TI SN74AC374N

 SCAS543E − OCTOBER 1995 - REVISED OCTOBER 2003
D
SN54AC374 . . . J OR W PACKAGE
SN74AC374 . . . DB, DW, N, NS, OR PW PACKAGE
(TOP VIEW)
2-V to 6-V VCC Operation
Inputs Accept Voltages to 6 V
Max tpd of 9.5 ns at 5 V
3-State Noninverting Outputs Drive Bus
Lines Directly
Full Parallel Access for Loading
OE
1Q
1D
2D
2Q
3Q
3D
4D
4Q
GND
description/ordering information
These 8-bit flip-flops feature 3-state outputs
designed specifically for driving highly capacitive
or relatively low-impedance loads. The devices
are particularly suitable for implementing buffer
registers, I/O ports, bidirectional bus drivers, and
working registers.
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
VCC
8Q
8D
7D
7Q
6Q
6D
5D
5Q
CLK
SN54AC374 . . . FK PACKAGE
(TOP VIEW)
1D
1Q
OE
VCC
The eight flip-flops of the ’AC374 devices are
D-type edge-triggered flip-flops. On the positive
transition of the clock (CLK) input, the Q outputs
are set to the logic levels set up at the data (D)
inputs.
2D
2Q
3Q
3D
4D
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
8D
7D
7Q
6Q
6D
4Q
GND
CLK
5Q
5D
A buffered output-enable (OE) input can be used
to place the eight outputs in either a normal logic
state (high or low logic levels) or the
high-impedance state. In the high-impedance
state, the outputs neither load nor drive the bus
lines significantly. The high-impedance state and
the increased drive provide the capability to drive
bus lines in bus-organized systems without need
for interface or pullup components.
8Q
D
D
D
D
OE does not affect internal operations of the flip-flop. Old data can be retained or new data can be entered while
the outputs are in the high-impedance state.
ORDERING INFORMATION
PDIP − N
SN74AC374N
Tube
SN74AC374DW
Tape and reel
SN74AC374DWR
SOP − NS
Tape and reel
SN74AC374NSR
AC374
SSOP − DB
Tape and reel
SN74AC374DBR
AC374
Tube
SN74AC374PW
Tape and reel
SN74AC374PWR
CDIP − J
Tube
SNJ54AC374J
SNJ54AC374J
CFP − W
Tube
SNJ54AC374W
SNJ54AC374W
LCCC − FK
Tube
SNJ54AC374FK
SNJ54AC374FK
TSSOP − PW
−55°C
−55
C to 125
125°C
C
TOP-SIDE
MARKING
Tube
SOIC − DW
−40°C
−40
C to 85
85°C
C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SN74AC374N
AC374
AC374
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2003, Texas Instruments Incorporated
! " #$%! " &$'(#! )!%*
)$#!" # ! "&%##!" &% !+% !%" %," "!$%!"
"!)) -!.* )$#! &#%""/ )%" ! %#%""(. #($)%
!%"!/ (( &%!%"*
&)$#!" #&(! ! 01 (( &%!%" % !%"!%)
$(%"" !+%-"% !%)* (( !+% &)$#!" &)$#!
&#%""/ )%" ! %#%""(. #($)% !%"!/ (( &%!%"*
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SCAS543E − OCTOBER 1995 - REVISED OCTOBER 2003
description/ordering information (continued)
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
FUNCTION TABLE
(each flip-flop)
INPUTS
OE
CLK
D
OUTPUT
Q
L
↑
H
H
L
↑
L
L
L
H or L
X
Q0
H
X
X
Z
logic diagram (positive logic)
OE
CLK
1
11
C1
1D
3
2
1Q
1D
To Seven Other Channels
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to VCC + 0.5 V
Input clamp current, IIK (VI < 0 or VI > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Output clamp current, IOK (VO < 0 or VO > VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA
Continuous output current, IO (VO = 0 to VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA
Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±200 mA
Package thermal impedance, θJA (see Note 2): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69°C/W
NS package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
2
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SCAS543E − OCTOBER 1995 - REVISED OCTOBER 2003
recommended operating conditions (see Note 3)
SN54AC374
VCC
VIH
Supply voltage
VCC = 3 V
VCC = 4.5 V
High-level input voltage
VCC = 5.5 V
VCC = 3 V
VIL
Input voltage
IOL
6
High-level output current
MAX
2
6
2.1
3.15
3.15
3.85
3.85
0
Low-level output current
∆t/∆v
2
MIN
2.1
0
Output voltage
IOH
MAX
VCC = 4.5V
VCC = 5.5 V
Low-level input voltage
VI
VO
MIN
SN74AC374
0.9
1.35
1.35
1.65
1.65
0
0
VCC
VCC
VCC = 3 V
VCC = 4.5 V
−12
−12
−24
−24
VCC = 5.5 V
VCC = 3 V
−24
−24
12
12
VCC = 4.5 V
VCC = 5.5 V
24
24
24
24
8
8
Input transition rise or fall rate
V
V
0.9
VCC
VCC
UNIT
V
V
V
mA
mA
ns/V
TA
Operating free-air temperature
−55
125
−40
85
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
TEST CONDITIONS
IOH = −50 µA
VOH
VOL
IOH = −12 mA
TA = 25°C
TYP
MAX
SN54AC374
SN74AC374
VCC
MIN
3V
2.9
2.9
2.9
4.5 V
4.4
4.4
4.4
5.5 V
5.4
5.4
5.4
3V
2.56
2.4
2.46
MIN
MAX
MIN
MAX
UNIT
V
4.5 V
3.86
3.7
3.76
IOH = −24 mA
5.5 V
4.86
4.7
4.76
3V
0.1
0.1
0.1
IOL = 50 µA
4.5 V
0.1
0.1
0.1
5.5 V
0.1
0.1
0.1
3V
0.36
0.5
0.44
4.5 V
0.36
0.5
0.44
5.5 V
0.36
0.5
0.44
5.5 V
±0.1
±1
±1
µA
5.5 V
±0.25
±5
±2.5
µA
4
80
40
µA
IOL = 12 mA
IOL = 24 mA
II
IOZ
VI = VCC or GND
VO = VCC or GND
ICC
Ci
VI = VCC or GND,
VI = VCC or GND
IO = 0
5.5 V
5V
POST OFFICE BOX 655303
4.5
• DALLAS, TEXAS 75265
V
pF
3
SCAS543E − OCTOBER 1995 - REVISED OCTOBER 2003
timing requirements over recommended operating free-air temperature range, VCC = 3.3 V ± 0.3 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
SN54AC374
MIN
MAX
60
SN74AC374
MIN
MAX
fclock
tw
Clock frequency
Pulse duration, CLK high or low
5.5
6.5
6
ns
tsu
th
Setup time, data before CLK↑
5.5
6.5
6
ns
1
1
1
ns
Hold time, data after CLK↑
60
60
UNIT
MHz
timing requirements over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V
(unless otherwise noted) (see Figure 1)
TA = 25°C
MIN
MAX
SN54AC374
MIN
100
MAX
SN74AC374
MIN
100
UNIT
fclock
tw
Clock frequency
Pulse duration, CLK high or low
4
5
4.5
ns
tsu
th
Setup time, data before CLK↑
4
5
4.5
ns
1.5
1.5
1.5
ns
Hold time, data after CLK↑
95
MAX
MHz
switching characteristics over recommended operating free-air temperature range,
VCC = 3.3 V ± 0.3 V (unless otherwise noted) (see Figure 1)
PARAMETER
fmax
tPLH
tPHL
tPZH
tPZL
tPHZ
tPLZ
TO
(INPUT)
TO
(OUTPUT)
TA = 25°C
MIN
TYP
MAX
60
CLK
Q
OE
Q
OE
Q
SN54AC374
MIN
110
MAX
60
SN74AC374
MIN
MAX
60
UNIT
MHz
3
11
13.5
3
16.5
1.5
15.5
2.5
10
12.5
3
15
2
14
3
9.5
11.5
1
14
1.5
13
3.5
9
11.5
1
14
1.5
13
3
10.5
12.5
1
16
2
14.5
2
8
11.5
1
13
1
12.5
ns
ns
ns
switching characteristics over recommended operating free-air temperature range,
VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1)
PARAMETER
fmax
tPLH
tPHL
tPZH
tPZL
tPHZ
tPLZ
TO
(INPUT)
TO
(OUTPUT)
CLK
Q
OE
Q
OE
Q
TA = 25°C
MIN
TYP
MAX
SN54AC374
MIN
MAX
95
SN74AC374
MIN
MAX
100
155
2.5
8
9.5
3
12
100
1.5
10.5
2
7
9
3
11
1.5
10
2
7
8.5
1.5
10
1
9.5
2
6.5
8.5
1.5
10.5
1
9.5
UNIT
MHz
2
8
11
1.5
12.5
2
12.5
1.5
6.5
8.5
1.5
10.5
1
10
ns
ns
ns
operating characteristics, VCC = 5 V, TA = 25°C
PARAMETER
Cpd
4
TEST CONDITIONS
Power dissipation capacitance
CL = 50 pF,
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
f = 1 MHz
TYP
UNIT
40
pF
SCAS543E − OCTOBER 1995 - REVISED OCTOBER 2003
PARAMETER MEASUREMENT INFORMATION
2 × VCC
S1
500 Ω
From Output
Under Test
CL = 50 pF
(see Note A)
Open
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCC
Open
500 Ω
LOAD CIRCUIT
VCC
50% VCC
Timing Input
0V
tw
tsu
3V
Input 50% VCC
50% VCC
VOLTAGE WAVEFORMS
Output
Control
(low-level
enabling)
VCC
50% VCC
0V
In-Phase
Output
50% VCC
tPHL
Out-of-Phase
Output
VOH
50% VCC
VOL
Output
Waveform 1
S1 at 2 × VCC
(see Note B)
tPLH
50% VCC
VCC
50% VCC
VOH
50% VCC
VOL
50% VCC
0V
tPZL
tPHL
tPLH
50% VCC
0V
VOLTAGE WAVEFORMS
50% VCC
VCC
50% VCC
Data Input
0V
Input
th
tPLZ
50% VCC
tPZH
Output
Waveform 2
S1 at Open
(see Note B)
VOLTAGE WAVEFORMS
50% VCC
≈VCC
VOL + 0.3 V
VOL
tPHZ
VOH − 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns.
D. The outputs are measured one at a time with one input transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
PACKAGE OPTION ADDENDUM
www.ti.com
12-May-2005
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
Lead/Ball Finish
MSL Peak Temp (3)
5962-87694012A
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Level-NC-NC-NC
5962-8769401RA
ACTIVE
CDIP
J
20
1
TBD
Call TI
Level-NC-NC-NC
5962-8769401SA
ACTIVE
CFP
W
20
1
TBD
Call TI
Level-NC-NC-NC
5962-8769401VRA
ACTIVE
CDIP
J
20
1
TBD
Call TI
Level-NC-NC-NC
5962-8769401VSA
ACTIVE
CFP
W
20
1
TBD
Call TI
Level-NC-NC-NC
SN74AC374DBLE
OBSOLETE
SSOP
DB
20
TBD
Call TI
Call TI
SN74AC374DBR
ACTIVE
SSOP
DB
20
2000
Pb-Free
(RoHS)
CU NIPDAU
SN74AC374DBRE4
ACTIVE
SSOP
DB
20
2000
TBD
Call TI
SN74AC374DW
ACTIVE
SOIC
DW
20
25
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
SN74AC374DWR
ACTIVE
SOIC
DW
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-250C-1 YEAR/
Level-1-235C-UNLIM
SN74AC374N
ACTIVE
PDIP
N
20
20
Pb-Free
(RoHS)
CU NIPDAU
Level-NC-NC-NC
SN74AC374NSR
ACTIVE
SO
NS
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
SN74AC374PW
ACTIVE
TSSOP
PW
20
70
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74AC374PWE4
ACTIVE
TSSOP
PW
20
70
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74AC374PWLE
OBSOLETE
TSSOP
PW
20
TBD
Call TI
SN74AC374PWR
ACTIVE
TSSOP
PW
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SN74AC374PWRE4
ACTIVE
TSSOP
PW
20
2000
Pb-Free
(RoHS)
CU NIPDAU
Level-1-250C-UNLIM
SNJ54AC374FK
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Level-NC-NC-NC
SNJ54AC374J
ACTIVE
CDIP
J
20
1
TBD
Call TI
Level-NC-NC-NC
SNJ54AC374W
ACTIVE
CFP
W
20
1
TBD
Call TI
Level-NC-NC-NC
Level-2-260C-1 YEAR/
Level-1-235C-UNLIM
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
12-May-2005
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MLCC006B – OCTOBER 1996
FK (S-CQCC-N**)
LEADLESS CERAMIC CHIP CARRIER
28 TERMINAL SHOWN
18
17
16
15
14
13
NO. OF
TERMINALS
**
12
19
11
20
10
A
B
MIN
MAX
MIN
MAX
20
0.342
(8,69)
0.358
(9,09)
0.307
(7,80)
0.358
(9,09)
28
0.442
(11,23)
0.458
(11,63)
0.406
(10,31)
0.458
(11,63)
21
9
22
8
44
0.640
(16,26)
0.660
(16,76)
0.495
(12,58)
0.560
(14,22)
23
7
52
0.739
(18,78)
0.761
(19,32)
0.495
(12,58)
0.560
(14,22)
24
6
68
0.938
(23,83)
0.962
(24,43)
0.850
(21,6)
0.858
(21,8)
84
1.141
(28,99)
1.165
(29,59)
1.047
(26,6)
1.063
(27,0)
B SQ
A SQ
25
5
26
27
28
1
2
3
4
0.080 (2,03)
0.064 (1,63)
0.020 (0,51)
0.010 (0,25)
0.020 (0,51)
0.010 (0,25)
0.055 (1,40)
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.045 (1,14)
0.035 (0,89)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
4040140 / D 10/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a metal lid.
The terminals are gold plated.
Falls within JEDEC MS-004
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated