TI TLV2442ID

TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
D
D
D
D
D
D
Output Swing Includes Both Supply Rails
Extended Common-Mode Input Voltage
Range . . . 0 V to 4.25 V (Min) at 5-V Single
Supply
No Phase Inversion
Low Noise . . . 16 nV/√Hz Typ at f = 1 kHz
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV244xA)
Low Input Bias Current . . . 1 pA Typ
D
D
D
D
D
600-Ω Output Drive
High-Gain Bandwidth . . . 1.8 MHz Typ
Low Supply Current . . . 750 µA Per Channel
Typ
Macromodel Included
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
description
3
VDD = 3 V
VOH – High-Level Output Voltage – V
The TLV244x and TLV244xA are low-voltage
operational amplifiers from Texas Instruments.
The common-mode input voltage range of these
devices has been extended over typical standard
CMOS amplifiers, making them suitable for a wide
range of applications. In addition, these devices
do not phase invert when the common-mode input
is driven to the supply rails. This satisfies most
design requirements without paying a premium
for rail-to-rail input performance. They also exhibit
rail-to-rail output performance for increased
dynamic range in single- or split-supply applications. This family is fully characterized at 3-V and
5-V supplies and is optimized for low-voltage
operation. Both devices offer comparable ac
performance while having lower noise, input offset
voltage, and power dissipation than existing
CMOS operational amplifiers. The TLV244x has
increased output drive over previous rail-to-rail
operational amplifiers and can drive 600-Ω loads
for telecommunications applications.
2.5
2
TA = – 40°C
1.5
1
TA = 125°C
0.5
TA = 85°C TA = 25°C
0
0
2
4
6
8
10
12
IOH – High-Level Output Current – mA
Figure 1
The other members in the TLV244x family are the low-power, TLV243x, and micro-power, TLV2422, versions.
The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TLV244xA is available with
a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output
operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal
for high density, battery-powered equipment.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
Copyright  1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TLV2442 AVAILABLE OPTIONS
PACKAGED DEVICES
VIOmax
AT 25°C
TA
SMALL
OUTLINE
(D)
CHIP CARRIER
(FK)
CERAMIC DIP
(JG)
TSSOP
(PW)
CERAMIC FLAT
PACK
(U)
0°C to 70°C
2.5 mV
TLV2442CD
—
—
TLV2442CPW
—
– 40°C to 85°C
950 µ
µV
2.5 mV
TLV2442AID
TLV2442ID
—
—
—
—
TLV2442AIPW
—
—
—
– 40°C to 125°C
950 µ
µV
2.5 mV
TLV2442AQD
TLV2442QD
—
—
—
—
—
—
—
—
– 55°C to 125°C
950 µV
µ
2.5 mV
—
—
TLV2442AMFK
TLV2442MFK
TLV2442AMJG
TLV2442MJG
—
—
TLV2442AMU
TLV2442MU
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2442CDR).
TLV2444 AVAILABLE OPTIONS
PACKAGED DEVICES
TA
VIOmax
AT 25°C
SMALL
OUTLINE
(D)
TSSOP
(PW)
0°C to 70°C
2.5 mV
TLV2444CD
TLV2444CPW
– 40°C to 125°C
950 µV
µ
2.5 mV
TLV2444AID
TLV2444ID
TLV2444AIPW
TLV2444IPW
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2444CDR).
TLV2442
D OR JG PACKAGE
(TOP VIEW)
1OUT
1IN –
1IN +
VDD – /GND
1
8
2
7
3
6
4
5
NC
1OUT
NC
VDD+
NC
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN –
NC
NC
1OUT
1IN –
1IN +
VDD – /GND
1
10
2
9
3
8
4
7
5
6
POST OFFICE BOX 655303
8
7
6
5
VDD +
2OUT
2IN –
2IN +
TLV2444
D OR PW PACKAGE
(TOP VIEW)
NC
VDD +
2OUT
2IN –
2IN +
NC – No internal connection
2
1
2
3
4
TLV2442
U PACKAGE
(TOP VIEW)
NC
VDD– /GND
NC
2IN+
NC
4
1OUT
1IN–
1IN +
VDD – / GND
VDD +
2OUT
2IN –
2IN +
TLV2442
FK PACKAGE
(TOP VIEW)
NC
1IN –
NC
1IN +
NC
TLV2442
PW PACKAGE
(TOP VIEW)
• DALLAS, TEXAS 75265
1OUT
1IN –
1IN+
VDD+
2IN+
2IN –
2OUT
1
14
2
13
3
12
4
11
5
10
6
9
7
8
4OUT
4IN –
4IN+
VDD–/GND
3IN+
3IN –
3OUT
equivalent schematic (each amplifier)
COMPONENT
COUNT
Q22
Q29
Q31
Q34
Transistors
Diodes
Resistors
Capacitors
Q36
VB3
69
5
26
6
Q26
Q24
Q32
VB2
VB1
VDD+
Q25
Q35
Q33
Q27
Q30
Q37
R10
D1
R9
R3
Q3
R4
R7
Q13
IN–
Q6
Q4
Q8
Q10
Q18
Q20
IN+
Q7
R5
Q9
C2
VDD–/GND
C1
VB3
Q11
Q16
R6
OUT
C3
VB2
Q2
Q14
Q5
Q17
Q12
R1
Q21
Q19
R2
R8
VB4
3
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
Q1
Q15
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
Q23
VB4
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VDD (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± VDD
Input voltage, VI (any input, see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.3 V to VDD
Input current, II (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 5 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VDD + . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current out of VDD – . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix (dual) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
I suffix (quad) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
Q suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD –.
2. Differential voltages are at IN+ with respect to IN –. Excessive current will flow if input is brought below VDD – – 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D (8)
D (14)
FK
JG
PW (8)
PW (14)
U
725 mW
1022 mW
1375 mW
1050 mW
525 mW
720 mW
675 mW
5.8 mW/°C
7.6 mW/°C
11.0 mW/°C
8.4 mW/°C
4.2 mW/°C
5.6 mW/°C
5.4 mW/°C
464 mW
900 mW
880 mW
672 mW
336 mW
634 mW
432 mW
377 mW
777 mW
715 mW
546 mW
273 mW
547 mW
350 mW
145 mW
450 mW
275 mW
210 mW
105 mW
317 mW
135 mW
recommended operating conditions
C SUFFIX
MIN
Supply voltage, VDD
MAX
M SUFFIX
MAX
10
2.7
VDD –
VDD + – 1.3
VDD –
VDD + – 1.3
V
Common-mode input voltage,
VIC
VDD –
VDD + – 1
VDD –
VDD + – 1
VDD – + 2
VDD + – 1.3
VDD – + 2
VDD + – 1.3
V
125
– 40
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
– 55
10
UNIT
VDD + – 1
125
2.7
MAX
VDD –
– 40
10
MIN
VDD + – 1
70
2.7
Q SUFFIX
MIN
VDD –
0
10
I SUFFIX
MIN
Input voltage range, VI
Operating free-air temperature,
TA
2.7
MAX
125
V
°C
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV244xC
TLV244xI
VIO
Input offset voltage
TLV244xAI
TLV2442AQ
TLV2442AM
αVIO
Temperature coefficient of input
offset voltage
Input offset voltage long-term drift
(see Note 4)
IIO
TA†
TLV2442
MIN
25°C
Input offset current
Input bias current
300
Full range
25°C
300
High-level output voltage
IO = – 3 mA
VIC = 1.5 V,
25°C
0.002
µV/mo
25°C
0.5
150
VOL
AVD
Low-level output voltage
Large-signal
L
i
l diff
differential
ti l
voltage am
amplification
lification
VIC = 1
1.5
5V
V,
VO = 1 V to 2 V
IO = 3
mA
RL = 600 Ω
RL = 1 MΩ
rid
Differential input resistance
ri
Common-mode input resistance
ci
Common-mode input capacitance
f = 10 kHz
pA
1
–40°C to
85°C
150
125°C
350
Full range
260
0
to
2.25
0
to
2.25
125°C
0
to
2
pA
–0.25
to
2.5
0
to
2
25°C to
–55°C
V
–0.25
to
2.5
25°C
2.98
25°C
2.5
Full range
IO = 100 µA
950
1600
µV/°C
RS = 50 Ω
IO = – 100 µA
VOH
µV
2
Full range
|VIO| ≤ 5 mV,
mV
950
1500
Full range
25°C
Common-mode input voltage
g
range
2000
Full range
TLV2442Q/AQ
TLV2442M/AM
VICR
300
UNIT
2500
25°C
25°C
IIB
MAX
Full range
25°C
to 85°C
VIC = 1
1.5
5V
V,
VO = 1.5 V,
RS = 50 Ω
TYP
V
2.25
25°C
0.02
25°C
0.63
Full range
V
1
25°C
0.7
Full range
0.4
1
V/mV
25°C
750
25°C
1000
GΩ
25°C
1000
GΩ
25°C
8
pF
zo
Closed-loop output impedance
f = 1 MHz,
AV = 10
25°C
130
Ω
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
(continued)
PARAMETER
CMRR Common-mode rejection ratio
TA†
TEST CONDITIONS
VIC = 0 tto 2
2.25
25 V
V,
VO = 1
1.5
5 V,
V
RS = 50 Ω
kSVR
Supply-voltage
y
g rejection
j
ratio
(∆VDD ± /∆VIO)
VDD = 2.7 V to 8 V,,
No load
IDD
Supply current (per channel)
VO = 1.5 V,
No load
TLV2442Q/AQ
TLV2442M/AM
TLV2442
MIN
TYP
25°C
65
75
Full range
55
Full range
50
25°C
80
Full range
80
VIC = VDD/2,,
25°C
MAX
UNIT
dB
95
725
Full range
dB
1100
1100
µA
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
SR
TEST CONDITIONS
VO = 1 V to 2 V,
RL = 600 Ω,
CL = 100 pF
Slew rate at unity gain
Vn
Equivalent input noise voltage
VN(PP)
Peak to peak equivalent input noise voltage
Peak-to-peak
In
Equivalent input noise current
THD + N
BOM
ts
φm
Total harmonic distortion plus noise
TLV2442Q/AQ
TLV2442M/AM
TLV244x
MIN
TYP
25°C
0.65
1.3
Full
range
0.65
Full
range
0.4
25°C
170
f = 1 kHz
25°C
18
f = 0.1 Hz to 1 Hz
25°C
2.6
f = 0.1 Hz to 10 Hz
25°C
5.1
25°C
VO = 0.5 V to 2.5 V,
RL = 600 Ω,
f = 1 kHz
AV = 1
AV = 10
RL = 600 Ω,,
output swing bandwidth
Maximum output-swing
VO(PP) = 1 V,,
AV = 1,
RL = 600 Ω,,
CL = 100 pF
Settling time
AV = – 1,
Step = – 2.3 V to 2.3 V,,
RL = 600 Ω,
CL = 100 pF
RL = 600 Ω
Ω,
25°C
0.6
nV/√Hz
µV
fA/√Hz
0.3%
2%
25°C
1 75
1.75
MHz
25°C
09
0.9
MHz
To 0.1%
0 1%
15
1.5
µs
25°C
0 01%
To 0.01%
CL = 100 pF
UNIT
0.08%
AV = 100
f =10 kHz,,
CL = 100 pF
MAX
V/µs
f = 10 Hz
Gain bandwidth product
Gain-bandwidth
Phase margin at unity gain
TA†
32
3.2
25°C
65°
Gain margin
25°C
9
dB
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TLV244xC
TLV244xI
VIO
Input offset voltage
TLV244xA
TLV2442AQ
TLV2442AM
αVIO
Temperature coefficient of input
offset voltage
Input offset voltage long-term
drift
(see Note 4)
IIO
TA†
TLV244x
MIN
25°C
VIC = 0,
RS = 50 Ω
Input offset current
Input bias current
300
Full range
|VIO| ≤ 5 mV
mV,
25°C
300
25°C
0.002
µV/mo
25°C
0.5
150
VIC = 2.5 V,
VOL
AVD
Low-level output voltage
Large-signal
L
i
l diff
differential
ti l
voltage am
lification
amplification
IOL = 100 µA
mA
pA
1
–40°C to
85°C
150
125°C
350
Full range
260
0
to
4.25
–0.25
to
4.5
pA
V
0
to
4
25°C
IOH = – 5 mA
950
1600
µV/°C
RS = 50 Ω
IOH = – 100 µA
High-level output voltage
µV
2
Full range
VOH
950
1500
Full range
25°C
Common-mode input voltage
g
range
2000
Full range
TLV2442Q/AQ
TLV2442M/AM
VICR
300
UNIT
2500
25°C
25°C
IIB
MAX
Full range
25°C
to 85°C
VDD ± = ± 2.5 V,
VO = 0,
TYP
4.97
25°C
4
Full range
4
25°C
0.01
25°C
0.8
VIC = 2
2.5
5V
V,
IOL = 5
RL = 600 Ω‡
25°C
0.9
VIC = 2.5
2 5 V,
V
VO = 1 V to 4 V
Full range
0.5
RL = 1 Mه
V
4.35
Full range
V
1.25
1.3
V/mV
25°C
950
rid
Differential input resistance
25°C
1000
GΩ
ri
Common-mode input resistance
25°C
1000
GΩ
ci
Common-mode input
capacitance
f = 10 kHz
25°C
8
pF
zo
Closed-loop output impedance
f = 1 MHz,
140
Ω
CMRR
Common mode rejection ratio
Common-mode
VIC = 0 to 4.25 V,,
RS = 50 Ω
AV = 10
25°C
VO = 2.5 V,,
25°C
70
Full range
70
75
dB
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
‡ Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
kSVR
Supply voltage rejection ratio (∆VDD /∆VIO)
Supply-voltage
VDD = 4.4 V to 8 V,,
VIC = VDD /2,
No load
IDD
Supply current (per channel)
VO = 2.5
25V
V,
No load
TA†
TLV244x
MIN
TYP
25°C
80
95
Full range
80
25°C
750
Full range
MAX
UNIT
dB
1100
1100
µA
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
SR
Slew rate at unity gain
TEST CONDITIONS
VO = 0.5
0 5 V to
t 2.5
2 5 V,
V
RL = 600 Ω‡,
CL = 100 pF‡
TLV2442Q/AQ
TLV2442M/AM
TYP
1.4
25°C
0.75
Full range
0.75
Full range
0.5
130
25°C
16
f = 0.1 Hz to 1 Hz
25°C
1.8
f = 0.1 Hz to 10 Hz
25°C
3.6
25°C
0.6
Peak-to-peak equivalent
q
input noise
voltage
In
Equivalent input noise current
THD + N
Total harmonic distortion plus noise
VO = 1.5 V to 3.5 V,
f = 1 kHz,
RL = 600 Ω‡
Gain-bandwidth product
f =10 kHz,
CL = 100 pF‡
RL = 600 Ω‡,
BOM
Maximum output-swing bandwidth
VO(PP) = 2 V,
RL = 600 Ω‡,
AV = 1,
CL = 100 pF‡
ts
Settling time
AV = – 1,
Step = 0.5 V to 2.5 V,,
RL = 600 Ω‡,
CL = 100 pF‡
RL = 600 Ω‡,
AV = 1
AV = 10
UNIT
nV/√Hz
µV
fA/√Hz
0.017%
25°C
AV = 100
0.17%
1.5%
25°C
1.81
MHz
25°C
0.5
MHz
To 0.1%
1.5
µs
25°C
To 0.01%
CL = 100 pF‡
MAX
V/µs
25°C
VN(PP)
Gain margin
MIN
f = 1 kHz
Equivalent input noise voltage
Phase margin at unity gain
TLV244x
f = 10 Hz
Vn
φm
TA†
2.6
25°C
68°
8
dB
† Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is – 40°C to 85°C. Full range for the quad I suffix is – 40°C to 125°C. Full
range for the Q suffix is – 40°C to 125°C. Full range for the M suffix is – 55°C to 125°C.
‡ Referenced to 2.5 V
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25°C
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
Table of Graphs†
FIGURE
VIO
Input offset voltage
Distribution
vs Common-mode voltage
αVIO
IIB /IIO
Input offset voltage temperature coefficient
Distribution
Input bias and input offset currents
vs Free-air temperature
VOH
VOL
High-level output voltage
vs High-level output current
9, 10
Low-level output voltage
vs Low-level output current
11, 12
VO(PP)
Maximum peak-to-peak output voltage
vs Frequency
13
IOS
Short circuit output current
Short-circuit
vs Supply
y voltage
g
vs Free-air temperature
14
15
VO
AVD
Output voltage
vs Differential Input voltage
Differential voltage amplification
vs Load resistance
AVD
Large signal differential voltage amplification
Large-signal
vs Frequency
q
y
vs Free-air temperature
19,, 20
21, 22
zo
Output impedance
vs Frequency
23, 24
CMRR
Common mode rejection ratio
Common-mode
vs Frequency
q
y
vs Free-air temperature
25
26
kSVR
Supply voltage rejection ratio
Supply-voltage
vs Frequency
q
y
vs Free-air temperature
27,, 28
29
IDD
Supply current
vs Supply voltage
30
Slew rate
vs Load capacitance
vs Free-air temperature
31
32
SR
VO
Vn
2,, 3
4, 5
6, 7
8
16, 17
18
Inverting large-signal pulse response
33, 34
Voltage-follower large-signal pulse response
35, 36
Inverting small-signal pulse response
37, 38
Voltage-follower small-signal pulse response
39, 40
Equivalent input noise voltage
vs Frequency
Noise voltage
Over a 10-second period
Total harmonic distortion plus noise
vs Frequency
Gain bandwidth product
Gain-bandwidth
vs Free-air temperature
vs Supply voltage
Phase margin
vs Frequency
q
y
vs Load capacitance
19,, 20
48
Gain margin
vs Load capacitance
49
B1
Unity-gain bandwidth
vs Load capacitance
† For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.
50
THD + N
φm
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
41, 42
43
44, 45
46
47
9
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
18
10
8
6
4
12
10
8
6
4
0
–700
–600
–500
–400
600
700
800
900
0
–300
–200
–100
0
100
200
300
400
500
2
–700
2
VIO – Input Offset Voltage – µV
VIO – Input Offset Voltage – µV
Figure 2
Figure 3
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
2
VDD = 3 V
TA = 25°C
1.5
VIO – Input Offset Voltage – mV
VIO – Input Offset Voltage – mV
1.5
1
0.5
0
–0.5
–1
–1.5
–2
–0.5
VDD = 5 V
TA = 25°C
1
0.5
0
–0.5
–1
–1.5
0
0.5
1
1.5
2
2.5
3
–2
–0.5
0
VIC – Common-Mode Input Voltage – V
0.5
1
1.5
2
Figure 5
POST OFFICE BOX 655303
2.5
3
3.5
4
VIC – Common-Mode Input Voltage – V
Figure 4
10
500
600
700
800
900
12
14
300
400
14
16
–100
0
100
200
TA = 25°C
868 Amplifiers From
1 Wafer Lot
VDD = ± 2.5 V
TA = 25°C
–300
–200
16
20
Percentage of Amplifiers – %
18
868 Amplifiers From
1 Wafer Lot
VDD = ± 1.5 V
–600
–500
–400
Percentage of Amplifiers – %
20
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
• DALLAS, TEXAS 75265
4.5
5
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
15
18
32 Amplifiers From 1
Wafer Lot
VDD = ± 1.5 V
P Package
25°C to 125°C
15
Percentage of Amplifiers – %
Percentage of Amplifiers – %
12
32 Amplifiers From 2
Wafer Lots
VDD = ± 2.5 V
P Package
25°C to 125°C
9
6
3
12
9
6
3
0
–8 –7 –6
0
–5 –4 –3 –2 –1
0
1
2
3
4
–8 –7 –6
αVIO – Temperature Coefficient – µV/°C
0
1
2
3
4
Figure 7
Figure 6
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
3
35
VDD = ± 2.5 V
VIC = 0
VO = 0
RS = 50 Ω
30
VDD = 3 V
25
20
IIB
15
IIO
10
5
0
VOH – High-Level Output Voltage – V
IIB
I IO – Input Bias and Input Offset Currents – pA
IIB and IIO
–5 –4 –3 –2 –1
αVIO – Temperature Coefficient – µV/°C
2.5
2
TA = – 40°C
1.5
1
TA = 125°C
0.5
TA = 85°C TA = 25°C
0
25
45
65
85
105
125
TA – Free-Air Temperature – °C
0
2
4
6
8
10
12
IOH – High-Level Output Current – mA
Figure 8
Figure 9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
5
3
VDD = 5 V
VDD = 3 V
4
TA = – 40°C
3.5
VOL – Low-Level Output Voltage – V
VOH – High-Level Output Voltage – V
4.5
TA = 25°C
3
2.5
2
TA = 125°C
1.5
TA = 85°C
1
0.5
0
2.5
TA = 125°C
2
TA = 85°C
1.5
1
TA = 25°C
TA = – 40°C
0.5
0
0
5
10
15
20
25
0
2
IOH – High-Level Output Current – mA
Figure 10
2
TA = 125°C
1.5
TA = 85°C
1
TA = 25°C
0.5
TA = – 40°C
0
6
8
10
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
VOL – Low-Level Output Voltage – V
VDD = 5 V
4
10
5
RL = 600 Ω
VDD = 5 V
4
3
VDD = 3 V
2
1
0
100
IOL – Low-Level Output Current – mA
1k
10 k
Figure 13
POST OFFICE BOX 655303
100 k
f – Frequency – Hz
Figure 12
12
8
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
2.5
2
6
Figure 11
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
4
IOL – Low-Level Output Current – mA
• DALLAS, TEXAS 75265
1M
10 M
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
25
VO = VDD/2
VIC = VDD/2
TA = 25°C
20
I OS – Short-Circuit Output Current – mA
I OS – Short-Circuit Output Current – mA
25
VID = –100 mV
15
10
5
0
–5
–10
–15
VID = 100 mV
–20
–25
2
3
4
5
6
7
8
9
15
VID = –100 mV
10
5
0
–5
–10
VID = 100 mV
–15
–20
–25
–75
10
VDD = 5 V
VO = 2.5 V
20
–50
Figure 14
25
50
75
100
125
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
5
3
VDD = 3 V
VIC = 1.5 V
RL = 600 Ω
TA = 25°C
4
VO – Output Voltage – V
VO – Output Voltage – V
0
Figure 15
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
2.5
–25
TA – Free-Air Temperature – °C
VDD – Supply Voltage – V
2
1.5
1
VDD = 5 V
VIC = 2.5 V
RL = 600 Ω
TA = 25°C
3
2
1
0.5
0
–1000 –750 –500 –250
0
250
500
750
1000
0
–1000 –750 –500 –250
0
250
500
750
1000
VID – Differential Input Voltage – µV
VID – Differential Input Voltage – µV
Figure 16
Figure 17
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
A VD – Differential Voltage Amplification – V/mV
100
VO(PP) = 2 V
TA = 25°C
VDD = 5 V
VDD = 3 V
10
1
0.1
1
10
100
1000
RL – Load Resistance – kΩ
Figure 18
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
VDD = 3 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
AVD
AVD– Large-Signal Differential
Voltage Amplification – dB
60
ÁÁ
ÁÁ
ÁÁ
135°
40
90°
20
45°
0
0°
– 20
– 40
10 k
– 45°
100 k
1M
f – Frequency – Hz
Figure 19
14
180°
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
– 90°
10 M
φ m – Phase Margin
80
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
ÁÁ
ÁÁ
ÁÁ
60
180°
VDD = 5 V
RL = 600 Ω
CL = 600 pF
TA = 25°C
135°
40
90°
20
45°
0
0°
–20
φ m – Phase Margin
AVD
AVD– Large-Signal Differential
Voltage Amplification – dB
80
–45°
–40
10 k
100 k
–90°
10 M
1M
f – Frequency – Hz
Figure 20
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
1000
1000
ÁÁ
ÁÁ
ÁÁ
100
RL = 1 MΩ
10
ÁÁ
ÁÁ
ÁÁ
RL = 600 Ω
1
0.1
–75
–50
–25
0
25
50
75
100
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 MΩ
AVD
AVD– Large-Signal Differential
Voltage Amplification – V/mV
AVD
AVD– Large-Signal Differential
Voltage Amplification – V/mV
VDD = 3 V
VIC = 2.5 V
VO = 1 V to 4 V
125
100
10
RL = 600 Ω
1
0.1
–75
–50
TA – Free-Air Temperature – °C
–25
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 21
Figure 22
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
OUTPUT IMPEDANCE
vs
FREQUENCY
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
AV = 100
zo
O
zo – Output Impedance – Ω
zo
zo – Output Impedance – Ω
O
VDD = 3 V
TA = 25°C
100
AV = 100
10
AV = 10
AV = 1
1
10
AV = 10
1
AV = 1
VDD = 5 V
TA = 25°C
0.1
100
1k
10 k
100 k
0.1
100
1M
1k
f – Frequency – Hz
Figure 23
1M
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
100
100
TA = 25°C
VDD = 5 V
VIC = 2.5 V
80
CMRR – Common-Mode Rejection Ratio – dB
CMRR – Common-Mode Rejection Ratio – dB
100 k
Figure 24
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
VDD = 3 V
VIC = 1.5 V
60
40
20
0
10
100
1k
10 k
100 k
1M
10 M
VDD = 5 V
90
VDD = 3 V
80
70
60
– 75
– 50
– 25
0
25
Figure 25
Figure 26
POST OFFICE BOX 655303
50
75
100
TA – Free-Air Temperature – °C
f – Frequency – Hz
16
10 k
f – Frequency – Hz
• DALLAS, TEXAS 75265
125
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
100
VDD = 3 V
TA = 25°C
kSVR
k SVR – Supply-Voltage Rejection Ratio – dB
kSVR
k SVR – Supply-Voltage Rejection Ratio – dB
100
80
60
kSVR+
40
kSVR –
20
0
10
100
10 k
1k
100 k
1M
VDD = 5 V
TA = 25°C
80
60
kSVR+
kSVR –
40
20
0
10
10 M
100
1k
f – Frequency – Hz
100 k
1M
10 M
f – Frequency – Hz
Figure 27
Figure 28
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
100
2.5
VDD = 2.5 V to 8 V
2
98
IIDD
DD – Supply Current – mA
kSVR
k SVR – Supply-Voltage Rejection Ratio – dB
10 k
96
94
TA = 85°C
1.5
TA = – 40°C
1
0.5
92
90
– 75
TA = 25°C
0
– 50
– 25
0
25
50
75
100
125
0
TA – Free-Air Temperature – °C
Figure 29
2
4
6
8
VDD – Supply Voltage – V
10
Figure 30
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
17
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
SLEW RATE
vs
LOAD CAPACITANCE
SLEW RATE
vs
FREE-AIR TEMPERATURE
3
3
VDD = 5 V
AV = – 1
TA = 25°C
2.5
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
2.5
SR – Slew Rate – V/ µs
SR – Slew Rate – V/ µ s
SR –
2
SR –
SR +
1.5
1
0.5
2
1.5
SR +
1
0.5
0
10
100
1k
10 k
CL – Load Capacitance – pF
0
– 75
100 k
– 50
– 25
Figure 31
25
50
75
100
125
Figure 32
INVERTING LARGE-SIGNAL PULSE RESPONSE
INVERTING LARGE-SIGNAL PULSE RESPONSE
3
5
VDD = 3 V
RL = 2 kΩ
CL = 100 pF
AV = – 1
TA = 25°C
VDD = 5 V
RL = 2 kΩ
CL = 100 pF
AV = – 1
TA = 25°C
4
V
VO
O – Output Voltage – V
VO – Output Voltage – V
VO
0
TA – Free-Air Temperature – °C
2
1
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10
0
0
1
t – Time – µs
3
4
5
6
t – Time – µs
Figure 33
18
2
Figure 34
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
8
9
10
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
5
VDD = 3 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = 1
TA = 25°C
4
VO – Output Voltage – V
VO
VO – Output Voltage – V
VO
3
2
1
3
2
1
0
0
1
2
3
4
5
6
7
8
9
0
10
0
0.5
1
1.5
t – Time – µs
INVERTING SMALL-SIGNAL PULSE RESPONSE
3.5
4
4.5
5
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
2.56
VO – Output Voltage – V
VO
VO – Output Voltage – V
VO
1.54
3
INVERTING SMALL-SIGNAL PULSE RESPONSE
2.58
VDD = 3 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
1.56
2.5
Figure 36
Figure 35
1.58
2
t – Time – µs
1.52
1.5
1.48
1.46
2.54
2.52
2.5
2.48
2.46
1.44
0
1
2
3
4
5
6
7
8
9
10
2.44
0
1
t – Time – µs
2
3
4
5
6
7
8
9
10
t – Time – µs
Figure 37
Figure 38
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
19
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
1.58
1.54
1.52
1.5
1.48
1.46
1.44
VDD = 5 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
2.56
VO – Output Voltage – V
VO
1.56
VO – Output Voltage – V
VO
2.58
VDD = 3 V
RL = 600 Ω
CL = 100 pF
AV = –1
TA = 25°C
2.54
2.52
2.5
2.48
2.46
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
2.44
5
0
0.5
t – Time – µs
200
Vn
nV HzHz
Vn – Equivalent Input Noise Voltage – nV/
Vn
nV HzHz
Vn – Equivalent Input Noise Voltage – nV/
2.5
3
3.5
4
4.5
5
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VDD = 3 V
RS = 20 Ω
TA = 25°C
180
160
140
120
100
80
60
40
20
100
1k
f – Frequency – Hz
10 k
140
VDD = 5 V
RS = 20 Ω
TA = 25°C
120
100
80
60
40
20
0
10
Figure 41
20
2
Figure 40
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
10
1.5
t – Time – µs
Figure 39
0
1
100
1k
f – Frequency – Hz
Figure 42
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
10 k
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
2000
THD + N – Total Harmonic Distortion Plus Noise – %
NOISE VOLTAGE
OVER A 10-SECOND PERIOD
VDD = 5 V
f = 0.1 Hz to 10
Hz TA = 25°C
1500
Noise Voltage – nV
1000
500
0
– 500
– 1000
–1500
–2000
0
1
2
3
4
5
6
7
8
9
10
10
VDD = 3 V
RL = 600 Ω
TA = 25°C
AV = 100
1
AV = 10
0.1
AV = 1
0.01
10
10 k
100 k
f – Frequency – Hz
Figure 43
Figure 44
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
10
3
VDD = 5 V
RL = 600 Ω
TA = 25°C
Gain-Bandwidth Product – MHz
THD + N – Total Harmonic Distortion Plus Noise – %
1k
100
t – Time – s
AV = 100
1
AV = 10
0.1
RL = 600 Ω
CL = 100 pF
f = 10 kHz
2.5
2
1.5
AV = 1
0.01
10
100
1k
10 k
100 k
1
– 50
– 25
f – Frequency – Hz
0
25
50
75
100
125
TA – Free-Air Temperature – °C
Figure 45
Figure 46
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
21
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
TYPICAL CHARACTERISTICS
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
PHASE MARGIN
vs
LOAD CAPACITANCE
75°
RL = 600 Ω
CL = 100 pF
f = 10 kHz
TA = 25°C
1.9
Rnull = 100 Ω
60°
φ
om
m – Phase Margin
Gain-Bandwidth Product – MHz
2
1.8
1.7
45°
Rnull = 50 Ω
30°
Rnull = 0
1.6
Rnull = 20 Ω
15°
RL = 600 Ω
TA = 25°C
0°
10
1.5
0
1
2
3
4
5
6
|VDD ±| – Supply Voltage – V
7
8
Figure 47
RL = 600 Ω
TA = 25°C
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
B1 – Unity-Gain Bandwidth – kHz
Gain Margin – dB
Rnull = 100 Ω
Rnull = 20 Ω
10
5
0
10
2
Rnull = 50 Ω
20
15
1
ÁÁ
ÁÁ
Rnull = 0
100
1K
10 K
CL – Load Capacitance – pF
RL = 600 Ω
TA = 25°C
1.5
100 K
0.5
0
10
Figure 49
22
100 k
Figure 48
GAIN MARGIN
vs
LOAD CAPACITANCE
25
100
1k
10 k
CL – Load Capacitance – pF
100
1k
10 k
CL – Load Capacitance – pF
Figure 50
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
100 k
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpice Parts model generation software. The Boyle
macromodel (see Note 5) and subcircuit in Figure 51 were generated using the TLV244x typical electrical and
operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters
can be generated to a tolerance of 20% (in most cases):
D
D
D
D
D
D
D
D
D
D
D
D
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Unity gain frequency
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integated Circuit Operational Amplifiers,” IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
99
3
VCC +
9
RSS
92
FB
+
10
J1
DP
VC
J2
IN +
11
RD1
VAD
DC
12
C1
R2
–
53
HLIM
–
C2
6
–
–
–
+
VLN
+
GCM
GA
VLIM
8
–
RD2
54
4
91
+
VLP
7
60
+
–
+ DLP
90
RO2
VB
IN –
VCC –
–
+
ISS
RP
2
1
DLN
EGND +
–
RO1
DE
5
+
VE
OUT
.SUBCKT TLV2442 1 2 3 4 5
C1
11
12
14E–12
C2
6
7
60.00E–12
DC
5
53
DX
DE
54
5
DX
DLP
90
91
DX
DLN
92
90
DX
DP
4
3
DX
EGND
99
0
POLY (2) (3,0) (4,) 0 .5 .5
FB
7
99
POLY (5) VB VC VE VLP VLN 0
+ 984.9E3 –1E6 1E6 1E6 –1E6
GA
6
0
11
12 377.0E–6
GCM
0
6
10
99 134E–9
ISS
3
10
DC 216.OE–6
HLIM
90
0
VLIM 1K
J1
11
2
10 JX
J2
12
1
10 JX
R2
6
9
100.OE3
RD1
60
11
2.653E3
RD2
60
12
2.653E3
R01
8
5
50
R02
7
99
50
RP
3
4
4.310E3
RSS
10
99
925.9E3
VAD
60
4
–.5
VB
9
0
DC 0
VC
3
53
DC .78
VE
54
4
DC .78
VLIM
7
8
DC 0
VLP
91
0
DC 1.9
VLN
0
92
DC 9.4
.MODEL DX D (IS=800.0E–18)
.MODEL JX PJF (IS=1.500E–12BETA=1.316E-3
+ VTO=–.270)
.ENDS
Figure 51. Boyle Macromodel and Subcircuit
PSpice and Parts are registered trademarks of MicroSim Corporation.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
23
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
MECHANICAL DATA
D (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0.050 (1,27)
0.020 (0,51)
0.014 (0,35)
14
0.010 (0,25) M
8
0.008 (0,20) NOM
0.244 (6,20)
0.228 (5,80)
0.157 (4,00)
0.150 (3,81)
Gage Plane
0.010 (0,25)
1
7
0°– 8°
A
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.069 (1,75) MAX
0.010 (0,25)
0.004 (0,10)
PINS **
0.004 (0,10)
8
14
16
A MAX
0.197
(5,00)
0.344
(8,75)
0.394
(10,00)
A MIN
0.189
(4,80)
0.337
(8,55)
0.386
(9,80)
DIM
4040047 / D 10/96
NOTES: A.
B.
C.
D.
24
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
Falls within JEDEC MS-012
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
MECHANICAL DATA
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
25
5
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
25
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
MECHANICAL DATA
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE PACKAGE
0.400 (10,20)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.063 (1,60)
0.015 (0,38)
0.100 (2,54)
0°–15°
0.023 (0,58)
0.015 (0,38)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
26
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
Falls within MIL-STD-1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
MECHANICAL DATA
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
0,75
0,50
A
Seating Plane
0,15
0,05
1,20 MAX
0,10
PINS **
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064 / E 08/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
27
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169F – NOVEMBER 1996 – REVISED NOVEMBER 1999
MECHANICAL DATA
U (S-GDFP-F10)
CERAMIC DUAL FLATPACK
0.250 (6,35)
0.246 (6,10)
0.006 (0,15)
0.004 (0,10)
0.080 (2,03)
0.050 (1,27)
0.045 (1,14)
0.026 (0,66)
0.300 (7,62)
0.350 (8,89)
0.250 (6,35)
1
0.350 (8,89)
0.250 (6,35)
10
0.019 (0,48)
0.015 (0,38)
0.050 (1,27)
0.250 (6,35)
5
6
0.025 (0,64)
0.005 (0,13)
1.000 (25,40)
0.750 (19,05)
4040179 / B 03/95
NOTES: A.
B.
C.
D.
E.
28
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification only.
Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright  1999, Texas Instruments Incorporated