TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 D D D D D D Output Swing Includes Both Supply Rails Extended Common-Mode Input Voltage Range . . . 0 V to 4.25 V (Min) at 5-V Single Supply No Phase Inversion Low Noise . . . 16 nV/√Hz Typ at f = 1 kHz Low Input Offset Voltage 950 µV Max at TA = 25°C (TLV244xA) Low Input Bias Current . . . 1 pA Typ D D D D D 600-Ω Output Drive High-Gain Bandwidth . . . 1.8 MHz Typ Low Supply Current . . . 750 µA Per Channel Typ Macromodel Included Available in Q-Temp Automotive HighRel Automotive Applications Configuration Control / Print Support Qualification to Automotive Standards HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT description 3 VDD = 3 V VOH – High-Level Output Voltage – V The TLV244x and TLV244xA are low-voltage operational amplifiers from Texas Instruments. The common-mode input voltage range of these devices has been extended over typical standard CMOS amplifiers, making them suitable for a wide range of applications. In addition, these devices do not phase invert when the common-mode input is driven to the supply rails. This satisfies most design requirements without paying a premium for rail-to-rail input performance. They also exhibit rail-to-rail output performance for increased dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and 5-V supplies and is optimized for low-voltage operation. Both devices offer comparable ac performance while having lower noise, input offset voltage, and power dissipation than existing CMOS operational amplifiers. The TLV244x has increased output drive over previous rail-to-rail operational amplifiers and can drive 600-Ω loads for telecommunications applications. 2.5 2 TA = – 40°C 1.5 1 TA = 125°C 0.5 TA = 85°C TA = 25°C 0 0 2 4 6 8 10 12 IOH – High-Level Output Current – mA Figure 1 The other members in the TLV244x family are the low-power, TLV243x, and micro-power, TLV2422, versions. The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV244xA is available with a maximum input offset voltage of 950 µV. If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal for high density, battery-powered equipment. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Advanced LinCMOS is a trademark of Texas Instruments Incorporated. Copyright 1999, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TLV2442 AVAILABLE OPTIONS PACKAGED DEVICES VIOmax AT 25°C TA SMALL OUTLINE (D) CHIP CARRIER (FK) CERAMIC DIP (JG) TSSOP (PW) CERAMIC FLAT PACK (U) 0°C to 70°C 2.5 mV TLV2442CD — — TLV2442CPW — – 40°C to 85°C 950 µ µV 2.5 mV TLV2442AID TLV2442ID — — — — TLV2442AIPW — — — – 40°C to 125°C 950 µ µV 2.5 mV TLV2442AQD TLV2442QD — — — — — — — — – 55°C to 125°C 950 µV µ 2.5 mV — — TLV2442AMFK TLV2442MFK TLV2442AMJG TLV2442MJG — — TLV2442AMU TLV2442MU The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2442CDR). TLV2444 AVAILABLE OPTIONS PACKAGED DEVICES TA VIOmax AT 25°C SMALL OUTLINE (D) TSSOP (PW) 0°C to 70°C 2.5 mV TLV2444CD TLV2444CPW – 40°C to 125°C 950 µV µ 2.5 mV TLV2444AID TLV2444ID TLV2444AIPW TLV2444IPW The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2444CDR). TLV2442 D OR JG PACKAGE (TOP VIEW) 1OUT 1IN – 1IN + VDD – /GND 1 8 2 7 3 6 4 5 NC 1OUT NC VDD+ NC 3 2 1 20 19 18 5 17 6 16 7 15 8 14 9 10 11 12 13 NC 2OUT NC 2IN – NC NC 1OUT 1IN – 1IN + VDD – /GND 1 10 2 9 3 8 4 7 5 6 POST OFFICE BOX 655303 8 7 6 5 VDD + 2OUT 2IN – 2IN + TLV2444 D OR PW PACKAGE (TOP VIEW) NC VDD + 2OUT 2IN – 2IN + NC – No internal connection 2 1 2 3 4 TLV2442 U PACKAGE (TOP VIEW) NC VDD– /GND NC 2IN+ NC 4 1OUT 1IN– 1IN + VDD – / GND VDD + 2OUT 2IN – 2IN + TLV2442 FK PACKAGE (TOP VIEW) NC 1IN – NC 1IN + NC TLV2442 PW PACKAGE (TOP VIEW) • DALLAS, TEXAS 75265 1OUT 1IN – 1IN+ VDD+ 2IN+ 2IN – 2OUT 1 14 2 13 3 12 4 11 5 10 6 9 7 8 4OUT 4IN – 4IN+ VDD–/GND 3IN+ 3IN – 3OUT equivalent schematic (each amplifier) COMPONENT COUNT Q22 Q29 Q31 Q34 Transistors Diodes Resistors Capacitors Q36 VB3 69 5 26 6 Q26 Q24 Q32 VB2 VB1 VDD+ Q25 Q35 Q33 Q27 Q30 Q37 R10 D1 R9 R3 Q3 R4 R7 Q13 IN– Q6 Q4 Q8 Q10 Q18 Q20 IN+ Q7 R5 Q9 C2 VDD–/GND C1 VB3 Q11 Q16 R6 OUT C3 VB2 Q2 Q14 Q5 Q17 Q12 R1 Q21 Q19 R2 R8 VB4 3 SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 Q1 Q15 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Q23 VB4 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C I suffix (dual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C I suffix (quad) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD –. 2. Differential voltages are at IN+ with respect to IN –. Excessive current will flow if input is brought below VDD – – 0.3 V. 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded. DISSIPATION RATING TABLE PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D (8) D (14) FK JG PW (8) PW (14) U 725 mW 1022 mW 1375 mW 1050 mW 525 mW 720 mW 675 mW 5.8 mW/°C 7.6 mW/°C 11.0 mW/°C 8.4 mW/°C 4.2 mW/°C 5.6 mW/°C 5.4 mW/°C 464 mW 900 mW 880 mW 672 mW 336 mW 634 mW 432 mW 377 mW 777 mW 715 mW 546 mW 273 mW 547 mW 350 mW 145 mW 450 mW 275 mW 210 mW 105 mW 317 mW 135 mW recommended operating conditions C SUFFIX MIN Supply voltage, VDD MAX M SUFFIX MAX 10 2.7 VDD – VDD + – 1.3 VDD – VDD + – 1.3 V Common-mode input voltage, VIC VDD – VDD + – 1 VDD – VDD + – 1 VDD – + 2 VDD + – 1.3 VDD – + 2 VDD + – 1.3 V 125 – 40 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 – 55 10 UNIT VDD + – 1 125 2.7 MAX VDD – – 40 10 MIN VDD + – 1 70 2.7 Q SUFFIX MIN VDD – 0 10 I SUFFIX MIN Input voltage range, VI Operating free-air temperature, TA 2.7 MAX 125 V °C TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) PARAMETER TEST CONDITIONS TLV244xC TLV244xI VIO Input offset voltage TLV244xAI TLV2442AQ TLV2442AM αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TA† TLV2442 MIN 25°C Input offset current Input bias current 300 Full range 25°C 300 High-level output voltage IO = – 3 mA VIC = 1.5 V, 25°C 0.002 µV/mo 25°C 0.5 150 VOL AVD Low-level output voltage Large-signal L i l diff differential ti l voltage am amplification lification VIC = 1 1.5 5V V, VO = 1 V to 2 V IO = 3 mA RL = 600 Ω RL = 1 MΩ rid Differential input resistance ri Common-mode input resistance ci Common-mode input capacitance f = 10 kHz pA 1 –40°C to 85°C 150 125°C 350 Full range 260 0 to 2.25 0 to 2.25 125°C 0 to 2 pA –0.25 to 2.5 0 to 2 25°C to –55°C V –0.25 to 2.5 25°C 2.98 25°C 2.5 Full range IO = 100 µA 950 1600 µV/°C RS = 50 Ω IO = – 100 µA VOH µV 2 Full range |VIO| ≤ 5 mV, mV 950 1500 Full range 25°C Common-mode input voltage g range 2000 Full range TLV2442Q/AQ TLV2442M/AM VICR 300 UNIT 2500 25°C 25°C IIB MAX Full range 25°C to 85°C VIC = 1 1.5 5V V, VO = 1.5 V, RS = 50 Ω TYP V 2.25 25°C 0.02 25°C 0.63 Full range V 1 25°C 0.7 Full range 0.4 1 V/mV 25°C 750 25°C 1000 GΩ 25°C 1000 GΩ 25°C 8 pF zo Closed-loop output impedance f = 1 MHz, AV = 10 25°C 130 Ω † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C. NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted) (continued) PARAMETER CMRR Common-mode rejection ratio TA† TEST CONDITIONS VIC = 0 tto 2 2.25 25 V V, VO = 1 1.5 5 V, V RS = 50 Ω kSVR Supply-voltage y g rejection j ratio (∆VDD ± /∆VIO) VDD = 2.7 V to 8 V,, No load IDD Supply current (per channel) VO = 1.5 V, No load TLV2442Q/AQ TLV2442M/AM TLV2442 MIN TYP 25°C 65 75 Full range 55 Full range 50 25°C 80 Full range 80 VIC = VDD/2,, 25°C MAX UNIT dB 95 725 Full range dB 1100 1100 µA † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C. operating characteristics at specified free-air temperature, VDD = 3 V PARAMETER SR TEST CONDITIONS VO = 1 V to 2 V, RL = 600 Ω, CL = 100 pF Slew rate at unity gain Vn Equivalent input noise voltage VN(PP) Peak to peak equivalent input noise voltage Peak-to-peak In Equivalent input noise current THD + N BOM ts φm Total harmonic distortion plus noise TLV2442Q/AQ TLV2442M/AM TLV244x MIN TYP 25°C 0.65 1.3 Full range 0.65 Full range 0.4 25°C 170 f = 1 kHz 25°C 18 f = 0.1 Hz to 1 Hz 25°C 2.6 f = 0.1 Hz to 10 Hz 25°C 5.1 25°C VO = 0.5 V to 2.5 V, RL = 600 Ω, f = 1 kHz AV = 1 AV = 10 RL = 600 Ω,, output swing bandwidth Maximum output-swing VO(PP) = 1 V,, AV = 1, RL = 600 Ω,, CL = 100 pF Settling time AV = – 1, Step = – 2.3 V to 2.3 V,, RL = 600 Ω, CL = 100 pF RL = 600 Ω Ω, 25°C 0.6 nV/√Hz µV fA/√Hz 0.3% 2% 25°C 1 75 1.75 MHz 25°C 09 0.9 MHz To 0.1% 0 1% 15 1.5 µs 25°C 0 01% To 0.01% CL = 100 pF UNIT 0.08% AV = 100 f =10 kHz,, CL = 100 pF MAX V/µs f = 10 Hz Gain bandwidth product Gain-bandwidth Phase margin at unity gain TA† 32 3.2 25°C 65° Gain margin 25°C 9 dB † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C. 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TLV244xC TLV244xI VIO Input offset voltage TLV244xA TLV2442AQ TLV2442AM αVIO Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) IIO TA† TLV244x MIN 25°C VIC = 0, RS = 50 Ω Input offset current Input bias current 300 Full range |VIO| ≤ 5 mV mV, 25°C 300 25°C 0.002 µV/mo 25°C 0.5 150 VIC = 2.5 V, VOL AVD Low-level output voltage Large-signal L i l diff differential ti l voltage am lification amplification IOL = 100 µA mA pA 1 –40°C to 85°C 150 125°C 350 Full range 260 0 to 4.25 –0.25 to 4.5 pA V 0 to 4 25°C IOH = – 5 mA 950 1600 µV/°C RS = 50 Ω IOH = – 100 µA High-level output voltage µV 2 Full range VOH 950 1500 Full range 25°C Common-mode input voltage g range 2000 Full range TLV2442Q/AQ TLV2442M/AM VICR 300 UNIT 2500 25°C 25°C IIB MAX Full range 25°C to 85°C VDD ± = ± 2.5 V, VO = 0, TYP 4.97 25°C 4 Full range 4 25°C 0.01 25°C 0.8 VIC = 2 2.5 5V V, IOL = 5 RL = 600 Ω‡ 25°C 0.9 VIC = 2.5 2 5 V, V VO = 1 V to 4 V Full range 0.5 RL = 1 MΩ‡ V 4.35 Full range V 1.25 1.3 V/mV 25°C 950 rid Differential input resistance 25°C 1000 GΩ ri Common-mode input resistance 25°C 1000 GΩ ci Common-mode input capacitance f = 10 kHz 25°C 8 pF zo Closed-loop output impedance f = 1 MHz, 140 Ω CMRR Common mode rejection ratio Common-mode VIC = 0 to 4.25 V,, RS = 50 Ω AV = 10 25°C VO = 2.5 V,, 25°C 70 Full range 70 75 dB † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C. ‡ Referenced to 2.5 V NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted) (continued) PARAMETER TEST CONDITIONS kSVR Supply voltage rejection ratio (∆VDD /∆VIO) Supply-voltage VDD = 4.4 V to 8 V,, VIC = VDD /2, No load IDD Supply current (per channel) VO = 2.5 25V V, No load TA† TLV244x MIN TYP 25°C 80 95 Full range 80 25°C 750 Full range MAX UNIT dB 1100 1100 µA † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C. operating characteristics at specified free-air temperature, VDD = 5 V PARAMETER SR Slew rate at unity gain TEST CONDITIONS VO = 0.5 0 5 V to t 2.5 2 5 V, V RL = 600 Ω‡, CL = 100 pF‡ TLV2442Q/AQ TLV2442M/AM TYP 1.4 25°C 0.75 Full range 0.75 Full range 0.5 130 25°C 16 f = 0.1 Hz to 1 Hz 25°C 1.8 f = 0.1 Hz to 10 Hz 25°C 3.6 25°C 0.6 Peak-to-peak equivalent q input noise voltage In Equivalent input noise current THD + N Total harmonic distortion plus noise VO = 1.5 V to 3.5 V, f = 1 kHz, RL = 600 Ω‡ Gain-bandwidth product f =10 kHz, CL = 100 pF‡ RL = 600 Ω‡, BOM Maximum output-swing bandwidth VO(PP) = 2 V, RL = 600 Ω‡, AV = 1, CL = 100 pF‡ ts Settling time AV = – 1, Step = 0.5 V to 2.5 V,, RL = 600 Ω‡, CL = 100 pF‡ RL = 600 Ω‡, AV = 1 AV = 10 UNIT nV/√Hz µV fA/√Hz 0.017% 25°C AV = 100 0.17% 1.5% 25°C 1.81 MHz 25°C 0.5 MHz To 0.1% 1.5 µs 25°C To 0.01% CL = 100 pF‡ MAX V/µs 25°C VN(PP) Gain margin MIN f = 1 kHz Equivalent input noise voltage Phase margin at unity gain TLV244x f = 10 Hz Vn φm TA† 2.6 25°C 68° 8 dB † Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C. ‡ Referenced to 2.5 V 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25°C TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS Table of Graphs† FIGURE VIO Input offset voltage Distribution vs Common-mode voltage αVIO IIB /IIO Input offset voltage temperature coefficient Distribution Input bias and input offset currents vs Free-air temperature VOH VOL High-level output voltage vs High-level output current 9, 10 Low-level output voltage vs Low-level output current 11, 12 VO(PP) Maximum peak-to-peak output voltage vs Frequency 13 IOS Short circuit output current Short-circuit vs Supply y voltage g vs Free-air temperature 14 15 VO AVD Output voltage vs Differential Input voltage Differential voltage amplification vs Load resistance AVD Large signal differential voltage amplification Large-signal vs Frequency q y vs Free-air temperature 19,, 20 21, 22 zo Output impedance vs Frequency 23, 24 CMRR Common mode rejection ratio Common-mode vs Frequency q y vs Free-air temperature 25 26 kSVR Supply voltage rejection ratio Supply-voltage vs Frequency q y vs Free-air temperature 27,, 28 29 IDD Supply current vs Supply voltage 30 Slew rate vs Load capacitance vs Free-air temperature 31 32 SR VO Vn 2,, 3 4, 5 6, 7 8 16, 17 18 Inverting large-signal pulse response 33, 34 Voltage-follower large-signal pulse response 35, 36 Inverting small-signal pulse response 37, 38 Voltage-follower small-signal pulse response 39, 40 Equivalent input noise voltage vs Frequency Noise voltage Over a 10-second period Total harmonic distortion plus noise vs Frequency Gain bandwidth product Gain-bandwidth vs Free-air temperature vs Supply voltage Phase margin vs Frequency q y vs Load capacitance 19,, 20 48 Gain margin vs Load capacitance 49 B1 Unity-gain bandwidth vs Load capacitance † For all graphs where VDD = 5 V, all loads are referenced to 2.5 V. 50 THD + N φm POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41, 42 43 44, 45 46 47 9 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2442 INPUT OFFSET VOLTAGE 18 10 8 6 4 12 10 8 6 4 0 –700 –600 –500 –400 600 700 800 900 0 –300 –200 –100 0 100 200 300 400 500 2 –700 2 VIO – Input Offset Voltage – µV VIO – Input Offset Voltage – µV Figure 2 Figure 3 INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE INPUT OFFSET VOLTAGE vs COMMON-MODE INPUT VOLTAGE 2 2 VDD = 3 V TA = 25°C 1.5 VIO – Input Offset Voltage – mV VIO – Input Offset Voltage – mV 1.5 1 0.5 0 –0.5 –1 –1.5 –2 –0.5 VDD = 5 V TA = 25°C 1 0.5 0 –0.5 –1 –1.5 0 0.5 1 1.5 2 2.5 3 –2 –0.5 0 VIC – Common-Mode Input Voltage – V 0.5 1 1.5 2 Figure 5 POST OFFICE BOX 655303 2.5 3 3.5 4 VIC – Common-Mode Input Voltage – V Figure 4 10 500 600 700 800 900 12 14 300 400 14 16 –100 0 100 200 TA = 25°C 868 Amplifiers From 1 Wafer Lot VDD = ± 2.5 V TA = 25°C –300 –200 16 20 Percentage of Amplifiers – % 18 868 Amplifiers From 1 Wafer Lot VDD = ± 1.5 V –600 –500 –400 Percentage of Amplifiers – % 20 DISTRIBUTION OF TLV2442 INPUT OFFSET VOLTAGE • DALLAS, TEXAS 75265 4.5 5 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS DISTRIBUTION OF TLV2442 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT DISTRIBUTION OF TLV2442 INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT 15 18 32 Amplifiers From 1 Wafer Lot VDD = ± 1.5 V P Package 25°C to 125°C 15 Percentage of Amplifiers – % Percentage of Amplifiers – % 12 32 Amplifiers From 2 Wafer Lots VDD = ± 2.5 V P Package 25°C to 125°C 9 6 3 12 9 6 3 0 –8 –7 –6 0 –5 –4 –3 –2 –1 0 1 2 3 4 –8 –7 –6 αVIO – Temperature Coefficient – µV/°C 0 1 2 3 4 Figure 7 Figure 6 HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT INPUT BIAS AND INPUT OFFSET CURRENTS vs FREE-AIR TEMPERATURE 3 35 VDD = ± 2.5 V VIC = 0 VO = 0 RS = 50 Ω 30 VDD = 3 V 25 20 IIB 15 IIO 10 5 0 VOH – High-Level Output Voltage – V IIB I IO – Input Bias and Input Offset Currents – pA IIB and IIO –5 –4 –3 –2 –1 αVIO – Temperature Coefficient – µV/°C 2.5 2 TA = – 40°C 1.5 1 TA = 125°C 0.5 TA = 85°C TA = 25°C 0 25 45 65 85 105 125 TA – Free-Air Temperature – °C 0 2 4 6 8 10 12 IOH – High-Level Output Current – mA Figure 8 Figure 9 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 5 3 VDD = 5 V VDD = 3 V 4 TA = – 40°C 3.5 VOL – Low-Level Output Voltage – V VOH – High-Level Output Voltage – V 4.5 TA = 25°C 3 2.5 2 TA = 125°C 1.5 TA = 85°C 1 0.5 0 2.5 TA = 125°C 2 TA = 85°C 1.5 1 TA = 25°C TA = – 40°C 0.5 0 0 5 10 15 20 25 0 2 IOH – High-Level Output Current – mA Figure 10 2 TA = 125°C 1.5 TA = 85°C 1 TA = 25°C 0.5 TA = – 40°C 0 6 8 10 VO(PP) – Maximum Peak-to-Peak Output Voltage – V VOL – Low-Level Output Voltage – V VDD = 5 V 4 10 5 RL = 600 Ω VDD = 5 V 4 3 VDD = 3 V 2 1 0 100 IOL – Low-Level Output Current – mA 1k 10 k Figure 13 POST OFFICE BOX 655303 100 k f – Frequency – Hz Figure 12 12 8 MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE vs FREQUENCY 2.5 2 6 Figure 11 LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT 0 4 IOL – Low-Level Output Current – mA • DALLAS, TEXAS 75265 1M 10 M TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE SHORT-CIRCUIT OUTPUT CURRENT vs FREE-AIR TEMPERATURE 25 VO = VDD/2 VIC = VDD/2 TA = 25°C 20 I OS – Short-Circuit Output Current – mA I OS – Short-Circuit Output Current – mA 25 VID = –100 mV 15 10 5 0 –5 –10 –15 VID = 100 mV –20 –25 2 3 4 5 6 7 8 9 15 VID = –100 mV 10 5 0 –5 –10 VID = 100 mV –15 –20 –25 –75 10 VDD = 5 V VO = 2.5 V 20 –50 Figure 14 25 50 75 100 125 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 5 3 VDD = 3 V VIC = 1.5 V RL = 600 Ω TA = 25°C 4 VO – Output Voltage – V VO – Output Voltage – V 0 Figure 15 OUTPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE 2.5 –25 TA – Free-Air Temperature – °C VDD – Supply Voltage – V 2 1.5 1 VDD = 5 V VIC = 2.5 V RL = 600 Ω TA = 25°C 3 2 1 0.5 0 –1000 –750 –500 –250 0 250 500 750 1000 0 –1000 –750 –500 –250 0 250 500 750 1000 VID – Differential Input Voltage – µV VID – Differential Input Voltage – µV Figure 16 Figure 17 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS DIFFERENTIAL VOLTAGE AMPLIFICATION vs LOAD RESISTANCE A VD – Differential Voltage Amplification – V/mV 100 VO(PP) = 2 V TA = 25°C VDD = 5 V VDD = 3 V 10 1 0.1 1 10 100 1000 RL – Load Resistance – kΩ Figure 18 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY VDD = 3 V RL = 600 Ω CL = 600 pF TA = 25°C AVD AVD– Large-Signal Differential Voltage Amplification – dB 60 ÁÁ ÁÁ ÁÁ 135° 40 90° 20 45° 0 0° – 20 – 40 10 k – 45° 100 k 1M f – Frequency – Hz Figure 19 14 180° POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 – 90° 10 M φ m – Phase Margin 80 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE MARGIN vs FREQUENCY ÁÁ ÁÁ ÁÁ 60 180° VDD = 5 V RL = 600 Ω CL = 600 pF TA = 25°C 135° 40 90° 20 45° 0 0° –20 φ m – Phase Margin AVD AVD– Large-Signal Differential Voltage Amplification – dB 80 –45° –40 10 k 100 k –90° 10 M 1M f – Frequency – Hz Figure 20 LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION vs FREE-AIR TEMPERATURE 1000 1000 ÁÁ ÁÁ ÁÁ 100 RL = 1 MΩ 10 ÁÁ ÁÁ ÁÁ RL = 600 Ω 1 0.1 –75 –50 –25 0 25 50 75 100 VDD = 5 V VIC = 2.5 V VO = 1 V to 4 V RL = 1 MΩ AVD AVD– Large-Signal Differential Voltage Amplification – V/mV AVD AVD– Large-Signal Differential Voltage Amplification – V/mV VDD = 3 V VIC = 2.5 V VO = 1 V to 4 V 125 100 10 RL = 600 Ω 1 0.1 –75 –50 TA – Free-Air Temperature – °C –25 0 25 50 75 100 125 TA – Free-Air Temperature – °C Figure 21 Figure 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS OUTPUT IMPEDANCE vs FREQUENCY OUTPUT IMPEDANCE vs FREQUENCY 1000 100 AV = 100 zo O zo – Output Impedance – Ω zo zo – Output Impedance – Ω O VDD = 3 V TA = 25°C 100 AV = 100 10 AV = 10 AV = 1 1 10 AV = 10 1 AV = 1 VDD = 5 V TA = 25°C 0.1 100 1k 10 k 100 k 0.1 100 1M 1k f – Frequency – Hz Figure 23 1M COMMON-MODE REJECTION RATIO vs FREE-AIR TEMPERATURE 100 100 TA = 25°C VDD = 5 V VIC = 2.5 V 80 CMRR – Common-Mode Rejection Ratio – dB CMRR – Common-Mode Rejection Ratio – dB 100 k Figure 24 COMMON-MODE REJECTION RATIO vs FREQUENCY VDD = 3 V VIC = 1.5 V 60 40 20 0 10 100 1k 10 k 100 k 1M 10 M VDD = 5 V 90 VDD = 3 V 80 70 60 – 75 – 50 – 25 0 25 Figure 25 Figure 26 POST OFFICE BOX 655303 50 75 100 TA – Free-Air Temperature – °C f – Frequency – Hz 16 10 k f – Frequency – Hz • DALLAS, TEXAS 75265 125 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY SUPPLY-VOLTAGE REJECTION RATIO vs FREQUENCY 100 VDD = 3 V TA = 25°C kSVR k SVR – Supply-Voltage Rejection Ratio – dB kSVR k SVR – Supply-Voltage Rejection Ratio – dB 100 80 60 kSVR+ 40 kSVR – 20 0 10 100 10 k 1k 100 k 1M VDD = 5 V TA = 25°C 80 60 kSVR+ kSVR – 40 20 0 10 10 M 100 1k f – Frequency – Hz 100 k 1M 10 M f – Frequency – Hz Figure 27 Figure 28 SUPPLY CURRENT vs SUPPLY VOLTAGE SUPPLY-VOLTAGE REJECTION RATIO vs FREE-AIR TEMPERATURE 100 2.5 VDD = 2.5 V to 8 V 2 98 IIDD DD – Supply Current – mA kSVR k SVR – Supply-Voltage Rejection Ratio – dB 10 k 96 94 TA = 85°C 1.5 TA = – 40°C 1 0.5 92 90 – 75 TA = 25°C 0 – 50 – 25 0 25 50 75 100 125 0 TA – Free-Air Temperature – °C Figure 29 2 4 6 8 VDD – Supply Voltage – V 10 Figure 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS SLEW RATE vs LOAD CAPACITANCE SLEW RATE vs FREE-AIR TEMPERATURE 3 3 VDD = 5 V AV = – 1 TA = 25°C 2.5 VDD = 5 V RL = 600 Ω CL = 100 pF AV = 1 2.5 SR – Slew Rate – V/ µs SR – Slew Rate – V/ µ s SR – 2 SR – SR + 1.5 1 0.5 2 1.5 SR + 1 0.5 0 10 100 1k 10 k CL – Load Capacitance – pF 0 – 75 100 k – 50 – 25 Figure 31 25 50 75 100 125 Figure 32 INVERTING LARGE-SIGNAL PULSE RESPONSE INVERTING LARGE-SIGNAL PULSE RESPONSE 3 5 VDD = 3 V RL = 2 kΩ CL = 100 pF AV = – 1 TA = 25°C VDD = 5 V RL = 2 kΩ CL = 100 pF AV = – 1 TA = 25°C 4 V VO O – Output Voltage – V VO – Output Voltage – V VO 0 TA – Free-Air Temperature – °C 2 1 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 0 0 1 t – Time – µs 3 4 5 6 t – Time – µs Figure 33 18 2 Figure 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 8 9 10 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE 5 VDD = 3 V RL = 600 Ω CL = 100 pF AV = 1 TA = 25°C VDD = 5 V RL = 600 Ω CL = 100 pF AV = 1 TA = 25°C 4 VO – Output Voltage – V VO VO – Output Voltage – V VO 3 2 1 3 2 1 0 0 1 2 3 4 5 6 7 8 9 0 10 0 0.5 1 1.5 t – Time – µs INVERTING SMALL-SIGNAL PULSE RESPONSE 3.5 4 4.5 5 VDD = 5 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 2.56 VO – Output Voltage – V VO VO – Output Voltage – V VO 1.54 3 INVERTING SMALL-SIGNAL PULSE RESPONSE 2.58 VDD = 3 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 1.56 2.5 Figure 36 Figure 35 1.58 2 t – Time – µs 1.52 1.5 1.48 1.46 2.54 2.52 2.5 2.48 2.46 1.44 0 1 2 3 4 5 6 7 8 9 10 2.44 0 1 t – Time – µs 2 3 4 5 6 7 8 9 10 t – Time – µs Figure 37 Figure 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE VOLTAGE-FOLLOWER SMALL-SIGNAL PULSE RESPONSE 1.58 1.54 1.52 1.5 1.48 1.46 1.44 VDD = 5 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 2.56 VO – Output Voltage – V VO 1.56 VO – Output Voltage – V VO 2.58 VDD = 3 V RL = 600 Ω CL = 100 pF AV = –1 TA = 25°C 2.54 2.52 2.5 2.48 2.46 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 2.44 5 0 0.5 t – Time – µs 200 Vn nV HzHz Vn – Equivalent Input Noise Voltage – nV/ Vn nV HzHz Vn – Equivalent Input Noise Voltage – nV/ 2.5 3 3.5 4 4.5 5 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY VDD = 3 V RS = 20 Ω TA = 25°C 180 160 140 120 100 80 60 40 20 100 1k f – Frequency – Hz 10 k 140 VDD = 5 V RS = 20 Ω TA = 25°C 120 100 80 60 40 20 0 10 Figure 41 20 2 Figure 40 EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY 10 1.5 t – Time – µs Figure 39 0 1 100 1k f – Frequency – Hz Figure 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 10 k TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY 2000 THD + N – Total Harmonic Distortion Plus Noise – % NOISE VOLTAGE OVER A 10-SECOND PERIOD VDD = 5 V f = 0.1 Hz to 10 Hz TA = 25°C 1500 Noise Voltage – nV 1000 500 0 – 500 – 1000 –1500 –2000 0 1 2 3 4 5 6 7 8 9 10 10 VDD = 3 V RL = 600 Ω TA = 25°C AV = 100 1 AV = 10 0.1 AV = 1 0.01 10 10 k 100 k f – Frequency – Hz Figure 43 Figure 44 TOTAL HARMONIC DISTORTION PLUS NOISE vs FREQUENCY GAIN-BANDWIDTH PRODUCT vs FREE-AIR TEMPERATURE 10 3 VDD = 5 V RL = 600 Ω TA = 25°C Gain-Bandwidth Product – MHz THD + N – Total Harmonic Distortion Plus Noise – % 1k 100 t – Time – s AV = 100 1 AV = 10 0.1 RL = 600 Ω CL = 100 pF f = 10 kHz 2.5 2 1.5 AV = 1 0.01 10 100 1k 10 k 100 k 1 – 50 – 25 f – Frequency – Hz 0 25 50 75 100 125 TA – Free-Air Temperature – °C Figure 45 Figure 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 TYPICAL CHARACTERISTICS GAIN-BANDWIDTH PRODUCT vs SUPPLY VOLTAGE PHASE MARGIN vs LOAD CAPACITANCE 75° RL = 600 Ω CL = 100 pF f = 10 kHz TA = 25°C 1.9 Rnull = 100 Ω 60° φ om m – Phase Margin Gain-Bandwidth Product – MHz 2 1.8 1.7 45° Rnull = 50 Ω 30° Rnull = 0 1.6 Rnull = 20 Ω 15° RL = 600 Ω TA = 25°C 0° 10 1.5 0 1 2 3 4 5 6 |VDD ±| – Supply Voltage – V 7 8 Figure 47 RL = 600 Ω TA = 25°C UNITY-GAIN BANDWIDTH vs LOAD CAPACITANCE B1 – Unity-Gain Bandwidth – kHz Gain Margin – dB Rnull = 100 Ω Rnull = 20 Ω 10 5 0 10 2 Rnull = 50 Ω 20 15 1 ÁÁ ÁÁ Rnull = 0 100 1K 10 K CL – Load Capacitance – pF RL = 600 Ω TA = 25°C 1.5 100 K 0.5 0 10 Figure 49 22 100 k Figure 48 GAIN MARGIN vs LOAD CAPACITANCE 25 100 1k 10 k CL – Load Capacitance – pF 100 1k 10 k CL – Load Capacitance – pF Figure 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 k TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 APPLICATION INFORMATION macromodel information Macromodel information provided was derived using PSpice Parts model generation software. The Boyle macromodel (see Note 5) and subcircuit in Figure 51 were generated using the TLV244x typical electrical and operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases): D D D D D D D D D D D D Maximum positive output voltage swing Maximum negative output voltage swing Slew rate Quiescent power dissipation Input bias current Open-loop voltage amplification Unity gain frequency Common-mode rejection ratio Phase margin DC output resistance AC output resistance Short-circuit output current limit NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integated Circuit Operational Amplifiers,” IEEE Journal of Solid-State Circuits, SC-9, 353 (1974). 99 3 VCC + 9 RSS 92 FB + 10 J1 DP VC J2 IN + 11 RD1 VAD DC 12 C1 R2 – 53 HLIM – C2 6 – – – + VLN + GCM GA VLIM 8 – RD2 54 4 91 + VLP 7 60 + – + DLP 90 RO2 VB IN – VCC – – + ISS RP 2 1 DLN EGND + – RO1 DE 5 + VE OUT .SUBCKT TLV2442 1 2 3 4 5 C1 11 12 14E–12 C2 6 7 60.00E–12 DC 5 53 DX DE 54 5 DX DLP 90 91 DX DLN 92 90 DX DP 4 3 DX EGND 99 0 POLY (2) (3,0) (4,) 0 .5 .5 FB 7 99 POLY (5) VB VC VE VLP VLN 0 + 984.9E3 –1E6 1E6 1E6 –1E6 GA 6 0 11 12 377.0E–6 GCM 0 6 10 99 134E–9 ISS 3 10 DC 216.OE–6 HLIM 90 0 VLIM 1K J1 11 2 10 JX J2 12 1 10 JX R2 6 9 100.OE3 RD1 60 11 2.653E3 RD2 60 12 2.653E3 R01 8 5 50 R02 7 99 50 RP 3 4 4.310E3 RSS 10 99 925.9E3 VAD 60 4 –.5 VB 9 0 DC 0 VC 3 53 DC .78 VE 54 4 DC .78 VLIM 7 8 DC 0 VLP 91 0 DC 1.9 VLN 0 92 DC 9.4 .MODEL DX D (IS=800.0E–18) .MODEL JX PJF (IS=1.500E–12BETA=1.316E-3 + VTO=–.270) .ENDS Figure 51. Boyle Macromodel and Subcircuit PSpice and Parts are registered trademarks of MicroSim Corporation. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0.050 (1,27) 0.020 (0,51) 0.014 (0,35) 14 0.010 (0,25) M 8 0.008 (0,20) NOM 0.244 (6,20) 0.228 (5,80) 0.157 (4,00) 0.150 (3,81) Gage Plane 0.010 (0,25) 1 7 0°– 8° A 0.044 (1,12) 0.016 (0,40) Seating Plane 0.069 (1,75) MAX 0.010 (0,25) 0.004 (0,10) PINS ** 0.004 (0,10) 8 14 16 A MAX 0.197 (5,00) 0.344 (8,75) 0.394 (10,00) A MIN 0.189 (4,80) 0.337 (8,55) 0.386 (9,80) DIM 4040047 / D 10/96 NOTES: A. B. C. D. 24 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15). Falls within JEDEC MS-012 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER 28 TERMINAL SHOWN 18 17 16 15 14 13 NO. OF TERMINALS ** 12 19 11 20 10 A B MIN MAX MIN MAX 20 0.342 (8,69) 0.358 (9,09) 0.307 (7,80) 0.358 (9,09) 28 0.442 (11,23) 0.458 (11,63) 0.406 (10,31) 0.458 (11,63) 21 9 22 8 44 0.640 (16,26) 0.660 (16,76) 0.495 (12,58) 0.560 (14,22) 23 7 52 0.739 (18,78) 0.761 (19,32) 0.495 (12,58) 0.560 (14,22) 24 6 68 25 5 0.938 (23,83) 0.962 (24,43) 0.850 (21,6) 0.858 (21,8) 84 1.141 (28,99) 1.165 (29,59) 1.047 (26,6) 1.063 (27,0) B SQ A SQ 26 27 28 1 2 3 4 0.080 (2,03) 0.064 (1,63) 0.020 (0,51) 0.010 (0,25) 0.020 (0,51) 0.010 (0,25) 0.055 (1,40) 0.045 (1,14) 0.045 (1,14) 0.035 (0,89) 0.045 (1,14) 0.035 (0,89) 0.028 (0,71) 0.022 (0,54) 0.050 (1,27) 4040140 / D 10/96 NOTES: A. B. C. D. E. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a metal lid. The terminals are gold plated. Falls within JEDEC MS-004 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE 0.400 (10,20) 0.355 (9,00) 8 5 0.280 (7,11) 0.245 (6,22) 1 4 0.065 (1,65) 0.045 (1,14) 0.310 (7,87) 0.290 (7,37) 0.020 (0,51) MIN 0.200 (5,08) MAX Seating Plane 0.130 (3,30) MIN 0.063 (1,60) 0.015 (0,38) 0.100 (2,54) 0°–15° 0.023 (0,58) 0.015 (0,38) 0.014 (0,36) 0.008 (0,20) 4040107/C 08/96 NOTES: A. B. C. D. E. 26 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. Falls within MIL-STD-1835 GDIP1-T8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PIN SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° 0,75 0,50 A Seating Plane 0,15 0,05 1,20 MAX 0,10 PINS ** 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064 / E 08/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 TLV2442, TLV2442A, TLV2444, TLV2444A Advanced LinCMOS RAIL-TO-RAIL OUTPUT WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999 MECHANICAL DATA U (S-GDFP-F10) CERAMIC DUAL FLATPACK 0.250 (6,35) 0.246 (6,10) 0.006 (0,15) 0.004 (0,10) 0.080 (2,03) 0.050 (1,27) 0.045 (1,14) 0.026 (0,66) 0.300 (7,62) 0.350 (8,89) 0.250 (6,35) 1 0.350 (8,89) 0.250 (6,35) 10 0.019 (0,48) 0.015 (0,38) 0.050 (1,27) 0.250 (6,35) 5 6 0.025 (0,64) 0.005 (0,13) 1.000 (25,40) 0.750 (19,05) 4040179 / B 03/95 NOTES: A. B. C. D. E. 28 All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. This package can be hermetically sealed with a ceramic lid using glass frit. Index point is provided on cap for terminal identification only. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1999, Texas Instruments Incorporated