MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com MIXED SIGNAL MICROCONTROLLER Check for Samples: MSP430F2619S-HT FEATURES 1 • • 2 • • • • • • • • • • • • Supply Voltage Supervisor/Monitor With Programmable Level Detection Brownout Detector Bootstrap Loader Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse MSP430F2619S 120 kB + 256 B Flash Memory, 4 kB RAM Available in 64-Pin QFP and KDG Packages For Complete Module Descriptions, Refer to the MSP430x2xx Family User's Guide (SLAU144) 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 • Low Supply Voltage Range 1.8 V to 3.6 V Ultralow-Power Consumption – Active Mode: 365 μA at 1 MHz, 2.2 V – Standby Mode (VLO): 0.5 μA – Off Mode (RAM Retention): 0.1 μA Wake-Up From Standby Mode in Less than 1 μs 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time Three-Channel Internal DMA 12-Bit Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, and Autoscan Feature Dual 12-Bit Digital-to-Analog (D/A) Converters With Synchronization 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Seven Capture/Compare-With-Shadow Registers On-Chip Comparator Four Universal Serial Communication Interfaces (USCIs) – USCI_A0 and USCI_A1 – Enhanced UART Supporting Auto-Baud-Rate Detection (LIN) – IrDA Encoder and Decoder – Synchronous SPI – USCI_B0 and USCI_B1 – I2C™ – Synchronous SPI • • • SUPPORTS EXTREME TEMPERATURE APPLICATIONS • • • • • • • Controlled Baseline One Assembly/Test Site One Fabrication Site Extended Product Life Cycle Extended Product-Change Notification Product Traceability Texas Instruments high temperature products utilize highly optimized silicon (die) solutions with design and process enhancements to maximize performance over extended temperatures. DESCRIPTION The MSP430F2619S ultralow-power microcontroller features different sets of peripherals targeted for various applications. The architecture, combined with five low power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 μs. The MSP430F2619S is a microcontroller configuration with two built-in 16-bit timers, a fast 12-bit A/D converter, a comparator, dual 12-bit D/A converters, four universal serial communication interface (USCI) modules, DMA, and up to 64 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data for display or for transmission to a host system. Stand-alone RF sensor front end is another area of application. 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Table 1. ORDERING INFORMATION (1) TA –55°C to 150°C (1) (2) PACKAGE (2) ORDERABLE PART NUMBER QFP (PM) MSP430F2619SPM KGD (known good die) MSP430F2619SKGD1 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI Web site at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: • Debugging and Programming Interface – MSP-FET430UIF (USB) – MSP-FET430PIF (Parallel Port) • Debugging and Programming Interface with Target Board – MSP-FET430U64 – MSP-FET430U80 • Standalone Target Board – MSP-TS430PM64 • Production Programmer – MSP-GANG430 2 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com P5.5/SMCLK P5.7/TBOUTH/SVSOUT P5.6/ACLK XT2IN XT2OUT TDI/TCLK TDO/TDI TCK TMS RST/NMI P6.1/A1 P6.0/A0 AV SS P6.2/A2 DVSS1 AV CC PINOUTS 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 DVCC1 P6.3/A3 P6.4/A4 1 2 3 48 47 46 P5.4/MCLK P5.3/UCB1CLK/UCA1STE P5.2/UCB1SOMI/UCB1SCL P6.5/A5/DAC1 P6.6/A6/DAC0 4 5 45 44 P5.1/UCB1SIMO/UCB1SDA P5.0/UCB1STE/UCA1CLK P6.7/A7/DAC1/SVSIN VREF+ XIN 6 7 8 43 42 41 P4.7/TBCLK P4.6/TB6 P4.5/TB5 40 39 P4.4/TB4 P4.3/TB3 64-PIN PM PACKAGE (TOP VIEW) XOUT Ve REF+/DAC0 9 10 VREF-/Ve REFP1.0/TACLK/CAOUT P1.1/TA0 11 12 13 38 37 36 P4.2/TB2 P4.1/TB1 P4.0/TB0 P1.2/TA1 P1.3/TA2 14 15 35 34 P3.7/UCA1RXD/UCA1SOMI P3.6/UCA1TXD/UCA1SIMO P1.4/SMCLK 16 33 P3.5/UCA0RXD/UCA0SOMI Copyright © 2010–2011, Texas Instruments Incorporated P3.4/UCA0TXD/UCA0SIMO P3.3/UCB0CLK/UCA0STE P3.2/UCB0SOMI/UCB0SCL P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P2.7/TA0/CA7 P2.6/ADC12CLK/DMAE0/CA6 P2.5/ROSC/CA5 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.0/ACLK/CA2 P1.7/TA2 P1.5/TA0 P1.6/TA1 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 3 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com KGD PAD 1 DESIGNATOR 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 4 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com FUNCTIONAL BLOCK DIAGRAM XIN/ XT2IN XOUT/ XT2OUT 2 2 DVCC ACLK Oscillators Basic Clock SMCLK System+ 120kB 116kB 92kB 92kB 56kB AVCC RAM 4kB 8kB 8kB 4kB 4kB ADC12 12-Bit 8 Channels AVSS 1.x/P2.x P DAC12 12-Bit 2 Channels Voltage Out P3.x/P4.x P5.x/P6.x 2x8 4x8 Ports P1/P2 2x8 I/O Interrupt capability Ports P3/P4 P5/P6 USCI A0 UART/ LIN, IrDA, SPI 4x8 I/O USCI B0 SPI, I2C 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 MCLK Flash DVSS 16MHz CPU 1MB incl. 16 Registers Emulation JTAG Interface MAB MDB Brownout Protection SVS, SVM Hardware Multiplier MPY, MPYS, MAC, MACS DMA Controller 3 Channels Timer_B7 Watchdog WDT+ 15-Bit Timer_A3 3 CC Registers Comp_A+ 7 CC Registers, Shadow Reg 8 Channels USCI A1 UART/ LIN, IrDA, SPI USCI B1 SPI, I2C RST/NMI Copyright © 2010–2011, Texas Instruments Incorporated 5 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com TERMINAL FUNCTIONS (64-PM PACKAGE) TERMINAL NAME PM I/O DESCRIPTION 64 Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12 and DAC12. AVSS 62 Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12 and DAC12. DVCC1 1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS1 63 Digital supply voltage, negative terminal. Supplies all digital parts. P1.0/TACLK/CAOUT 12 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input/Comparator_A output P1.1/TA0 13 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output 16 I/O General-purpose digital I/O pin/SMCLK signal output 17 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 AVCC 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output P2.0/ACLK/CA2 20 I/O General-purpose digital I/O pin/ACLK output/Comparator_A input P2.1/TAINCLK/CA3 21 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK P2.2/CAOUT/TA0/CA4 22 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive/Comparator_A input P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input P2.5/Rosc/CA5 25 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency/Comparator_A input P2.6/ADC12CLK/DMAE0/CA6 26 I/O General-purpose digital I/O pin/conversion clock – 12-bit ADC/DMA channel 0 external trigger/Comparator_A input P2.7/TA0/CA7 27 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/Comparator_A input P3.0/UCB0STE/UCA0CLK 28 I/O General-purpose digital I/O pin/USCI B0 slave transmit enable/USCI A0 clock input/output P3.1/UCB0SIMO/UCB0SDA 29 I/O General-purpose digital I/O pin/USCI B0 slave in/master out in SPI mode, SDA I2C data in I2C mode P3.2/UCB0SOMI/UCB0SCL 30 I/O General-purpose digital I/O pin/USCI B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode P3.3/UCB0CLK/UCA0STE 31 I/O General-purpose digital I/O/USCI B0 clock input/output, USCI A0 slave transmit enable P3.4/UCA0TXD/UCA0SIMO 32 I/O General-purpose digital I/O pin/USCIA transmit data output in UART mode, slave data in/master out in SPI mode P3.5/UCA0RXD/UCA0SOMI 33 I/O General-purpose digital I/O pin/USCI A0 receive data input in UART mode, slave data out/master in in SPI mode P3.6/UCA1TXD/UCA1SIMO 34 I/O General-purpose digital I/O pin/USCI A1 transmit data output in UART mode, slave data in/master out in SPI mode P3.7/UCA1RXD/UCA1SOMI 35 I/O General-purpose digital I/O pin/USCIA1 receive data input in UART mode, slave data out/master in in SPI mode P4.0/TB0 36 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A/B input, compare: Out0 output P4.1/TB1 37 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A/B input, compare: Out1 output P4.2/TB2 38 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A/B input, compare: Out2 output 6 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com TERMINAL FUNCTIONS (64-PM PACKAGE) (continued) TERMINAL NAME PM I/O DESCRIPTION 39 I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A/B input, compare: Out3 output P4.4/TB4 40 I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A/B input, compare: Out4 output P4.5/TB5 41 I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A/B input, compare: Out5 output P4.6/TB6 42 I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A input, compare: Out6 output 43 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input P5.0/UCB1STE/UCA1CLK 44 I/O General-purpose digital I/O pin/USCI B1 slave transmit enable/USCI A1 clock input/output P5.1/UCB1SIMO/UCB1SDA 45 I/O General-purpose digital I/O pin/USCI B1slave in/master out in SPI mode, SDA I2C data in I2C mode P5.2/UCB1SOMI/UCB1SCL 46 I/O General-purpose digital I/O pin/USCI B1slave out/master in in SPI mode, SCL I2C clock in I2C mode P5.3/UCB1CLK/UCA1STE 47 I/O General-purpose digital I/O/USCI B1 clock input/output, USCI A1 slave transmit enable P5.4/MCLK 48 I/O General-purpose digital I/O pin/main system clock MCLK output 49 I/O General-purpose digital I/O pin/submain system clock SMCLK output 50 I/O General-purpose digital I/O pin/auxiliary clock ACLK output P5.7/TBOUTH/SVSOUT 51 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance -- Timer_B TB0 to TB6/SVS comparator output P6.0/A0 59 I/O General-purpose digital I/O pin/analog input A0 – 12-bit ADC 60 I/O General-purpose digital I/O pin/analog input A1 – 12-bit ADC 61 I/O General-purpose digital I/O pin/analog input A2 – 12-bit ADC 2 I/O General-purpose digital I/O pin/analog input A3 – 12-bit ADC 3 I/O General-purpose digital I/O pin/analog input A4 – 12-bit ADC P6.5/A5/DAC1 4 I/O General-purpose digital I/O pin/analog input A5 – 12-bit ADC/DAC12.1 output P6.6/A6/DAC0 5 I/O General-purpose digital I/O pin/analog input A6 – 12-bit ADC/DAC12.0 output P6.7/A7/DAC1/SVSIN 6 I/O General-purpose digital I/O pin/analog input a7 – 12-bit ADC/DAC12.1 output/SVS input NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin NC I/O General-purpose digital I/O pin P8.1 NC I/O General-purpose digital I/O pin P8.2 NC I/O General-purpose digital I/O pin P8.3 NC I/O General-purpose digital I/O pin P8.4 NC I/O General-purpose digital I/O pin P8.5 NC I/O General-purpose digital I/O pin P8.6/XT2OUT NC O General-purpose digital I/O pin/Output terminal of crystal oscillator XT2 P8.7/XT2IN NC I General-purpose digital I/O pin/Input port for crystal oscillator XT2. Only standard crystals can be connected. P4.7/TBCLK P5.5/SMCLK P5.6/ACLK P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 P7.0 P7.1 P7.2 P7.3 P7.4 P7.5 P7.6 P7.7 P8.0 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P4.3/TB3 Copyright © 2010–2011, Texas Instruments Incorporated 7 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com TERMINAL FUNCTIONS (64-PM PACKAGE) (continued) TERMINAL NAME PM I/O DESCRIPTION 52 O Output terminal of crystal oscillator XT2 XT2IN 53 I Input port for crystal oscillator XT2 RST/NMI 58 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in flash devices) TCK 57 I Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start. TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. 54 I/O 56 I Test mode select. TMS is used as an input port for device programming and test. 10 I Input for an external reference voltage/DAC12.0 output 7 O Output of positive terminal of the reference voltage in the ADC12 11 I Negative terminal for the reference voltage for both sources, the internal reference voltage, or an external applied reference voltage 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. 9 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected. TDO/TDI TMS VeREF+/DAC0 VREF+ VREF-/VeREFXIN XOUT 8 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 XT2OUT Test data output port. TDO/TDI data output or programming data input terminal. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com KGD INFORMATION PAD FUNCTION BOND PAD CO-ORDINATES BOND PAD SIZE BOND PAD CENTER Xmin (µm) Ymin (µm) Xmax (µm) Ymax (µm) X (µm) Y (µm) Xp (µm) Yp (µm) AVCC 90.65 4729.1 165.65 4804.1 75 75 128.15 4766.6 2 DVCC1 90.65 4586.85 165.65 4661.85 75 75 128.15 4624.35 3 P6.3/A3 87.4 4440.3 162.4 4515.3 75 75 124.9 4477.8 4 P6.4/A4 87.4 4282.65 162.4 4357.65 75 75 124.9 4320.15 5 P6.5/A5/DAC1 87.4 4125.05 162.4 4200.05 75 75 124.9 4162.55 6 P6.6/A6/DAC0 87.4 3943.9 162.4 4018.9 75 75 124.9 3981.4 7 P6.7/A7/DAC1/SVSIN 87.4 3762.75 162.4 3837.75 75 75 124.9 3800.25 8 VREF+ 9 XIN 10 XOUT 11 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 1 92.95 3524.75 167.95 3599.75 75 75 130.45 3562.25 87.4 3346.6 162.4 3421.6 75 75 124.9 3384.1 87.4 2472.4 162.4 2547.4 75 75 124.9 2509.9 VeREF+/DAC0 92.95 2251 167.95 2326 75 75 130.45 2288.5 12 VREF-/VeREF- 92.95 2082.5 167.95 2157.5 75 75 130.45 2120 13 P1.0/TACLK/CAOUT 87.4 1866.2 162.4 1941.2 75 75 124.9 1903.7 14 P1.1/TA0 87.4 1730.6 162.4 1805.6 75 75 124.9 1768.1 15 P1.2/TA1 87.4 1595 162.4 1670 75 75 124.9 1632.5 16 P1.3/TA2 87.4 1459.4 162.4 1534.4 75 75 124.9 1496.9 17 P1.4/SMCLK 87.4 1323.8 162.4 1398.8 75 75 124.9 1361.3 18 P1.5/TA0 87.4 1188.2 162.4 1263.2 75 75 124.9 1225.7 19 P1.6/TA1 87.4 1052.6 162.4 1127.6 75 75 124.9 1090.1 20 P1.7/TA2 87.4 807.7 162.4 882.7 75 75 124.9 845.2 21 P2.0/ACLK/CA2 87.4 672.1 162.4 747.1 75 75 124.9 709.6 22 P2.1/TAINCLK/CA3 559.1 87.4 634.1 162.4 75 75 596.6 124.9 23 P2.2/CAOUT/TA0/CA4 694.7 87.4 769.7 162.4 75 75 732.2 124.9 24 P2.3/CA0/TA1 830.3 87.4 905.3 162.4 75 75 867.8 124.9 25 P2.4/CA1/TA2 1234.9 87.4 1309.9 162.4 75 75 1272.4 124.9 26 P2.5/Rosc/CA5 1370.5 87.4 1445.5 162.4 75 75 1408 124.9 27 P2.6/ADC12CLK/DMAE0/CA6 1506.1 87.4 1581.1 162.4 75 75 1543.6 124.9 28 P2.7/TA0/CA7 1641.7 87.4 1716.7 162.4 75 75 1679.2 124.9 29 P3.0/UCB0STE/UCA0CLK 1777.3 87.4 1852.3 162.4 75 75 1814.8 124.9 30 P3.1/UCB0SIMO/UCB0SDA 1912.9 87.4 1987.9 162.4 75 75 1950.4 124.9 31 P3.2/UCBOSOMI/UCB0SCL 2053 87.4 2128 162.4 75 75 2090.5 124.9 32 P3.3/UCB0CLK/UCA0STE 2193.1 87.4 2268.1 162.4 75 75 2230.6 124.9 33 P3.4/UCA0TXD/UCA0SIMO 2328.7 87.4 2403.7 162.4 75 75 2366.2 124.9 34 P3.5/UCA0RXD/UCA0SOMI 2464.3 87.4 2539.3 162.4 75 75 2501.8 124.9 35 P3.6/UCA1TXD/UCA1SIMO 2671.1 87.4 2746.1 162.4 75 75 2708.6 124.9 36 P3.7/UCA1RXD/UCA1SOMI 2807.15 87.4 2882.15 162.4 75 75 2844.65 124.9 37 P4.0/TB0 3585.9 87.4 3660.9 162.4 75 75 3623.4 124.9 38 P4.1/TB1 3721.5 87.4 3796.5 162.4 75 75 3759 124.9 39 P4.2/TB2 3861.6 87.4 3936.6 162.4 75 75 3899.1 124.9 40 P4.3/TB3 4001.7 87.4 4076.7 162.4 75 75 4039.2 124.9 41 P4.4/TB4 4137.3 87.4 4212.3 162.4 75 75 4174.8 124.9 42 P4.5/TB5 4887.6 669.65 4962.6 744.65 75 75 4925.1 707.15 43 P4.6/TB6 4887.6 805.25 4962.6 880.25 75 75 4925.1 842.75 44 P4.7/TBCLK 4887.6 940.85 4962.6 1015.85 75 75 4925.1 978.35 45 P5.0/UCB1STE/UCA1CLK 4887.6 1076.45 4962.6 1151.45 75 75 4925.1 1113.95 46 P5.1/UCB1SIMO/UCB1SDA 4887.6 1212.05 4962.6 1287.05 75 75 4925.1 1249.55 47 P5.2/UCB1SOMI/UCB1SCL 4887.6 1352.15 4962.6 1427.15 75 75 4925.1 1389.65 48 P5.3/UCB1CLK/UCA1STE 4887.6 1492.25 4962.6 1567.25 75 75 4925.1 1529.75 49 P5.4/MCLK 4887.6 1627.85 4962.6 1702.85 75 75 4925.1 1665.35 50 P5.5/SMCLK 4887.6 2533.55 4962.6 2608.55 75 75 4925.1 2571.05 Copyright © 2010–2011, Texas Instruments Incorporated 9 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com KGD INFORMATION (continued) PAD FUNCTION BOND PAD CO-ORDINATES BOND PAD SIZE BOND PAD CENTER Xmin (µm) Ymin (µm) Xmax (µm) Ymax (µm) X (µm) Y (µm) Xp (µm) Yp (µm) P5.6/ACLK 4887.6 2669.15 4962.6 2744.15 75 75 4925.1 2706.65 52 P5.7/TBOUTH/SVSOUT 4887.6 2804.75 4962.6 2879.75 75 75 4925.1 2842.25 53 DVCC2 4884.35 2953.25 4959.35 3028.25 75 75 4921.85 2990.75 54 DVSS2 4887.6 3060.45 4962.6 3135.45 75 75 4925.1 3097.95 55 P7.0 4887.6 3153.45 4962.6 3228.45 75 75 4925.1 3190.95 56 P7.1 4887.6 3289.05 4962.6 3364.05 75 75 4925.1 3326.55 57 P7.2 4887.6 3424.65 4962.6 3499.65 75 75 4925.1 3462.15 58 P7.3 59 P7.4 60 P7.5 61 P7.6 62 P7.7 63 P8.0 64 P8.1 65 P8.2 66 P8.3 67 P8.4 68 P8.5 69 P8.6/XT2OUT 3140.9 4887.6 3215.9 70 P8.7/XT2IN 2992.85 4887.6 3067.85 71 TDO/TDI 2844.6 4887.6 2919.6 72 TDI/TCLK 2448 4887.6 73 TMS 2152.25 74 TCK 75 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 51 4887.6 3560.25 4962.6 3635.25 75 75 4925.1 3597.75 4887.6 3700.35 4962.6 3775.35 75 75 4925.1 3737.85 4887.6 3840.45 4962.6 3915.45 75 75 4925.1 3877.95 4887.6 3997.05 4962.6 4072.05 75 75 4925.1 4034.55 4237.65 4887.6 4312.65 4962.6 75 75 4275.15 4925.1 4102.05 4887.6 4177.05 4962.6 75 75 4139.55 4925.1 3966.45 4887.6 4041.45 4962.6 75 75 4003.95 4925.1 3830.85 4887.6 3905.85 4962.6 75 75 3868.35 4925.1 3547.7 4887.6 3622.7 4962.6 75 75 3585.2 4925.1 3412.1 4887.6 3487.1 4962.6 75 75 3449.6 4925.1 3276.5 4887.6 3351.5 4962.6 75 75 3314 4925.1 4962.6 75 75 3178.4 4925.1 4962.6 75 75 3030.35 4925.1 4962.6 75 75 2882.1 4925.1 2523 4962.6 75 75 2485.5 4925.1 4887.6 2227.25 4962.6 75 75 2189.75 4925.1 1568.55 4887.6 1643.55 4962.6 75 75 1606.05 4925.1 RST/NMI 1431.85 4887.6 1506.85 4962.6 75 75 1469.35 4925.1 76 P6.0/A0 1230.75 4887.6 1305.75 4962.6 75 75 1268.25 4925.1 77 P6.1/A1 1077.9 4887.6 1152.9 4962.6 75 75 1115.4 4925.1 78 P6.2/A2 923.95 4887.6 998.95 4962.6 75 75 961.45 4925.1 79 AVSS 821.05 4887.95 896.05 4962.95 75 75 858.55 4925.45 80 AVSS 674.95 4887.6 749.95 4962.6 75 75 712.45 4925.1 81 DVSS1 82 AVCC 10 499.2 4887.6 574.2 4962.6 75 75 536.7 4925.1 337.85 4884.35 412.85 4959.35 75 75 375.35 4921.85 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com SHORT-FORM DESCRIPTION CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. PC/R0 Stack Pointer SP/R1 Status Register SR/CG1/R2 Constant Generator CG2/R3 General-Purpose Register R4 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Program Counter General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. General-Purpose Register R9 General-Purpose Register R10 Instruction Set General-Purpose Register R11 The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 2 shows examples of the three types of instruction formats; the address modes are listed in Table 3. General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Table 2. Instruction Word Formats R4 + R5 → R5 Dual operands, source-destination e.g., ADD R4,R5 Single operands, destination only e.g., CALL R8 PC → (TOS), R8 → PC Relative jump, un/conditional e.g., JNE Jump-on-equal bit = 0 Table 3. Address Mode Descriptions SYNTAX EXAMPLE • • MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed • • MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) • • MOV EDE,TONI M(EDE) → M(TONI) Absolute • • MOV &MEM,&TCDAT M(MEM) → M(TCDAT) Indirect • MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement • MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate • MOV #X,TONI MOV #45,TONI #45 → M(TONI) S D (2) Register ADDRESS MODE (1) (2) (1) OPERATION S = source D = destination Copyright © 2010–2011, Texas Instruments Incorporated 11 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Operating Modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 The following six operating modes can be configured by software: • Active mode ( AM) – All clocks are active. • Low-power mode 0 (LPM0) – CPU is disabled. – ACLK and SMCLK remain active. MCLK is disabled. • Low-power mode 1 (LPM1) – CPU is disabled. – ACLK and SMCLK remain active. MCLK is disabled. – DCO’s dc generator is disabled if DCO not used in active mode. • Low-power mode 2 (LPM2) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO's dc-generator remains enabled. – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO's dc-generator is disabled. – ACLK remains active. • Low-power mode 4 (LPM4) – CPU is disabled. – ACLK is disabled. – MCLK and SMCLK are disabled. – DCO's dc-generator is disabled. – Crystal oscillator is stopped. 12 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up starting address are located in the address range of 0FFFF–0FFC0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. If the reset vector (located at address 0FFFEh) contains 0FFFFh (e.g., flash is not programmed), the CPU goes into LPM4 immediately after power up. INTERRUPT FLAG Power up External reset Watchdog Flash key violation PC out-of-range (1) PORIFG RSTIFG WDTIFG KEYV NMI Oscillator fault Flash memory access violation Reset 0x0FFFE 31, highest (non)-maskable, (non)-maskable, (non)-maskable 0x0FFFC 30 (2) NMIIFG OFIFG ACCVIFG (2) (3) maskable 0x0FFFA 29 Timer_B7 TBCCR1 and TBCCR2 CCIFGs, TBIFG (2) (4) maskable 0x0FFF8 28 Comparator_A+ CAIFG maskable 0x0FFF6 27 Watchdog timer+ WDTIFG maskable 0x0FFF4 26 maskable 0x0FFF2 25 maskable 0x0FFF0 24 maskable 0x0FFEE 23 maskable 0x0FFEC 22 maskable 0x0FFEA 21 0x0FFE8 20 maskable 0x0FFE6 19 maskable 0x0FFE4 18 maskable 0x0FFE2 17 maskable 0x0FFE0 16 maskable 0x0FFDE 15 maskable 0x0FFDC 14 0x0FFDA to 0x0FFC0 13 to 0, lowest USCI_A0/USCI_B0 receive USCI_B0 I2C status USCI_A0/USCI_B0 transmit USCI_B0 I2C receive/transmit TACCR0 CCIFG (4) TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (2) (4) UCA0RXIFG, UCB0RXIFG (2) ADC12IFG (4) (2) (4) I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (2) USCI_A0/USCI_B1 receive USCI_B1 I2C status USCI_A1/USCI_B1 transmit USCI_B1 I2C receive/transmit DMA DAC12 (5) UCA0TXIFG, UCB0TXIFG (2) (6) ADC12 (4) UCA1RXIFG, UCB1RXIFG (2) (5) UCA1TXIFG, UCB1TXIFG (2) (6) DMA0IFG, DMA1IFG, DMA2IFG (2) (4) DAC12_0IFG, DAC12_1IFG (2) Reserved (7) (8) (8) PRIORITY TBCCR0 CCIFG (4) Timer_A3 (2) (3) (4) (5) (6) (7) WORD ADDRESS Timer_B7 Timer_A3 (1) SYSTEM INTERRUPT 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 INTERRUPT SOURCE (4) Reserved A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0x00000 – 0x001FF) or from within unused address range. Multiple source flags (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. Interrupt flags are located in the module. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. The address 0x0FFBE is used as bootstrap loader security key (BSLSKEY). A 0x0AA55 at this location disables the BSL completely. A zero disables the erasure of the flash if an invalid password is supplied. The interrupt vectors at addresses 0x0FFDC to 0x0FFC0 are not used in this device and can be used for regular program code if necessary. Copyright © 2010–2011, Texas Instruments Incorporated 13 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Special Function Registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. Interrupt Enable 1 and 2 Address 7 6 00h OFIE: NMIIE: ACCVIE: Address 01h UCA0RXIE UCA0TXIE UCB0RXIE UCB0TXIE 4 1 0 NMIIE 3 2 OFIE WDTIE rw-0 rw-0 rw-0 rw-0 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 WDTIE: 5 ACCVIE Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. Oscillator fault enable (Non)maskable interrupt enable Flash access violation interrupt enable 7 6 5 4 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw-0 rw-0 rw-0 rw-0 USCI_A0 receive-interrupt enable USCI_A0 transmit-interrupt enable USCI_B0 receive-interrupt enable USCI_B0 transmit-interrupt enable Interrupt Flag Register 1 and 2 Address 02h 7 6 5 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw-0 rw-(0) rw-(1) rw-1 rw-(0) WDTIFG: Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault7 RSTIFG: External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up. PORIFG: Power-On Reset interrupt flag. Set on VCC power up. NMIIFG: Address 03h Set via RST/NMI-pin 7 6 5 4 3 2 1 0 UCB0 TXIFG UCB0 RXIFG UCA0 TXIFG UCA0 RXIFG rw-1 rw-0 rw-1 rw-0 UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag xxx 14 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Legend: rw: Bit can be read and written. rw-0, 1: Bit can be read and written. It is Reset or Set by PUC. rw-(0), (1): Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device. Memory Organization 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 MSP430F2619 Size Flash Flash 120 kB Flash 0x0FFFF – 0x0FFC0 0x0FFFF – 0x02100 Size 4 kB 0x020FF -- 0x01100 Size 2 kB 0x020FF -- 0x01900 Size 2 kB 0x018FF -- 0x01100 Information memory Size Flash 256 Byte 0x010FF – 0x01000 Boot memory Size ROM 1 kB 0x0FFF – 0x0C00 Size 2 kB 0x009FF – 0x0200 16-bit 8-bit 8-bit SFR 0x001FF – 0x00100 0x000FF – 0x00010 0x0000F – 0x00000 Memory Main: interrupt vector Main: code memory RAM (total) Extended Mirrored RAM (mirrored at 18FFh to 01100h) Peripherals Bootstrap Loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the application report, Features of the MSP430 Bootstrap Loader, TI literature number SLAA089. BSL Function PM Package Pins Data Transmit 13 - P1.1 Data Receive 22 - P2.2 Flash Memory The flash memory can be programmed via the JTAG port, the bootstrap loader or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0–n. Segments A to D are also called information memory. • Segment A contains calibration data. After reset segment A is protected against programming and erasing. It can be unlocked but care should be taken not to erase this segment if the device-specific calibration data is required. • Flash content integrity check with marginal read modes. Copyright © 2010–2011, Texas Instruments Incorporated 15 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x2xx Family User's Guide (SLAU144). DMA Controller 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC12 conversionmemory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode without having to awaken to move data to or from a peripheral. Oscillator and System Clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator and an internal digitally-controlled oscillator (DCO). The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 μs. The basic clock module provides the following clock signals: • Auxiliary clock (ACLK), sourced either from a 32768-Hz watch crystal or the internal LF oscillator for –55°C to 105°C operation. For > 105°C, use external clock source. • Main clock (MCLK), the system clock used by the CPU • Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. Table 4. Tags Used by the TLV Structure NAME ADDRESS VALUE DESCRIPTION 0x01 DCO frequency calibration at VCC = 3 V and TA = 25°C at calibration 0x10DA 0x08 ADC12_1 calibration tag -- 0xFE Identifier for empty areas TAG_DCO_30 0x10F6 TAG_ADC12_1 TAG_EMPTY Table 5. Labels Used by the ADC Calibration Structure LABEL SIZE ADDRESS OFFSET CAL_ADC_25T85 INCHx = 0x1010; REF2_5 = 1, TA = 125°C word 0x000E CAL_ADC_25T30 INCHx = 0x1010; REF2_5 = 1, TA = 30°C word 0x000C REF2_5 = 1,TA = 30°C word 0x000A CAL_ADC_15T85 INCHx = 0x1010; REF2_5 = 0, TA = 125°C word 0x0008 CAL_ADC_15T30 INCHx = 0x1010; REF2_5 = 0, TA = 30°C word 0x0006 REF2_5 = 0,TA = 30°C word 0x0004 External VREF = 1.5 V, fADC12CLK = 5 MHz word 0x0002 CAL_ADC_25VREF_FACTOR CAL_ADC_15VREF_FACTOR CAL_ADC_OFFSET CAL_ADC_GAIN_FACTOR 16 CONDITION AT CALIBRATION/DESCRIPTION External VREF = 1.5 , fADC12CLK = 5 MHz word 0x0000 CAL_BC1_1MHZ -- byte 0x0007 CAL_DCO_1MHZ -- byte 0x0006 CAL_BC1_8MHZ -- byte 0x0005 CAL_DCO_8MHZ -- byte 0x0004 CAL_BC1_12MHZ -- byte 0x0003 CAL_DCO_12MHZ -- byte 0x0002 CAL_BC1_16MHZ -- byte 0x0001 CAL_DCO_16MHZ -- byte 0x0000 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Brownout, Supply Voltage Supervisor (SVS) The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM) (the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Digital I/O There are six 8-bit I/O ports implemented – ports P1 through P6: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt condition is possible. • Edge-selectable interrupt input capability for all the eight bits of port P1 and P2. • Read/write access to port-control registers is supported by all instructions. • Each I/O has an individually programmable pullup/pulldown resistor. WDT+ Watchdog Timer The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals. Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16 × 16, 16 × 8, 8 × 16, and 8 × 8 bit operations. The module is capable of supporting signed and unsignedmultiplication as well as signed and unsignedmultiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. USCI The universal serial communication interface (USCI) module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baud-rate detection (LIN), and IrDA. USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA. USCI_B0 provides support for SPI (3 or 4 pin) and I2C. Copyright © 2010–2011, Texas Instruments Incorporated 17 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6. TIMER_A3 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME 12 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK 21 - P2.1 TAINCLK INCLK 13 - P1.1 TA0 CCI0A 22 - P2.2 TA0 CCI0B MODULE BLOCK MODULE U SIGNAL OUTPUT PIN NO. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 INPUT PIN NO. 14 - P1.2 Timer NA 13 - P1.1 CCR0 TA0 17 - P1.5 DVSS GND DVCC VCC TA1 CCI1A 14 - P1.2 CAOUT (internal) CCI1B 18 - P1.6 DVSS GND 23 - P2.3 DVCC VCC CCR1 TA1 27 - P2.7 ADC12 (internal) DAC12_0 (internal) DAC12_1 (internal) 15 - P1.3 18 TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC 15 - P1.3 CCR2 TA2 19 - P1.7 24 - P2.4 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Timer_B7 Timer_B7 is a 16-bit timer/counter with three capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B7 Signal Connections MODULE INPUT NAME 43 - P4.7 TBCLK TBCLK MODULE BLOCK MODULE OUTPUT SIGNAL OUTPUT PIN NO. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 INPUT PIN NO. DEVICE INPUT SIGNAL ACLK ACLK SMCLK SMCLK 43 - P4.7 TBCLK INCLK 36 - P4.0 TB0 CCI0A 36 - P4.0 TB0 CCI0B DVSS GND DVCC VCC 37 - P4.1 TB1 CCI1A 37 - P4.1 TB1 CCI1B DVSS GND Timer NA 36 - P4.0 CCR0 TB0 ADC12 (internal) 37 - P4.1 CCR1 TB1 ADC12 (internal) DVCC VCC 38 - P4.2 TB2 CCI2A 38 - P4.2 38 - P4.2 TB2 CCI2B DAC_0 (internal) DVSS GND CCR2 DVCC VCC 39 - P4.3 TB3 CCI3A 39 - P4.3 TB3 CCI3B DVSS GND 40 - P4.4 40 - P4.4 41 - P4.5 41 - P4.5 42 - P4.6 DVCC VCC TB4 CCI4A TB4 CCI4B DVSS GND DVCC VCC TB5 CCI5A TB5 CCI5B DVSS GND DVCC VCC TB6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC Copyright © 2010–2011, Texas Instruments Incorporated TB2 DAC_1 (internal) 39 - P4.3 CCR3 TB3 40 - P4.4 CCR4 TB4 41 - P4.5 CCR5 TB5 42 - P4.6 CCR6 TB6 19 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 DAC12 The DAC12 module is a 12-bit, R-ladder, voltage-output digital-to-analog converter (DAC). The DAC12 may be used in 8-bit or 12-bit mode and may be used in conjunction with the DMA controller. When multiple DAC12 modules are present, they may be grouped together for synchronous operation. 20 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Peripheral File Map DMA DMA channel 2 transfer size DMA2SZ 0x01F2 DMA channel 2 destination address DMA2DA 0x01EE DMA channel 2 source address DMA2SA 0x01EA DMA channel 2 control DMA2CTL 0x01E8 DMA channel 1 transfer size DMA1SZ 0x01E6 DMA channel 1 destination address DMA1DA 0x01E2 DMA channel 1 source address DMA1SA 0x01DE DMA channel 1 control 0x01DC DMA0SZ 0x01DA DMA channel 0 destination address DMA0DA 0x01D6 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 DMA1CTL DMA channel 0 transfer size DMA channel 0 source address DMA0SA 0x01D2 DMA channel 0 control DMA0CTL 0x01D0 DMAIV 0x0126 DMA module control 1 DMACTL1 0x0124 DMA module control 0 DMACTL0 0x0122 DAC12_1 data DAC12_1DAT 0x01CA DAC12_1 control DAC12_1CTL 0x01C2 DAC12_0 data DAC12_0DAT 0x01C8 DAC12_0 control DAC12_0CTL 0x01C0 DMA module interrupt vector word DAC12 Copyright © 2010–2011, Texas Instruments Incorporated 21 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 ADC12 www.ti.com Interrupt-vector-word register ADC12IV 0x01A8 Inerrupt-enable register ADC12IE 0x01A6 Inerrupt-flag register Control register 1 Control register 0 ADC12IFG 0x01A4 ADC12CTL1 0x01A2 0x01A0 ADC12MEM15 0x015E Conversion memory 14 ADC12MEM14 0x015C Conversion memory 13 ADC12MEM13 0x015A Conversion memory 12 ADC12MEM12 0x0158 Conversion memory 11 ADC12MEM11 0x0156 Conversion memory 10 ADC12MEM10 0x0154 Conversion memory 9 ADC12MEM9 0x0152 Conversion memory 8 ADC12MEM8 0x0150 Conversion memory 7 ADC12MEM7 0x014E Conversion memory 6 ADC12MEM6 0x014C Conversion memory 5 ADC12MEM5 0x014A Conversion memory 4 ADC12MEM4 0x0148 Conversion memory 3 ADC12MEM3 0x0146 Conversion memory 2 ADC12MEM2 0x0144 Conversion memory 1 ADC12MEM1 0x0142 Conversion 0 ADC12MEM0 0x0140 ADC memory-control register15 ADC12MCTL15 0x008F ADC memory-control register14 ADC12MCTL14 0x008E ADC memory-control register13 ADC12MCTL13 0x008D ADC memory-control register12 ADC12MCTL12 0x008C ADC memory-control register11 ADC12MCTL11 0x008B ADC memory-control register10 ADC12MCTL10 0x008A ADC memory-control register9 ADC12MCTL9 0x0089 ADC memory-control register8 ADC12MCTL8 0x0088 ADC memory-control register7 ADC12MCTL7 0x0087 ADC memory-control register6 ADC12MCTL6 0x0086 ADC memory-control register5 ADC12MCTL5 0x0085 ADC memory-control register4 ADC12MCTL4 0x0084 ADC memory-control register3 ADC12MCTL3 0x0083 ADC memory-control register2 ADC12MCTL2 0x0082 ADC memory-control register1 ADC12MCTL1 0x0081 ADC memory-control register0 ADC12MCTL0 0x0080 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 ADC12CTL0 Conversion memory 15 22 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Timer_B7 Capture/compare register _ 6 TBCCR6 0x019E Capture/compare register 5 TBCCR5 0x019C Capture/compare register 4 TBCCR4 0x019A Capture/compare register 3 TBCCR3 0x0198 Capture/compare register 2 TBCCR2 0x0196 Capture/compare register 1 TBCCR1 0x0194 Capture/compare register 0 TBCCR0 0x0192 Timer_B register 0x0190 Capture/compare control 6 TBCCTL6 0x018E Capture/compare control 5 TBCCTL5 0x018C Capture/compare control 4 TBCCTL4 0x018A Capture/compare control 3 TBCCTL3 0x0188 Capture/compare control 2 TBCCTL2 0x0186 Capture/compare control 1 TBCCTL1 0x0184 Capture/compare control 0 TBCCTL0 0x0182 TBCTL 0x0180 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 TBR Timer_B control Timer_B interrupt vector Timer_A3 TBIV 0x011E Capture/compare register 2 TACCR2 0x0176 Capture/compare register 1 TACCR1 0x0174 Capture/compare register 0 TACCR0 0x0172 Timer_A register TAR 0x016E Reserved 0x016C Reserved 0x016A Reserved TACCTL2 0x0166 Capture/compare control 1 TACCTL1 0x0164 Capture/compare control 0 TACCTL0 0x0162 TACTL 0x0160 TAIV 0x012E Timer_A interrupt vector Sum extend SUMEXT 0x013E Result high word RESHI 0x013C Result low word RESLO 0x013A Second operand OP2 0x0138 MACS 0x0136 MAC 0x0134 MPYS 0x0132 Multiply signed +accumulate/operand1 Multiply+accumulate/operand1 Multiply signed/operand1 Multiply unsigned/operand1 Flash Watchdog 0x0168 Capture/compare control 2 Timer_A control Hardware Multiplier 0x0170 Reserved MPY 0x0130 Flash control 4 FCTL4 0x01BE Flash control 3 FCTL3 0x012C Flash control 2 FCTL2 0x012A Flash control 1 FCTL1 0x0128 WDTCTL 0x0120 Watchdog/timer control Copyright © 2010–2011, Texas Instruments Incorporated 23 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 USCI A0/B0 www.ti.com USCI A0 auto baud rate control UCA0ABCTL 0x005D USCI A0 transmit buffer UCA0TXBUF 0x0067 USCI A0 receive buffer UCA0RXBUF 0x0066 USCI A0 status UCA0STAT 0x0065 USCI A0 modulation control UCA0MCTL 0x0064 USCI A0 baud rate control 1 UCA0BR1 0x0063 USCI A0 baud rate control 0 UCA0BR0 0x0062 USCI A0 control 1 UCA0CTL1 0x0061 USCI A0 control 0 UCA0CTL0 0x0060 UCA0IRRCTL 0x005F UCA0IRTCLT 0x005E USCI B0 transmit buffer UCB0TXBUF 0x006F USCI B0 receive buffer UCB0RXBUF 0x006E UCB0STAT 0x006D USCI B0 I2C interrupt enable UCB0CIE 0x006C USCI B0 baud rate control 1 UCB0BR1 0x006B USCI B0 baud rate control 0 UCB0BR0 0x006A USCI B0 control 1 UCB0CTL1 0x0069 USCI B0 control 0 UCB0CTL0 0x0068 USCI B0 I C slave address UCB0SA 0x011A USCI B0 I2C own address UCB0OA 0x0118 UCA1ABCTL 0x00CD USCI A1 transmit buffer UCA1TXBUF 0x00D7 USCI A1 receive buffer UCA1RXBUF 0x00D6 USCI A1 status UCA1STAT 0x00D5 USCI A1 modulation control UCA1MCTL 0x00D4 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 USCI A0 IrDA receive control USCI A0 IrDA transmit control USCI B0 status 2 USCI A1/B1 USCI A1 auto baud rate control USCI A1 baud rate control 1 UCA1BR1 0x00D3 USCI A1 baud rate control 0 UCA1BR0 0x00D2 USCI A1 control 1 UCA1CTL1 0x00D1 USCI A1 control 0 UCA1CTL0 0x00D0 USCI A1 IrDA receive control UCA1IRRCTL 0x00CF USCI A1 IrDA transmit control UCA1IRTCLT 0x00CE USCI B1 transmit buffer UCB1TXBUF 0x00DF USCI B1 receive buffer UCB1RXBUF 0x00DE UCB1STAT 0x00DD USCI B1 I2C Interrupt enable USCI B1 status UCB1CIE 0x00DC USCI B1 baud rate control 1 UCB1BR1 0x00DB USCI B1 baud rate control 0 UCB1BR0 0x00DA USCI B1 control 1 UCB1CTL1 0x00D9 USCI B1 control 0 UCB1CTL0 0x00D8 USCI B1 I2C slave address UCB1SA 0x017E USCI B1 I2C own address UCB1OA 0x017C UC1IE 0x0006 USCI A1/B1 interrupt enable USCI A1/B1 interrupt flag Comparator_A+ 24 UC1IFG 0x0007 CAPD 0x005B Comparator_A control2 CACTL2 0x005A Comparator_A control1 CACTL1 0x0059 Comparator_A port disable Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Basic Clock Basic clock system control3 BCSCTL3 0x0053 Basic clock system control2 BCSCTL2 0x0058 Basic clock system control1 BCSCTL1 0x0057 DCO clock frequency control DCOCTL 0x0056 Brownout, SVS SVS control register (reset by brownout signal) SVSCTL 0x0055 Port P6 Port P6 resistor enable P6REN 0x0013 Port P6 selection P6SEL 0x0037 Port P6 direction P6DIR 0x0036 Port P6 output P6OUT 0x0035 P6IN 0x0034 Port P5 resistor enable P5REN 0x0012 Port P5 selection P5SEL 0x0033 Port P5 direction P5DIR 0x0032 Port P5 output P5OUT 0x0031 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Port P6 input Port P5 Port P5 input Port P4 P5IN 0x0030 Port P4 selection P4SEL 0x001F Port P4 resistor enable P4REN 0x0011 Port P4 direction P4DIR 0x001E Port P4 output P4OUT 0x001D P4IN 0x001C Port P4 input Port P3 Port P3 resistor enable P3REN 0x0010 Port P3 selection P3SEL 0x001B Port P3 direction P3DIR 0x001A Port P3 output P3OUT 0x0019 Port P3 input Port P2 P3IN 0x0018 Port P2 resistor enable P2REN 0x002F Port P2 selection P2SEL 0x002E P2IE 0x002D P2IES 0x002C Port P2 interrupt flag P2IFG 0x002B Port P2 direction P2DIR 0x002A Port P2 output P2OUT 0x0029 Port P2 interrupt enable Port P2 interrupt-edge select Port P2 input Port P1 P2IN 0x0028 Port P1 resistor enable P1REN 0x0027 Port P1 selection P1SEL 0x0026 P1IE 0x0025 Port P1 interrupt enable Special Functions Port P1 interrupt-edge select P1IES 0x0024 Port P1 interrupt flag P1IFG 0x0023 Port P1 direction P1DIR 0x0022 Port P1 output P1OUT 0x0021 Port P1 input P1IN 0x0020 SFR interrupt flag2 IFG2 0x0003 SFR interrupt flag1 IFG1 0x0002 SFR interrupt enable2 IE2 0x0001 SFR interrupt enable1 IE1 0x0000 Copyright © 2010–2011, Texas Instruments Incorporated 25 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Absolute Maximum Ratings (1) VALUE UNIT Voltage applied at VCC to VSS –0.3 to 4.1 V Voltage applied to any pin (2) –0.3 to VCC + 0.3 V ±2 mA –55 to 150 °C –55 to 150 °C Diode current at any device terminal Storage temperature, Tstg (unprogrammed device (3)) Storage temperature, Tstg (programmed device (1) (3) ) (2) (3) 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. Recommended Operating Conditions (1) (2) MIN Supply voltage during program execution VCC Supply voltage during flash memory programming AVCC = DVCC = VCC (3) VSS Supply voltage AVSS = DVSS = VSS TA Operating free-air temperature range Processor frequency fSYSTEM (Maximum MCLK frequency) (1) (see Figure 1) (1) (2) (3) (2) NOM MAX UNIT 1.8 3.6 V 2.2 3.6 V –55 150 °C 0 V VCC = 2.2 V, Duty Cycle = 50% ±10% dc 10 VCC = 2.7 V, Duty Cycle = 50% ±10% dc 12 VCC ≥ 3.3 V, Duty Cycle = 50% ±10% dc 16 MHz The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. Modules might have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power-up. System Frequency −MHz 16 MHz 12 MHz 7.5 MHz 4.15 MHz 1.8 V ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ 2.2 V 2.7 V ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ Legend: Supply voltage range, during flash memory programming Supply voltage range, during program execution 3.3 V 3.6 V Supply Voltage −V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area 26 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Figure 2. Operating Life Curve Copyright © 2010–2011, Texas Instruments Incorporated 27 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Active-Mode Supply Current Into AVCC Excluding External Current – Electrical Characteristics (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IAM, IAM, 1MHz 4kHz fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32,768 Hz, Program executes in flash, Active-mode (AM) BCSCTL1 = CALBC1_1 MHZ, current (1 MHz) DCOCTL = CALDCO_1 MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 TA VCC MIN –55°C to 85°C 105°C 2.2 V fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32,768 Hz, Program executes in RAM, Active-mode (AM) BCSCTL1 = CALBC1_1 MHZ, current (1 MHz) DCOCTL = CALDCO_1 MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 fMCLK = fSMCLK = fACLK = 32,768 Hz/8 = 4,096 Hz, fDCO = 0 Hz, Active-mode (AM) Program executes in flash, current (4 kHz) SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 IAM, 100kHz 28 395 375 420 –55°C to 85°C 515 560 525 595 105°C 3V 150°C –55°C to 85°C 105°C 2.2 V 330 370 340 390 150°C 660 460 495 470 520 105°C 3V 150°C –55°C to 85°C 105°C 2.2 V –55°C to 85°C 105°C 3V 105°C 2.2 V 2.1 9 15 31 3 11 19 32 67 86 80 99 150°C 190 84 107 99 128 3V μA μA 710 –55°C to 85°C 105°C UNIT 700 –55°C to 85°C 150°C (1) (2) 365 640 –55°C to 85°C fMCLK = fSMCLK = fDCO(0, 0) ≉ 100 kHz, fACLK = 0 Hz, Active-mode (AM) Program executes in flash, current (100 kHz) RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1 TYP MAX 150°C 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 IAM, 1MHz TEST CONDITIONS μA μA 240 All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics – Active-Mode Supply Current (Into DVCC + AVCC) 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Figure 3. Active-Mode Current vs VCC, TA = 25°C Figure 4. Active-Mode Current vs DCO Frequency Active-Mode Current vs DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC 0.30 2.2 V 0.42 0.50 3V 150°C 0.60 –55°C 3.71 –40°C 3.73 2.2 V 3.79 4.45 150°C 4.60 –55°C 5.47 –40°C 25°C Copyright © 2010–2011, Texas Instruments Incorporated 0.51 0.55 25°C 3V mA 0.49 125°C 125°C fSMCLK = fDCO = 12 MHz 0.38 –55°C 25°C UNIT 0.36 150°C –40°C Active Mode Current Supply MAX –40°C 25°C fSMCLK = fDCO = 1 MHz TYP 0.35 125°C Active Mode Current Supply MIN –55°C mA 5.49 5.54 125°C 5.68 150°C 5.77 29 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Active-Mode Current vs DCO Frequency (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX –55°C 5.46 –40°C 5.58 25°C 2.2 V 5.89 125°C Active Mode Current Supply fSMCLK = fDCO = 16 MHz UNIT 6.03 150°C 6.20 –55°C 7.14 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 –40°C 25°C mA 7.14 3V 7.21 125°C 7.429 150°C 7.54 Low-Power-Mode Supply Currents Into AVCC Excluding External Current – Electrical Characteristics (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ILPM0, 1MHz Low-power mode 0 (LPM0) current (3) TEST CONDITIONS fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, fACLK = 32,768 Hz, BCSCTL1 = CALBC1_1 MHZ, DCOCTL = CALDCO_1 MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 TA VCC MIN –55°C to 85°C 105°C 2.2 V ILPM0, 100kHz ILPM2 Low-power mode 0 (LPM0) current (3) Low-power mode 2 (LPM2) current (4) fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32,768 Hz, BCSCTL1 = CALBC1_1 MHZ, DCOCTL = CALDCO_1 MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 ILPM3,LFXT1 Low-power mode 3 (LPM3) current (4) 30 98 87 105 100 125 105°C 3V 150°C 105°C 2.2 V 37 49 50 62 160 –55°C to 85°C 40 55 57 73 105°C 3V 150°C 185 –55°C to 85°C 23 33 35 46 105°C 2.2 V 150°C 148 –55°C to 85°C 25 36 40 55 105°C 3V 150°C 168 –55°C 0.8 1.2 1 1.3 85°C 2.2 V 4.6 7 105°C 14 24 –55°C 0.9 1.3 1.1 1.5 25°C 3V UNIT μA 240 150°C 105°C (3) (4) 83 –55°C to 85°C 85°C (1) (2) 83 210 25°C fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32,768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 68 150°C –55°C to 85°C fMCLK = 0 MHz, fSMCLK = fDCO(0, 0) ≉ 100 kHz, fACLK = 0 Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1 TYP MAX 5.5 8 17 30 μA μA μA All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Current for brownout and WDT clocked by SMCLK included. Current for brownout and WDT clocked by ACLK included. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Low-Power-Mode Supply Currents Into AVCC Excluding External Current – Electrical Characteristics(1) (2) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC MIN –55°C 0.4 25°C 85°C Low-power mode 3 current, (LPM3) (4) 2.2 V –55°C 0.6 25°C 1.2 5 7.5 105°C 16.5 29.5 150°C 130 –55°C 0.1 0.5 0.1 0.5 2.2 V 4 6 105°C 13 23 150°C 125 –55°C 0.2 0.5 0.2 0.5 4.7 7 105°C 14 24 150°C 146 25°C 85°C (5) 1.2 0.6 3V 85°C fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 24 14 25°C Low-power mode 4 (LPM4) current (5) 6.5 125 85°C ILPM4 1 4.3 105°C 3V UNIT 1 0.5 150°C 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 ILPM3,VLO fDCO = fMCLK = fSMCLK = 0 MHz, fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 TYP MAX μA μA Current for brownout included. ILPM4 - Low-Power Mode Current - mA Typical Characteristics – LPM4 Current 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 –40 VCC = 3.6 V VCC = 30 V VCC = 2.2 V VCC = 1.8 V –20 0 20 40 60 80 100 120 TA - Temperature - °C Figure 5. ILPM4 -- LPM4 Current vs Temperature Copyright © 2010–2011, Texas Instruments Incorporated 31 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Schmitt-Trigger Inputs (Ports P1 Through P6, and RST/NMI, JTAG, XIN, and XT2IN) (1) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VIT+ TEST CONDITIONS Positive-going input threshold voltage VCC MIN 2.2 V 3V Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup/pulldown resistor For pullup: VIN = VSS; For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) MAX 0.75 x VCC 1.00 1.65 1.35 2.25 0.25 x VCC 0.55 x VCC 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 VIT– TYP 0.45 x VCC 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.2 1 3V 0.3 1 20 35 50 5 UNIT V V V kΩ pF XIN and XT2IN in bypass mode only. Inputs (Ports P1 and P2) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) External interrupt timing TEST CONDITIONS VCC Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag (1) 2.2 V/3 V MIN MAX 20 UNIT ns An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals shorter than t(int). Leakage Current (Ports P1 Through P6) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.x) (1) (2) High-impedance leakage current TEST CONDITIONS See (1) and (2) VCC MIN TYP MAX ±250 2.2 V/3 V UNIT nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. Standard Inputs - RST/NMI – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN MAX UNIT VIL Low-level input voltage 2.2 V/3 V VSS VSS + 0.6 V VIH High-level input voltage 2.2 V/3 V 0.8 x VCC VCC V 32 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Outputs (Ports P1 Through P6) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS IOH(max) = –1.5 mA VOH High-level output voltage VCC (1) 2.2 V (2) IOH(max) = –6 mA IOH(max) = –1.5 mA (1) 3V IOH(max) = –6 mA (2) IOL(max) = 1.5 mA Low-level output voltage (2) VCC – 0.25 VCC VCC – 0.6 VCC VCC – 0.25 VCC VCC – 0.6 VCC VSS VSS+0.25 (1) 2.2 V IOL(max) = 6 mA (2) IOL(max) = 1.5 mA (1) VSS 3V IOL(max) = 6 mA (2) (1) MAX VSS+0.6 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 VOL MIN VSS VSS+0.25 VSS VSS+0.6 UNIT V V The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. Output Frequency (Ports P1 Through P6) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fPx.y Port output frequency (with load) P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (1) fPort_CLK Clock output frequency P2.0/ACLK/CA2, P1.4/SMCLK, CL = 20 pF (2) t(Xdc) Duty cycle of output frequency MIN TYP MAX 2.2 V DC 10 3V DC 12 2.2 V DC 12 3V DC 16 P5.6/ACLK, CL = 20 pF, LF mode 30 50 70 P5.6/ACLK, CL = 20 pF, XT1 mode 40 50 60 P5.4/MCLK, CL = 20 pF, XT1 mode 40 60 50-15 ns 50 50+15 ns P5.4/MCLK, CL = 20 pF, DCO P1.4/SMCLK, CL = 20 pF, XT2 mode P1.4/SMCLK, CL = 20 pF, DCO (1) (2) (2) VCC 40 60 50-15 ns 50+15 ns UNIT MHz MHz % A resistive divider with 2 times 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Copyright © 2010–2011, Texas Instruments Incorporated 33 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics – Outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 TA = 25°C 20.0 15.0 10.0 5.0 I OL − Typical Low-Level Output Current − mA VCC = 2.2 V P4.5 TA = 85°C VCC = 3 V P4.5 TA = 25°C 40.0 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 I OL − Typical Low-Level Output Current − mA 25.0 0.0 0.0 0.5 1.0 1.5 2.0 30.0 20.0 10.0 0.0 0.0 2.5 VOL − Low-Level Output Voltage − V 0.5 1.0 −20.0 −25.0 0.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 VOH − High-Level Output Voltage − V Figure 8. 34 3.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE I OH − Typical High-Level Output Current − mA I OH − Typical High-Level Output Current − mA −15.0 2.5 0.0 VCC = 2.2 V P4.5 −10.0 2.0 Figure 7. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −5.0 1.5 VOL − Low-Level Output Voltage − V Figure 6. 0.0 TA = 85°C 2.5 VCC = 3 V P4.5 −10.0 −20.0 −30.0 TA = 85°C −40.0 −50.0 0.0 TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output Voltage − V Figure 9. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com POR/Brownout Reset (BOR) – Electrical Characteristics (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS See Figure 10 dVCC/dt ≤ 3 V/s V(B_IT–) See Figure 10 through Figure 12 dVCC/dt ≤ 3 V/s Vhys(B_IT–) See Figure 10 dVCC/dt ≤ 3 V/s td(BOR) See Figure 10 t(reset) Pulse length needed at RST/NMI pin to accepted reset internally VCC(start) (2) MIN TYP MAX 0.7 × V(B_IT–) 70 2.2 V/3 V 130 2 UNIT V 1.71 V 210 mV 2000 μs μs 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 (1) VCC The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–) + Vhys(B_IT– ) is ≤ 1.8 V. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT–) + Vhys(B_IT–). The default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage Copyright © 2010–2011, Texas Instruments Incorporated 35 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics - POR/Brownout Reset (BOR) VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 0 0.001 1 1000 1 ns tpw − Pulse Width − µs 1 ns tpw − Pulse Width − µs Figure 11. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 t pw 3V VCC(drop) − V VCC = 3 V 1.5 1 Typical Conditions VCC(drop) 0.5 tf = tr 0 0.001 1 1000 tf tr tpw − Pulse Width − µs tpw − Pulse Width − µs Figure 12. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal SVS (Supply Voltage Supervisor/Monitor) - Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER t(SVSR) td(SVSon) tsettle V(SVSstart) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (See Figure 13) dVCC/dt ≤ 30 V/ms SVSON, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V VLD ≠ 0 (See 20 ) VLD ≠ 0, VCC/dt ≤ 3 V/s (See Figure 13) 1.55 VLD = 1 Vhys(SVS_IT-) VCC/dt ≤ 3 V/s (See Figure 13), External voltage applied on A7 36 VLD = 2 to 14 VLD = 15 70 MAX 150 2000 120 UNIT μs μs 150 (1) VCC/dt ≤ 3 V/s (See Figure 13) (1) TYP 5 12 μs 1.7 V 210 mV V(SVS_IT-) × 0.004 V(SVS_IT-) × 0.016 4.4 20 V mV tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value between 2 and 15. The overdrive is assumed to be > 50 mV. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com SVS (Supply Voltage Supervisor/Monitor) - Electrical Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC/dt ≤ 3 V/s (See Figure 13 and Figure 14), External voltage applied on A7 ICC(SVS) (2) (3) (3) TYP MAX VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 VCC/dt ≤ 3 V/s (See Figure 13 and Figure 14) V(SVS_IT-) MIN VLD = 7 2.46 2.65 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61 (2) VLD = 13 3.24 3.5 3.76 (2) VLD = 14 3.43 3.7 (2) 3.99 (2) VLD = 15 1.1 1.2 1.3 10 15 VLD ≠ 0, VCC = 2.2 V/3 V UNIT 2.86 V μA The recommended operating voltage range is limited to 3.6 V. The current consumption of the SVS module is not included in the ICC current consumption data. Typical Characteristics - SVS AVCC V(SVS_IT-) Software sets VLD > 0: SVS is active Vhys(SVS_IT-) V(SVSstart) V(B_IT-) Vhys(B_IT-) VCC(start) Brownout 1 Brownout Region 0 SVS out 1 0 td(BOR) td(BOR) SVS circuit is active from VLD > VCC < V(B_IT-) td(SVSon) td(SVSR) Set POR 1 undefined 0 Figure 13. SVS Reset (SVSR) vs Supply Voltage Copyright © 2010–2011, Texas Instruments Incorporated 37 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com VCC tpw 3V 2 Rectangular Drop VCC(min) 1.5 1 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 VCC(min) - V Triangular Drop 1 ns 1 ns VCC 0.5 tpw 3V 0 1 10 100 1000 tpw - Pulse Width - ms VCC(min) tf = tr tf tr Figure 14. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1) 38 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Main DCO Characteristics • • • All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. DCO control bits DCOx have a step size as defined by parameter SDCO. Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: 32 f DCO(RSEL,DCO) f DCO(RSEL,DCO ) 1) f average + MOD f DCO(RSEL,DCO) ) (32 * MOD) f DCO(RSEL,DCO ) 1) (1) 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 DCO Frequency – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC Supply voltage range TEST CONDITIONS VCC MIN TYP MAX RSELx < 14 1.8 3.6 RSELx = 14 2.2 3.6 RSELx = 15 3.0 3.6 UNIT V DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 M Hz DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz fDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz fDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz fDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO) 1.55 ratio fDCO(0,0) fDCO(0,3) fDCO(1,3) fDCO(2,3) fDCO(3,3) fDCO(4,3) fDCO(5,3) fDCO(6,3) fDCO(7,3) fDCO(8,3) fDCO(9,3) fDCO(10,3) fDCO(11,3) fDCO(12,3) fDCO(13,3) Copyright © 2010–2011, Texas Instruments Incorporated 2.2 V/3 V 39 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com DCO Frequency – Electrical Characteristics (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Frequency step between tap DCO and DCO+1 SDCO Duty cycle TEST CONDITIONS VCC MIN TYP MAX UNIT SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO) 2.2 V/3 V 1.05 1.08 1.12 ratio Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 % Calibrated DCO Frequencies (Tolerance at Calibration) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS TA VCC MIN TYP MAX 25°C 3V –1 ±0.2 1 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 25°C 3V 0.990 1 1.010 MHz 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 3V 7.920 8 8.080 MHz 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 3V 11.88 12 12.12 MHz 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3V 15.84 16 16.16 MHz 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 PARAMETER Frequency tolerance at calibration fCAL(1 MHz) fCAL(8 MHz) fCAL(12 MHz) fCAL(16 MHz) UNIT % Calibrated DCO Frequencies (Tolerance Over Temperature) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TA VCC MIN TYP MAX 1-MHz tolerance over temperature PARAMETER TEST CONDITIONS 0°C to 85°C 3V –2.5 ±0.5 2.5 UNIT % 8-MHz tolerance over temperature 0°C to 85°C 3V –2.5 ±1.0 2.5 % 12-MHz tolerance over temperature 0°C to 85°C 3V –2.5 ±1.0 2.5 % 16-MHz tolerance over temperature 0°C to 85°C 3V –3.0 ±2.0 3.0 % 2.2 V 0.970 1 1.030 fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) 40 1-MHz calibration value 8-MHz calibration value BCSCTL1 = CALBC1_1MHz, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 0°C to 85°C 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 0°C to 85°C 0°C to 85°C 3V 0.975 1 1.025 3.6 V 0.970 1 1.030 2.2 V 7.760 8 8.400 3V 7.800 8 8.200 3.6 V 7.600 8 8.240 2.2 V 11.70 12 12.30 3V 11.70 12 12.30 3.6 V 11.70 12 12.30 3V 15.52 16 16.48 3.6 V 15.00 16 16.48 MHz MHz MHz MHz Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Calibrated DCO Frequencies (Tolerance Over Supply Voltage VCC) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX UNIT 1-MHz tolerance over VCC 25°C 1.8 V to 3.6 V –3 ±2 3 % 8-MHz tolerance overVCC 25°C 1.8 V to 3.6 V –3 ±2 3 % 12-MHz tolerance over VCC 25°C 2.2 V to 3.6 V –3 ±2 3 % 16-MHz tolerance over VCC 25°C 3 V to 3.6 V –6 ±2 3 % 25°C 1.8 V to 3.6 V 0.970 1 1.030 MHz BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 1-MHz calibration value fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 1.8 V to 3.6 V 7.760 8 8.240 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3 V to 3.6 V 15.00 16 16.48 MHz 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 fCAL(1MHz) Calibrated DCO Frequencies (Overall Tolerance) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX 1-MHz tolerance over temperature –55°C to 150°C 8-MHz tolerance over temperature UNIT 1.8 V to 3.6 V -5 ±2 +5 % –55°C to 150°C 1.8 V to 3.6 V -5 ±2 +5 % 12-MHz tolerance over temperature –55°C to 150°C 2.2 V to 3.6 V -5 ±2 +5 % 16-MHz tolerance over temperature –55°C to 150°C 3 V to 3.6 V -6 ±3 +6 % fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms –55°C to 150°C 1.8 V to 3.6 V .950 1 1.050 MHz fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms –55°C to 150°C 1.8 V to 3.6 V 7.6 8 8.4 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms –55°C to 150°C 2.2 V to 3.6 V 11.4 12 12.6 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms –55°C to 150°C 3 V to 3.6 V 15.00 16 17.00 MHz Copyright © 2010–2011, Texas Instruments Incorporated 41 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics – Calibrated 1-MHz DCO Frequency 1.02 TA = 105°C TA = 85°C 1 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Frequency - MHz 1.01 TA = 25°C 0.99 TA = –40°C 0.98 1.5 2 2.5 3 3.5 4 VCC - Supply Voltage - V Figure 15. Calibrated 1-MHz Frequency vs VCC Typical Characteristics – Calibrated 8-MHz DCO Frequency 8.20 TA = 105°C 8.15 Frequency - MHz 8.10 8.05 8 TA = 85°C TA = 25°C 7.95 TA = –40°C 7.90 7.85 7.80 1.5 2 2.5 3 3.5 4 VCC - Supply Voltage - V Figure 16. Calibrated 8-MHz Frequency vs VCC 42 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics – Calibrated 12-MHz DCO Frequency 12.2 TA = –40°C TA = 25°C 12 TA = 85°C 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Frequency - MHz 12.1 11.9 TA = 105°C 11.8 11.7 1.5 2 2.5 3 3.5 4 VCC - Supply Voltage - V Figure 17. Calibrated 12-MHz Frequency vs VCC Typical Characteristics – Calibrated 16-MHz DCO Frequency 16.1 16 Frequency - MHz TA = –40°C 15.9 TA = 25°C TA = 85°C 15.8 TA = 105°C 15.7 15.6 1.5 2 2.5 3 3.5 4 VCC - Supply Voltage - V Figure 18. Calibrated 16-MHz Frequency vs VCC Copyright © 2010–2011, Texas Instruments Incorporated 43 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Wake-Up From Low-Power Modes (LPM3/4) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tDCO,LPM3/4 (1) (2) DCO clock wake-up time from LPM3/4 (1) VCC MIN TYP MAX BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, 2.2 V/3 V 2 BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, 2.2 V/3 V 1.5 BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, 3V 1 BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, 3V 1 UNIT μs 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 tCPU,LPM3/4 TEST CONDITIONS 1/fMCLK + tClock,LPM3/4 CPU wake-up time from LPM3/4 (2) The DCO clock wake-up time is measured from the edge of an external wake-up signal (e.g., port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). Parameter applicable only if DCOCLK is used for MCLK. Typical Characteristics – DCO Clock Wake-Up Time From LPM3/4 DCO Wake Time − us 10.00 RSELx = 0...11 RSELx = 12...15 1.00 0.10 0.10 1.00 10.00 DCO Frequency − MHz Figure 19. Clock Wake-Up Time From LPM3 vs DCO Frequency DCO With External Resistor ROSC – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC TYP 1.8 UNIT fDCO,ROSC DCO output frequency with ROSC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, TA = 25°C 2.2 V 3V 1.95 Dt Temperature drift DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V ±0.1 %/°C DV Drift with VCC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 10 %/V (1) 44 MHz ROSC = 100 kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50 ppm/°C Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics - DCO With External Resistor ROSC DCO Frequency − MHz 10.00 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 10000.00 ROSC − External Resistor − kW 1.800 0.10 0.01 10.00 100.00 RSELx = 4 1000.00 10000.00 ROSC − External Resistor − kW Figure 20. DCO Frequency vs ROSC, VCC = 2.2 V, TA = 25°C 2.000 1.00 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 DCO Frequency − MHz 10.00 Figure 21. DCO Frequency vs ROSC, VCC = 3.0 V, TA = 25°C ROSC = 100k DCO Frequency - MHz 1.600 1.400 1.200 1.000 0.800 0.600 0.400 0.200 0.000 -75 ROSC = 270k ROSC = 1M -25 25 75 125 175 TA - Temperature - °C Figure 22. DCO Frequency vs Temperature, VCC = 3.0 V Copyright © 2010–2011, Texas Instruments Incorporated Figure 23. DCO Frequency vs VCC, TA = 25°C 45 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Crystal Oscillator (LFXT1) Low-Frequency Modes – Electrical Characteristics (1) (2) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 LFXT1 oscillator fLFXT1,LF,logic logic-level square-wave input frequency, LF mode CL,eff VCC MIN XTS = 0, LFXT1Sx = 0 or 1 1.8 V to 3.6 V XTS = 0, LFXT1Sx = 3 1.8 V to 3.6 V Integrated effective load capacitance, LF mode (3) 10,000 500 XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 12 pF 200 XCAPx = 0 1 XCAPx = 1 5.5 XCAPx = 2 8.5 XCAPx = 3 11 LF mode XTS = 0, Measured at P1.4/ACLK, fLFXT1,LF = 32,768 Hz 2.2 V/3 V 30 fFault,LF Oscillator fault frequency threshold, LF mode (4) XTS = 0, LFXT1Sx = 3 (5) 2.2 V/3 V 10 (2) (3) (4) (5) 32,768 XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 6 pF XTS = 0 MAX 32,768 Duty Cycle (1) TYP 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 OALF Oscillation allowance for LF crystals TEST CONDITIONS UNIT Hz 50,000 Hz kΩ pF 50 70 % 10,000 Hz To improve EMI on the LFXT1 oscillator the following guidelines should be observed: (a) Keep as short of a trace as possible between the device and the crystal. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. LFXT1 in 32-KHz mode is guaranteed to function only between –55°C to 105°C. This module is know to fail above 110°C. For further info contact TI support. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. Internal Very-Low-Power, Low-Frequency Oscillator (VLO) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift dfVLO/dVCC VLO frequency supply voltage drift (1) (2) 46 TEST CONDITIONS TA VCC –55°C to 85°C 2.2 V/3 V 150°C 2.2 V/3 V See (1) 2.2 V/3 V See (2) 1.8 V – 3.6V 25°C MIN 4 TYP MAX 12 20 22 0.5 4 0.8 UNIT kHz %/°C %/V Calculated using the box method: S Version: (MAX(–55 to 150°C) – MIN(–55 to 150°C))/MIN(–55 to 150°C)/(150°C – (–55°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8V to 3.6 V))/MIN(1.8 V to 3.6 V)/(3.6 V – 1.8 V) Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Crystal Oscillator (LFXT1) High Frequency Modes – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fLFXT1,HF0 LFXT1 oscillator crystal frequency, HF mode 0 XTS = 1, LFXT1Sx = 0 1.8 V to 3.6 V 0.4 1 MHz fLFXT1,HF1 LFXT1 oscillator lcrystal frequency, HF mode 1 XTS = 1, LFXT1Sx = 1 1.8 V to 3.6 V 1 4 MHz 1.8 V to 3.6 V 2 10 fLFXT1,HF2 LFXT1 oscillator crystal frequency, HF mode 2 XTS = 1, LFXT1Sx = 2 2.2 V to 3.6 V 2 12 3 V to 3.6 V 2 16 OAHF CL,eff Duty Cycle fFault,HF (1) (2) (3) (4) (5) 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 fLFXT1,HF,logic LFXT1 oscillator logic-level square-wave input frequency, HF mode Oscillation allowance for HF crystals (see Figure 24 and Figure 25) Integrated effective load capacitance, HF mode (2) HF mode Oscillator fault frequency, HF mode (4) XTS = 1, LFXT1Sx = 3 1.8 V to 3.6 V 0.4 10 2.2 V to 3.6 V 0.4 12 3 V to 3.6 V 0.4 16 XTS = 0, LFXT1Sx = 0; fLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 XTS = 0, LFXT1Sx = 1 fLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 XTS = 0, LFXT1Sx = 2 fLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 XTS = 1 (3) XTS = 1, Measured at P1.4/ACLK, fLFXT1,HF = 10 MHz XTS = 1, Measured at P1.4/ACLK, fLFXT1,HF = 16 MHz XTS = 1, LFXT1Sx = 3 (5) 1 pF 40 50 60 40 50 60 30 MHz Ω 3V 2.2 V/3 V MHz % 300 kHz To improve EMI on the LFXT1 oscillator the following guidelines should be observed: (a) Keep as short of a trace as possible between the device and the crystal. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals Copyright © 2010–2011, Texas Instruments Incorporated 47 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics – LFXT1 Oscillator in HF Mode (XTS = 1) 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Figure 24. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 1500 XT Oscillator Supply Current - mA 1400 1300 LFXT1Sx = 2 1200 1100 1000 900 800 700 600 500 400 300 LFXT1Sx = 1 200 100 LFXT1Sx = 0 0 0 4 8 12 16 20 Crystal Frequency - MHz Figure 25. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 48 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Crystal Oscillator (XT2) – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fXT2 XT2 oscillator crystal frequency, mode 0 XT2Sx = 0 1.8 V to 3.6 V 0.4 0.9 MHz fXT2 XT2 oscillator lcrystal frequency, mode 1 XT2Sx = 1 1.8 V to 3.6 V 1 4 MHz 1.8 V to 3.6 V 2 10 fXT2 XT2 oscillator crystal frequency, mode 2 XT2Sx = 2 2.2 V to 3.6 V 2 12 3 V to 3.6 V 2 16 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 XT2 oscillator logic-level square-wave input frequency, fXT2 Oscillation allowance (see Figure 26 and Figure 27) OA CL,eff Integrated effective load capacitance, HF mode (2) Duty Cycle HF mode fFault (1) (2) (3) (4) (5) Oscillator fault frequency, HF mode (4) XT2Sx = 3 1.8 V to 3.6 V 0.4 10 2.2 V to 3.6 V 0.4 12 3 V to 3.6 V 0.4 16 XT2Sx = 0, fXT2 = 1 MHz; CL,eff = 15 pF 2700 XT2Sx = 1, fXT2 = 4MHz; CL,eff = 15 pF 800 XT2Sx = 2, fXT1, HF = 16 MHz; CL,eff = 15 pF 300 See (3) Measured at P1.4/SMCLK, fXT2 = 10 MHz Measured at P1.4/SMCLK, fXT2 = 16 MHz XT2Sx = 3 (5) 1 pF 40 50 60 40 50 60 30 MHz Ω 2.2 V/3 V 2.2 V/3 V MHz % 300 kHz To improve EMI on the LFXT1 oscillator the following guidelines should be observed: (a) Keep as short of a trace as possible between the device and the crystal. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. Copyright © 2010–2011, Texas Instruments Incorporated 49 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics – XT2 Oscillator 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Figure 26. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 1500 XT Oscillator Supply Current - mA 1400 1300 XT2Sx = 2 1200 1100 1000 900 800 700 600 500 400 300 XT2Sx = 1 200 100 0 XT2Sx = 0 0 4 8 12 16 20 Crystal Frequency - MHz Figure 27. XT2 Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 50 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Timer_A – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTA Timer_A clock frequency Internal: SMCLK, ACLK, External: TACLK, INCLK, Duty cycle = 50% ±10% tTA,cap Timer_A, capture timing TA0, TA1, TA2 VCC MIN MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns Timer_B – Electrical Characteristics 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer_B clock frequency Internal: SMCLK, ACLK, External: TBCLK, Duty Cycle = 50% ±10% tTB,cap Timer_B, capture timing TB0, TB1, TB2 VCC MIN MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns USCI (UART Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) tτ UART receive deglitch time (1) (1) TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK, External: UCLK; Duty cycle = 50% ±10% 2.2 V/3 V MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 150 600 3V 50 150 600 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their width should exceed the maximum specification of the deglitch time. USCI (SPI Master Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 28 and Figure 29) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (1) TEST CONDITIONS VCC MIN SMCLK, ACLK, Duty cycle = 50% ±10% UCLK edge to SIMO valid, CL = 20 pF 2.2 V 110 3V 75 2.2 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 2.2 V 30 3V 20 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Copyright © 2010–2011, Texas Instruments Incorporated 51 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com USCI (SPI Slave Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 30 and Figure 31) PARAMETER TEST CONDITIONS VCC 2.2 V/3 V tSTE,LAG STE lag time, Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time, STE low to SOMI data out 2.2 V/3 V tSTE,DIS STE disable time, STE high to SOMI high impedance 2.2 V/3 V tSU,SI tHD,SI tVALID,SO (1) MIN TYP SIMO input data setup time SIMO input data hold time SOMI output data valid time UCLK edge to SOMI valid, CL = 20 pF MAX 50 2.2 V 20 3V 15 2.2 V 10 3V 10 UNIT ns 10 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 tSTE,LEAD STE lead time, STE low to clock ns 50 ns 50 ns ns ns 2.2 V 75 110 3V 50 75 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SCMI tVALID, MO SIMO Figure 28. SPI Master Mode, CKPH = 0 52 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 SCMI tVALID, MO SIMO Figure 29. SPI Master Mode, CKPH = 1 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW,HIGH tLOW,HIGH tSU,SIMO tHD,SIMO SIMO tACC tVALID,SOMI tDIS SOMI Figure 30. SPI Slave Mode, CKPH = 0 Copyright © 2010–2011, Texas Instruments Incorporated 53 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 tLOW,HIGH tLOW,HIGH tHD,SI , tSU,SI SIMO tACC tVALID,SO tDIS SOMI Figure 31. SPI Slave Mode, CKPH = 1 54 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com USCI (I2C Mode) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 32) PARAMETER TEST CONDITIONS VCC MIN Internal: SMCLK, ACLK, External: UCLK, Duty cycle = 50% ± 10% TYP MAX fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Set-up time for a repeated START tHD,DAT Data hold time 2.2 V/3 V 0 tSU,DAT Data set-up time 2.2 V/3 V 250 ns tSU,STO Set-up time for STOP 2.2 V/3 V 4.0 μs tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 3V 50 100 600 2.2 V/3 V fSCL ≤ 100 kHz fSCL ≤ 100 kHz 400 4.0 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 LOW tHIGH kHz μs 4.7 2.2 V/3 V fSCL > 100 kHz MHz 0.6 μs 0.6 tSU ,STA tHD ,STA t SCL 0 2.2 V/3 V fSCL > 100 kHz tHD ,STA SDA fSYSTEM UNIT ns ns tBUF tSP tSU ,DAT tSU , STO tHD ,DAT Figure 32. I2C Mode Timing Copyright © 2010–2011, Texas Instruments Incorporated 55 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Comparator_A+ – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX 2.2 V 25 80 3V 45 96 I(DD) CAON = 1 CARSEL = 0 CAREF = 0 CAON = 1, CARSEL = 0, CAREF = 1/2/3 no load at P2 3/CA0/TA1 and P2.4/CA1/TA2 2.2 V/3 V 30 50 I(Refladder/Refdiode) 3V 45 71 V(IC) CAON =1 2.2 V/3 V Common-mode input voltage Voltage at 0.25 VCC node/VCC V(Ref050) Voltage at 0.5 VCC node/VCC PCA0 = 1, CARSEL = 1, CAREF = 2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 V(RefVT) See Figure 36 and Figure 37 PCA0 = 1, CARSEL = 1, CAREF = 3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2, TA = 85°C V(offset) Offset voltage See Vhys Input hysteresis CAON=1 t(response) (1) (2) (3) 56 0 Response time, low-to-high and high-to-low (3) (2) μA μA VCC - 1 V 0.24 0.25 V 0.47 0.48 0.5 V 2.2 V 390 480 540 3V 400 490 550 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 V(Ref025) PCA0 = 1, CARSEL = 1, CAREF = 1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 UNIT 2.2 V/3 V 0.23 2.2 V/3 V mV 2.2 V/3 V –30 30 mV 2.2 V/3 V 0 0.7 1.4 mV TA = 25°C, Overdrive 10 mV, Without filter: CAF = 0 2.2 V 80 165 300 3V 70 120 240 TA = 25°C, Overdrive 10 mV, Without filter: CAF = 1 2.2 V 1.4 1.9 2.8 3V 0.9 1.5 2.2 ns µs The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.x) specification. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step, with Comparator_A+ already enabled (CAON = 1). If CAON is set at the same time, a settling time of up to 300 ns is added to the response time. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 0V VCC 0 1 CAF CAON Low Pass Filter V+ + V- - 0 0 1 1 To Internal Modules CAOUT 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Set CAIFG Flag l » 2 ms Figure 33. Block Diagram of Comparator_A Module VCAOUT Overdrive V- 400 mV t(response) V+ Figure 34. Overdrive Definition CASHORT CA0 CA1 1 + VIN - IOUT = 10 mA Comparator_A+ CASHORT = 1 Figure 35. Comparator_A+ Short Resistance Test Condition Copyright © 2010–2011, Texas Instruments Incorporated 57 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics – Comparator A+ 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Figure 36. V(RefVT) vs Temperature, VCC = 3 V Figure 37. V(RefVT) vs Temperature, VCC = 2.2 V Figure 38. Short Resistance vs VIN/VCC 58 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit ADC Power-Supply and Input Range Conditions – Electrical Characteristics (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC Analog supply voltage range Analog input voltage range IADC12 Operating supply current into AVCC terminal (3) (2) AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x = 1, 0 ≤ x ≤ 7, V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC) Reference supply current, into AVCC terminal (4) fADC10CLK = 5 MHz, ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0 fADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5 MHz, ADC12ON = 0, REFON = 1, REF2_5V = 0 CI (5) Input capacitance Only one terminal selected at a time, P6.x/Ax RI (5) Input MUX ON resistance 0 V ≤ VAx ≤ VAVCC (1) (2) (3) (4) (5) VCC MIN TYP MAX 3.6 V 0 VAVCC V 2.2 V 0.65 0.8 3V 0.8 1 3V 0.5 0.7 2.2 V 0.5 0.7 3V 0.5 0.7 2.2 V 3V UNIT 2.2 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 V(P6.x/Ax) IREF+ TEST CONDITIONS mA mA 40 pF 2000 Ω The leakage current is defined in the leakage current table with P6.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC12. The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion. Limits verified by design. Copyright © 2010–2011, Texas Instruments Incorporated 59 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit ADC External Reference – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VREF-/VeREF- (1) 1.4 VAVCC V VREF- /VeREF+ Negative external reference voltage input VeREF+ > VREF-/VeREF- (2) 0 1.2 V (VeREF+ - VREF- / VeREF- ) Differential external reference voltage input VeREF+ > VREF-/VeREF- (3) 1.4 VAVCC V IVeREF+ Static input current 0 V ≤ VeREF+ ≤ VAVCC ±1 µA ±1 µA (1) (2) (3) 60 2.2 V/3 V 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 IVREF-/VeREF- Static input current 0 V ≤ VeREF- ≤ VAVCC 2.2 V/3 V The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be appliedwith reduced accuracy requirements. The accuracy limitsminimum external differential reference voltage. Lower differential reference voltage levels may be appliedwith reduced accuracy requirements. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit ADC Built-In Reference – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Positive built-in reference voltage output VREF+ REF2_5V = 1 (2.5 V) IVREF+max ≤ IVREF+ ≤ IVREF+min -55°C to 85°C REF2_5V = 1 (1.5 V) IVREF+max ≤ IVREF+ ≤ IVREF+min -55°C to 85°C IL(VREF)+ (1) 150°C 3V 2.2 V/3 V 2.64 1.44 1.5 1.56 1.42 1.5 1.57 2.9 Load current regulation, VREF+ terminal 0.01 –0.5 3V 0.01 –1 2.2 V ±2 3V ±2 3V ±2 3V 20 REFON = 1, 0 mA ≤ IVREF+ ≤ IVREF+max 2.2 V/3 V TREF+ (1) Temperature coefficient of built-in reference IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA 2.2 V/3 V Settling time of internal reference voltage (4) (See Figure 39) IVREF+ = 0.5 mA, CVREF+ = 10 μF, VREF+ = 1.5 V, VAVCC = 2.2 V 5 V mA LSB IVREF+ = 500 μA ± 100 μA, Analog input voltage VAx ≉ 1.25 V, REF2_5V = 1 Capacitance at pin VREF+ (3) UNIT V 2.2 V CVREF+ (4) 2.6 2.5 REF2_5V = 1, –1 mA ≤ IVREF+ ≤ IVREF+min IVREF+ = 100 μA → 900 μA, CVREF+ = 5 μF, at ≉ 0.5 VREF+, Error of conversion result ≤ 1 LSB (1) (2) (3) 2.5 2.8 Load current regulation, VREF+ terminal (1) 2.4 REF2_5V = 1, –0.5 mA ≤ IVREF+ ≤ IVREF+min IVREF+ = 500 μA ± 100 μA, Analog input voltage VAx ≉ 0.75 V, REF2_5V = 0 TYP MAX 2.37 2.2 IDL(VREF)+ (2) tREFON MIN REF2_5V = 0, IVREF+max ≤ IVREF+ ≤ IVREF+min Load current out of VREF+ terminal IVREF+ 150°C VCC 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 AVCC(min) AVCC minimum voltage, positive built-in reference active TA ns µF 10 ±100 17 ppm/° C ms Limits characterized Limits verified by design The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests use two capacitors between pins VREF+ and AVSS and VREF-/VeREF- and AVSS: 10 μF tantalum and 100 nF ceramic. The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB. Typical Characteristics – ADC12 CVREF+ 100 mF tREFON » .6 6 x CVREF+ [m s ] w ith CVREF+ in mF 10 mF 1mF 0 1 ms 10 m s 100 m s tREFON Figure 39. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ Copyright © 2010–2011, Texas Instruments Incorporated 61 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com From Power Supply DVCC + DVSS 10 mF 100 nF AVCC + - MSP430F2619 AVSS 100 nF 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 10 mF Apply External Reference [VeREF+] or Use Internal Reference [VREF+] VREF+ or VeREF+ + - 10 mF Apply External Reference 100 nF VREF-/VeREF- + - 10 mF 100 nF Figure 40. Supply Voltage and Reference Voltage Design VREF-/VeREF- External Supply From Power Supply DVCC + - DVSS 10 mF 100 nF AVCC + - MSP430F2619 AVSS 10 mF Apply External Reference [VeREF+] or Use Internal Reference [VREF+] VREF+ or VeREF+ + - 10 mF Reference Is Internally Switched to AVSS 100 nF 100 nF VREF-/VeREF- Figure 41. Supply Voltage and Reference Voltage Design VREF-/VeREF- = AVSS, Internally Connected 62 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit ADC Timing Parameters – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fADC12CLK ADC12 input clock frequency For specified performance of ADC12 linearity parameters 2.2 V/3 V 0.45 5 6.3 MHz fADC12OSC ADC12 built-in oscillator frequency ADC12DIV = 0, fADC12CLK = fADC12OSC 2.2 V/3 V 3.7 5 6.3 MHz 2.2 V/3 V 2.06 Conversion time ADC12 built-in oscillator, CVREF+ ≥ 5 μF, fADC12OSC = 3.7 MHz to 6.3 MHz tCONVERT μs tSample (1) (1) (2) (3) (1) 13 x ADC12DIV x 1/fADC12CLK 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 External fADC12CLK from ACLK, MCLK, or SMCLK: ADC12SSEL ≠ 0 tADC12ON 3.51 Turn-on settling time of the ADC See (2) Sampling time RS = 400 Ω, RI = 1000 Ω, CI = 30 pF, τ = [RS + RI] x CI (3) 3V 1220 2.2 V 1400 100 ns ns Limits verified by design The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. 12-Bit ADC Linearity Parameters – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ - VREF-/VeREF-) min ≤ 1.6 V VCC EI Integral linearity error ED Differential linearity error (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) 2.2 V/3 V EO Offset error (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), Internal impedance of source RS < 100 Ω, CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) 2.2 V/3 V EG Gain error (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) ET Total unadjusted error (VeREF+ - VREF-/VeREF-)min ≤ (VeREF+ - VREF-/VeREF-), CVREF+ = 10 μF (tantalum) and 100 nF (ceramic) 1.6 V < (VeREF+ - VREF-/VeREF-) min ≤ VAVCC Copyright © 2010–2011, Texas Instruments Incorporated MIN TYP 2.2 V/3 V MAX ±2 ±1.7 UNIT LSB ±1 LSB ±2 ±4 LSB 2.2 V/3 V ±1.1 ±2 LSB 2.2 V/3 V ±2 ±5 LSB 63 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit ADC Temperature Sensor and Built-In VMID – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS 120 160 ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V/3 V 986 mV ADC12ON = 1, INCH = 0Ah 2.2 V/3 V 3.55 mV/°C ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 2.2 V/3 V Sensor output voltage (3) VMID tVMID(sample) (1) (2) (3) (4) (5) (6) 2.2 V NA 3V NA Current into divider at channel 11 (5) ADC12ON = 1, INCH = 0Bh AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ≉ 0.5 × VAVCC 2.2 V Sample time required if channel 11 is selected ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 3V 1220 (6) 1.1 1.1±0.04 1.5 1.5 ±0.04 3V μA μs 30 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 IVMID (4) UNIT 40 VSensor (2) tSensor(sample) MAX 60 REFON = 0, INCH = 0Ah, ADC12ON = 1, TA = 25°C Sample time required if channel 10 is selected TYP 3V Operating supply current into AVCC terminal (1) (2) MIN 2.2 V ISENSOR TCSENSOR (2) VCC μA V ns The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1) or (ADC12ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah). Limits characterized The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). No additional current is needed. The VMID is used during sampling. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 12-Bit DAC Supply Specifications – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC TEST CONDITIONS Supply voltage range DAC12AMPx = 2, DAC12IR = 0, DAC12_xDAT = 0x0800 Supply current, single DAC channel (1) IDD TA VCC AVCC = DVCC, AVSS = DVSS = 0 V DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC PSSR Power-supply rejection ratio (3) (4) DAC12_xDAT = 800h, VREF = 1.5 V or 2.5 V, ΔAVCC = 100 mV MAX 3.6 -55°C to 85°C 50 110 105°C 69 150 50 130 200 440 700 1500 UNIT V μA 2.2 V/3 V DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC DAC12_xDAT = 800h, VREF = 1.5 V, ΔAVCC = 100 mV TYP 2.2 DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0x0800, VeREF+ = VREF+ = AVCC (2) MIN 70 2.2 V/3 V dB 70 (1) (2) (3) (4) No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications. PSRR = 20 × log{ΔAVCC/ΔVDAC12_xOUT} VREF is applied externally. The internal reference is not used. 64 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit DAC Linearity Parameters – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Resolution Differential nonlinearity VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 EO ±2 ±8 ±2 ±8 ±0.4 ±1 LSB 2.2 V/3 V VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 LSB ±0.4 VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 ±21 2.2 V/3 V VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 LSB ±3.5 VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 dE(O)/dT Offset error temperature coefficient (1) EG Gain error (1) dE(G)/dT Gain temperature coefficient (1) tOffset_Cal Time for offset calibration (3) VREF = 1.5 V ±3.5 ±3.5 2.2 V/3 V VREF = 2.5 V DAC12AMPx = 3, 5 ±3.5 2.2 V/3 V LSB ppm of FSR/°C 10 DAC12AMPx = 4, 6, 7 (2) (3) µV/°C 30 DAC12AMPx = 2 (1) ±1 ±21 VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 Offset voltage with calibration (1) (2) UNIT bits 2.2 V/3 V VREF = 2.5 V DAC12AMPx = 7, DAC12IR = 1 Offset voltage without calibration (1) (2) MAX 12 VREF = 1.5 V DAC12AMPx = 7, DAC12IR = 1 (1) TYP 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 DNL MIN 12-bit monotonic Integral nonlinearity (1) INL VCC 100 32 LSB 6 Parameters calculated from the best-fit curve from 0x0A to 0xFFF. The best-fit curve method is used to deliver coefficients “a” and “b” of the first-order equation: y = a + b × x. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1. The offset calibration works on the output operational amplifier. Offset calibration is triggered setting bit DAC12CALON. The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx={0, 1}.The DAC12 module should be configured prior to initiating calibration. Port activity during calibration may affect accuracy and is not recommended. DAC V OUT DAC Output V R+ R Load = Ideal transfer function AV CC 2 Offset Error C Load = 100pF Gain Error Positive Negative DAC Code Figure 42. Linearity Test Load Conditions and Gain/Offset Definition Copyright © 2010–2011, Texas Instruments Incorporated 65 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Typical Characteristics - 12-Bit DAC Linearity Specifications Figure 43. TYPICAL INL ERROR vs DIGITAL INPUT DATA 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Figure 44. Figure 45. TYPICAL DNL ERROR vs DIGITAL INPUT DATA Figure 46. 66 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit DAC Output Specifications – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC No Load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 Output voltage range (1) (See Figure 47) VO No Load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 CL(DAC12) Max DAC12 load capacitance IL(DAC12) Max DAC12 load current 2.2 V 3V RLoad = 3 kΩ, VO/P(DAC12) = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0FFFh 2.2 V/3 V RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC - 0.3 V, DAC12AMPx = 7 (1) 0 0.005 AVCC 0.05 AVCC UNIT V 0 0.1 AVCC 0.13 AVCC 2.2 V/3 V RLoad = 3 kΩ, VO/P(DAC12) = 0 V, DAC12AMPx = 7, DAC12_xDAT = 0h Output resistance (See Figure 47) MAX 2.2 V/3 V RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 RO/P(DAC12) TYP 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 MIN 100 –0.5 0.5 –1 1 150 250 150 250 1 4 pF mA Ω Data is valid after the offset calibration of the output amplifier. Figure 47. DAC12_x Output Resistance Tests Copyright © 2010–2011, Texas Instruments Incorporated 67 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit DAC Reference Input Specifications – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VeREF+ Ri(VREF+), Ri(VeREF+) 68 Reference input reistance DAC12IR = 0 VCC MIN (1) (2) DAC12IR = 1 (3) (4) 2.2 V/3 V TYP MAX AVCC/3 AVCC + 0.2 AVCC AVCC + 0.2 DAC12_0 IR = DAC12_1 IR = 0 20 DAC12_0 IR = 1, DAC12_1 IR = 0 40 48 56 20 24 28 DAC12_0 IR = 0, DAC12_1 IR = 1 DAC12_0 IR = 0, DAC12_1 IR = 1 DAC12_0 SREFx = DAC12_1 SREFx (5) UNIT V MΩ 2.2 V/3 V kΩ 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 (1) (2) (3) (4) (5) Reference input voltage range TEST CONDITIONS For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC - VE(O)] / [3 x (1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC - VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel reducing the reference input resistance. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com 12-Bit DAC Dynamic Specifications, VREF = VCC, DAC12IR = 1 – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tON TEST CONDITIONS DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB (1) (See Figure 48) SR VCC MIN DAC12AMPx = 0 → {2, 3, 4} DAC12AMPx = 0 → {5, 6} 2.2 V/3 V DAC12AMPx = 0 → 7 DAC12AMPx = 2 tS(FS) DAC12_xDAT = 80h → F7Fh → 80h Settling time, full scale DAC12AMPx = 3, 5 2.2 V/3 V DAC12AMPx = 4, 6, 7 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 DAC12AMPx = 2 tS(C-C) Settling time, code to code DAC12_xDAT = 3F8h → 408h → 3F8h DAC12AMPx = 3, 5 2.2 V/3 V DAC12AMPx = 4, 6, 7 DAC12AMPx = 2 SR Slew rate DAC12_xDAT = 80h → F7Fh → 80h (2) DAC12AMPx = 3, 5 0.05 2.2 V/3 V DAC12AMPx = 4, 6, 7 DAC12AMPx = 3, 5 BW-3dB DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h (1) (2) (3) 12 100 200 40 80 15 30 UNIT μs μs 5 2 μs 1 0.12 0.7 V/μs 600 150 nV-s 30 40 2.2 V/3 V DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 180 kHz 550 DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, fDAC12_1OUT = 10 kHz, Duty cycle = 50% Channel-to-channel crosstalk (3) (See Figure 51) 30 6 2.7 DAC12AMPx = 4, 6, 7 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (See Figure 50) 120 1.5 2.2 V/3 V DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h 60 15 0.35 DAC12AMPx = 2 DAC12_xDAT = 80h → F7Fh → 80h Glitch energy, full scale TYP MAX DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz, Duty cycle = 50% –80 2.2 V/3 V dB –80 RLoad and CLoad are connected to AVSS (not AVCC/2) in Figure 48. Slew rate applies to output voltage steps ≥ 200 mV. RLOAD = 3 kΩ, CLOAD = 100 pF Conversion 1 V OUT DAC Output I Load R Load = 3 k W Glitch Energy Conversion 2 Conversion 3 +/- 1/2 LSB AV CC 2 R O/P(DAC12.x) +/- 1/2 LSB C Load = 100pF tsettleLH tsettleHL Figure 48. Settling Time and Glitch Energy Testing Copyright © 2010–2011, Texas Instruments Incorporated 69 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Conversion 1 Conversion 2 Conversion 3 V OUT 90% 90% 10% 10% 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 tSRLH tSRHL Figure 49. Slew Rate Testing I Load Ve REF+ R Load = 3 k W AV CC DAC12_x 2 DACx AC C Load = 100pF DC Figure 50. Test Conditions for 3-dB Bandwidth Specification I Load R Load AV CC DAC12_0 2 DAC0 DAC12_xDAT 080h 7F7h 080h 7F7h 080h V OUT C Load = 100pF VREF+ I Load V DAC12_yOUT R Load AV CC DAC12_1 V DAC12_xOUT 2 DAC1 fToggle C Load = 100pF Figure 51. Crosstalk Test Conditions 70 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Flash Memory – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC(PGM/ERASE) Program and erase supply voltage 2.2 3.6 V fFTG Flash timing generator frequency 257 476 kHz IPGM Supply current from VCC during program 5 mA IERASE Supply current from VCC during erase 7 mA tCPT Cumulative program time 10 ms tCMErase Cumulative mass erase time See (1) 2.2 V/3.6 V 3 2.2 V/3.6 V 3 2.2 V/3.6 V 4 Program/Erase endurance tRetention tWord tBlock, 0 tBlock, 1-63 tBlock, End tMass Erase tSeg Erase (1) (2) 10 ms 5 10 cycles Data retention duration TJ = 25°C 100 Word or byte program time See (2) 35 years tFTG Block program time for 1st byte or word See (2) 30 tFTG Block program time for each additional byte or word See (2) 21 tFTG Block program end-sequence wait time See (2) 6 tFTG Mass erase time See (2) 10593 tFTG Segment erase time See (2) 4819 tFTG The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. These values are hardwired into the Flash Controller's state machine (tFTG = 1/fFTG). 30 25 20 Time - (Yrs) 20 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 2.2 V/3.6 V 15 10 5 0 85 90 95 100 105 110 115 120 125 130 135 140 145 150 Junction Temperature - T J (C) Figure 52. Flash Data Retention vs Junction Temperature Copyright © 2010–2011, Texas Instruments Incorporated 71 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com RAM – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER V(RAMh) (1) RAM retention supply voltage TEST CONDITIONS (1) MIN CPU halted MAX 1.6 UNIT V This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. JTAG and Spy-Bi-Wire Interface – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS fTCK TCK input frequency See (1) RInternal Internal pulldown resistance on TEST See (2) (1) (2) VCC MIN TYP 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 PARAMETER MAX 2.2 V 0 5 3V 0 10 2.2 V/3 V 25 60 90 UNIT MHz kΩ fTCK may be restricted to meet the timing requirements of the module selected. TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions. JTAG Fuse (1) – Electrical Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TEST for fuse blow IFB Supply current into TEST during fuse blow tFB Time to blow fuse (1) 72 TEST CONDITIONS TA = 25°C MIN MAX 2.5 6 UNIT V 7 V 100 mA 1 ms Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com APPLICATION INFORMATION Port P1 Pin Schematic: P1.0 to P1.7, Input/Output With Schmitt Trigger Pad Logic P1REN.x P1DIR.x 0 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P1OUT.x 0 Module X OUT 1 P1.0/TACLK/CAOUT P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1SEL.x P1IN.x EN Module X IN D P1IE.x EN P1IRQ.x Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select Port P1 (P1.0 to P1.7) Pin Functions PIN NAME (P1.X) X FUNCTION P1.0 P1.0/TACLK/ADC10CLK 0 Timer_A3.TACLK ADC10CLK 1 2 P1.4/SMCLK 3 4 P1.5/TA0 5 P1.6/TA1 6 P1.7/TA2 7 0 0 1 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 P1.3 I/O P1.3/TA2 P1SEL.x 1 P1.2 (I/O) P1.2/TA1 P1DIR.x I: 0; O: 1 I: 0; O: 1 P1.1 (I/O) P1.1/TA0 CONTROL BITS/SIGNALS I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 P1.4 (I/O) SMCLK P1.5 (I/O) Timer_A3.TA0 P1.6 (I/O) Timer_A3.TA1 P1.7 (I/O) Timer_A3.TA2 Copyright © 2010–2011, Texas Instruments Incorporated 73 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P2 Pin Schematic: P2.0 to P2.4, P2.6, and P2.7, Input/Output With Schmitt Trigger Pad Logic To Comparator_A From Comparator_A CAPD.x P2REN.x 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 0 P2DIR.x P2OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.6/ADC12CLK/ DMAE0/CA6 P2.7/TA0/CA7 Bus Keeper EN P2SEL.x P2IN.x EN D Module X IN P2IE.x EN P2IRQ.x Q Set P2IFG.x P2SEL.x P2IES.x Interrupt Edge Select Port P2.0, P2.3, P2.4, P2.6 and P2.7 Pin Functions Pin Name (P2.X) P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 (1) 74 X 0 1 2 3 FUNCTION CONTROL BITS/SIGNALS (1) CAPD.x P2DIR.x P2SEL.x P2.0 (I/O) 0 I: 0; O: 1 0 ACLK 0 1 1 CA2 1 X X P2.2 (I/O) 0 I: 0; O: 1 0 Timer_A3.INCLK 0 0 1 DVSS 0 1 1 CA3 1 X X P2.2 (I/O) 0 I: 0; O: 1 0 CAOUT 0 1 1 Timer_A3.CCI0B 0 0 1 CA4 1 X X 0 P2.3 (I/O) 0 I: 0; O: 1 Timer_A3.TA1 0 1 1 CA0 1 X X X: Don't care Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Pin Name (P2.X) X P2.4/CA1/TA2 FUNCTION 4 P2.6/ADC12CLK/ DMAE0/CA6 6 CONTROL BITS/SIGNALS (1) CAPD.x P2DIR.x P2SEL.x P2.4 (I/O) 0 I: 0; O: 1 0 Timer_A3.TA2 0 1 X CA1 1 X 1 P2.6 (I/O) 0 I: 0; O: 1 0 ADC12CLK 0 1 1 DMAE0 0 0 1 CA6 1 X X 0 P2.7 (I/O) 0 I: 0; O: 1 Timer_A3.TA0 0 1 1 CA7 1 X X 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P2.7/TA0/CA7 7 Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO Pad Logic To Comparator From Comparator CAPD.5 To DCO in DCO DCOR P2REN.5 P2DIR.5 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.5 DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q Set P2IFG.5 P2SEL.5 P2IES.5 Copyright © 2010–2011, Texas Instruments Incorporated Interrupt Edge Select 75 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P2 (P2.5) Pin Functions PIN NAME (P2.X) X CONTROL BITS/SIGNALS (1) FUNCTION P2.5 (I/O) P2.5/ROSC /CA5 ROSC DCOR P2DIR.5 P2SEL.5 0 0 I: 0; O: 1 0 X 0 1 X DVSS 0 0 1 1 ROSC 1 or selected 0 X X X: Don't care If ROSC is used it is connected to an external resistor. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 (1) (2) 5 (2) CAPD Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger Pad Logic P3REN.x P3DIR.x Module direction P3OUT.x Module X OUT 0 DVSS 0 DVCC 1 1 0 1 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/UCA1TXD/UCA1SIMO P3.7/UCA1RXD/UCA1SOMI P3SEL.x P3IN.x EN Module X IN 1 Direction 0: Input 1: Output D Port P3 (P3.0) Pin Functions PIN NAME (P3.X) P3.0/UCB0STE/UCA0CLK X 0 P3.1/UCB0SIMO/UCB0SDA 1 P3.2/UCB0SOMI/UCB0SCL 2 P3.3/UCB0CLK/UCA0STE 3 P3.4/UCA0TXD/UCA0SIMO 4 P3.5/UCA0RXD/UCA0SOMI 5 P3.6/UCA1TXD/UCA1SIMO 6 P3.7/UCA1RXD/UCA1SOMI 7 (1) (2) (3) (4) 76 FUNCTION P3.0 (I/O) UCB0STE/UCA0CLK (2) (3) P3.1 (I/O) UCB0SIMO/UCB0SDA (2) (4) P3.2 (I/O UCB0SOMI/UCB0SCL (2) (4) P3.3 (I/O) UCB0CLK/UCA0STE (2) P3.4 (I/O) UCA0TXD/UCA0SIMO (2) P3.5 (I/O) UCA0RXD/UCA0SOMI (2) P3.6 (I/O) UCA1TXD/UCA1SIMO (2) P3.7 (I/O) UCA1RXD/UCA1SOMI (2) CONTROL BITS/SIGNALS (1) P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X: Don’t care The pin direction is controlled by the USCI module. UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A0/B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P4 Pin Schematic: P4.0 to P4.7, Input/Output With Schmitt Trigger Pad Logic P4REN.x P4DIR.x 0 P4OUT.x 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 P4.5/TB5 P4.6/TB6 P4.7/TBCLK P4SEL.x P4IN.x EN Module X IN D Port P4 (P4.0 to P4.7) Pin Functions PIN NAME (P4.X) X FUNCTION P4SEL.x I: 0; O: 1 0 Timer_B7.CCI0A and Timer_B7.CCI0B 0 1 Timer_B7.TB0 1 1 I: 0; O: 1 0 0 1 P4.0 (I/O) P4.0/TB0 0 P4.1 (I/O) P4.1/TB1 1 Timer_B7.CCI1A and Timer_B7.CCI1B Timer_B7.TB1 P4.2 (I/O) P4.2/TB2 2 Timer_B7.CCI2A and Timer_B7.CCI2B Timer_B7.TB2 P4.3 (I/O) P4.3/TB3 3 Timer_B7.CCI3A and Timer_B7.CCI3B Timer_B7.TB3 4 5 P4.7/TBCLK 6 7 0 0 1 1 1 I: 0; O: 1 0 0 1 1 0 Timer_B7.CCI4A and Timer_B7.CCI4B 0 1 Timer_B7.TB4 1 1 I: 0; O: 1 0 Timer_B7.CCI5A and Timer_B7.CCI5B 0 1 Timer_B7.TB5 1 1 P4.6 (I/O) P4.6/TB6 1 1 P4.5 (I/O) P4.5/TB5 1 I: 0; O: 1 I: 0; O: 1 P4.4 (I/O) P4.4/TB4 CONTROL BITS/SIGNALS P4DIR.x I: 0; O: 1 0 Timer_B7.CCI6A and Timer_B7.CCI6B 0 1 Timer_B7.TB6 1 1 I: 0; O: 1 0 1 1 P4.7 (I/O) Timer_B7.TBCLK Copyright © 2010–2011, Texas Instruments Incorporated 77 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P5 Pin Schematic: P5.0 to P5.7, Input/Output With Schmitt Trigger Pad Logic P5REN.x P5DIR.x 0 Module Direction 1 P5OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P5.0/UCB1STE/UCA1CLK P5.1/UCB1SIMO/UCB1SDA P5.2/UCB1SOMI/UCB1SCL P5.3/UCB1CLK/UCA1STE P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH/SVSOUT P5SEL.x P5IN.x EN Module X IN D Port P5 (P5.0 to P5.7) Pin Functions PIN NAME (P5.X) P5.0/UCB1STE/UCA1CLK P5.1/UCB1SIMO/UCB1SDA P5.2/UCB1SOMI/UCB1SCL X 0 1 2 P5.3/UCB1CLK/UCA1STE 3 P5.4/MCLK 4 P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH/SVSOUT (1) (2) (3) (4) (5) 78 5 6 7 FUNCTION P5.0 (I/O) UCB1STE/UCA1CLK (2) (3) P5.1 (I/O) UCB1SIMO/UCB1SDA (4) (5) P5.2 (I/O) UCB1SOMI/UCB1SCL (4) (5) P5.3 (I/O) UCB1CLK/UCA1STE (4) P5.0 (I/O) MCLK P5.1 (I/O) SMCLK CONTROL BITS/SIGNALS (1) P5DIR.x P5SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 I: 0; O: 1 0 1 1 P5.7 (I/O) I: 0; O: 1 0 TBOUTH 0 1 SVSOUT 1 1 P5.2 (I/O) ACLK X: Don’t care The pin direction is controlled by the USCI module. UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI A1/B1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected. The pin direction is controlled by the USCI module. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P6 Pin Schematic: P6.0 to P6.4, Input/Output With Schmitt Trigger Pad Logic ADC12 Ax P6REN.x P6DIR.x 0 0 DVCC 1 1 Direction 0: Input 1: Output 1 P6OUT.x DVSS 0 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Module X OUT 1 P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6 (P6.0 to P6.4) Pin Functions PIN NAME (P6.X) P6.0/A0 P6.1/A1 P6.2/A2 P6.3/A3 P6.4/A4 (1) (2) (3) X 0 1 2 3 4 FUNCTION P6.0 (I/O) A0 (2) P6.1 (I/O) A1 (3) P6.2 (I/O) A2 (3) P6.3(I/O) A3 (3) P6.3 (I/O) A4 (3) CONTROL BITS/SIGNALS (1) P6DIR.x P6SEL.x I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X I: 0; O: 1 0 X X X: Don’t care The ADC12 channel Ax is connected to AVss internally if not selected. The ADC12 channel Ax is connected to AVss internally if not selected. Copyright © 2010–2011, Texas Instruments Incorporated 79 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P6 Pin Schematic: P6.5 and P6.6, Input/Output With Schmitt Trigger Pad Logic DAC12_0OUT DAC12AMP > 0 ADC12 Ax ADC12 Ax P6REN.x 0 0 DVCC 1 1 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P6DIR.x DVSS Direction 0: Input 1: Output 1 P6OUT.x 0 Module X OUT 1 P6.5/A5/DAC1 P6.6/A6/DAC0 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6 (P6.5 to P6.6) Pin Functions CONTROL BITS/SIGNALS (1) PIN NAME (P6.X) X FUNCTION P6.5 (I/O) P6.5/A5/DAC1 5 (1) (2) (3) (4) (5) 80 6 P6SEL.x CAPD.x or DAC12AMP > 0 I: 0; O: 1 0 0 DVSS 1 1 0 A5 (2) X X 1 DAC1 (DA12OPS = 1) (3) X X 1 I: 0; O: 1 0 0 DVSS 1 1 0 A6 (4) X X 1 DAC1 (DA12OPS = 0) (5) X X 1 P6.6 (I/O) P6.6/A6/DAC0 P6DIR.x X: Don’t care The ADC12 channel Ax is connected to AVss internally if not selected. The DAC outputs are floating if not selected. The ADC12 channel Ax is connected to AVss internally if not selected. The DAC outputs are floating if not selected. Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P6 Pin Schematic: P6.7, Input/Output With Schmitt Trigger Pad Logic to SVS Mux VLD = 15 DAC12_0OUT DAC12AMP > 0 ADC12 A7 from ADC12 P6REN.7 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P6DIR.7 0 P6OUT.7 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P6.7/A7/DAC1/SVSIN Bus Keeper EN P6SEL.7 P6IN.7 EN Module X IN D Port P6 (P6.7) Pin Functions PIN NAME (P6.X) X FUNCTION P6.7 (I/O) P6.7/A7/DAC1/SVSIN (1) (2) (3) 7 CONTROL BITS/SIGNALS (1) P6DIR.x P6SEL.x I: 0; O: 1 0 DVSS 1 1 A7 (2) X X DAC1 (DA12OPS = 0) (3) X X SVSIN (VLD = 15) X X X: Don’t care The ADC12 channel Ax is connected to AVss internally if not selected. The DAC outputs are floating if not selected. Copyright © 2010–2011, Texas Instruments Incorporated 81 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P7 Pin Schematic: P7.0 to P7.7, Input/Output With Schmitt Trigger Pad Logic P7REN.x P7DIR.x 0 0 1 P7OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P7.x P7SEL.x P7IN.x EN Module X IN D Port P7 (P7.0 to P7.7) Pin Functions (4) PIN NAME (P7.X) P7.0 P7.1 P7.2 P7.3 P7.4 P7.5 P7.6 P7.7 (4) 82 KGD only X 0 1 2 3 4 5 6 7 FUNCTION P7.0 (I/O) Input P7.1 (I/O) Input P7.2 (I/O) Input P7.3 (I/O) Input P7.4 (I/O) Input P7.5 (I/O) Input P7.6 (I/O) Input P7.7 (I/O) Input CONTROL BITS/SIGNALS P7DIR.x P7SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P8 Pin Schematic: P8.0 to P8.5, Input/Output With Schmitt Trigger Pad Logic P8REN.x P8DIR.x 0 0 1 P8OUT.x 0 VSS 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 P8SEL.x P8IN.x EN Module X IN D Port P8 (P8.0 to P8.5) Pin Functions (1) PIN NAME (P8.X) P8.0 P8.1 P8.2 P8.3 P8.4 P8.5 (1) KGD only X 0 1 2 3 4 5 FUNCTION P8.0 (I/O) Input P8.1 (I/O) Input P8.2 (I/O) Input P8.3 (I/O) Input P8.4 (I/O) Input P8.5 (I/O) Input Copyright © 2010–2011, Texas Instruments Incorporated CONTROL BITS/SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 83 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P8 Pin Schematic: P8.6, Input/Output With Schmitt Trigger BCSCTL3.XT2Sx = 11 0 XT2CLK From P8.7/XIN 1 P8.7/XIN XT2 off Pad Logic P8SEL.7 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 P8REN.6 P8DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.6 DVSS P8.6/XOUT Bus Keeper EN P8SEL.6 P8IN.6 EN Module X IN D Port P8 (P8.6) Pin Functions (1) PIN NAME (P8.X) X FUNCTION P8DIR.x P8SEL.x I: 0; O: 1 0 XOUT (default) 0 1 DVSS 1 1 P8.6 (I/O) P8.6/XOUT (1) 84 KGD only 6 CONTROL BITS/SIGNALS Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com Port P8 Pin Schematic: P8.7, Input/Output With Schmitt Trigger BCSCTL3.XT2Sx = 11 P8.6/XOUT XT2 off 0 XT2CLK 1 P8SEL.6 Pad Logic P8REN.7 DVSS 0 DVCC 1 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 0 P8DIR.7 0 1 P8OUT.7 0 Module X OUT 1 1 Direction 0: Input 1: Output P8.7/XIN Bus Keeper EN P8SEL.7 P8IN.7 EN Module X IN D Port P8 (P8.7) Pin Functions (1) PIN NAME (P8.X) X FUNCTION P8.7 (I/O) P8.7/XIN (1) KGD only 6 CONTROL BITS/SIGNALS P8DIR.x P8SEL.x I: 0; O: 1 0 XIN (default) 0 1 VSS 1 1 Copyright © 2010–2011, Texas Instruments Incorporated 85 MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com JTAG Pins: TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 TDI Fuse Burn and Test Fuse Test TDI/TCLK and DVCC Emulation Module TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK 86 Copyright © 2010–2011, Texas Instruments Incorporated MSP430F2619S-HT SLAS697B – MARCH 2010 – REVISED JUNE 2011 www.ti.com JTAG Fuse Check Mode MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 53). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITF ITEST Figure 53. Fuse Check Mode Current Copyright © 2010–2011, Texas Instruments Incorporated 87 PACKAGE OPTION ADDENDUM www.ti.com 20-May-2011 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 PACKAGING INFORMATION Orderable Device (1) Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) MSP430F2619SKGD1 ACTIVE XCEPT KGD 0 36 TBD MSP430F2619SPM ACTIVE LQFP PM 64 1 Green (RoHS & no Sb/Br) Lead/ Ball Finish Call TI MSL Peak Temp (3) Samples (Requires Login) N / A for Pkg Type CU NIPDAU Level-3-260C-168 HR The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 64 17 1 0,13 NOM 16 7,50 TYP 10,20 SQ 9,80 12,20 SQ 11,80 Gage Plane 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX NOTES: A. B. C. D. 4040152 / C 11/96 All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. 司 公 限 有 2 件 技 83 器 科 16 元 子 29 子 电 -8 电 创 55 温 德 07 高 鸿 话 油 圳 电 石 深 系 理 联 代 业 专 TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications www.ti.com/audio Communications and Telecom www.ti.com/communications amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com Wireless www.ti.com/wireless-apps Audio Amplifiers Logic Power Mgmt RF/IF and ZigBee® Solutions www.ti.com/lprf TI E2E Community Home Page e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated