Preliminary‡ MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Features 1/4-Inch SOC VGA CMOS Active-Pixel Digital Image Sensor MT9V111I29STC Features Table 1: • DigitalClarity™ CMOS Imaging Technology • System-On-a-Chip (SOC)—Completely integrated camera system • Ultra low-power, low cost CMOS image sensor • Superior low-light performance • Up to 30 fps progressive scan at 27 MHz for highquality video at VGA resolution • On-chip Image Flow Processor (IFP) performs sophisticated processing: color recovery and correction, sharpening, gamma, lens shading correction, on-the-fly defect correction, 2X fixed zoom • Image decimation to arbitrary size with smooth, continuous zoom and pan • Automatic exposure, white balance and black compensation, flicker avoidance, color saturation, and defect identification and correction, auto frame rate, back light compensation • Xenon and LED-type flash support • Two-wire serial programming interface • ITU_R BT.656 (YCbCr), YUV, 565RGB, 555RGB, and 444RGB output data formats Parameter Optical Format Active Imager Size Active Pixels Pixel Size Color Filter Array Shutter Type Maximum Data Rate/ Master Clock VGA (640 x 480) Frame Rate CIF (352 x 288) QVGA (320 x 240) ADC Resolution Responsivity Dynamic Range SNRMAX Supply Voltage Power Consumption Operating Temperature Packaging Applications • • • • Cellular phones PDAs PC Camera Toys and other battery-powered products 09005aef80e90084 MT9V111_1.fm - Rev. G 1/05 EN Key Performance Parameters Typical Value 1/4-inch (4:3) 3.58mm(H) x 2.69mm(V) 4.48mm (Diagonal) 640H x 480V (VGA) 5.6um x 5.6um RGB Bayer Pattern Electronic Rolling Shutter (ERS) 12−13.5 MPS/24−27 MHz 15 fps at 12 MHz (default), programmable up to 30 fps at 27 MHz Programmable up to 60 fps Programmable up to 90 fps 10-bit, on-chip 1.9 V/lux-sec (550nm) 60dB 45dB 2.8V +0.25V <80mW at 2.8V, 15 fps at 12MHz -20°C to +60°C 44-Ball ICSP, wafer or die General Description The Micron® Imaging MT9V111 is a 1/4-inch VGA-format CMOS active-pixel digital image sensor, the result of combining the MT9V011 image sensor core with Micron Imaging's third-generation digital image flow processor technology. The MT9V111 has an active imaging pixel array of 649 x 489, capturing high-quality color images at VGA resolution. The sensor is a complete camera-on-a-chip solution and is designed specifically to meet the demands of battery-powered products such as cellular phones, PDAs, and toys. It incorporates sophisticated camera functions on-chip and is programmable through a simple two-wire serial interface. 1 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. ‡Products and specifications discussed herein are for evaluation and reference purposes only and are subject to change by Micron without notice. Products are only warranted by Micron to meet Micron’s production data sheet specifications. Products and specifications discussed herein are subject to change by Micron without notice. Preliminary MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Table of Contents Table of Contents Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Ball Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Image Flow Processor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Overview of Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Output and Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Output Data Ordering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 IFP Register List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 IFP Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Sensor Core Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Sensor Core Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Propagation Delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Propagation Delays for PIXCLK and Data Out Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Propagation Delays for FRAME_VALID and LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Appendix A – Sensor Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Serial Bus Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Bus Idle State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Start Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Stop Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Slave Address. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Data Bit Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 No-Acknowledge Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Two-wire Serial Interface Sample Write and Read Sequences (with Saddr = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 16-Bit Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 16-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Eight-Bit Write Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Eight-Bit Read Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Two-wire Serial Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Appendix B – Overview Of Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Default Sensor Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Auto Exposure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Automatic White Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Flicker Avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Decimation, Zoom, and Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Special Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Image Mirroring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Test Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Gamma Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 09005aef80e90084 MT9V111TOC.fm - Rev. G 1/05 EN 2 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. Preliminary MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Chip Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Internal Register Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Typical Configuration (Connection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 44-Ball ICSP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Image Flow Processor Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Sensor Core Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Pixel Color Pattern Detail (Top Right Corner) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Spatial Illustration of Image Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Propagation Delays for PIXCLK and Data Out Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Propagation Delays for FRAME_VALID and LINE_VALID Signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Data Output Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Spectral Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Die Center - Image CenterOffset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Row Timing and FRAME_VALID/LINE_VALID Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Timing Diagram Showing a Write to Reg0x09 with Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Timing Diagram Showing a Read from Reg0x09; Returned Value 0x0284 . . . . . . . . . . . . . . . . . . . . . . .38 Timing Diagram Showing a Bytewise Write to Reg0x09 with Value 0x0284. . . . . . . . . . . . . . . . . . . . . .39 Timing Diagram Showing a Bytewise Read from Reg0x09; Returned Value 0x0284 . . . . . . . . . . . . . .39 Serial Host Interface Start Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Serial Host Interface Stop Condition Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Serial Host Interface Data Timing for Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Serial Host Interface Data Timing for Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 Acknowledge Signal Timing After an 8-bit Write to the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Acknowledge Signal Timing After an 8-bit Read from the Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 44-Ball ICSP Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 09005aef80e90084 MT9V111LOF.fm - Rev. G 1/05 EN 3 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. Preliminary MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor List of Tables List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Table 17: Table 18: Table 19: Key Performance Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Ball Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 YUV/YCbCr Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 RGB Output Data Ordering in Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 Byte Ordering in 8 + 2 Bypass Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 IFP Register List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 IFP Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Sensor Core Register List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Sensor Core Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Frame Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Frame Time—Larger than One Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Non-Default Register Settings Optimizing 15 fps at 12 MHz Operation . . . . . . . . . . . . . . . . . . . . . . . .42 Non-Default Register Settings Optimizing 30 fps at 27 MHz Operation . . . . . . . . . . . . . . . . . . . . . . . .42 Relation Between IFP R55[9:5] Setting and Frame Rate Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Decimation, Zoom, and Pan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 YCbCr Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 YUV Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 09005aef80e90084 MT9V111LOT.fm - Rev. G 1/05 EN 4 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor General Description General Description This SOC VGA CMOS image sensor features DigitalClarityMicron’s breakthrough, low-noise CMOS imaging technology that achieves CCD image quality (based on signalto-noise ratio and low-light sensitivity) while maintaining the inherent size, cost and integration advantages of CMOS. The MT9V111 is a fully-automatic, single-chip camera, requiring only a power supply, lens and clock source for basic operation. Output video is streamed via a parallel eightbit DOUT port as shown in Figure 1. Output pixel clock is used to latch the data, while FRAME_VALID and LINE_VALID signals indicate the active video. The sensor can be put in an ultra-low power sleep mode by asserting the STANDBY pin. Output pads can also be tri-stated by de-asserting the OE# pin. The MT9V111 internal registers can be configured using a two-wire serial interface. The MT9V111 can be programmed to output progressive scan images up to 30 fps in an 8-bit ITU_R BT.656 (YCbCr) formerly CCIR656, YUV, 565RGB, 555RGB, or 444RGB formats. The FRAME_VALID and LINE_VALID signals are output on dedicated pins, along with a pixel clock that is synchronous with valid data. Figure 1: Chip Block Diagram SCLK SDATA SADDR CLK STANDBY OE# VDD/DGND VAA/AGND VAAPIX Communication Bus Image Flow Processor Sensor Core . Based on MT9V011 . 668H x 496V (VGA+ Reference) . 1/4-inch optical format . Auto Black compensation . Programmable analog gain . Programmable exposure . Low power, 10-bit ADCs . Color correction, gamma, DOUT(7:0) lens shading correction . Auto exposure, white balance . Interpolation and defect correction . Flicker avoidance PIXCLK FRAME_VALID LINE_VALID FLASH SRAM Line Buffers The MT9V111 can accept the input clock of up to 27 MHz, delivering 30 fps. With poweron defaults (see Appendix B for recommended defaults), the camera is configured to deliver 15 fps at 12 MHz and automatically slows down the frame rate in low-light conditions to achieve longer exposures and better image quality. Internally, the MT9V111 consists of a sensor core and an image flow processor. The sensor core functions to capture raw Bayer-encoded images that are input into the IFP as shown in Figure 1. The IFP processes the incoming stream to create interpolated, colorcorrected output and controls the sensor core to maintain the desirable exposure and color balance. Sensor core and IFP registers are grouped into two separate address spaces, as shown in Figure 2. The internal registers can be accessed via the two-wire serial interface. Selecting the desired address space can be accomplished by programming register R1 which remains present in both register sets. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 5 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor General Description Figure 2: Internal Register Grouping Note: R0 R1 R0 R1 Sensor Core Registers (R2..R255) IFP Registers (R2..R255) R1=4 R1=1 Program R1 to select the desired space (4 = sensor core registes, 1 = IFP/SOC registers). Figure 3 shows MT9V111 typical connections. For low-noise operation, the MT9V111 requires separate supplies for analog and digital power. Incoming digital and analog ground conductors can be tied together right next to the die. Both power supply rails should be decoupled to ground using capacitors. The use of inductance filters is not recommended. Figure 3: Typical Configuration (Connection) VDD VDD VAA VAAPIX ADC_TEST VAA 1.5KΩ SADDR 1.5KΩ 1KΩ RESET# Two-wire serial bus { Master Clock DOUT(7:0) FRAME_VALID LINE_VALID PIXCLK SDATA SCLK { 10µF To CMOS camera port CLKIN FLASH To Xenon flash trigger or LED enable SCAN_EN DGND Note: 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN AGND STANDBY DGND OE# AGND 1.5KΩ resistor value is recommended, but may be greater for slower two-wire speed. 6 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Ball Assignment Ball Assignment Figure 4: 44-Ball ICSP Package 1 2 3 4 5 6 7 A DGND DOUT2 DOUT4 DGND DOUT6 VDD DGND B DOUT1 VDD DOUT3 VDD DOUT7 VDD VDD C NC DOUT0 DOUT5 VDD SCAN DGND D DGND _EN OE# NC E PIXCLK FLASH F FRAME_ VALID VDD SCLK G DGND CLKIN SDATA DGND VDD RESET# STAND SADDR AGND ADC_ TEST VAAPIX DGND VAA VAA AGND LINE_ VALID BY Top View (Ball Down) Table 2: Ball Description Ball Numbers Name Type Description G2 F3 F4 CLKIN SCLK SADDR Input Input Input F6 E6 E7 D6 ADC_TEST RESET# STANDBY OE# Input Input Input Input C6 G3 E2 E1 SCAN_EN SDATA FLASH PIXCLK Input I/O Output Output E3 F1 B5 LINE_VALID FRAME_VALID DOUT7 Output Output Output Master Clock into sensor. Default is 12 MHz (27 MHz maximum). Serial Clock. Serial Interface address select: Reg0xB8 when HIGH (default). Reg0x90 when LOW. Tie to VAAPIX (factory use only). Asynchronous reset of sensor when LOW. All registers assume factory defaults. When HIGH puts the imager in ultra-low power standby mode. Output_Enable_Bar pin. When HIGH tri-state all outputs except SDATA (tie LOW for normal operation). Tie to Digital ground. Serial data I/O. Flash Strobe. Pixel Clock Out. Pixel data output are valid during rising edge of this clock. IFP Reg0x08 [9] inverts polarity. Frequency = Master Clock. Active HIGH during line of selectable valid pixel data. Active HIGH during frame of valid pixel data. ITU_R BT.656/RGB data bit 7 (MSB). 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 7 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Ball Assignment Table 2: Ball Description (Continued) Ball Numbers A5 C3 A3 B3 A2 B1 C2 A6,B2,B4,B 6, B7,C5,E5,F 2 G5,G6 F7 F5,G7 A1,D1,A4, A7,C7,D7,G 1,G4 C1,D2 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Name Type Description DOUT6 DOUT5 DOUT4 DOUT3 DOUT2 DOUT1 DOUT0 VDD Output Output Output Output Output Output Output Supply ITU_R BT.656/RGB data bit 6. ITU_R BT.656/RGB data bit 5. ITU_R BT.656/RGB data bit 4. ITU_R BT.656/RGB data bit 3. ITU_R BT.656/RGB data bit 2. ITU_R BT.656/RGB data bit 1. ITU_R BT.656/RGB data bit 0 (LSB). Digital Power (2.8V). VAA VAAPIX AGND DGND Supply Supply Supply Supply Analog Power (2.8V). Pixel Array Power (2.8V). Analog Ground. Digital Ground. NC No connect. 8 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Image Flow Processor Image Flow Processor Overview of Architecture The image flow processor consists of a color processing pipeline and a measurement and control logic block as shown in Figure 5. The stream of raw data from the sensor enters the pipeline and undergoes a number of transformations. Image stream processing starts from conditioning the black level and applying a digital gain. The lens shading block compensates for signal loss caused by the lens. Next, the data is interpolated to recover missing color components for each pixel and defective pixels are corrected. The resulting interpolated RGB data passes through the current color correction matrix (CCM), gamma, and saturation corrections and is formatted for final output. The measurement and control logic continuously accumulates statistics about image brightness and color. Indoor 50/60 Hz flicker is detected and automatically updated when possible. Based on these measurements the IFP calculates updated values for exposure time and sensor analog gains, which are sent to the sensor core via the communication bus. Color correction is achieved through linear transformation of the image with a 3 x 3 color correction matrix. Color saturation can be adjusted in the range from zero (black and white) to 1.25 (125% of full color saturation). Gamma correction compensates for non-linear dependence of the display device output vs. driving signal (e.g. monitor brightness vs. CRT voltage). Output and Formatting Processed video can be output in the form of a standard ITU_R BT.656 or RGB stream. ITU_R BT.656 (default) stream contains 4:2:2 data with optional embedded synchronization codes. This kind of output is typically suitable for subsequent display by standard video equipment. For JPEG/MPEG compression, YUV/ encoding is suitable. RGB functionality is provided to support LCD devices. The MT9V111 can be configured to output 16-bit RGB (RGB565), 15-bit RGB (RGB555) as well as two types of 12-bit RGB (RGB444). The user can configure internal registers to swap odd and even bytes, chrominance channels and luminance and chrominance components to facilitate interface to application processors. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 9 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Image Flow Processor Figure 5: Image Flow Processor Block Diagram IMAGE SENSOR LENS CORRECTION DEMOSAICING AE, AWB, FLICKER AVOIDANCE COLOR CORRECTION FLASH CONTROL GAMMA CORRECTION OUTPUT FORMATTING The MT9V111 features smooth, continuous zoom and pan. This functionality is available when the IFP output is downsized in the decimation block. The decimation block can downsize the original VGA image to any integer size, including QVGA, QQVGA, CIF and QCIF with no loss to the field of view. The user can program the desired size of the output image in terms of horizontal and vertical pixel count. In addition the user can program the size of a region for downsizing. Continuous zoom is achieved every time the region of interest is less than the entire VGA image. The maximum zoom factor is equal to the ratio of VGA to the size of the region of interest. For example, an image rendered on a 160x120 display can be zoomed by 640/160=480/120=4 times. Continuous pan is achieved by adjusting the starting coordinates of the region of interest. Also a fixed 2X up-zoom is implemented by means of windowing down the sensor core. In this mode the IFP receives a QVGA-sized input data and outputs a VGA-size image. The sub-window can be panned both vertically and horizontally by programming sensor core registers. The MT9V111 supports both LED and Xenon-type flash light sources using a dedicated output pad. For Xenon devices the pad generates a strobe to fire when the imager's shutter is fully open. For LED the pad can be asserted or de-asserted asynchronously. Flash modes are configured and engaged over the two-wire serial interface using IFP Reg0x98. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 10 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Output Data Ordering Output Data Ordering In YCbCr the first and second bytes can be swapped. Luma/chroma bytes can be swapped as well. R and B channels are bit-wise swapped when chroma swap is enabled. See IFP Reg0x3A for channel swapping configuration. Table 3: YUV/YCbCr Output Data Ordering Mode Default (no swap) Swapped CrCb Swapped YC Swapped CrCb, YC Table 4: 1st Byte 2nd Byte 3rd Byte 4th Byte Cbi Cri Yi Yi Yi Yi Cbi Cri Cri Cbi Yi+1 Yi+1 Yi+1 Yi+1 Cri Cbi RGB Output Data Ordering in Default Mode Mode (Swap Disabled) Byte D7 D6 D5 D4 D3 D2 D1 D0 RGB 565 First Second First Second First Second First Second R7 G4 0 G4 R7 B7 0 G7 R6 G3 R7 G3 R6 B6 0 G6 R5 G2 R6 G2 R5 B5 0 G5 R4 B7 R5 B7 R4 B4 0 G4 R3 B6 R4 B6 G7 0 R7 B7 G7 B5 R3 B5 G6 0 R6 B6 G6 B4 G7 B4 G5 0 R5 B5 G5 B3 G6 B3 G4 0 R4 B4 RGB 555 RGB 444x RGB x444 A bypass mode is available whereby raw Bayer 10-bits data is output as two bytes. See IFP Reg8[7]. Table 5: Byte Ordering in 8 + 2 Bypass Mode Byte Ordering 8+2 Bypass 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN First Second D9 0 D8 0 D7 0 11 D6 0 D5 0 D4 0 D3 D1 D2 D0 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register List IFP Register List Table 6: IFP Register List Address 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Dec Hex 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29 Defaults Dec Hex 1 110 10531 1316 11 28686 0 51200 146 22 8 171 147 88 77 169 160 0x0001 0x006E 0x2923 0x0524 0x000B 0x700E 0x0000 0xC800 0x0092 0x0016 0x0008 0x00AB 0x0093 0x0058 0x004D 0x00A9 0x00A0 R/O R/O R/O 373 0x0175 22 0x0016 67 0x0043 12 0x000C 0 0x0000 21 0x0015 31 0x001F 22 0x0016 152 0x0098 76 0x004C 160 0x00A0 51220 0xC814 0 0x0000 55648 0xD960 55648 0xD960 32512 0x7F00 17684 0x4514 65283 0xFF03 65296 0xFF10 26624 0x6800 36211 0x8D73 12 Description Reserved Register Address Space Selection Color Correction Register 1 Color Correction Register 2 Color Correction Register 3 Aperture Correction (Sharpening) Operating Mode Control Image Flow Processor Soft Reset Output Format Control Color Correction Register 4 Color Correction Register 5 Color Correction Register 6 Color Correction Register 7 Color Correction Register 8 Color Correction Register 9 Color Correction Register 10 Color Correction Register 11 Color Correction Register 12 White Balance Register 1 White Balance Register 2 White Balance Register 3 Color Correction Register 13 Color Correction Register 14 Color Correction Register 15 Color Correction Register 16 Color Correction Register 17 Color Correction Register 18 Color Correction Register 19 Color Correction Register 20 Color Correction Register 21 Color Correction Register 22 White Balance Register 4 White Balance Register 5 AWB Tint add-on color White Balance Register 6 White Balance Register 7 White Balance Register 8 AWB Speed and Color Saturation Control Horizontal Boundaries of AE Measurement Window Vertical Boundaries of AE Measurement Window White Balance Register 9 White Balance Register 10 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register List Table 6: IFP Register List (Continued) Address 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Defaults Dec Hex Dec Hex 42 43 2A 2B 128 30760 0x0080 0x7828 44 2C 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 74 75 76 77 78 79 82 83 84 85 86 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F 40 41 42 43 44 45 46 47 48 4A 4B 4C 4D 4E 4F 52 53 54 55 56 Description White Balance Register 11 Horizontal Boundaries of AE Measurement Window for Back Light Compensation 46140 0xB43C Vertical Boundaries of AE Measurement Window for Back Light Compensation 57504 0xE0A0 Boundaries of AWB Measurement Window 4196 0x1064 AE Target and Accuracy Control 68 0x0044 AE Speed and Sensitivity Control R/O White Balance Register 12 R/O White Balance Register 13 R/O White Balance Register 14 5230 0x146E Auto Exposure Register 1 16 0x0010 Luminance Offset Control 61456 0xF010 Clipping Limits for Output Luminance 30736 0x7810 Auto Exposure Register 2 768 0x0300 White Balance Register 15 1144 0x0478 Auto Exposure Register 3 680 0x02A8 Auto Exposure Register 4 0 0x0000 Output Format Control 2 1066 0x042A Black Level Register 1 1024 0x0400 Black Level Register 2 4570 0x11DA Auto Exposure Register 5 3327 0x0CFF White Balance Register 16 0 0x0000 Auto Exposure Register 6 7696 0x1E10 Auto Exposure Register 7 5143 0x1417 Auto Exposure Register 8 26128 0x6610 Auto Exposure Register 9 28010 0x6D6A Auto Exposure Register 10 29040 0x7170 Auto Exposure Register 11 29811 0x7473 Auto Exposure Register 12 0 0x0000 Auto Exposure Register 13 24 0x0018 Defect Correction Register 1 0 0x0000 Test Pattern Generator R/O Reserved R/O Reserved R/O Auto Exposure Register 14 R/O Auto Exposure Register 15 16 0x0010 Reserved R/O Reserved R/O Reserved 7700 0x1E14 Gamma Correction Register 1 17966 0x462E Gamma Correction Register 2 34666 0x876A Gamma Correction Register 3 47008 0xB7A0 Gamma Correction Register 4 13 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register List Table 6: IFP Register List (Continued) Address 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Defaults Dec Hex Dec 87 88 89 90 91 92 93 94 95 96 97 98 99 100 102 103 104 105-125 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 152 153 154 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 66 67 68 69-8D 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92 93 94 95 98 99 9A 57548 0 248 298 2 4366 5137 26684 12296 2 Hex 0xE0CC 0x0000 0x00F8 0x012A 0x0002 0x110E 0x1411 0x683C 0x3008 0x0002 R/O 4112 0x1010 R/O 5499 0x157B R/O 16400 0x4010 17 0x0011 R/O N/A 6 0x0006 56588 0xDD0C 1268 0x04F4 15377 0x3C11 57868 0xE20C 758 0x02F6 12817 0x3211 56588 0xDD0C 244 0x00F4 12822 0x3216 34866 0x8832 63453 0xF7DD 15372 0x3C0C 127 0x007F 47646 0x6A1E 63468 0xF7EC 14088 0x3708 100 0x0064 48926 0x6F1E 63470 0xF7EE 12815 0x320F 100 0x0064 1040 0x0410 R/O R/O 14 Description Gamma Correction Register 5 Gamma Correction Register 6 Auto Exposure Register 16 Auto Exposure Register 17 Flicker Control Reserved Reserved Color Correction Register 23 Color Correction Register 24 Color Correction Register 25 Reserved AE Digital Gains Reserved Reserved Reserved AE Digital Gains Limit Reserved Reserved 8-bit Serial Interface Helper Lens Shading Correction Register 1 Lens Shading Correction Register 2 Lens Shading Correction Register 3 Lens Shading Correction Register 4 Lens Shading Correction Register 5 Lens Shading Correction Register 6 Lens Shading Correction Register 7 Lens Shading Correction Register 8 Lens Shading Correction Register 9 Lens Shading Correction Register 10 Lens Shading Correction Register 11 Lens Shading Correction Register 12 Lens Shading Correction Register 13 Lens Shading Correction Register 14 Lens Shading Correction Register 15 Lens Shading Correction Register 16 Lens Shading Correction Register 17 Lens Shading Correction Register 18 Lens Shading Correction Register 19 Lens Shading Correction Register 20 Lens Shading Correction Register 21 Lens Shading Correction Register 22 Flash Control Line Counter Frame Counter Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register List Table 6: IFP Register List (Continued) Address 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Dec Hex 155 156 157 158 165 166 167 168 169 170 9B 9C 9D 9E A5 A6 A7 A8 A9 AA Defaults Dec 8 42158 0 640 640 0 480 480 Hex R/O 0x0008 0xA4AE R/O 0x0000 0x0280 0x0280 0x0000 0x01E0 0x01E0 15 Description Reserved Reserved Reserved Reserved Horizontal Pan In Decimation Horizontal Zoom In Decimation Horizontal Output Size In Decimation Vertical Pan In Decimation Vertical Zoom In Decimation Vertical Output Size In Decimation Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register Description IFP Register Description Table 7: Register 1 0x01 5 0x05 6 0x06 7 0x07 IFP Register Description Bits Default Name 7:0 1 Register address space selection. This register controls the address space for the two-wire serial interface communications. Set Reg0x01 = 1 to select IFP address space and Reg0x01 = 4 for sensor space. Reg0x01 is always accessible regardless of the page currently selected. 3:0 11 Aperture correction (sharpening). 2:0 3 Sharpening factor: ”000” — no sharpening. ”001” — 25% sharpening. ”010” — 50% sharpening. ”011” — 75% sharpening. ”100” — 100% sharpening. ”101” — 125% sharpening. ”110” — 150% sharpening. ”111” — 200% sharpening. 3 1 Automatically reduces sharpness in low light. 15:0 28686 Operating mode control. 0 1 0 1 3:2 3 4 0 5 6 7 9:8 10 11 12 13 14 15 0 0 0 0 0 0 0 1 1 1 0 0 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Reserved. “1” — enables auto white balance. “0” — stops AWB at the current values. Back light compensation: ”00” — AE measurement window is specified by Reg0x26 and Reg0x27 (“large window”). “01” — AE measurement window is specified by Reg0x2B and Reg0x2C (“center window”). “10” and “11” — AE measurement window is a weighted sum of “large window” and “center window” with center window given twice the weight. “1” — bypass color correction matrix. “0” — normal color processing. Reserved. Reserved. “1” — ITU_R BT.656 synchronization codes are embedded in the image. N/A Reserved. Reserved. Enable aperture correction knee. “1” — enables on-the-fly defect correction. “1” — enable auto exposure. Reserved. Image flow processor soft reset. Asserts reset on all IFP registers. Example: write Reg0x07 = 1 followed by Reg0x07 = 0 to reset IFP. 16 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register Description Table 7: Register 8 0x08 33 0x21 37 0x25 IFP Register Description (Continued) Bits Default Name 15:0 0 51200 0 1 0 2 3 4 5 6 7 8 9 10 11 12 0 0 0 0 0 0 0 0 0 1 0 13 14 15 15:0 0 1 1 0 Output format control. Toggles the assumption about Bayer CFA (horizontal shift). “0” — row containing blue comes first. “1” — row with red comes first. Toggles the assumption about Bayer CFA (vertical shift). “0” — green comes first. “1” — red or blue comes first. Disable Cr. Forces output Cr = 128 in YCbCr mode and R = 0 in RGB. Disable Y. Force output Y = 128 in YCbCr mode and G = 0 in RGB. Disable Cb. Force output Cb = 128 in YCbCr mode and B = 0 in RGB. Monochrome. Forces Cr=Cb=128 in YCbCr or R,B = G in RGB mode. N/A Entire image processing is bypassed and raw 8+2 Bayer data output directly. “1” — enables lens shading correction. Inverts output pixel clock. Reserved. Enable automatic flicker avoidance. “1” output mode is RGB. “0” — output mode is YCbCr. See also Reg0x3A[7:6]. This bit is subject to synchronous update, see Reg0xA5. N/A Reserved. Reserved. AWB tint. 7:0 0 Blue channel add-on. 15:8 0 Red channel add-on. In the AWB mode, this register specifies gain “add-ons” to the values determined by AWB, allowing to “skew” the overall color of the image. 14:0 17700 AWB speed and color saturation control. 2:0 4 AWB reaction delay: “000” — fastest. "111” — slowest. 6:3 4 AWB speed. “000” — fastest. "111” — slowest. 10:8 5 Reserved. 13:11 0 U/V saturation. Specify overall attenuation of the color saturation: ”000” — full color saturation. ”001” — 75% of full saturation. “010” — 50% of full saturation. ”011” — 37.5% of full saturation. ”100” — 25% of full saturation. ”101” — 150% of full saturation. ”110” — black and white. 14 1 “1” — enables automatic color saturation control in low light. The automatic saturation control acts “in addition” to the saturation specified in Bits13:11. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 17 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register Description Table 7: Register 38 0x26 39 0x27 43 0x2B 44 0x2C 45 0x2D 46 0x2E 47 0x2F IFP Register Description (Continued) Bits Default Name 15:0 65283 Horizontal boundaries of AE measurement window. 7:0 3 Left window boundary. 15:8 255 Right window boundary. This register specifies left and right boundaries of the window used by AE measurement engine. The values programmed in the registers are desired boundaries divided by four. 15:0 65296 Vertical boundaries of AE measurement window. 7:0 16 Bottom window boundary. 15:8 255 Top window boundary. This register specifies top and bottom boundaries of the window used by AE measurement engine. The values programmed in the registers are desired boundaries divided by two. 15:0 30760 Horizontal boundaries of AE measurement window for back light compensation. 7:0 40 Left window boundary. 15:8 120 Right window boundary. This register specifies left and right boundaries of the window used by AE measurement engine in backlight compensation mode, see Reg6[3:2]. The values programmed in the registers are desired boundaries divided by four. 15:0 46140 Vertical boundaries of AE measurement window for back light compensation. 7:0 60 Top window boundary. 15:8 180 Bottom window boundary. This register specifies top and bottom boundaries of the window used by AE measurement engine in backlight compensation mode, see Reg6[3-2]. The values programmed in the registers are desired boundaries divided by two. 15:0 57504 Boundaries of AWB measurement window. 3:0 0 Left window boundary. 7:4 10 Right window boundary. 11:8 0 Top window boundary. 15:12 14 Bottom window boundary. This register specifies the boundaries of the window used by AWB measurement engine. The values programmed in the registers are desired boundaries divided by 32 for vertical limits and by 64 for horizontal. 15:0 4196 Auto exposure target and accuracy control. 7:0 100 Target luminance. 15:8 16 Tracking accuracy. This register specifies luminance target of the auto exposure algorithm and the size of the margin around the target in which no AE adjustment is made. 7:0 68 Auto exposure speed and sensitivity control. 2:0 4 AE reaction delay: “000” — fastest. "111” — slowest. 5:3 0 AE speed: “000” — fastest. "111” — slowest. 7:6 0 AE step size: “00” — medium speed when going down, slow when going up. ”01” — medium speed. ”10” — fast speed. ”11” — fast when going down, medium when going up. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 18 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register Description Table 7: Register 52 0x34 53 0x35 58 0x3A 72 0x48 91 0x5B 98 0x62 103 0x67 IFP Register Description (Continued) Bits Default Name 15:0 16 Luminance offset control. Use this register to adjust LCD brightness. 7:0 16 Y offset in YCbCr mode. 15:8 0 Offset in RGB mode. This register specifies constant offset added to the luminance or RGB components prior to the output. Use this register to adjust LCD brightness. 15:0 61456 Clipping limits for output luminance. 7:0 16 Lowest value of output luminance. 15:8 240 Highest value of output luminance. This register specifies upper and low limits to which the output YCbCr data is clipped. 7:0 0 Output format control 2. 0 0 In YUV output mode swaps Cb and Cr channels. In RGB, swaps R and B. This bit is subject to synchronous update. 1 0 Swap chrominance byte with luminance byte in YCbCr/YUV output. In RGB, swap odd and even bytes. This bit is subject to synchronous update. 2 0 Average two nearby chrominance bytes. 4:3 0 Test ramp output: “00” — off. “01” — by column. “10” — by row. “11” — by frame. 5 0 Output R,G,B or Cr,Y,Cb values are shifted 3 bits up; use with Reg0x3A[4:3] to test LCDs with low color depth. 7:6 0 RGB output format: “00” = 16-bit RGB565. ”01” = 15-bit RGB555. “10” = 12-bit RGB444. “11” = 12-bit RGBx444. 7:0 0 Test pattern generator. 2:0 0 Test pattern selection. 7 0 “1” — force WB digital gains to 1.0. This register enables color bar test-pattern generation at the input of the image processor. Values greater than "0" turn test pattern generation on. The brightness of the flat-color areas depends on the value programmed in this register. 2:0 2 Flicker control. 0 0 “1”— manual mode. “0” — auto flicker detection. 1 1 If R0x5B [0] = “1” then '“0”- 50Hz AC; “1”- 60Hz AC. 15:0 4112 AE digital gains. 7:0 16 Current digital gain applied before lens shading correction. 15:8 16 Current digital gain applied during lens shading correction. When R6 [14] = 1, registers are read-only and show current digital gains. When R6 [14] = 0, writing into registers sets current digital gains. LC digital gain, R98 [15:8], is unity if LC is disabled, R8 [8] = 0. The combined gain of R98 [15:8] and LC must be less than 16. See also R103. 15:0 16400 AE digital gains limits. 7:0 16 Maximal digital gain applied before lens shading correction. 15:8 64 Maximal digital gain applied during lens shading correction. Value 16 corresponds real digital gain of 1.0. As AE increases gain in dark conditions, pre-LC gain is used first. Post-LC gain is used only after pre-LC gain reaches its maximum allowed limit. See also R98. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 19 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register Description Table 7: Register 127 0x7F 152 0x98 153 0x99 154 0x9A 165 0xA5 166 0xA6 IFP Register Description (Continued) Bits Default Name 7:0 0 Eight-bit, Two-wire serial interface helper. Internal MT9V111 registers are up to 16-bit wide. To execute 16-bit reads and writes, eight-bit two-wire serial interface devices need special handling by using Reg0x7F. A 16-bit write is done by writing the upper eight bits to the desired register and then writing the lower eight bits to Reg0x7F. The register is not updated until all 16 bits have been written. It is not possible to just update half a register. To read eight-bytes at a time, read the upper eight bits from the desired register; then read the lower eight bits from Reg0x7F. 15:0 1040 Flash control. 7:0 16 Strobe duration, x512 CLK_IN. Value of 255 is special, enabling infinite duration. 8 0 Invert pin state. 9 0 “1” = fire every frame continuously. “0” = fire only once per arming. 10 1 Strobe source select. “1” = end of shutter enable. “0” = end of frame enable. 12:11 0 Delay; skips programmed number of frames after arming and before firing. 13 0 Write “1” to arm flash and set it to fire. Flash will fire after delay set in Reg0x98 [12-11]. 14 R/O “1” = Flash has fired in current frame. 15 R/O State of the output flash pin. The flash control supports both Xenon and LED light sources using a dedicated output pad. For Xenon flashes the pad generates a strobe to fire when the imager's shutter is fully open. For LED the pad can be asserted or de-asserted asynchronously. To turn LED off and on program Reg0x98 [8]. To fire a Xenon flash, arm the strobe trigger by setting Reg0x98 [13]=1. The strobe will appear when the shutter fully opens. Strobe length is set by Reg0x98 [7-0]. Other available modes include continuous vs. single firing and skipping a programmable number of frames after arming and before firing. 12:0 R/O Line counter. Use line counter to determine the number of line currently being output. 15:0 R/O Frame counter. Use frame counter to determine number of frames output so far. 15:0 0 Horizontal pan in decimation. 9:0 0 Horizontal pan. 15 W/O “1” = freeze update of decimation parameters. Decimation control registers work to downsize output image to any size. The output image size is specified in Reg0xA7 and Reg0xAA for horizontal and vertical directions respectively. For example, to downsize the VGA output to QQVGA set Reg0xA7 = 160 and Reg0xAA = 20. Whenever output image is downsized, the zoom feature becomes available. To zoom in, program Reg0xA6 and Reg0xA9 with the size of window to be decimated. For example, in QQVGA setting Reg0xA6 = 320 and Reg0xA9 = 240 results in 2X zoom. Here the output image of 160 x 120 is created from a pre-decimation window of 320 x 240 instead of the full VGA 640 x 480. Whenever the output image is zoomed, pan controls become available. To pan a zoomed image program Reg0xA5 and Reg0xA8 to offset the pre-decimation window in to the right and bottom respectively. When implementing a smooth zoom and pan, it is useful to synchronize the update of all decimation registers to avoid jerks in the output video. When writing a batch of decimation settings, set bit 15 of each datum to”1” to freeze the update. Set bit 15 of the last datum in the batch to “0” to enable normal operation. The entire batch of decimation settings will then be synchronously loaded on the next frame start. 15:0 640 Horizontal zoom in decimation. 9:0 640 Horizontal size of window before decimation. 15 W/O “1” = freeze update of decimation parameters. See R0xA5 for details. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 20 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor IFP Register Description Table 7: Register 167 0xA7 168 0xA8 169 0xA9 170 0xAA IFP Register Description (Continued) Bits Default Name 15:0 640 Horizontal output size in decimation. 9:0 640 Horizontal size of output image. 15 W/O “1” = freeze update of decimation parameters. See R0xA5 for details. 15:0 0 Vertical pan in decimation. 8:0 0 Vertical pan. 15 W/O “1” = freeze update of decimation parameters. See R0xA5 for details. 15:0 480 Vertical zoom in decimation. 8:0 480 Vertical size of window before decimation. 15 W/O “1” = freeze update of decimation parameters. See R0xA5 for details. 15:0 480 Vertical output size in decimation. 8:0 480 Vertical size of output image. 15 W/O “1” = freeze update of decimation parameters. See R0xA5 for details. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 21 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Overview Sensor Core Overview The sensor consists of a pixel array of 668 x 496 total, analog readout chain, 10-bit ADC with programmable gain and black offset, and timing and control. Note: See Sensor Core (MT9V011) data sheet for more details. Figure 6: Sensor Core Block Diagram Control Register Active Pixel Sensor Array Communication Bus to IFP Timing and Control Clock Sync. Signals Analog Processing 10-bit Data to IFP ADC The sensor core’s pixel array is configured as 668 columns by 496 rows (shown in Figure 7). The first 18 columns and the first 6 rows of pixels are optically black and can be used to monitor the black level. The last column and the last row of pixels are also optically black. The black row data is used internally for the automatic black level adjustment. There are 649 columns by 489 rows of optically active pixels, which provides a four-pixel boundary around the VGA (640 x 480) image to avoid boundary affects during color interpolation and correction. The additional active column and additional active row are used to allow horizontally and vertically mirrored readout to also start on the same color pixel, as shown in Figure 7. Figure 7: Pixel Array Description (0, 0) 6 black rows 1 black column VGA (640 x 480) + 4 pixel boundary for color correction + additional active column + additional active row = 649 x 489 active pixels (667,495) 18 black columns 1 black row The sensor core uses the RGB Bayer color pattern (shown in Figure 8). Even-numbered rows contain green and red color pixels, and odd-numbered rows contain blue and green color pixels. Even-numbered columns contain green and blue color pixels; oddnumbered columns contain red and green color pixels. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 22 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Overview Figure 8: Pixel Color Pattern Detail (Top Right Corner) column readout direction .. . row readout direction ... black pixels G R G R G R G B G B G B G B G R G R G R G B G B G B G B G R G R G R G B G B G B G B Pixel (18,6) (First Optical clear pixel) .. . The sensor core image data is read-out in a progressive scan. Valid image data is surrounded by horizontal and vertical blanking, as shown in Figure 9. The amount of horizontal and vertical blanking is programmable through the sensor core registers Reg0x05 and Reg0x06, respectively. LINE_VALID is HIGH during the shaded region of the figure. See “Appendix A – Sensor Timing” on page 35 for the description of FRAME_VALID timing. Figure 9: Spatial Illustration of Image Readout P0,0 P0,1 P0,2.....................................P0,n-1 P0,n P1,0 P1,1 P1,2.....................................P1,n-1 P1,n 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 VALID IMAGE HORIZONTAL BLANKING Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n 00 00 00 .................. 00 00 00 Pm,0 Pm,1.....................................Pm,n-1 Pm,n 00 00 00 .................. 00 00 00 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 VERTICAL BLANKING VERTICAL/HORIZONTAL BLANKING 00 00 00 ..................................... 00 00 00 00 00 00 ..................................... 00 00 00 00 00 00 .................. 00 00 00 00 00 00 .................. 00 00 00 23 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Registers Sensor Core Registers Table 8: Sensor Core Register List Register 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Default Value Dec Hex Description Dec Hex 0 1 2 3 4 5 6 7 8 9 10 11 12 13 18 19 30 32 33 34 39 40 43 44 45 46 47 48 49 50 51 52 53 54 55 59 60 61 62 63 64 65 66 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0X08 0x09 0x0A 0x0B 0x0C 0x0D 0x12 0x13 0x1E 0x20 0x21 0x22 0x27 0x28 0x2B 0x2C 0x2D 0x2E 0x2F 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x3B 0x3C 0x3D 0x3E 0x3F 0x40 0x41 0x42 Reserved Register Address Select Column Start1 Window Height1 Window Width1 Horizontal Blanking Vertical Blanking1 Output Control1 Row Start1 Shutter Width2 Reserved Reserved Shutter Delay2 Reserved 2X Zoom Col Start 2X Zoom Row Start Digital Zoom Read Mode Reserved Reserved Reserved Reserved Green1 Gain2 Blue Gain2 Red Gain2 Green2 Gain2 Reserved Reserved Reserved Reserved Reserved Reserved Global Gain2 Chip Version (R/O) Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved 1 18 487 647 38 4 12306 6 248 0 0 0 0 176 124 0 4096 0 0 36 0 32 32 32 32 63408 30725 42 0 12303 256 32 33338 10 0x01 0x0012 0x01E7 0x0287 0x0026 0x0004 0x3012 0x0006 0x00F8 0x0000 0x0000 0x0000 0x0000 0x00B0 0x007C 0x0000 0x1000 0x0000 0x0000 0x0024 0x0000 0x0020 0x0020 0x0020 0x0020 0xF7B0 0x7805 0x002A 0x0000 0x300F 0x0100 0x0020 0x823A 0x000A 24 N/A 2080 1679 0x0820 0x068F N/A 1696 480 209 2178 0x06A0 0x01E0 0x00D1 0x0882 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Registers Table 8: Sensor Core Register List (Continued) Register Default Value Dec Hex Description Dec Hex 88 89 90 91 92 93 94 95 96 97 98 99 100 101 241 247 248 249 250 251 252 253 255 0x58 0x59 0x5A 0x5B 0x5C 0x5D 0x5E 0x5F 0x60 0x61 0x62 0x63 0x64 0x65 0xF1 0xF7 0xF8 0xF9 0xFA 0xFB 0xFC 0xFD 0xFF Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Chip Version (R/O) 248 1859 1063 0x00F8 0x0743 0x0427 R/O R/O R/O R/O 41757 0 0 1048 0 0 0 1 0xA31D 0x0000 0x0000 0x0418 0x0000 0x0000 0x0000 0x0001 R/O R/O 44 0x002C R/O R/O R/O R/O 33338 0x823A Notes: 1. Do not change these registers. Contact Micron support for settings different from defaults. 2. IFP controls these registers when AE, AWE, or flicker avoidance are enabled. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 25 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Registers Table 9: Register (Dec) (Hex) Sensor Core Register Description Bit Description Register Address Selector 1 0 Selects the IFP/SOC registers (0–170). 0X01 001= Select IFP registers—default = 0x01. 2 Selects the core registers (0–255). 100 = Select core registers. Window Control These registers control the size of the window. Register values are one less than actual height and width. 2 9:0 First column to be read out—default = 0x0012 (18). 0x02 See Reg0x08 for row adjustment. 3 8:0 Window height (number of rows - 1)—default = 0x01E7 (487). 0x03 4 9:0 Window width (number of columns - 1)—default = 0x0287 (647). 0x04 Minimum value for Reg0x04 = 0x0009. Blanking Control These registers control the blanking time in a row (called column fill-in or horizontal blanking) and between frames (vertical blanking). Horizontal blanking is specified in terms of pixel clocks. Vertical blanking is specified in terms of row readout times. Register values are one less than actual height and width. 5 9:0 Horizontal blanking (number of columns)—default = 0x0026 (38 pixel clocks). 0x05 Minimum value for Reg0x05 = 0x009. 6 11:0 Vertical Blanking (number of rows -1)—default = 0x0004 (4 rows). 0x06 Minimum recommended value for Reg0x06 = 0x0003. Output Control This register controls various features of the output format for the sensor. 7 1:0 Reserved. 0x07 4 Controls internal sampling time. This must be “0” when CLK_IN frequency is greater than 13.5 MHz. 15:5 Reserved. Row Start 8 8:0 First row to be read out—default = 0x0006 (6). 0x08 Minimum value for Reg0x08 = 0x0004. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 26 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Registers Table 9: Register (Dec) (Hex) Sensor Core Register Description (Continued) Bit Description Pixel Integration Control These registers (along with the window sizing and blanking registers) control the integration time for the pixels. Reg0x09: number of rows of integration Reg0x0C: reset delay, default = 0x0000 (0). This is the number of master clocks that the timing and control logic waits before asserting the reset for a given row. The actual total integration time, tINT, is: tINT = Reg0x09 x Row Time - Overhead Time - Reset Delay, where: Row Time = (Reg0x04 + 1 + 113 + Reg0x05) x 2 master clock periods Overhead Time = K x 57 master clock periods Reset Delay = K x Reg0x0C master clock periods If the value in Reg0x0C exceeds (row time - 444)/K master clock cycles, the row time will be extended by (K x Reg0x0C (row time - 444)) clock cycles where K = 4 when Reg0x07[4] = 0 and K = 2 when Reg0x07[4] = 1 In this expression the row time term corresponds to the number of rows integrated. The overhead time is the time between the READ cycle and the RESET cycle, and the final term is the effect of the reset delay. Typically, the value of Reg0x09 is limited to the number of rows per frame (which includes vertical blanking rows), such that the frame rate is not affected by the integration time. If Reg0x09 is increased beyond the total number of rows per frame, the MT9V111 will add additional blanking rows as needed. 9 11:0 Number of rows of integration—default = 0x00F8 (248). 0x09 Shutter Delay 12 9:0 Default = 0x0000 (0). This is the number of master clocks x K that the timing and control logic waits 0x0C before asserting the reset for a given row. Reset (Soft) 13 0 This register is used to reset the sensor to its default, power-up state. To reset, first write a “1” into bit 0x0D 0 of this register to put the MT9V111 in reset mode, then write a "0" into bit 0 to resume operation. 2X Zoom 18 9:0 Address of starting column in 2X zoom mode. Bit 0 of Reg0x1E must be set. 0x12 19 8:0 Address of starting row in 2X zoom mode. Bit 0 of Reg0x1E must be set. 0x13 30 0 Zoom by 2X. This bit must be set when using Reg0x12 and Reg0x13. 0x1E 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 27 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Registers Table 9: Register (Dec) (Hex) Sensor Core Register Description (Continued) Bit Description Read Mode This register is used to control many aspects of the readout of the sensor. 32 To preserve a right-reading image and the correct color order, all four of these bits should be set to “1” to 0x20 invert the image. 5 1 = readout starting 1 column later. 0 = normal readout. 7 1 = readout starting 1 row later. 0 = normal readout. 14 1 = read out from right to left (mirrored). 0 = normal readout. 15 1 = read out from bottom to top (upside down). 0 = normal readout. Gain Settings The gain is individually controllable for each color in the Bayer pattern as shown in the register chart. Formula for gain setting: Gain = (Bit [8] + 1) x (Bit [7] + 1) x (Bit [6–0] x 0.03125) Since Bit [7] and Bit [8] of the gain registers are multiplicative factors for the gain settings, there are alternative ways of achieving certain gains. Some settings offer superior noise performance to others, despite the same overall gain. The following lists the recommended gain settings: Increments Recommended Settings Gain 1.000 to 1.969 0.03125 0x020 to 0x03F 2.000 to 7.938 0.0625 0x0A0 to 0x0FF 8.000 to 15.875 0.125 0x1C0 to 0x1FF 43 Green1 gain—default = 0x0020 (32) = 1x gain. 0x2B 6:0 Initial Gain = bits (6:0) x 0.03125. 7, 8 Analog Gain = (bit 8 + 1) x (bit 7 + 1) x initial gain (each bit gives 2x gain). 9,10 Total Gain = (bit 9 + 1) x (bit 10 + 1) x analog gain (each bit gives 2x gain). 44 Blue Gain—default = 0x0020 (32) = 1x gain. 0x2C 6:0 Initial Gain = bits (6:0) x 0.03125. 7, 8 Analog Gain = (bit 8 + 1) x (bit 7 + 1) x initial gain (each bit gives 2x gain). 9,10 Total Gain = (bit 9 + 1) x (bit 10 + 1) x analog gain (each bit gives 2x gain). 45 Red Gain—default = 0x0020 (32) = 1x gain. 0x2D 6:0 Initial Gain = bits (6:0) x 0.03125. 7, 8 Analog Gain = (bit 8 + 1) x (bit 7 + 1) x initial gain (each bit gives 2x gain.) 9,10 Total Gain = (bit 9 + 1) x (bit 10 + 1) x analog gain (each bit gives 2x gain). 46 Green2 Gain—default = 0x0020 (32) = 1x gain. 0x2E 6:0 Initial Gain = bits (6:0) x 0.03125. 7, 8 Analog Gain = (bit 8 + 1) x (bit 7 + 1) x initial gain each bit gives 2x gain). 9,10 Total gain = (bit 9 + 1) x (bit 10 + 1) x analog gain (each bit gives 2x gain). Global Gain 53 Global Gain—default = 0x0020 (32) = 1x gain. This register can be used to set all four gains at once. 0x35 When read, it will return the value stored in Reg0x2B. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 28 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Sensor Core Registers Table 9: Register (Dec) (Hex) Sensor Core Register Description (Continued) Bit 6:0 7, 8 9,10 Chip Version 54 15:0 0x36 255 15:0 0xFF 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Description Initial Gain = bits (6:0) x 0.03125 Analog Gain = (bit 8 + 1) x (bit 7 + 1) x initial gain (each bit gives 2x gain). Total Gain = (bit 9 + 1) x (bit 10 + 1) x analog gain (each bit gives 2x gain). This read-only register contains the chip identification number. Reg0xFF (255) is a repeat of this register. Mirrors the chip identification in Reg0x36. 29 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Electrical Specifications Electrical Specifications The recommended die operating temperature ranges from -20°C to +40°C. The sensor image quality may degrade above +40°C. Table 10: DC Electrical Characteristics VDD = VAA = 2.8 ± 0.25V; TA = 25°C Symbol Definition VIH VIL IIN Input High Voltage Input Low Voltage Input Leakage Current VOH VOL IOH IOL IOZ IAA Output High Voltage Output Low Voltage Output High Current Output Low Current Tri-state Output Leakage Current Analog Operating Supply Current IDD Digital Operating Supply Current IAA Standby Analog Standby Supply Current IDD Standby Digital Standby Supply Current Condition MIN TYP VDD - 0.25 -0.3 No Pull-up Resistor; VIN = VDD or -5 DGND VDD - 0.2 Default settings, CLOAD = 10pF CLKIN = 12 MHz CLKIN = 27 MHz Default settings, CLOAD = 10pF CLKIN = 12 MHz CLKIN = 27 MHz STDBY = VDD STDBY = VDD MAX Unit VDD + 0.25 0.8 5.0 V V µA 0.2 15.0 20.0 5.0 V V mA mA µA 10.0 10.0 20.0 20.0 25.0 25.0 mA 5.0 10.0 0.0 0.0 8.0 15.0 2.5 2.5 20.0 20.0 5.0 5.0 mA µA µA Notes: 1. To place the chip in standby mode, first raise STANDBY to VDD, then wait two master clock cycles before turning off the master clock. Two master clock cycles are required to place the analog circuitry into standby, low-power mode. 2. When STANDBY is de-asserted, standby mode is exited immediately (within several master clocks), but the current frame and the next two frames will be invalid. The fourth frame will contain a valid image. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 30 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Electrical Specifications Table 11: AC Electrical Characteristics VDD = VAA = 2.8 ± 0.25V; TA = 25°C Symbol fCLKIN t R tF t PLHP t PHLP t DSETUP tDHOLD tDSETUP tDHOLD tOH tPLHF,L tPHLF,L tOUTR tOUTF Definition Condition Input Clock Frequency Clock Duty Cycle Input Clock Rise Time Input Clock Fall Time CLKIN to PIXCLK propagation delay: LOW-to-HIGH HIGH-to-LOW PIXCLK to DOUT(7:0) at 27 MHz Setup Time Hold Time PIXCLK to DOUT(7:0) at 12 MHz Setup Time Hold Time Data Hold Time from PIXCLK falling edge CLKIN to FRAME_VALID and LINE_VALID propagation delay: LOW-to-HIGH HIGH-to-LOW Output Rise Time Output Fall Time MIN 45 TYP MAX Unit 12 50 2.0 2.0 27 55 MHz % ns ns CLOAD = 10pF 12 10 ns 13.0 13.0 ns 25.0 25.0 9.0 ns CLOAD = 10pF CLOAD = 10pF ns CLOAD = 10pF ns CLOAD = 10pF CLOAD = 10pF 9.0 7.5 7.0 9.0 ns ns Notes: 1. For 30 fps operation with a 27 MHz clock, it is very important to have a precise duty cycle equal to 50%. With a slower frame rate and a slower clock the clock duty cycle can be relaxed. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 31 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Propagation Delays Propagation Delays Propagation Delays for PIXCLK and Data Out Signals The typical output delay, relative to the master clock edge, is 7.5 ns. Note that the data outputs change on the falling edge of the master clock, with the pixel clock rising on the subsequent rising edge of the master clock. Propagation Delays for FRAME_VALID and LINE_VALID Signals The LINE_VALID and FRAME_VALID signals change on the same falling master clock edge as the data output. The LINE_VALID goes HIGH on the same falling master clock edge as the output of the first valid pixel's data and returns LOW on the same master clock falling edge as the end of the output of the last valid pixel's data. As shown in Figure 12, Data Output Timing Diagram, on page 33, FRAME_VALID goes HIGH 6 pixel clocks prior to the time that the first LINE_VALID goes HIGH. It returns LOW at a time corresponding to 6 pixel clocks after the last LINE_VALID goes LOW. Figure 10: Propagation Delays for PIXCLK and Data Out Signals tR tF CLKIN tPLHP tPHLP PIXCLK tPLHD, tPHLD DOUT (7:0) DOUT (7:0) DOUT (7:0) tOH DOUT (7:0) DOUT (7:0) Figure 11: Propagation Delays for FRAME_VALID and LINE_VALID Signals tPLHF,L 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN tPHLF,L CLKIN CLKIN FRAME_VALID LINE_VALID FRAME_VALID LINE_VALID 32 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Propagation Delays Figure 12: Data Output Timing Diagram PIXCLK FRAME_VALID tLVHOLD tLVSETUP LINE_VALID DOUT(7:0) tFVHOLD tFVSETUP tDSETUP Cb0 Y0 Cr0 Y1 Ylast Cb0 Ylast Cb0 tDHOLD Note: PIXCLK = MAX 27 MHz = / setup time for FRAME_VALID before rising edge of PIXCLK / = 18ns tFVHOLD = / hold time for FRAME_VALID after rising edge of PIXCLK / = 18ns tLVSETUP = / setup time for LINE_VALID before rising edge of PIXCLK / = 18ns tLVHOLD = / hold time for LINE_VALID after rising edge of PIXCLK / = 18ns tDSETUP = / setup time for DOUT before rising edge of PIXCLK / = 13ns tDHOLD = / hold time for DOUT after rising edge of PIXCLK / = 13ns Frame start: FF00 00A0 Line start: FF00 0080 Line end: FF00 0090 Frame end: FF00 00B0 tFVSETUP 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 33 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Propagation Delays Figure 13: Spectral Response Relative Response 1.2 Blue Green (B) Green (R) 1.0 Relative Response Red 0.8 0.6 0.4 0.2 0.0 350 450 550 650 750 850 950 1050 Wavelength (nm) Figure 14: Die Center - Image CenterOffset - Direction + Direction 0 11.0um Die Center + Direction ARRAY 0 -91.3um - Direction Pixel Array Center Pixel (0, 0) Note: 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Not to scale. 34 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Appendix A – Sensor Timing Appendix A – Sensor Timing Figure 15: Row Timing and FRAME_VALID/LINE_VALID Signals ... FRAME_VALID ... LINE_VALID ... Number of master clocks Note: P1 A Q A Q A P2 The signals in Figure 15 are defined in Table 12. Table 12: Frame Time Parameter Name Equation (Master Clocks) A Active Data Time (Reg0x04 - 7) x 2 P1 Frame Start Blanking (Reg0x05 + 112) x 2 P2 Frame End Blanking 14 CLKS Q Horizontal Blanking (Reg0x05 + 121) x 2 (MIN Reg0x05 value = 9) A+Q Row Time (Reg0x04 + Reg0x05 +114) x 2 V Vertical Blanking (Reg0x06 + 9) x (A + Q) + (Q - P1 - P2) Nrows x (A + Q) Frame Valid Time (Reg0x03 - 7) x (A + Q) - (Q - P1 - P2) F (Reg0x03 + Reg0x06 + 2) x (A + Q) Total Frame Time Note: Default Timing At 12 MHz = 1,280 pixel clocks = 1,280 master clocks = 106.7us = 300 pixel clocks = 300 master clocks = 25.0us = 14 pixel clocks = 14 master clocks = 1.17us = 318 pixel clocks = 318 master clocks = 26.5us = 1,598 pixel clocks = 1,598 master clocks = 133.2us = 20, 778 pixel clocks = 20,778 master clocks = 1.73ms = 767,036 pixel clocks = 767,036 master clocks = 63.92ms = 787,814 pixel clocks = 787,814 master clocks = 65.65ms In order to avoid flicker, frame time is 65.65ms. Sensor timing is shown above in terms of master clock cycle. The vertical blanking and total frame time equations assume that the number of integration rows (bits 11 through 0 of Reg0x09) is less than the number of active row plus blanking rows (Reg0x03 + 1 + Reg0x06 + 1). If this is not the case, the number of integration rows must be used instead to determine the frame time, as shown in Table 13. Table 13: Frame Time—Larger than One Frame Parameter Name Equation (Master Clocks) Default Timing V’ Vertical Blanking (long integration time) (Reg0x09 - Reg0x03) x (A + Q) F’ Total Frame Time (long integration time) (Reg0x09 + 1) x (A + Q) – – 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 35 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Serial Bus Description Serial Bus Description Registers are written to and read from the MT9V111 through the two-wire serial interface bus. The sensor is a serial interface slave and is controlled by the serial clock (SCLK), which is driven by the serial interface master. Data is transferred into and out of the MT9V111 through the serial data (SDATA) line. The SDATA line is pulled up to 2.8V offchip by a 1.5KΩ resistor. Either the slave or master device can pull the SDATA line down— the serial interface protocol determines which device is allowed to pull the SDATA line down at any given time. The registers are 16 bits wide and can be accessed through 16bit or eight-bit two-wire serial bus sequences. Protocol The two-wire serial interface defines several different transmission codes, as follows: • a start bit • the slave device eight-bit address. SADDR is used to select between two different addresses in case of conflict with another device. If SADDR is LOW, the slave address is 0x90; if SADDR is HIGH, the slave address is 0xB8. • a(n) (no) acknowledge bit • an eight-bit message • a stop bit Sequence A typical read or write sequence begins by the master sending a start bit. After the start bit, the master sends the slave device's eight-bit address. The last bit of the address determines if the request will be a read or a write, where a "0" indicates a write and a "1" indicates a read. The slave device acknowledges its address by sending an acknowledge bit back to the master. If the request was a write, the master then transfers the 8-bit register address to which a write should take place. The slave sends an acknowledge bit to indicate that the register address has been received. The master then transfers the data eight bits at a time, with the slave sending an acknowledge bit after each 8 bits. The MT9V111 uses 16-bit data for its internal registers, thus requiring two eight-bit transfers to write to one register. After 16 bits are transferred, the register address is automatically incremented, so that the next 16 bits are written to the next register address. The master stops writing by sending a start or stop bit. A typical read sequence is executed as follows. First the master sends the write-mode slave address and eight-bit register address, just as in the write request. The master then sends a start bit and the read-mode slave address. The master then clocks out the register data eight bits at a time. The master sends an acknowledge bit after each eight-bit transfer. The register address is auto-incremented after every 16 bits is transferred. The data transfer is stopped when the master sends a no-acknowledge bit. The MT9V111 allows for eight-bit data transfers through the two-wire serial interface by writing (or reading) the most significant eight bits to the register and then writing (or reading) the least significant eight bits to Reg0x7F (127). Bus Idle State The bus is idle when both the data and clock lines are HIGH. Control of the bus is initiated with a start bit, and the bus is released with a stop bit. Only the master can generate the start and stop bits. Start Bit The start bit is defined as a HIGH-to-LOW transition of the data line while the clock line is HIGH. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 36 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Serial Bus Description Stop Bit The stop bit is defined as a LOW-to-HIGH transition of the data line while the clock line is HIGH. Slave Address The 8-bit address of a two-wire serial interface device consists of seven bits of address and 1 bit of direction. A “0” in the least significant bit (LSB) of the address indicates write mode, and a “1” indicates read mode. The write address of the sensor is 0xB8, while the read address is 0xB9; this only applies when SADDR is set HIGH. Data Bit Transfer One data bit is transferred during each clock pulse. The serial interface clock pulse is provided by the master. The data must be stable during the HIGH period of the serial clock—it can only change when the two-wire serial interface clock is LOW. Data is transferred eight bits at a time, followed by an acknowledge bit. Acknowledge Bit The master generates the acknowledge clock pulse. The transmitter (which is the master when writing, or the slave when reading) releases the data line, and the receiver indicates an acknowledge bit by pulling the data line LOW during the acknowledge clock pulse. No-Acknowledge Bit The no-acknowledge bit is generated when the data line is not pulled down by the receiver during the acknowledge clock pulse. A no-acknowledge bit is used to terminate a read sequence. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 37 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Two-wire Serial Interface Sample Write and Read Sequences Two-wire Serial Interface Sample Write and Read Sequences (with SADDR = 1) 16-Bit Write Sequence A typical write sequence for writing 16 bits to a register is shown in Figure 16. A start bit given by the master, followed by the write address, starts the sequence. The image sensor will then give an acknowledge bit and expects the register address to come first, followed by the 16-bit data. After each eight-bit the image sensor will give an acknowledge bit. All 16 bits must be written before the register will be updated. After 16 bits are transferred, the register address is automatically incremented, so that the next 16 bits are written to the next register. The master stops writing by sending a start or stop bit. Figure 16: Timing Diagram Showing a Write to Reg0x09 with Value 0x0284 SCLK SDATA Reg0x09 0xB8 ADDR START ACK 0000 0010 ACK 1000 0100 ACK STOP ACK 16-Bit Read Sequence A typical read sequence is shown in Figure . First the master has to write the register address, as in a write sequence. Then a start bit and the read address specifies that a read is about to happen from the register. The master then clocks out the register data eight bits at a time. The master sends an acknowledge bit after each eight-bit transfer. The register address is auto-incremented after every 16 bits is transferred. The data transfer is stopped when the master sends a no-acknowledge bit. Figure 17: Timing Diagram Showing a Read from Reg0x09; Returned Value 0x0284 SCLK SDATA 0xB8 ADDR START 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Reg 0x09 ACK 0xB9 ADDR ACK 0000 0010 ACK 38 1000 0100 ACK STOP NACK Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Two-wire Serial Interface Sample Write and Read Sequences Eight-Bit Write Sequence All registers in the camera are treated and accessed as 16-bit, even when some registers do not have all 16-bits used. However, certain hosts only support 8-bit serial communication access. The camera provides a special accommodation for these hosts. To be able to write one byte at a time to the register a special register address is added. The 8-bit write is done by first writing the upper 8 bits to the desired register and then writing the lower 8 bits to the special register address (Reg0x7F). The register is not updated until all 16 bits have been written. It is not possible to just update half of a register. In Figure 18, a typical sequence for 8-bit writing is shown. The second byte is written to the special register (Reg0x7F). Figure 18: Timing Diagram Showing a Bytewise Write to Reg0x09 with Value 0x0284 SCLK SDATA 0xB8 ADDR 0000 0010 Reg0x09 0xB8 ADDR 1000 0100 Reg0x7F STOP START START ACK ACK ACK ACK ACK ACK Eight-Bit Read Sequence To read one byte at a time the same special register address is used for the lower byte. The upper 8 bits are read from the desired register. By following this with a read from the special register (Reg0x7F) the lower 8 bits are accessed, as shown in Figure 19 The master sets the no-acknowledge bits. Figure 19: Timing Diagram Showing a Bytewise Read from Reg0x09; Returned Value 0x0284 SCLK SDATA 0xB8 ADDR 0xB9 ADDR Reg0x09 0000 0010 START START ACK ACK NACK ACK SCLK SDATA 0xB8 ADDR 0xB9 ADDR Reg0x7F 1000 0100 STOP START START 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN ACK ACK ACK 39 NACK Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Two-wire Serial Interface Sample Write and Read Sequences Two-wire Serial Bus Timing The two-wire serial interface operation requires a certain minimum of master clock cycles between transitions. These are specified below in master clock cycles. Figure 20: Serial Host Interface Start Condition Timing 4 5 SCLK SDATA Figure 21: Serial Host Interface Stop Condition Timing 4 5 SCLK SDATA Note: All timing are in units of master clock cycle. Figure 22: Serial Host Interface Data Timing for Write 4 4 SCLK SDATA Note: SDATA is driven by an off-chip transmitter. Figure 23: Serial Host Interface Data Timing for Read 5 SCLK SDATA Note: 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN SDATA is pulled LOW by the sensor, or allowed to be pulled HIGH by a pull-up resistor offchip. 40 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Two-wire Serial Interface Sample Write and Read Sequences Figure 24: Acknowledge Signal Timing After an 8-bit Write to the Sensor 3 6 SCLK Sensor pulls down SDATA pin SDATA Figure 25: Acknowledge Signal Timing After an 8-bit Read from the Sensor 6 7 SCLK SDATA Note: 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Sensor tri-states SDATA pin (turns off pull down) After a read, the master receiver must pull down SDATA to acknowledge receipt of data bits. When read sequence is complete, the master must generate a no acknowledge by leaving SDATA to float HIGH. On the following cycle, a start or stop bit may be used. 41 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Appendix B – Overview Of Programming Appendix B – Overview Of Programming Default Sensor Configuration In its default configuration, the sensor outputs up to 15 fps at 12 MHz master clock frequency. Auto exposure, automatic white balance, 60Hz flicker avoidance, defect correction, and automatic noise suppression in low light conditions are enabled. The frame rate is controlled by AE and can be slowed down to 5 fps in low light. Lens shading correction is disabled. Gamma correction uses gamma = 0.6. Image data are output in YCbCr ITU_R.BT.656 VGA format, with Y, Cb, and Cr values ranging from 16 to 240. The use of the non-default register settings shown in Table 14 are recommended to optimize sensor performance in the above configuration. Table 14: Non-Default Register Settings Optimizing 15 fps at 12 MHz Operation Note: Core: R5 = 46, R7[4] = 0, R33 = 58369, R47 = 63414 IFP: R51= 5137, R56 = 2168, R57= 290, R59 = 1068, R62 = 4095, R64 = 7696, R65 = 5143, R66 = 4627, R67 = 4370, R68 = 28944, R69 = 29811 Non-default register settings required for an optimal 30 fps, 27 MHz operation are shown in Table 15 Table 15: Non-Default Register Settings Optimizing 30 fps at 27 MHz Operation Note: Core: R5 = 132, R6 = 10, R7[4] = 0, R33 = 58369 IFP: R51 = 5137, R57 = 290, R59 = 1068, R62 = 4095, R89 = 504, R90 = 605, R92 = 8222, R93 = 10021, R100 = 4477 To obtain register settings for other frame rates and clock speeds, please contact a Micron FAE. Auto Exposure Target image brightness and accuracy of AE are set by IFP R46[7:0] and R46[15:8], respectively. For example, to overexpose images, set IFP R46[7:0] = 120. To change image brightness on LCD in RGB preview mode, use IFP R52[15:8]. AE logic can be programmed to keep the frame rate constant or vary it within certain range, by writing to IFP R55[9:5] one of the values tabulated in Table 16. Table 16: Relation Between IFP R55[9:5] Setting and Frame Rate Range Minimum Frame Rate Maximum Frame Rate = 15 fps Maximum Frame Rate = 30 fps 30 fps 15 fps 7.5 fps 5 fps N/A 8 16 24 4 8 16 24 The speed of AE is set using IFP R47. The speed should be high in preview modes and lower for video output to avoid sudden changes in brightness between frames. Auto exposure is disabled by setting IFP R6[14] = 0. When AE, AWB, and flicker avoidance are all disabled (IFP R6[14] = 0, IFP R6[1] = 0, and IFP R8[11] = 0), exposure and analog gains can be adjusted manually (see core registers R9, R12, and R43 through R46). 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 42 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Appendix B – Overview Of Programming Automatic White Balance AWB can be disabled by setting IFP R6[1]=0. Use IFP R37[2:0] and R37[6:3] to speed up AWB response. Please note that speeding AWB up may result in color oscillation. If necessary, AWB range can be restricted by changing the upper limit in IFP R36[14:8] and lower limit in IFP R36[6:0]. Flicker Avoidance Use IFP R91 to choose automatic/manual, 50Hz/60Hz flicker avoidance and IFP R8[11] = 0 to disable this feature. Flash For flash programming, see IFP R152 description. Decimation, Zoom, and Pan For output decimation programming, see IFP R165 description. Table 17 provides a few examples. Table 17: Decimation, Zoom, and Pan Note: Ifp Registers CIF Output (Correct Aspect Ratio) QVGA Output 2:1 Zoom QVGA Output 1:1 Zoom R165 R166 R167 R168 R169 R170 26 586 352 0 480 288 160 320 320 120 240 240 0 640 320 0 480 240 For fixed 2x upsize zoom, set core R30[0] = 1. Interpolation Use IFP R5[2:0] to adjust image sharpness. By default, sharpness is automatically reduced in low-light conditions (see IFP R5[3]). For RGB565 16-bit capture, set IFP R6[12] = 0 and IFP R5[3] = 0 to avoid contouring. Special Effects To switch from color to gray scale output, set IFP R8[5] = 1. Contact a Micron FAE for register settings producing other special effects (e.g. sepia output). Image Mirroring To mirror images horizontally, set core R32[14] = 1 and IFP R8[0] = 1. To flip images vertically, set core R32[15] = 1 and IFP R8[1] = 1. Test Pattern See IFP R72 and IFP Reg58[5:3] description. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 43 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Appendix B – Overview Of Programming Gamma Correction See Table 18 and Table for register settings required to setup non-default gamma correction. Please note that these settings determine output signal range. Use YCbCr settings with ITU_R BTU-compatible devices. Use YUV settings for JPEG capture and RGB preview; switching to YUV mode requires setting IFP R52 = 0 and IFP R53 = 65281. Table 18: YCbCr Settings Gamma 0.45 0.5 0.55 0.6 (Default) 0.7 1.0 IFP R83 IFP R84 IFP R85 IFP R86 IFP R87 12836 23876 39039 49326 57552 10781 21563 37495 48553 57551 8984 19508 35952 47780 57549 7700 17709 34409 47008 57548 5389 14627 31581 45207 57545 2052 8208 24640 41088 57536 Table 19: YUV Settings 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN Gamma 0.45 0.5 0.55 0.6 0.7 1.0 IFP R83 IFP R84 IFP R85 IFP R86 IFP R87 14377 26957 44432 56005 65260 12321 24643 42631 54976 65259 10267 22331 40831 54202 65257 8726 20276 39031 53173 65255 6159 16680 35945 51371 65252 2308 9234 27720 46481 65241 44 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Appendix B – Overview Of Programming Figure 26: 44-Ball ICSP Package Outline Drawing 0.95 (FOR REFERENCE ONLY) 1.17 ±0.10 B SEATING PLANE 0.10 A A 0.22 (FOR REFERENCE ONLY) 0.175 (FOR REFERENCE ONLY) 0.575 ±0.050 4.50 0.375 ±0.075 BALL A1 BALL A1 ID 0.75 TYP BALL A7 44X Ø0.35 BALL A1 CORNER 5.30 CTR PIXEL (0,0) 3.500 ±0.075 DIMENSIONS APPLY TO SOLDER BALLS POST REFLOW. THE PREREFLOW DIAMETER IS Ø0.33 3.400 ±0.075 3.50 ±0.05 CL 4.50 2.688 5.30 CTR CTR 7.00 ±0.075 0.100 (FOR REFERENCE ONLY) OPTICAL CENTER PACKAGE CENTER 2.25 0.75 TYP CL 2.25 3.50 ±0.05 OPTICAL AREA 3.584 CTR MAXIMUM ROTATION OF OPTICAL AREA RELATIVE TO PACKAGE EDGES: 1º MAXIMUM TILT OF OPTICAL AREA RELATIVE TO B : 0.3º MAXIMUM TILT OF OPTICAL AREA RELATIVE TO TOP OF COVER GLASS: 0.3º 7.00 ±0.075 LID MATERIAL: BOROSILICATE GLASS 0.40 THICKNESS IMAGE SENSOR DIE SOLDER BALL MATERIAL: 62% Sn, 36% Pb, 2%Ag OR 96.5% Sn, 3%Ag, 0.5% Cu SOLDER MASK DEFINED BALL PADS: Ø 0.27 SUBSTRATE MATERIAL: PLASTIC LAMINATE ENCAPSULANT: EPOXY Notes: 1. All dimensions in millimeters. 2. ICSP package information is preliminary. ® 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 [email protected] www.micron.com Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. All other trademarks are the property of their respective owners. This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur. 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 45 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. MT9V111 - 1/4-Inch SOC VGA Digital Image Sensor Revision History Revision History Rev. G, Production ...........................................................................................................................................................1/05 • Modified tOH definition in Table 11, AC Electrical Characteristics, on page 31 • Updated Figure 10, Propagation Delays for PIXCLK and Data Out Signals, on page 32 Rev. F, Production ............................................................................................................................................................8/04 • Updated 44-Ball ICSP Package Outline Drawing Rev. E ................................................................................................................................................................................7/04 • Replaced 28-Pin PLCC package information with the 44-Ball ICSP • Updated Table 12 (Frame Time) • Updated Electrical Specifications Rev. D, Preliminary ..........................................................................................................................................................3/04 • Modify for external web posting - streamlined register descriptions • Add Appendix B Rev. C, Preliminary ..........................................................................................................................................................2/04 • Added Key Performance Parameter Table, Update Register Tables, Update Electrical Specification Table, Added Figures (Image Center Offset, Die Placement, 28-Pin PLCC Package Outline Drawing and Spectral Response) Rev. B, Preliminary, Draft ................................................................................................................................................1/04 • Format edits on 1/15/04 Rev. A, Preliminary, Draft ..............................................................................................................................................12/03 • Initial Release of document 09005aef80e90084 MT9V111_2.fm - Rev. G 1/05 EN 46 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved.