SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS306G – MARCH 1993 – REVISED JUNE 1998 D D D D D D D D EPIC (Enhanced-Performance Implanted CMOS) Submicron Process Typical VOLP (Output Ground Bounce) < 0.8 V at VCC = 3.3 V, TA = 25°C Typical VOHV (Output VOH Undershoot) > 2 V at VCC = 3.3 V, TA = 25°C Power Off Disables Outputs, Permitting Live Insertion Supports Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V VCC) ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA Per JESD 17 Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages DB, DW, OR PW PACKAGE (TOP VIEW) OE1 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 GND 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 11 14 12 13 VCC Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 OE2 description This 10-bit buffer/bus driver is designed for 1.65-V to 3.6-V VCC operation. The SN74LVC827A provides a high-performance bus interface for wide data paths or buses carrying parity. The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1 or OE2) input is high, all ten outputs are in the high-impedance state. The SN74LVC827A provides true data at its outputs. Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. The SN74LVC827A is characterized for operation from –40°C to 85°C. FUNCTION TABLE INPUTS A OUTPUT Y OE1 OE2 L L L L L L H H H X X Z X H X Z Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. EPIC is a trademark of Texas Instruments Incorporated. Copyright 1998, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS306G – MARCH 1993 – REVISED JUNE 1998 logic symbol† 1 OE1 OE2 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 13 2 logic diagram (positive logic) OE1 & OE2 EN 1 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 11 14 A1 1 13 2 23 Y1 Y1 Y2 To Nine Other Channels Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡ Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V Voltage range applied to any output in the high-impedance or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 6.5 V Voltage range applied to any output in the high or low state, VO (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA Package thermal impedance, θJA (see Note 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104°C/W DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81°C/W PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C ‡ Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The value of VCC is provided in the recommended operating conditions table. 3. The package thermal impedance is calculated in accordance with JESD 51. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS306G – MARCH 1993 – REVISED JUNE 1998 recommended operating conditions (see Note 4) VCC Supply voltage VIH High-level input voltage Operating Data retention only VCC = 1.65 V to 1.95 V VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V VCC = 1.65 V to 1.95 V VIL Low-level input voltage VI Input voltage VO Output voltage IOH Low level output current Low-level ∆t/∆v Input transition rise or fall rate MAX 3.6 1.5 UNIT V 0.65 × VCC V 1.7 2 0.35 × VCC VCC = 2.3 V to 2.7 V VCC = 2.7 V to 3.6 V High level output current High-level IOL MIN 1.65 0.7 V 0.8 0 5.5 V High or low state 0 3 state 0 VCC 5.5 V VCC = 1.65 V VCC = 2.3 V –4 VCC = 2.7 V VCC = 3 V –12 –8 mA –24 VCC = 1.65 V VCC = 2.3 V 4 VCC = 2.7 V VCC = 3 V 12 8 mA 24 0 10 ns/V TA Operating free-air temperature –40 85 °C NOTE 4: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS306G – MARCH 1993 – REVISED JUNE 1998 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC 1.65 V to 3.6 V IOH = –100 µA IOH = –4 mA IOH = –8 mA VOH 12 mA IOH = –12 IOH = –24 mA IOL = 100 µA MIN 1.65 V VCC–0.2 1.2 2.3 V 1.7 2.7 V 2.2 3V 2.4 3V 2.2 TYP† MAX UNIT V 1.65 V to 3.6 V 0.2 IOL = 4 mA IOL = 8 mA 1.65 V 0.45 2.3 V 0.7 IOL = 12 mA IOL = 24 mA 2.7 V 0.4 3V 0.55 II Ioff VI = 0 to 5.5 V VI or VO = 5.5 V 3.6 V ±5 µA 0 ±10 µA IOZ VO = 0 to 5.5 V VI = VCC or GND 3.6 V ≤ VI ≤ 5.5 V‡ 3.6 V ± 10 µA VOL ICC ∆ICC Ci IO = 0 One input at VCC – 0.6 V, Control inputs Data inputs 10 36V 3.6 Other inputs at VCC or GND 10 2.7 V to 3.6 V VI = VCC or GND 500 5 33V 3.3 Co VO = VCC or GND † All typical values are at VCC = 3.3 V, TA = 25°C. ‡ This applies in the disabled state only. µA µA pF 4 3.3 V V 7 pF switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figures 1 through 3) PARAMETER tpd FROM (INPUT) TO (OUTPUT) VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V MIN MAX MIN MAX VCC = 2.7 V MIN VCC = 3.3 V ± 0.3 V MAX MIN MAX UNIT A Y § § § § 7.1 1 6.7 ns ten OE Y § § § § 8.5 1 7.3 ns tdis OE Y § § § § 7.3 1.8 6.7 ns 1 ns tsk(o)¶ § This information was not available at the time of publication. ¶ Skew between any two outputs of the same package switching in the same direction operating characteristics, TA = 25°C TEST CONDITIONS PARAMETER Cpd Power dissipation capacitance per buffer/driver VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V VCC = 3.3 V ± 0.3 V TYP TYP TYP § § 24 § § 5 Outputs enabled Outputs disabled f = 10 MHz § This information was not available at the time of publication. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT pF SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS306G – MARCH 1993 – REVISED JUNE 1998 PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V ± 0.15 V 2 × VCC S1 1k Ω From Output Under Test Open GND CL = 30 pF (see Note A) 1k Ω TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 2 × VCC Open LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 Output Control (low-level enabling) VCC VCC/2 VCC/2 0V tPLH Output Waveform 1 S1 at 2 × VCC (see Note B) tPLZ VOH VCC/2 VCC VCC/2 VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES Output Waveform 2 S1 at Open (see Note B) VOL + 0.15 V VOL tPHZ tPZH tPHL VCC/2 0V tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input VCC/2 VOH VOH – 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS306G – MARCH 1993 – REVISED JUNE 1998 PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V ± 0.2 V 2 × VCC S1 500 Ω From Output Under Test Open GND CL = 30 pF (see Note A) 500 Ω TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 2 × VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) tPLZ VCC VCC/2 VCC/2 VOL Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 × VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input VCC/2 VOH VOH – 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 2. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN74LVC827A 10-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCAS306G – MARCH 1993 – REVISED JUNE 1998 PARAMETER MEASUREMENT INFORMATION VCC = 2.7 V AND 3.3 V ± 0.3 V 6V S1 500 Ω From Output Under Test Open GND CL = 50 pF (see Note A) 500 Ω TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 6V GND tw LOAD CIRCUIT 2.7 V 2.7 V Timing Input 0V 0V VOLTAGE WAVEFORMS PULSE DURATION th 2.7 V Data Input 1.5 V 1.5 V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 1.5 V 1.5 V 0V tPLH 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ 3V 1.5 V tPZH VOH 1.5 V 0V Output Waveform 1 S1 at 6 V (see Note B) tPHL 1.5 V 2.7 V Output Control (low-level enabling) tPZL 2.7 V Output 1.5 V 1.5 V tsu Input 1.5 V Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL tPHZ 1.5 V VOH – 0.3 V VOH 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 3. Load Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated