IN74HC299 8-BIT BIDIRECTIONAL UNIVERSAL SHIFT REGISTER WITH PARALLEL I/O High-Performance Silicon-Gate CMOS • • • • The IN74HC299 is identical in pinout to the LS/ALS299. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALSTTL outputs. The IN74HC299features a multiplexed parallel input/output data port to achieve full 8-bit handling in a 20 pin package. Due to the large output drive capability and the 3-state feature, this device is ideally suited for interface with bus lines in a busoriented system. Two Mode-Select inputs and two Output Enable inputs are used to choose the mode of operation as listed in the Function Table. Synchronous parallel loading is accomplished by taking both Mode-Select lines, S1 and S2, high. This places the outputs in the high-impedance state, which permits data applied to the data port to be clocked into the register. Reading out of the register can be accomplished when the outputs are enabled. The active-low asynchronous Reset overrides all other inputs. Outputs Directly Interface to CMOS, NMOS, and TTL Operating Voltage Range: 2.0 to 6.0 V Low Input Current: 1.0 µA High Noise Immunity Characteristic of CMOS Devices LOGIC DIAGRAM PIN 20=VCC PIN 10 = GND 1 ORDERING INFORMATION IN74HC299N Plastic IN74HC299DW SOIC TA = -55° to 125° C for all packages PIN ASSIGNMENT IN74HC299 MAXIMUM RATINGS* Symbol Parameter Value Unit VCC DC Supply Voltage (Referenced to GND) -0.5 to +7.0 V VIN DC Input Voltage (Referenced to GND) -1.5 to VCC +1.5 V VOUT DC Output Voltage (Referenced to GND) -0.5 to VCC +0.5 V IIN DC Input Current, per Pin mA ±20 IOUT DC Output Current, per Pin mA ±35 ICC DC Supply Current, VCC and GND Pins mA ±75 PD Power Dissipation in Still Air, Plastic DIP+ 750 mW SOIC Package+ 500 Tstg Storage Temperature -65 to +150 °C 260 TL Lead Temperature, 1 mm from Case for 10 °C Seconds (Plastic DIP or SOIC Package) * Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions. +Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C SOIC Package: : - 7 mW/°C from 65° to 125°C RECOMMENDED OPERATING CONDITIONS Symbol Parameter VCC DC Supply Voltage (Referenced to GND) VIN, VOUT DC Input Voltage, Output Voltage (Referenced to GND) TA Operating Temperature, All Package Types t r, tf Input Rise and Fall Time (Figure 1) VCC =2.0 V VCC =4.5 V VCC =6.0 V Min 2.0 0 -55 0 0 0 Max 6.0 VCC +125 1000 500 400 Unit V V °C ns This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, VIN and VOUT should be constrained to the range GND≤(VIN or VOUT)≤VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC). Unused outputs must be left open. I/O pins must be connected to a properly terminated line or bus. 2 IN74HC299 DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND) Guaranteed Limit VCC Symbol Parameter Test Conditions V ≤85 ≤125 25 °C to °C °C -55°C 1.5 1.5 VOUT=0.1 V or VCC-0.1 V 2.0 1.5 VIH Minimum High3.15 3.15 3.15 Level Input 4.5 IOUT≤ 20 µA 4.2 4.2 4.2 Voltage 6.0 0.3 0.3 VOUT=0.1 V or VCC-0.1 V 2.0 0.3 VIL Maximum Low 0.9 0.9 0.9 Level Input 4.5 IOUT ≤ 20 µA 1.2 1.2 1.2 Voltage 6.0 1.9 1.9 VIN=VIH or VIL 1.9 VOH Minimum High2.0 4.4 4.4 4.4 Level Output 4.5 IOUT ≤ 20 µA 5.9 5.9 5.9 Voltage 6.0 VIN=VIH or VIL 3.7 3.84 3.98 4.5 IOUT ≤ 6.0 mA (P/Q) 5.2 5.34 5.48 6.0 IOUT ≤ 7.8 mA (P/Q) VIN=VIH or VIL 3.7 3.84 3.98 4.5 IOUT ≤ 4.0 mA (Q’) 5.2 5.34 5.48 6.0 IOUT ≤ 5.2 mA (Q’) 0.1 0.1 VIN= VIL or VIH 0.1 VOL Maximum Low2.0 0.1 0.1 0.1 Level Output 4.5 IOUT ≤ 20 µA 0.1 0.1 0.1 Voltage 6.0 VIN=VIH or VIL 0.4 0.33 0.26 4.5 IOUT ≤ 6.0 mA (P/Q) 0.4 0.33 0.26 6.0 IOUT ≤ 7.8 mA (P/Q) VIN=VIH or VIL 0.4 0.33 0.26 4.5 IOUT ≤ 4.0 mA (Q’) 0.4 0.33 0.26 6.0 IOUT ≤ 5.2 mA (Q’) IIN Maximum Input VIN=VCC or GND 6.0 ±0.1 ±1.0 ±1.0 Leakage Current IOZ Maximum Three- Output in High6.0 ±0.5 ±5.0 ±10 State Leakage Impedance State Current VIN= VIL or VIH (QA thru QH) VOUT=VCC or GND VIN=VCC or GND ICC Maximum 6.0 8.0 80 160 Quiescent Supply IOUT=0µA Current (per Package) 3 Unit V V V V µA µA µA IN74HC299 AC ELECTRICAL CHARACTERISTICS(CL=50pF,Input tr=tf=6.0 ns) Guaranteed Limit VCC Symbol Parameter V 25 °C ≤85°C ≤125° C to -55°C 3.4 4.0 5.0 fmax Maximum Clock Frequency (50% Duty 2.0 17 20 25 Cycle) (Figures 1 and 5) 4.5 20 24 29 6.0 255 215 170 tPLH, Maximum Propagation Delay, Clock to 2.0 51 43 34 tPHL QA’ or QH’ (Figures 1 and 5) 4.5 43 37 29 6.0 240 200 160 tPLH, Maximum Propagation Delay, Clock to 2.0 48 40 32 tPHL QA thru QH (Figures 1 and 5) 4.5 41 34 27 6.0 265 220 175 tPHL Maximum Propagation Delay, Reset to 2.0 53 44 35 QA’ or QH’ (Figures 2 and 5) 4.5 45 37 30 6.0 285 240 190 tPHL Maximum Propagation Delay, Reset to 2.0 57 48 38 QA thru QH (Figures 2 and 5) 4.5 48 41 32 6.0 225 190 150 tPLZ, Maximum Propagation Delay , OE1, 2.0 45 38 30 tPHZ OE2, S1, or S2 to QA thru QH (Figures 3 4.5 38 33 26 6.0 and 6) 225 190 150 tPZL, Maximum Propagation Delay , OE1, 2.0 45 38 30 tPZH OE2, S1, or S2 to QA thru QH (Figures 3 4.5 38 33 26 6.0 and 6) 90 75 60 tTLH, tTHL Maximum Output Transition Time, QA 2.0 18 15 12 thru QH (Figures 1 and 5) 4.5 15 13 10 6.0 110 95 75 tTLH, tTHL Maximum Output Transition Time, QA’ 2.0 22 19 15 thru QH’ (Figures 1 and 5) 4.5 19 16 13 6.0 CIN Maximum Input Capacitance) 10 10 10 15 15 15 COUT Maximum Three-State I/O Capacitance (I/O in High-Impedance State), QA thru QH CPD Power Dissipation Capacitance (Per Package), Output Enable Used to determine the no-load dynamic power consumption: PD=CPDVCC2f+ICCVCC 4 Unit MHz ns ns ns ns ns ns ns ns pF pF Typical @25°C,VCC=5.0 V 240 pF IN74HC299 TIMING REQUIREMENTS(CL=50pF,Input tr=tf=6.0 ns) Guaranteed Limit VCC Symbol Parameter V 25 °C to≤85°C ≤125°C 55°C 150 125 100 tsu Minimum Setup Time, Mode 2.0 30 25 20 Select S1 or S2 to Clock 4.5 26 21 17 6.0 (Figure 4) 150 125 100 tsu Minimum Setup Time, Data 2.0 30 25 20 Inputs SA, SH, PA thru PH to 4.5 26 21 17 6.0 Clock (Figure 4) 180 150 120 th Minimum Hold Time, Clock to 2.0 36 30 24 Mode Select S1 or S2 (Figure 4.5 31 26 20 6.0 4) 5 5 5 th Minimum Hold Time, Clock to 2.0 5 5 5 Data Inputs, SA, SH, PA thru PH 4.5 5 5 5 6.0 (Figure 4) 75 65 50 trec Minimum Recovery Time, 2.0 15 13 10 Reset Inactive to Clock (Figure 4.5 13 11 9 6.0 2) 120 100 80 tw Minimum Pulse Width, Clock 2.0 24 20 16 (Figure 1) 4.5 20 17 14 6.0 120 100 80 tw Minimum Pulse Width, Reset 2.0 24 20 16 (Figure 2) 4.5 20 17 14 6.0 1000 1000 1000 t r, tf Maximum Input Rise and Fall 2.0 500 500 500 Times (Figure 1) 4.5 400 400 400 6.0 5 Unit ns ns ns ns ns ns ns ns IN74HC299 FUNCTION TABLE Inputs Response Mode Rese Mode Output Clock Serial PA/ PB/ PC/ PD/ PE/ PF/ PG/ PH/ QA’ QH’ t Select Enables Inputs QA QB QC QD QE QF QG QH S2 S1 OE1 OE2 DA DH Reset L X L L L X X X L L L L L L L L L L L L X L L X X X L L L L L L L L L L L H H X X X X X QA through QH=Z L L Shift H L H H X D X Shift Right: QA through QH=Z; D QG Right DA FA; FA FB; etc H L H X H D X Shift Right: QA through QH=Z; D QG DA FA; FA FB; etc H L H L L D X Shift Right: DA FA =QA; D QG FA FB =QB; etc Shift H H L H X X D Shift Left: QA through QH=Z; QB D Left DH FH; FH FG; etc H H L X H X D Shift Left: QA through QH=Z; QB D DH FH; FH FG; etc H H L L L X D Shift Left: DH FH =QH; QB D FH FG =QG; etc Parallel H H H X X X X Parallel Load:PN FN PA PH Load Hold H L L H X X X X Hold: QA through QH=Z; FN=FN PA PH H L L X H X X X Hold: QA through QH=Z; FN=FN PA PH H L L L L X X X Hold: QN =QH PA PH Z = high impedance D = data on serial input F = flip-flop (see Logic Diagram) When one or both output controls are high the eight input/output terminals are disabled to the highimpedance state; however, sequential operation or clearing of the register is not affected. 6 IN74HC299 Figure 1. Switching Waveforms Figure 2. Switching Waveforms Figure 3a. Switching Waveforms Figure 3b. Switching Waveforms Figure 4. Switching Waveforms Figure 5. Test Circuit Figure 6. Test Circuit 7 IN74HC299 EXPANDED LOGIC DIAGRAM 8