TI SN74F163ANSR

SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
D
D
D
D, DB, OR N PACKAGE
(TOP VIEW)
Internal Look-Ahead Circuitry for Fast
Counting
Carry Output for N-Bit Cascading
Fully Synchronous Operation for Counting
CLR
CLK
A
B
C
D
ENP
GND
description
1
16
2
15
3
14
4
13
5
VCC
RCO
QA
QB
QC
QD
ENT
LOAD
12
This synchronous, presettable, 4-bit binary
6
11
counter has internal carry look-ahead circuitry
7
10
for use in high-speed counting designs.
8
9
Synchronous operation is provided by having all
flip-flops clocked simultaneously so that the
outputs change coincident with each other when
so instructed by the count-enable (ENP, ENT) inputs and internal gating. This mode of operation eliminates the
output counting spikes that normally are associated with asynchronous (ripple-clock) counters. However,
counting spikes can occur on the ripple-carry (RCO) output. A buffered clock (CLK) input triggers the four
flip-flops on the rising (positive-going) edge of CLK.
This counter is fully programmable. That is, it can be preset to any number between 0 and 15. Because
presetting is synchronous, a low logic level at the load (LOAD) input disables the counter and causes the outputs
to agree with the setup data after the next clock pulse, regardless of the levels of ENP and ENT.
The clear function is synchronous, and a low logic level at the clear (CLR) input sets all four of the flip-flop outputs
to low after the next low-to-high transition of the clock, regardless of the levels of ENP and ENT. This
synchronous clear allows the count length to be modified easily by decoding the Q outputs for the maximum
count desired. The active-low output of the gate used for decoding is connected to the clear input to
synchronously clear the counter to 0000 (LLLL).
The carry look-ahead circuitry provides for cascading counters for n-bit synchronous applications, without
additional gating. This function is implemented by the ENP and ENT inputs and an RCO output. Both ENP and
ENT must be high to count, and ENT is fed forward to enable RCO. RCO, thus enabled, produces a
high-logic-level pulse while the count is 15 (HHHH). The high-logic-level overflow ripple-carry pulse can be used
to enable successive cascaded stages. Transitions at ENP or ENT are allowed, regardless of the level of CLK.
The SN74F163A features a fully independent clock circuit. Changes at ENP, ENT, or LOAD that modify the
operating mode have no effect on the contents of the counter until clocking occurs. The function of the counter
(whether enabled, disabled, loading, or counting) is dictated solely by the conditions meeting the setup and hold
times.
ORDERING INFORMATION
PACKAGE†
TA
PDIP – N
0°C to 70°C
SOIC – D
SSOP – DB
ORDERABLE
PART NUMBER
Tube
SN74F163AN
Tube
SN74F163AD
Tape and reel
SN74F163ADR
Tape and reel
SN74F163ADBR
TOP-SIDE
MARKING
SN74F163AN
F163A
F163A
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines
are available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
state diagram
0
2
3
4
15
5
14
6
13
7
12
2
1
11
POST OFFICE BOX 655303
10
9
• DALLAS, TEXAS 75265
8
SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
logic diagram (positive logic)
CLR
LOAD
ENT
ENP
1
9
10
7
15
RCO
3R
14
CLK
A
2
3
G2
QA
1, 2T/C3
1, 3D
M1
3R
13
G2
QB
1, 2T/C3
B
4
1, 3D
M1
3R
12
G2
QC
1, 2T/C3
C
5
1, 3D
M1
3R
G2
11
QD
1, 2T/C3
D
6
1, 3D
M1
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
logic symbol, each flip-flop
R
3R
TE
G2
Q1
1, 2T/C3
CLK
D
Q1
Q2
1, 3D
Q2
LOAD
M1
logic diagram, each flip-flop (positive logic)
R
TE
(Toggle
Enable)
Q1
CLK
Q2
D
LOAD
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
typical clear, preset, count, and inhibit sequences
The following timing sequence is illustrated below:
1. Clear outputs to zero
2. Preset to binary 12
3. Count to 13, 14, 15, 0, 1, and 2
4. Inhibit
CLR
LOAD
A
Data
Inputs
B
C
D
CLK
ENP
ENT
QA
Data
Outputs
QB
QC
QD
RCO
12
13
14
15
0
1
2
Count
Inhibit
Sync Preset
Clear
Async
Clear
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
5
SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to 7 V
Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 1.2 V to 7 V
Input current range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 30 mA to 5 mA
Voltage range applied to any output in the high state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.5 V to VCC
Current into any output in the low state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 mA
Package thermal impedance, θJA (see Note 2): D package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73°C/W
DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82°C/W
N package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input voltage ratings may be exceeded provided the input current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 3)
MIN
NOM
MAX
4.5
5
5.5
UNIT
VCC
VIH
Supply voltage
VIL
IIK
Low-level input voltage
0.8
V
Input clamp current
–18
mA
IOH
IOL
High-level output current
–1
mA
Low-level output current
20
mA
High-level input voltage
2
V
V
TA
Operating free-air temperature
0
70
°C
NOTE 3: All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)
PARAMETER
VIK
VOH
VOL
II
IIH
TEST CONDITIONS
VCC = 4.5 V,
VCC = 4.5 V,
II = – 18 mA
IOH = – 1 mA
VCC = 4.75 V,
VCC = 4.5 V,
IOH = – 1 mA
IOL = 20 mA
VCC = 5.5 V,
VCC = 5.5 V,
VI = 7 V
VI = 2.7 V
MIN
2.5
TYP‡
ENT, LOAD
0.3
V
0.5
V
0.1
mA
20
µA
– 0.6
VCC = 5.5 V,
VI = 0.5 V
– 1.2
mA
– 1.2
VCC = 5.5 V,
VCC = 5.5 V
VO = 0
– 60
37
‡ All typical values are at VCC = 5 V, TA = 25°C.
§ Not more than one output should be shorted at a time, and the duration of the short circuit should not exceed one second.
6
V
2.7
CLR
IOS§
ICC
UNIT
– 1.2
3.4
ENP, CLK, A, B, C, D
IIL
MAX
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
–150
mA
55
mA
SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
timing requirements over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted)
VCC = 5 V,
TA = 25°C
fclock
Clock frequency
tw
Pulse duration
CLK high or low (loading)
CLK (counting)
Data before CLK↑
tsu
ENP and ENT before CLK↑
Data after CLK↑
th
Hold time
LOAD and CLR after CLK↑
ENP and ENT after CLK↑
MAX
0
100
MIN
0
5
5
High
4
4
Low
6
7
High or low
LOAD and CLR before CLK↑
Setup time
MIN
5
5
High
11
11.5
Low
8.5
9.5
High
11
11.5
Low
5
5
High or low
2
2
High
2
2
Low
0
0
High or low
0
0
MAX
UNIT
90
MHz
ns
ns
ns
switching characteristics (see Note 4)
PARAMETER
fmax
tPLH
FROM
(INPUT)
TO
(OUTPUT)
VCC = 5 V,
CL = 50 PF,
RL = 500 Ω,
TA = 25°C
MIN
TYP
MAX
VCC = 4.5 V TO 5.5 V,
CL = 50 PF,
RL = 500 Ω,
TA = MIN TO MAX†
MIN
MAX
100
120
2.7
5.1
7.5
2.7
8.5
2.7
7.1
10
2.7
11
3.2
5.6
8.5
3.2
9.5
3.2
5.6
8.5
3.2
9.5
4.2
9.6
14
4.2
15
4.2
9.6
14
4.2
15
1.7
4.1
7.5
1.7
ENT
RCO
tPHL
1.7
4.1
7.5
1.7
† For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
NOTE 4: Load circuits and waveforms are shown in Figure 1.
8.5
tPHL
tPLH
tPHL
tPLH
tPHL
tPLH
CLK (LOAD high)
Any Q
CLK (LOAD low)
Any Q
CLK
RCO
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
90
UNIT
MHz
8.5
ns
ns
ns
ns
7
SN74F163A
SYNCHRONOUS 4-BIT BINARY COUNTER
SDFS088A – MARCH 1987 – REVISED AUGUST 2001
PARAMETER MEASUREMENT INFORMATION
From Output
Under Test
CL
(see Note A)
From Output
Under Test
CL
(see Note A)
Test
Point
500 Ω
7V
Open
500 Ω S1
500 Ω
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open Collector
Open
7V
Open
7V
LOAD CIRCUIT FOR
3-STATE AND OPEN-DRAIN OUTPUTS
LOAD CIRCUIT FOR
TOTEM-POLE OUTPUTS
3V
1.5 V
Timing Input
0V
tw
3V
1.5 V
Input
1.5 V
th
tsu
3V
1.5 V
Data Input
1.5 V
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
3V
1.5 V
Input
1.5 V
0V
tPLH
In-Phase
Output
tPHL
1.5 V
1.5 V
VOL
tPHL
Out-of-Phase
Output
VOH
Output
Waveform 1
S1 at 7 V
(see Note B)
1.5 V
VOH
1.5 V
VOL
1.5 V
0V
tPZL
tPLZ
≈3.5 V
1.5 V
tPZH
tPLH
1.5 V
3V
Output
Control
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + 0.3 V
VOL
tPHZ
1.5 V
VOH – 0.3 V
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns,
duty cycle = 50%.
D. The outputs are measured one at a time with one input transition per measurement.
Figure 1. Load Circuit and Voltage Waveforms
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
SN74F163AD
ACTIVE
SOIC
D
16
SN74F163ADBR
ACTIVE
SSOP
DB
SN74F163ADBRE4
ACTIVE
SSOP
SN74F163ADE4
ACTIVE
SN74F163ADR
40
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
DB
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SOIC
D
16
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74F163ADRE4
ACTIVE
SOIC
D
16
2500 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74F163AN
ACTIVE
PDIP
N
16
CU NIPDAU
N / A for Pkg Type
40
25
Pb-Free
(RoHS)
TBD
Call TI
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
SN74F163AN3
OBSOLETE
PDIP
N
16
SN74F163ANE4
ACTIVE
PDIP
N
16
Call TI
SN74F163ANSR
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
SN74F163ANSRE4
ACTIVE
SO
NS
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Low Power Wireless www.ti.com/lpw
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated