Hz
Figure 19
14
180°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
– 90°
10 M
φ m – Phase Margin
80
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
60
180°
VDD = 5 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
135°
40
90°
20
45°
0
0°
–20
φ m – Phase Margin
AVD
AVD– Large-Signal Differential
Voltage Amplification – dB
80
–45°
–40
10 k
100 k
–90°
10 M
1M
f – Frequency – Hz
Figure 20
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
1000
1000
ÁÁ
ÁÁ
ÁÁ
100
RL = 1 MΩ
10
ÁÁ
ÁÁ
ÁÁ
RL = 600 Ω
1
0.1
–75
–50
–25
0
25
50
75
100
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 MΩ
AVD
AVD– Large-Signal Differential
Voltage Amplification – V/mV
AVD
AVD– Large-Signal Differential
Voltage Amplification – V/mV
VDD = 3 V
VIC = 2.5 V
VO = 1 V to 4 V
125
100
10
RL = 600 Ω
1
0.1
–75
–50
TA – Free-Air Temperature – °C
–25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 22
Figure 21
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
vs
FREQUENCY
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
AV = 100
zo
O
zo – Output Impedance – Ω
zo
zo – Output Impedance – Ω
O
VDD = 3 V
TA = 25°C
100
AV = 100
10
AV = 10
AV = 1
1
10
AV = 10
1
AV = 1
VDD = 5 V
TA = 25°C
0.1
100
1k
10 k
100 k
0.1
100
1M
1k
f – Frequency – Hz
Figure 23
1M
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
100
100
TA = 25°C
VDD = 5 V
VIC = 2.5 V
80
CMRR – Common-Mode Rejection Ratio – dB
CMRR – Common-Mode Rejection Ratio – dB
100 k
Figure 24
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
VDD = 3 V
VIC = 1.5 V
60
40
20
0
10
100
1k
10 k
100 k
1M
10 M
VDD = 5 V
90
VDD = 3 V
80
70
60
– 75
– 50
– 25
0
25
Figure 25
Figure 26
POST OFFICE BOX 655303
50
75
100
TA – Free-Air Temperature – °C
f – Frequency – Hz
16
10 k
f – Frequency – Hz
• DALLAS, TEXAS 75265
125
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
VDD = 3 V
TA = 25°C
kSVR
k SVR – Supply-Voltage Rejection Ratio – dB
kSVR
k SVR – Supply-Voltage Rejection Ratio – dB
100
80
60
kSVR+
40
kSVR –
20
0
10
100
10 k
1k
100 k
1M
VDD = 5 V
TA = 25°C
80
60
kSVR+
kSVR –
40
20
0
10
10 M
100
1k
f – Frequency – Hz
100 k
1M
10 M
f – Frequency – Hz
Figure 27
Figure 28
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
100
2.5
VDD = 2.5 V to 8 V
2
98
IIDD
DD – Supply Current – mA
kSVR
k SVR – Supply-Voltage Rejection Ratio – dB
10 k
96
94
TA = 85°C
1.5
TA = – 40°C
1
0.5
92
90
– 75
TA = 25°C
0
– 50
– 25
0
25
50
75
100
125
0
TA – Free-Air Temperature – °C
Figure 29
2
4
6
8
VDD – Supply Voltage – V
10
Figure 30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
SLEW RATE
vs
LOAD CAPACITANCE
SLEW RATE
vs
FREE-AIR TEMPERATURE
3
3
VDD = 5 V
AV = – 1
TA = 25°C
2.5
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
2.5
SR – Slew Rate – V/ µs
SR – Slew Rate – V/ µ s
SR –
2
SR –
SR +
1.5
1
0.5
2
1.5
SR +
1
0.5
0
10
100
1k
10 k
CL – Load Capacitance – pF
0
– 75
100 k
– 50
– 25
Figure 31
25
50
75
100
125
Figure 32
INVERTING LARGE-SIGNAL PULSE RESPONSE
INVERTING LARGE-SIGNAL PULSE RESPONSE
3
5
VDD = 3 V
RL = 2 kΩ
CL = 100 pF
AV = – 1
TA = 25°C
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
AV = – 1
TA = 25°C
4
V
VO
O – Output Voltage – V
VO – Output Voltage – V
VO
0
TA – Free-Air Temperature – °C
2
1
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10
0
0
1
t – Time – µs
3
4
5
6
t – Time – µs
Figure 33
18
2
Figure 34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
8
9
10
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
5
VDD = 3 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
4
VO – Output Voltage – V
VO
VO – Output Voltage – V
VO
3
2
1
3
2
1
0
0
1
2
3
4
5
6
7
8
9
0
10
0
0.5
1
1.5
t – Time – µs
INVERTING SMALL-SIGNAL PULSE RESPONSE
3.5
4
4.5
5
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
2.56
VO – Output Voltage – V
VO
VO – Output Voltage – V
VO
1.54
3
INVERTING SMALL-SIGNAL PULSE RESPONSE
2.58
VDD = 3 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
1.56
2.5
Figure 36
Figure 35
1.58
2
t – Time – µs
1.52
1.5
1.48
1.46
2.54
2.52
2.5
2.48
2.46
1.44
0
1
2
3
4
5
6
7
8
9
10
2.44
0
1
t – Time – µs
2
3
4
5
6
7
8
9
10
t – Time – µs
Figure 37
Figure 38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
1.58
1.54
1.52
1.5
1.48
1.46
1.44
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
2.56
VO – Output Voltage – V
VO
1.56
VO – Output Voltage – V
VO
2.58
VDD = 3 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
2.54
2.52
2.5
2.48
2.46
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
2.44
5
0
0.5
t – Time – µs
200
Vn
nV HzHz
Vn – Equivalent Input Noise Voltage – nV/
Vn
nV HzHz
Vn – Equivalent Input Noise Voltage – nV/
2.5
3
3.5
4
4.5
5
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VDD = 3 V
RS = 20 Ω
TA = 25°C
180
160
140
120
100
80
60
40
20
100
1k
f – Frequency – Hz
10 k
140
VDD = 5 V
RS = 20 Ω
TA = 25°C
120
100
80
60
40
20
0
10
Figure 41
20
2
Figure 40
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
10
1.5
t – Time – µs
Figure 39
0
1
100
1k
f – Frequency – Hz
Figure 42
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 k
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
2000
THD + N – Total Harmonic Distortion Plus Noise – %
NOISE VOLTAGE
OVER A 10-SECOND PERIOD
VDD = 5 V
f = 0.1 Hz to 10
Hz TA = 25°C
1500
Noise Voltage – nV
1000
500
0
– 500
– 1000
–1500
–2000
0
1
2
3
4
5
6
7
8
9
10
10
VDD = 3 V
RL = 600 Ω
TA = 25°C
AV = 100
1
AV = 10
0.1
AV = 1
0.01
10
10 k
100 k
f – Frequency – Hz
Figure 43
Figure 44
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
10
3
VDD = 5 V
RL = 600 Ω
TA = 25°C
Gain-Bandwidth Product – MHz
THD + N – Total Harmonic Distortion Plus Noise – %
1k
100
t – Time – s
AV = 100
1
AV = 10
0.1
RL = 600 Ω
CL = 100 pF
f = 10 kHz
2.5
2
1.5
AV = 1
0.01
10
100
1k
10 k
100 k
1
– 50
– 25
f – Frequency – Hz
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 45
Figure 46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
TYPICAL CHARACTERISTICS
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
PHASE MARGIN
vs
LOAD CAPACITANCE
75°
RL = 600 Ω
CL = 100 pF
f = 10 kHz
TA = 25°C
1.9
Rnull = 100 Ω
60°
φ
om
m – Phase Margin
Gain-Bandwidth Product – MHz
2
1.8
1.7
45°
Rnull = 50 Ω
30°
Rnull = 0
1.6
Rnull = 20 Ω
15°
RL = 600 Ω
TA = 25°C
0°
10
1.5
0
1
6
2
3
4
5
|VDD ±| – Supply Voltage – V
7
8
Figure 47
RL = 600 Ω
TA = 25°C
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
B1 – Unity-Gain Bandwidth – kHz
Gain Margin – dB
Rnull = 100 Ω
Rnull = 20 Ω
10
5
0
10
2
Rnull = 50 Ω
20
15
1
ÁÁ
ÁÁ
Rnull = 0
10 K
100
1K
CL – Load Capacitance – pF
RL = 600 Ω
TA = 25°C
1.5
100 K
0.5
0
10
Figure 49
22
100 k
Figure 48
GAIN MARGIN
vs
LOAD CAPACITANCE
25
100
1k
10 k
CL – Load Capacitance – pF
100
1k
10 k
CL – Load Capacitance – pF
Figure 50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100 k
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpice Parts model generation software. The Boyle
macromodel (see Note 5) and subcircuit in Figure 51 were generated using the TLV244x typical electrical and
operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters
can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
9
RSS
92
FB
+
10
J1
DP
VC
J2
IN +
11
RD1
VAD
DC
12
C1
R2
–
53
HLIM
–
C2
6
–
–
–
+
VLN
+
GCM
GA
VLIM
8
–
RD2
54
4
91
+
VLP
7
60
+
–
+ DLP
90
RO2
VB
IN –
VCC –
–
+
ISS
RP
2
1
DLN
EGND +
–
RO1
DE
5
+
VE
OUT
.SUBCKT TLV2442 1 2 3 4 5
C1
11
12
14E–12
C2
6
7
60.00E–12
DC
5
53
DX
DE
54
5
DX
DLP
90
91
DX
DLN
92
90
DX
DP
4
3
DX
EGND
99
0
POLY (2) (3,0) (4,) 0 .5 .5
FB
7
99
POLY (5) VB VC VE VLP VLN 0
+ 984.9E3 –1E6 1E6 1E6 –1E6
GA
6
0
11
12 377.0E–6
GCM
0
6
10
99 134E–9
ISS
3
10
DC 216.0E–6
HLIM
90
0
VLIM 1K
J1
11
2
10 JX
J2
12
1
10 JX
R2
6
9
100.OE3
RD1
60
11
2.653E3
RD2
60
12
2.653E3
R01
8
5
50
R02
7
99
50
RP
3
4
4.310E3
RSS
10
99
925.9E3
VAD
60
4
–.5
VB
9
0
DC 0
VC
3
53
DC .78
VE
54
4
DC .78
VLIM
7
8
DC 0
VLP
91
0
DC 1.9
VLN
0
92
DC 9.4
.MODEL DX D (IS=800.0E–18)
.MODEL JX PJF (IS=1.500E–12BETA=1.316E-3
+ VTO=–.270)
.ENDS
Figure 51. Boyle Macromodel and Subcircuit
PSpice and Parts are registered trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
MECHANICAL DATA
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
0.010 (0,25)
1
7
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047 / D 10/96
NOTES: A.
B.
C.
D.
24
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
MECHANICAL DATA
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
25
5
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
MECHANICAL DATA
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.063 (1,60)
0.015 (0,38)
0.100 (2,54)
0°–15°
0.023 (0,58)
0.015 (0,38)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
26
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification on press ceramic glass frit seal only.
Falls within MIL-STD-1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
MECHANICAL DATA
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
0,75
0,50
A
Seating Plane
0,15
0,05
1,20 MAX
0,10
PINS **
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064 / E 08/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
MECHANICAL DATA
U (S-GDFP-F10)
CERAMIC DUAL FLATPACK
0.250 (6,35)
0.246 (6,10)
0.006 (0,15)
0.004 (0,10)
0.080 (2,03)
0.050 (1,27)
0.045 (1,14)
0.026 (0,66)
0.300 (7,62)
0.350 (8,89)
0.250 (6,35)
1
0.350 (8,89)
0.250 (6,35)
10
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
0.250 (6,35)
5
6
0.025 (0,64)
0.005 (0,13)
1.000 (25,40)
0.750 (19,05)
4040179 / B 03/95
NOTES: A.
B.
C.
D.
E.
28
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only.
Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2007
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
5962-9751101Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9751101QHA
ACTIVE
CFP
U
10
1
TBD
5962-9751101QPA
ACTIVE
CDIP
JG
8
1
TBD
5962-9751102Q2A
ACTIVE
LCCC
FK
20
1
TBD
5962-9751102QHA
ACTIVE
CFP
U
10
1
TBD
5962-9751102QPA
ACTIVE
CDIP
JG
8
1
TLV2442AID
ACTIVE
SOIC
D
8
75
TLV2442AIDG4
ACTIVE
SOIC
D
8
75
TLV2442AIDR
ACTIVE
SOIC
D
TLV2442AIDRG4
ACTIVE
SOIC
TLV2442AIPW
ACTIVE
TLV2442AIPWG4
Lead/Ball Finish
MSL Peak Temp (3)
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
TBD
A42 SNPB
N / A for Pkg Type
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TSSOP
PW
8
150
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
TSSOP
PW
8
150
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442AIPWLE
OBSOLETE
TSSOP
PW
8
TBD
Call TI
TLV2442AIPWR
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442AIPWRG4
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442AMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2442AMJGB
ACTIVE
CDIP
JG
8
1
TBD
TLV2442AMUB
ACTIVE
CFP
U
10
1
TLV2442AQD
NRND
SOIC
D
8
75
TLV2442AQDG4
ACTIVE
SOIC
D
8
Call TI
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
TBD
A42 SNPB
N / A for Pkg Type
TBD
CU NIPDAU
Level-1-220C-UNLIM
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TBD
TLV2442AQDR
NRND
SOIC
D
8
2500
TLV2442AQDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Call TI
Call TI
Level-1-260C-UNLIM
TLV2442AQPW
ACTIVE
TSSOP
PW
8
150
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLV2442AQPWG4
ACTIVE
TSSOP
PW
8
150
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TBD
CU NIPDAU
Level-1-220C-UNLIM
CU NIPDAU
Level-1-260C-UNLIM
TLV2442AQPWR
ACTIVE
TSSOP
PW
8
2000
TLV2442AQPWRG4
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
TLV2442CD
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442CDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442CDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442CPW
ACTIVE
TSSOP
PW
8
150
CU NIPDAU
Level-1-260C-UNLIM
Addendum-Page 1
Green (RoHS &
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2442CPWG4
ACTIVE
TSSOP
PW
8
TLV2442CPWLE
OBSOLETE
TSSOP
PW
8
TLV2442CPWR
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442CPWRG4
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442ID
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442IDR
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442IDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2442IPWRG4
ACTIVE
TSSOP
PW
8
TLV2442MFKB
ACTIVE
LCCC
FK
20
1
TBD
TLV2442MJGB
ACTIVE
CDIP
JG
8
1
TBD
TLV2442MUB
ACTIVE
CFP
U
10
1
TLV2442QD
NRND
SOIC
D
8
75
TLV2442QDG4
ACTIVE
SOIC
D
8
Lead/Ball Finish
MSL Peak Temp (3)
no Sb/Br)
150
Green (RoHS &
no Sb/Br)
TBD
TBD
CU NIPDAU
Call TI
Call TI
Level-1-260C-UNLIM
Call TI
Call TI
POST-PLATE N / A for Pkg Type
A42 SNPB
N / A for Pkg Type
TBD
A42 SNPB
N / A for Pkg Type
TBD
CU NIPDAU
Level-1-220C-UNLIM
75
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TBD
TLV2442QDR
NRND
SOIC
D
8
2500
TLV2442QDRG4
ACTIVE
SOIC
D
8
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Call TI
Call TI
Level-1-260C-UNLIM
TLV2442QPW
ACTIVE
TSSOP
PW
8
150
TBD
CU NIPDAU
Level-1-220C-UNLIM
TLV2442QPWG4
ACTIVE
TSSOP
PW
8
150
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TBD
CU NIPDAU
Level-1-220C-UNLIM
CU NIPDAU
Level-1-260C-UNLIM
TLV2442QPWR
ACTIVE
TSSOP
PW
8
2000
TLV2442QPWRG4
ACTIVE
TSSOP
PW
8
2000 Green (RoHS &
no Sb/Br)
TLV2444AID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444AIDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444AIDRG4
ACTIVE
SOIC
D
14
TBD
Call TI
TLV2444AIPW
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444AIPWG4
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444AIPWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444AIPWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444AQPWRQ1
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444CD
ACTIVE
SOIC
D
14
CU NIPDAU
Level-1-260C-UNLIM
50
Addendum-Page 2
Green (RoHS &
no Sb/Br)
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2007
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
TLV2444CDG4
ACTIVE
SOIC
D
14
TLV2444CDR
ACTIVE
SOIC
D
TLV2444CDRG4
ACTIVE
SOIC
TLV2444CPW
ACTIVE
TLV2444CPWG4
50
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
TSSOP
PW
14
90
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444CPWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444CPWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444ID
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444IDG4
ACTIVE
SOIC
D
14
50
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444IDR
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444IDRG4
ACTIVE
SOIC
D
14
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444IPWR
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
TLV2444IPWRG4
ACTIVE
TSSOP
PW
14
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
12-Sep-2007
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 4
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily
performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should
provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties
may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business
practice. TI is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its
representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in
connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
RFID
www.ti-rfid.com
Telephony
www.ti.com/telephony
Low Power
Wireless
www.ti.com/lpw
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2007, Texas Instruments Incorporated