DATA SHEET MOS INTEGRATED CIRCUIT µPD703003 V853TM 32/16-BIT SINGLE-CHIP MICROCONTROLLER The µPD703003 is a member of the V850 FamilyTM of 32-bit single-chip microcontrollers designed for real-time control operations. This microcontroller provides on-chip features, including a 32-bit CPU core, ROM, RAM, interrupt controller, real-time pulse unit, a serial interface, an A/D converter, a D/A converter, and PWM signal units. See the following manuals for a detailed description of this product’s functions. Be sure to use these manuals as a reference for design. V853 USER’S MANUAL, HARDWARE: U10913E V850 FAMILY USER’S MANUAL, ARCHITECTURE: U10243E FEATURES • Number of instructions: 74 • Minimum instruction execution time 30 ns (during 33-MHz operation) • General registers 32 bits × 32 registers • Instruction set optimized for control applications • On-chip memory ROM: 128 Kbytes RAM: 4 Kbytes • Advanced on-chip interrupt controller • Real-time pulse unit suitable for control operations • Powerful serial interface (on-chip dedicated baud rate generator) • On-chip clock generator • 10-bit resolution A/D converter: 8 channels • 8-bit resolution D/A converter: 2 channels • 8/9/10/12-bit resolution PWM: 2 channels • Power saving functions APPLICATIONS • AV: Video cameras, VCRs, etc. • Office equipment: PPCs, LBPs, printers, etc. • Industrial equipment: motor controllers, NC machine tools, etc. • Communications equipment: Mobile telephones, etc. The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information. Document No. U12261EJ2V1DS00 (2nd edition) Date Published April 1999 N CP(K) Printed in Japan The mark shows major revised points. © 1997 µPD703003 ORDERING INFORMATION Part Number Package Maximum operating frequency (MHz) µPD703003GC-25-xxx-7EA 100-pin plastic QFP (fine pitch) (14 × 14 mm) 25 µPD703003GC-33-xxx-7EA 100-pin plastic QFP (fine pitch) (14 × 14 mm) 33 Remark “xxx” indicates ROM code suffix. PIN CONFIGURATION • 100-Pin Plastic QFP (fine pitch) (14 × 14 mm) µPD703003GC-25-xxx-7EA 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 P43/AD3 P42/AD2 VSS VDD P41/AD1 P40/AD0 P90/LBEN P91/UBEN P92/R/W P93/DSTB P94/ASTB P95/HLDAK P96/HLDRQ WAIT IC MODE RESET CVDD/CKSEL X2 X1 CVSS CLKOUT VSS VDD P110/TO140 P31/TO131 P32/TCLR13 P33/TI13 P34/INTP130 P35/INTP131/SO3 P36/INTP132/SI3 P37/INTP133/SCK3 P63/A19 P62/A18 P61/A17 P60/A16 VSS VDD P57/AD15 P56/AD14 P55/AD13 P54/AD12 P53/AD11 P52/AD10 P51/AD9 P50/AD8 P47/AD7 P46/AD6 P45/AD5 P44/AD4 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P30/TO130 P27/SCK1 P26/RXD1/SI1 P25/TXD1/SO1 P24/SCK0 P23/RXD0/SI0 P22/TXD0/SO0 P21/PWM1 P20/PWM0 NMI VDD VSS P17/INTP123/SCK2 P16/INTP122/SI2 P15/INTP121/SO2 P14/INTP120 P13/TI12 P12/TCLR12 P11/TO121 P10/TO120 AVDD AVSS AVREF1 P77/ANI7 P76/ANI6 µPD703003GC-33-xxx-7EA Caution 2 Connect the IC pin directly to VSS. Data Sheet U12261EJ2V1DS00 P75/ANI5 P74/ANI4 P73/ANI3 P72/ANI2 P71/ANI1 P70/ANI0 ANO0 ANO1 AVREF2 AVREF3 P07/INTP113/ADTRG P06/INTP112 P05/INTP111 P04/INTP110 P03/TI11 P02/TCLR11 P01/TO111 P00/TO110 P117/INTP143 P116/INTP142 P115/INTP141 P114/INTP140 P113/TI14 P112/TCLR14 P111/TO141 µPD703003 PIN NAMES A16 to A19 : Address Bus P30 to P37 : Port3 AD0 to AD15 : Address/Data Bus P40 to P47 : Port4 ADTRG : AD Trigger Input P50 to P57 : Port5 ANI0 to ANI7 : Analog Input P60 to P63 : Port6 ANO0, ANO1 : Analog Output P70 to P77 : Port7 ASTB : Address Strobe P90 to P96 : Port9 AVDD : Analog VDD P110 to P117 : Port11 AVREF1 to AVREF3 : Analog Reference Voltage PWM0, PWM1 : Pulse Width Modulation AVSS : Analog VSS RESET : Reset CVDD : Power Supply for Clock Generator R/W : Read/Write Status CVSS : Ground for Clock Generator RXD0, RXD1 : Receive Data CKSEL : Clock Select SCK0 to SCK3 : Serial Clock CLKOUT : Clock Output SI0 to SI3 : Serial Input DSTB : Data Strobe SO0 to SO3 : Serial Output HLDAK : Hold Acknowledge TO110, TO111, : Timer Output HLDRQ : Hold Request TO120, TO121, IC : Internally Connected TO130, TO131, INTP110 to INTP113, : Interrupt Request from Peripherals TO140, TO141 INTP120 to INTP123, TCLR11 to TCLR14 : Timer Clear INTP130 to INTP133, TI11 to TI14 : Timer Input INTP140 to INTP143 TXD0, TXD1 : Transmit Data LBEN : Lower Byte Enable UBEN : Upper Byte Enable MODE : Mode WAIT : Wait NMI : Non-maskable Interrupt Request X1, X2 : Crystal P00 to P07 : Port0 VDD : Power Supply P10 to P17 : Port1 VSS : Ground P20 to P27 : Port2 Data Sheet U12261EJ2V1DS00 3 µPD703003 INTERNAL BLOCK DIAGRAM Mask ROM CPU NMI INTP110 to INTP113 INTP120 to INTP123 INTP130 to INTP133 INTP140 to INTP143 TO110, TO111 TO120, TO121 TO130, TO131 TO140, TO141 Instruction queue PC INTC 128 Kbytes 32-bit barrel shifter Multiplier 16×16→32 BCU System register RPU TCLR11 to TCLR14 TI11 to TI14 HLDRQ HLDAK RAM 4 Kbytes ASTB DSTB R/W UBEN LBEN WAIT A16 to A19 AD0 to AD15 General register 32 bits × 32 ALU SIO SO0/TXD0 SI0/RXD0 SCK0 UART0/CSI0 A/D converter D/A converter BRG1 SO2 SI2 SCK2 CSI2 BRG2 4 SO3 SI3 SCK3 CSI3 PWM0, PWM1 PWM Port P110 to P117 P90 to P96 P70 to P77 P60 to P63 P50 to P57 P40 to P47 P30 to P37 P20 to P27 P10 to P17 P00 to P07 UART1/CSI1 ANO0, ANO1 AVREF2, AVREF3 SO1/TXD1 SI1/RXD1 SCK1 ANI0 to ANI7 AVREF1 AVSS AVDD ADTRG BRG0 Data Sheet U12261EJ2V1DS00 CG CKSEL CLKOUT X1 X2 MODE RESET VDD VSS CVDD CVSS µPD703003 CONTENTS 1. DIFFERENCES AMONG PRODUCTS ........................................................................................... 6 2. LIST OF PIN FUNCTIONS ............................................................................................................... 7 2.1 Port Pins ................................................................................................................................................ 7 2.2 Non-port Pins ........................................................................................................................................ 9 2.3 I/O Circuits of Pins and Processing of Unused Pins ......................................................................... 11 3. FUNCTION BLOCKS ....................................................................................................................... 14 3.1 Internal Units ......................................................................................................................................... 14 4. CPU FUNCTIONS ............................................................................................................................ 16 5. BUS CONTROL FUNCTIONS ......................................................................................................... 17 6. INTERRUPT/EXCEPTION HANDLING FUNCTIONS ..................................................................... 18 7. CLOCK GENERATION FUNCTIONS .............................................................................................. 21 8. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT) ........................................................ 22 9. SERIAL INTERFACE FUNCTIONS (SIO) ....................................................................................... 24 9.1 Asynchronous Serial Interface 0, 1 (UART0, UART1) ........................................................................ 24 9.2 Clock-synchronized Serial Interface 0 to 3 (CSI0 to CSI3) ................................................................ 26 9.3 Baud Rate Generator 0 to 2 (BRG0 to BRG2) ..................................................................................... 28 10. PWM UNIT ....................................................................................................................................... 29 11. A/D CONVERTER ............................................................................................................................ 30 12. D/A CONVERTER ............................................................................................................................ 31 13. PORT FUNCTIONS .......................................................................................................................... 32 14. RESET FUNCTIONS ........................................................................................................................ 45 15. INSTRUCTION SET ......................................................................................................................... 46 16. ELECTRICAL SPECIFICATIONS .................................................................................................... 53 17. PACKAGE DRAWINGS ................................................................................................................... 77 18. RECOMMENDED SOLDERING CONDITIONS ............................................................................... 78 Data Sheet U12261EJ2V1DS00 5 µPD703003 1. DIFFERENCES AMONG PRODUCTS µPD703003 µPD703003A µPD703004A µPD703025A µPD70F3003 µPD70F3003A µPD70F3025A Item Internal ROM Mask ROM Flash memory 128 Kbytes Internal RAM Operation Normal mode operation mode 4 Kbytes 256 Kbytes 128 Kbytes 256 Kbytes 8 Kbytes 8 Kbytes 4 Kbytes Single-chip Implemented mode ROM-less mode Flash memory programming mode VPP pin Implemented Not implemented Implemented Not implemented Not implemented Implemented Not implemented Implemented Value of CKC register when reset 00H 6 96 Kbytes MODE = 0 : 03H MODE = 1 : 00H 00H MODE = 0 : 03H MODE = 1 : 00H Electrical specifications Power consumption levels vary (see specific product’s data sheet). Others Noise tolerance and noise emission vary, depending on the circuit scale and mask layout. Data Sheet U12261EJ2V1DS00 µPD703003 2. LIST OF PIN FUNCTIONS 2.1 Port Pins (1/2) Pin Name P00 I/O I/O P01 Function Port 0 TO110 8-bit I/O port TO111 Input/output mode can be specified bitwise P02 Alternate Function Pin TCLR11 P03 TI11 P04 INTP110 P05 INTP111 P06 INTP112 P07 INTP113/ADTRG P10 I/O P11 Port 1 TO120 8-bit I/O port TO121 Input/output mode can be specified bitwise P12 TCLR12 P13 TI12 P14 INTP120 P15 INTP121/SO2 P16 INTP122/SI2 P17 INTP123/SCK2 P20 I/O P21 Port 2 PWM0 8-bit I/O port PWM1 Input/output mode can be specified bitwise P22 TXD0/SO0 P23 RXD0/SI0 P24 SCK0 P25 TXD1/SO1 P26 RXD1/SI1 P27 SCK1 P30 I/O P31 Port 3 TO130 8-bit I/O port TO131 Input/output mode can be specified bitwise P32 TCLR13 P33 TI13 P34 INTP130 P35 INTP131/SO3 P36 INTP132/SI3 P37 INTP133/SCK3 P40 to P47 I/O Port 4 AD0 to AD7 8-bit I/O port Input/output mode can be specified bitwise P50 to P57 I/O Port 5 AD8 to AD15 8-bit I/O port Input/output mode can be specified bitwise Data Sheet U12261EJ2V1DS00 7 µPD703003 (2/2) Pin Name P60 to P63 I/O I/O Function Port 6 Alternate Function Pin A16 to A19 4-bit I/O port Input/output mode can be specified bitwise P70 to P77 Input Port 7 ANI0 to ANI7 8-bit input port P90 I/O P91 LBEN UBEN Input/output mode can be specified bitwise P92 R/W P93 DSTB P94 ASTB P95 HLDAK P96 HLDRQ P110 P111 P112 8 Port 9 7-bit I/O port I/O Port 11 TO140 8-bit I/O port TO141 Input/output mode can be specified bitwise TCLR14 P113 TI14 P114 INTP140 P115 INTP141 P116 INTP142 P117 INTP143 Data Sheet U12261EJ2V1DS00 µPD703003 2.2 Non-port Pins (1/2) Pin Name TO110 I/O Output Function Pulse signal output from timers 11 to 14 Alternate Function Pin P00 TO111 P01 TO120 P10 TO121 P11 TO130 P30 TO131 P31 TO140 P110 TO141 P111 TCLR11 Input External clear signal input for timers 11 to 14 P02 TCLR12 P12 TCLR13 P32 TCLR14 P112 TI11 Input External count clock input for timers 11 to 14 P03 TI12 P13 TI13 P33 TI14 P113 INTP110 Input INTP111 External maskable interrupt request input, P04 shared as external capture trigger input for timer 11 P05 INTP112 P06 INTP113 P07/ADTRG INTP120 Input INTP121 External maskable interrupt request input, P14 shared as external capture trigger input for timer 12 P15/SO2 INTP122 P16/SI2 INTP123 P17/SCK2 INTP130 Input INTP131 External maskable interrupt request input, P34 shared as external capture trigger input for timer 13 P35/SO3 INTP132 P36/SI3 INTP133 P37/SCK3 INTP140 Input INTP141 External maskable interrupt request input, P114 shared as external capture trigger input for timer 14 P115 INTP142 P116 INTP143 P117 SO0 Output Serial transmit data output (3-wire) for CSI0 to CSI3 P22/TXD0 SO1 P25/TXD1 SO2 P15/INTP121 SO3 P35/INTP131 SI0 Input Serial receive data input (3-wire) for CSI0 to CSI3 P23/RXD0 SI1 P26/RXD1 SI2 P16/INTP122 SI3 P36/INTP132 Data Sheet U12261EJ2V1DS00 9 µPD703003 (2/2) Pin Name SCK0 I/O I/O Function Serial clock I/O (3-wire) for CSI0 to CSI3 Alternate Function Pin P24 SCK1 P27 SCK2 P17/INTP123 SCK3 P37/INTP133 TXD0 Output Serial transmit data output for UART0 and UART1 TXD1 RXD0 P25/SO1 Input Serial receive data input for UART0 and UART1 RXD1 PWM0 P23/SI0 P26/SI1 Output PWM pulse signal output PWM1 AD0 to AD7 P22/SO0 P20 P21 I/O 16-bit multiplexed address/data bus for external memory expansion A16 to A19 Output High-order address bus used for external memory expansion P60 to P63 LBEN Output External data bus’s low-order byte enable signal output P90 External data bus’s high-order byte enable signal output P91 External read/write status output P92 DSTB External data strobe signal output P93 ASTB External address strobe signal output P94 AD8 to AD15 P50 to P57 UBEN R/W P40 to P47 Output HLDAK Output Bus hold acknowledge output P95 HLDRQ Input Bus hold request input P96 ANI0 to ANI7 Input Analog input to A/D converter P70 to P77 ANO0, ANO1 Output Analog output to D/A converter — NMI Input Nonmaskable interrupt request input — CLKOUT Output System clock output — CKSEL Input Input for specifying clock generator’s operation mode WAIT Input Control signal input for inserting wait in bus cycle — MODE Input Operation mode select — RESET Input System reset input — X1 Input Oscillator connection for system clock. Input is via X1 when using an — external clock. — X2 — CVDD ADTRG Input A/D converter external trigger input P07/INTP113 AVREF1 Input Reference voltage input for A/D converter — AVREF2 Input Reference voltage input for D/A converter — AVREF3 — AVDD — Positive power supply for A/D converter — AVSS — Ground potential for A/D converter — CVDD — Positive power supply for on-chip clock generator CVSS — Ground potential for on-chip clock generator — VDD — Positive power supply — VSS — Ground potential — IC — Internally connected pin (connect directly to VSS) — 10 Data Sheet U12261EJ2V1DS00 CKSEL µPD703003 2.3 I/O Circuits of Pins and Processing of Unused Pins Table 2-1 lists I/O circuit type of respective pins and processing method (recommended connection method) when not used. Figure 2-1 illustrates the various circuit types using partially abridged diagrams. When connecting to VDD or VSS via a resistor, a resistance value in the range of 1 to 10 kΩ is recommended. Table 2-1. I/O Circuits of Pins and Processing of Unused Pins (1/2) Pin P00/TO110, P01/TO111 I/O Circuit Type Recommended Connection Method 5 Input: Connect to VDD or VSS separately via a resistor P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113/ADTRG 8 Output: Leave open P10/TO120, P11/TO121 5 P12/TCLR12, P13/TI12 P14/INTP120 P15/INTP121/SO2 P16/INTP122/SI2 P17/INTP123/SCK2 8 P20/PWM0, P21/PWM1 5 P22/TXD0/SO0 P23/RXD0/SI0, P24/SCK0 8 P25/TXD1/SO1 5 P26/RXD1/SI1, P27/SCK1 8 P30/TO130, P31/TO131 5 P32/TCLR13, P33/TI13 8 P34/INTP130 P35/INTP131/SO3 P36/INTP132/SI3 10-A P37/INTP133/SCK3 P40/AD0 to P47/AD7 5 P50/AD8 to P57/AD15 P60/A16 to P63/A19 P70/ANI0 to P77/ANI7 9 Connect directly to VSS P90/LBEN 5 Input: Connect to VDD or VSS separately via a resistor Output: Leave open P91/UBEN P92/R/W P93/DSTB P94/ASTB P95/HLDAK P96/HLDRQ P110/TO140, P111/TO141 P112/TCLR14, P113/TI14 P114/INTP140 to P117/INTP143 8 ANO0, ANO1 12 Leave open NMI 2 Connect directly to VSS Data Sheet U12261EJ2V1DS00 11 µPD703003 Table 2-1. I/O Circuits of Pins and Processing of Unused Pins (2/2) Pin I/O Circuit Type Recommended Connection Method CLKOUT 3 Leave open WAIT 1 Connect directly to VDD MODE 2 — RESET CVDD/CKSEL AVREF1 to AVREF3, AVSS — Connect directly to VSS AVDD — Connect directly to VDD IC — Connect directly to VSS 12 Data Sheet U12261EJ2V1DS00 µPD703003 Figure 2-1. I/O Circuits of Pins Type 1 Type 8 VDD VDD Data P-ch IN/OUT P-ch Output disable IN N-ch N-ch Type 2 Type 9 P-ch IN + IN Comparator – N-ch VREF (threshold voltage) Input enable Schmitt trigger input with hysteresis characteristics Type 10-A Type 3 VDD VDD Pull-up enable P-ch VDD P-ch Data OUT P-ch IN/OUT N-ch Open-drain output disable Type 5 N-ch Type 12 VDD Data P-ch IN/OUT Output disable N-ch Analog output voltage P-ch N-ch OUT Input enable Data Sheet U12261EJ2V1DS00 13 µPD703003 3. FUNCTION BLOCKS 3.1 Internal Units 3.1.1 CPU The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic logic operations, data transfers, and almost all other instruction processing. Other dedicated on-chip hardware, such as the multiplier (16 bits × 16 bits) and the barrel shifter (32 bits) help accelerate processing of complex instructions. 3.1.2 Bus control unit (BCU) The BCU starts a required bus cycle based on the physical address obtained by the CPU. When an instruction is fetched from external memory space and the CPU does not send a bus cycle start request, the BCU generates a prefetch address and prefetches the instruction code. The prefetched instruction code is stored in a prefetch queue. 3.1.3 ROM ROM is mapped to the address space starting at 00000000H. The MODE pin can be used to select an access enable/disable setting. ROM can be accessed by the CPU in one clock cycle when an instruction is fetched. 3.1.4 RAM RAM is mapped to the address space starting at FFFFE000H. RAM can be accessed by the CPU in one clock cycle when data accessed. 3.1.5 Ports In addition to the 75 pins (port 0 to port 11) comprising I/O ports (of which eight pins comprise an input-only port), various port pin and control pin functions can be selected for these pins. 3.1.6 Interrupt controller (INTC) This controller handles hardware interrupt requests (NMI, INTP110 to INTP113, INTP120 to INTP123, INTP130 to INTP133, and INTP140 to INTP143) from on-chip peripheral hardware and external hardware. Eight interrupt priority levels can be specified for these interrupt requests, and multiplexed servicing control can be performed for interrupt sources. 3.1.7 Clock generator (CG) An on-chip PLL enables the CPU operating clock to be supplied to resonators connected to pins X1 and X2 at 5× frequency, 1× frequency, and 1/2× frequency. It can also be connected to an external clock instead of to the resonator. 3.1.8 Real-time pulse unit (RPU) The RPU includes a four-channel 16-bit timer/event counter and a one-channel 16-bit interval timer, which enables measurement of pulse intervals and frequency as well as programmable pulse output. 14 Data Sheet U12261EJ2V1DS00 µPD703003 3.1.9 Serial interface (SIO) Four channels are comprised of two kinds of serial interfaces: an asynchronous serial interface (UART) and a clocksynchronized serial interface (CSI). Two of these four channels are switchable between the UART and CSI and the other two channels are fixed as CSI. For UART, data is transferred via the TXD and RXD pins. The baud rate is determined by the on-chip baud rate generator. For CSI, data is transferred via the SO, SI, and SCK pins. The baud rate can be determined by the onchip baud rate generator or it can be supplied from an external source. One of the two CSI-fixed channels is used as the serial clock output, and serial output is sent via an N-ch open drain output. 3.1.10 Pulse width modulation (PWM) There are two channels of selectable 8/9/10/12-bit resolution PWM signal outputs. When a low pass filter is externally connected, PWM output can be used as D/A converter output. This is suitable for actuator control applications, such as in motors. 3.1.11 A/D converter (ADC) This is a high-speed, high-resolution 10-bit A/D converter that includes eight analog input pins. It converts using the sequential conversion method. 3.1.12 D/A converter (DAC) This is an 8-bit resolution D/A converter that includes two channels. It converts using the R-2R conversion method. Data Sheet U12261EJ2V1DS00 15 µPD703003 4. CPU FUNCTIONS The CPU employs a RISC-based architecture and uses five-stage pipeline control to enable single-clock execution of almost all instructions. The features of the CPU functions are shown below. • Minimum instruction execution time 30 ns (during internal 33-MHz operation) • Address space: 16-Mbyte linear • General registers: 32 bits × 32 registers • Internal 32-bit architecture • 5-stage pipeline control • Multiply/divide instructions • Saturated operation instructions • 32-bit shift instruction: 1 clock • Long/short format • Four types of bit manipulation instructions • Set • Clear • Not • Test 16 Data Sheet U12261EJ2V1DS00 µPD703003 5. BUS CONTROL FUNCTIONS The features of the bus control functions are shown below. • Shared as port pins, connectable to external device • Wait functions • Programmable wait function for up to three states per two blocks • External wait function using WAIT pin • Idle state insertion function • Bus mastering arbitration function • Bus hold function Data Sheet U12261EJ2V1DS00 17 µPD703003 6. INTERRUPT/EXCEPTION HANDLING FUNCTIONS The features of the interrupt/exception handling functions are shown below. • Interrupts • Nonmaskable interrupt: 1 source • Maskable interrupt: 32 sources • 8-level programmable priority control • Multiple interrupt control based on priority levels • Mask specification for each maskable interrupt request • Noise elimination, edge detection, and valid edge specification for external interrupt requests • Exceptions • Software exceptions: 32 sources • Exception trap: 1 source (invalid instruction code exception) The configuration of the interrupt/exception handling functions is shown below. Figure 6-1. Block Diagram of Maskable Interrupt Internal bus 7 3210321032103210 INTM1 INTM2 INTM3 INTM4 SIO INTCSI0 INTCSI1 INTCSI2 INTCSI3 INTSER0 INTSR0 INTST0 INTSER1 INTSR1 INTST1 A/D converter INTAD OVIF11 OVIF12 OVIF13 OVIF14 P11IF0 P11IF1 P11IF2 P11IF3 P12IF0 P12IF1 P12IF2 P12IF3 P13IF0 P13IF1 P13IF2 P13IF3 P14IF0 P14IF1 P14IF2 P14IF3 CMIF4 CSIF0 CSIF1 CSIF2 CSIF3 SEIF0 SRIF0 STIF0 SEIF1 SRIF1 STIF1 ADIF XX: Name of peripheral unit (OV, P11 to P14, CM, CS, SE, SR, ST, AD) n: Peripheral unit number (if none exists, then 0 to 4 or 11 to 14) 18 Data Sheet U12261EJ2V1DS00 Handler address generator XXPRn (priority controller) INTP110 INTP111 INTP112 INTP113 INTP120 INTP121 INTP122 INTP123 INTP130 INTP131 INTP132 INTP133 INTP140 INTP141 INTP142 INTP143 3210 321032103210 Selector RPU 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 XXMKn (interrupt mask flag) INTOV11 INTOV12 INTOV13 INTOV14 INTP110/INTCC110 INTP111/INTCC111 INTP112/INTCC112 INTP113/INTCC113 INTP120/INTCC120 INTP121/INTCC121 INTP122/INTCC122 INTP123/INTCC123 INTP130/INTCC130 INTP131/INTCC131 INTP132/INTCC132 INTP133/INTCC133 INTP140/INTCC140 INTP141/INTCC141 INTP142/INTCC142 INTP143/INTCC143 INTCM4 0 ISPR Interrupt request Interrupt request acknowledge HALT mode release signal CPU PSW ID µPD703003 Interrupt/exception sources are shown in Table 6-1. Table 6-1. List of Interrupts (1/2) Interrupt/Exception Source Type Reset Category Interrupt Name Control Register Trigger Source Default Unit Priority Level Exception Code Handler Restored Address PC RESET — Reset input — — 0000H 00000000H Undefined Nonmaskable Interrupt NMI — NMI input — — 0010H 00000010H nextPC Software exception Exception TRAP0nNote — 004nHNote 00000040H nextPC Exception TRAP1nNote — — 005nHNote 00000050H nextPC Exception trap Exception ILGOP — — 0060H 00000060H nextPC Maskable Interrupt INTOV11 OVIC11 Timer 11 overflow RPU 0 0080H 00000080H nextPC Interrupt INTOV12 OVIC12 Timer 12 overflow RPU 1 0090H 00000090H nextPC Interrupt INTOV13 OVIC13 Timer 13 overflow RPU 2 00A0H 000000A0H nextPC Interrupt INTOV14 OVIC14 Timer 14 overflow RPU 3 00B0H 000000B0H nextPC Interrupt INTP110/INTCC110 P11IC0 Match between INTP110 and CC110 Pin/RPU 4 00C0H 000000C0H nextPC Interrupt INTP111/INTCC111 P11IC1 Match between INTP111 and CC111 Pin/RPU 5 00D0H 000000D0H nextPC Interrupt INTP112/INTCC112 P11IC2 Match between INTP112 and CC112 Pin/RPU 6 00E0H 000000E0H nextPC Interrupt INTP113/INTCC113 P11IC3 Match between INTP113 and CC113 Pin/RPU 7 00F0H 000000F0H nextPC Interrupt INTP120/INTCC120 P12IC0 Match between INTP120 and CC120 Pin/RPU 8 0100H 00000100H nextPC Interrupt INTP121/INTCC121 P12IC1 Match between INTP121 and CC121 Pin/RPU 9 0110H 00000110H nextPC Interrupt INTP122/INTCC122 P12IC2 Match between INTP122 and CC122 Pin/RPU 10 0120H 00000120H nextPC Interrupt INTP123/INTCC123 P12IC3 Match between INTP123 and CC123 Pin/RPU 11 0130H 00000130H nextPC Interrupt INTP130/INTCC130 P13IC0 Match between INTP130 and CC130 Pin/RPU 12 0140H 00000140H nextPC Interrupt INTP131/INTCC131 P13IC1 Match between INTP131 and CC131 Pin/RPU 13 0150H 00000150H nextPC Interrupt INTP132/INTCC132 P13IC2 Match between INTP132 and CC132 Pin/RPU 14 0160H 00000160H nextPC Interrupt INTP133/INTCC133 P13IC3 Match between INTP133 and CC133 Pin/RPU 15 0170H 00000170H nextPC Interrupt INTP140/INTCC140 P14IC0 Match between INTP140 and CC140 Pin/RPU 16 0180H 00000180H nextPC Interrupt INTP141/INTCC141 P14IC1 Match between INTP141 and CC141 Pin/RPU 17 0190H 00000190H nextPC Interrupt INTP142/INTCC142 P14IC2 Match between INTP142 and CC142 Pin/RPU 18 01A0H 000001A0H nextPC Interrupt INTP143/INTCC143 P14IC3 Match between INTP143 and CC143 Pin/RPU 19 01B0H 000001B0H nextPC Interrupt INTCM4 CMIC4 Signal matches CM4 RPU 20 01C0H 000001C0H nextPC Interrupt INTCSI0 CSIC0 CSI0 send/receive completion SIO 21 01D0H 000001D0H nextPC Interrupt INTCSI1 CSIC1 CSI1 send/receive completion SIO 22 01E0H 000001E0H nextPC Interrupt INTCSI2 CSIC2 CSI2 send/receive completion SIO 23 01F0H 000001F0H nextPC — TRAP instruction — TRAP instruction — Undefined instruction code — Note n represents a value between 0 and FH. Remarks 1. Default priority: The default priority level is the level that takes precedence when multiple maskable interrupt requests having the same priority level occur at the same time. The highest priority level is level 0. Restored PC: This is the PC value that is saved to EIPC or FEPC when interrupt or exception handling is activated. However, if an interrupt occurs during execution of the DIVH (divide) instruction, the recovered PC value is the PC value of the current instruction (DIVH). 2. The invalid instruction execution address can be obtained (using restored PC-4) when an invalid instruction code exception occurs. Data Sheet U12261EJ2V1DS00 19 µPD703003 Table 6-1. List of Interrupts (2/2) Interrupt/Exception Source Type Maskable Category Name Control Register Trigger Source Default Unit Priority Level Exception Handler Restored Code Address PC Interrupt INTCSI3 CSIC3 CSI3 transmit/receive completion SIO 24 0200H 00000200H nextPC Interrupt INTSER0 SEIC0 UART0 receive error SIO 25 0210H 00000210H nextPC Interrupt INTSR0 SRIC0 UART0 receive completion SIO 26 0220H 00000220H nextPC Interrupt INTST0 STIC0 UART0 transmit completion SIO 27 0230H 00000230H nextPC Interrupt INTSER1 SEIC1 UART1 receive error SIO 28 0240H 00000240H nextPC Interrupt INTSR1 SRIC1 UART1 receive completion SIO 29 0250H 00000250H nextPC Interrupt INTST1 STIC1 UART1 transmit completion SIO 30 0260H 00000260H nextPC Interrupt INTAD ADIC A/D conversion completion ADC 31 0270H 00000270H nextPC Remarks 1. Default priority: The default priority level is the level that takes precedence when multiple maskable interrupt requests having the same priority level occur at the same time. The highest priority level is level 0. Restored PC: This is the PC value that is saved to EIPC or FEPC when interrupt or exception handling is started. However, if an interrupt occurs during execution of the DIVH (divide) instruction, the restored PC value is the PC value of the current instruction (DIVH). 2. The invalid instruction execution address can be obtained using (restored PC-4) when an invalid instruction code exception occurs. 20 Data Sheet U12261EJ2V1DS00 µPD703003 7. CLOCK GENERATION FUNCTIONS The features of the clock generation functions are shown below. • Multiplier function using PLL clock synthesizer • Clock sources • Oscillation via resonator connection (PLL mode): fXX = φ, 2 × φ, φ/5 • External clock (PLL mode): fXX = φ, 2 × φ, φ/5 • External clock (direct mode): fXX = 2 × φ • Power saving control • HALT mode • IDLE mode • Software STOP mode • Clock output inhibit mode The configuration of the clock generation functions is shown below. Figure 7-1. Block Diagram of Clock Generation Functions φ X1 CPU, On-chip peripheral I/O (fXX) X2 Clock generator CLKOUT CKSEL Remark φ : internal system clock Data Sheet U12261EJ2V1DS00 21 µPD703003 8. TIMER/COUNTER FUNCTIONS (REAL-TIME PULSE UNIT) The features of the timer/counter functions are shown below. • Measurement of pulse interval and frequency, programmable pulse output • 16-bit measurements enabled • Generates a variety of pulse patterns (interval pulse, one-shot pulse, etc.) • Timer 1 • 16-bit timer/event counter • Count clock sources: two types (selection of an internal system clock division, external pulse input) • Capture/compare (shared) registers: 16 • Count clear pins: TCLR11 to TCLR14 • Interrupt sources: 20 types • External pulse outputs: 8 • Timer 4 • 16-bit interval timer • Count clock: selected from an internal system clock division • Compare register: 1 • Interrupt sources: 1 22 Data Sheet U12261EJ2V1DS00 µPD703003 The configurations of the timer/counter functions are shown below. Figure 8-1. Block Diagram of Timer 1 (16-bit timer/event counter) Edge detect TCLR1n φ /2 φ /4 TI1n INTP1n0 φm φm φ m/4 φ m/8 φ m/32 Note 2 Clear and start Clear and start Note 1 INTOV1n TM1n (16 bits) Edge detect Edge detect INTCC1n0 INTCC1n1 CC1n0 S Q TO1n0 INTP1n1 Edge detect CC1n1 R Q INTP1n2 Edge detect CC1n2 S Q CC1n3 RNote3 Q Note3 TO1n1 INTP1n3 Edge detect INTCC1n2 INTCC1n3 Notes 1. Internal count clock 2. External count clock 3. Priority to reset Remark φ : internal system clock n = 1 to 4 Figure 8-2. Block Diagram of Timer 4 (16-bit interval timer) φ /2 φ /4 φ m φ /16 φ /32 Note φm φ m/32 TM4 (16-bit) Clear and start CM4 INTCM4 Note Internal count clock Remark φ : Internal system clock Data Sheet U12261EJ2V1DS00 23 µPD703003 9. SERIAL INTERFACE FUNCTIONS (SIO) Two types and six channels of serial interfaces are provided. Up to four channels may be used at the same time. (1) Asynchronous serial interfaces 0, 1 (UART0, UART1): 2 channels (2) Clock-synchronized serial interfaces 0 to 3 (CSI0 to CSI3): 4 channels Caution UART0 and CSI0 are a shared pin, as are UART1 and CSI1. Either one can be selected via a register (ASIM00, ASIM10). 9.1 Asynchronous Serial Interfaces 0, 1 (UART0, UART1) The features of the asynchronous serial interfaces 0, 1 (UART0, UART1) are shown below. • Transfer rate 150 bps to 76800 bps (@ φ = 33-MHz operation, using baud rate generator) 110 bps to 307200 bps (@ φ = 20-MHz operation, using baud rate generator) Maximum 1031 Kbytes (@ φ = 33-MHz operation, using φ/2) • Full duplex communications: Receive buffer (RXBn) included • Two-pin configuration TXDn: output pin for transmit data RXDn: input pin for receive data • Reception error detection function • Parity error • Framing error • Overrun error • Three types of interrupt sources • Reception error interrupt (INTSERn) • Reception completion interrupt (INTSRn) • Transmission completion interrupt (INTSTn) • The character length of transmit and receive data is specified via the ASIMn0, ASIMn1 register • Character lengths: 7 or 8 bits, or 9 bits (if using expansion bit) • Parity function: even, odd, zero, or no parity • Transmission stop bits: 1 or 2 bits • On-chip baud rate generator Remark n = 0, 1 φ : internal system clock 24 Data Sheet U12261EJ2V1DS00 µPD703003 The configuration of the asynchronous serial interfaces 0, 1 (UART0, UART1) are shown below. Figure 9-1. Block Diagram of Asynchronous Serial Interfaces 0, 1 (UART0, UART1) Internal bus 8 16/8 Receive buffer 8 ASIMn0 16/8 RXBn RXBnL 8 TXEn RXEn PSn1 PSn0 CLn SLn SCLSn ASIMn1 EBSn ASISn Receive shift register RXDn PEn FEn OVEn SOTn Transmit TXSn shift register TXSnL TXDn 1 16 INTSRn Transmission INTSERn control parity attachment INTSTn 1 16 1 2 Selector Reception control parity check φ Baud rate generator Remark n = 0, 1 φ : internal system clock Data Sheet U12261EJ2V1DS00 25 µPD703003 9.2 Clock-synchronized Serial Interfaces 0 to 3 (CSI0 to CSI3) The features of the clock-synchronized serial interfaces 0 to 3 (CSI0 to CSI3) are shown below. • Number of channels: 4 channels (CSIn) • High-speed transfer MAX 8.25 Mbps (@ φ = 33-MHz operation) • Half-duplex communications • Character length uses 8-bit unit • Switchable byte ordering (MSB first or LSB first) • Selectable external serial clock input/internal serial clock output • 3-wire type SOn: Serial data output SIn: Serial data input SCKn: Serial clock I/O • Interrupt source: 1 type • Transmission/reception completion interrupt (INTCSIn) Remark n = 0 to 3 φ : internal system clock 26 Data Sheet U12261EJ2V1DS00 µPD703003 The configuration of the clock-synchronized serial interfaces 0 to 3 (CSI0 to CSI3) is shown below. Figure 9-2. Block Diagram of Clock-synchronized Serial Interfaces 0 to 3 (CSI0 to CSI3) Internal bus CSIMn CTXEn CRXEn CSOTn MODn CLSn1 CLSn0 SO latch SIn Note Serial clock control circuit Serial clock counter Note 1 2 Selector SCKn Q Note Selector SOn D Shift register (SIOn) Interrupt control circuit Baud rate generator φ /2 φ INTCSIn SO0 to SO2, SCK0 to SCK2: CMOS outputs SO3, SCK3: N-ch open-drain outputs Remark n = 0 to 3 φ : internal system clock Data Sheet U12261EJ2V1DS00 27 µPD703003 9.3 Baud Rate Generators 0 to 2 (BRG0 to BRG2) The features of the baud rate generators 0 to 2 (BRG0 to BRG2) are shown below. • Serial clock can be selected via baud rate generator output and φ (internal system clock) • Identical baud rates during transmission and reception The configuration of the baud rate generators 0 to 2 (BRG0 to BRG2) is shown below. Figure 9-3. Block Diagram of Baud Rate Generators 0 to 2 (BRG0 to BRG2) Baud rate generator 0 CSI0 φ TMBRG0 Prescaler UART1 Baud rate generator 1 CSI1 CSI2 Baud rate generator 2 CSI3 28 BPR00 Match Clear Data Sheet U12261EJ2V1DS00 1 2 Internal bus UART0 BPR01 BRG0 BPR02 BRCE0 BPRM0 µPD703003 10. PWM UNIT The features of the PWM unit are shown below. • PWMn: 2 channels • Selectable active level for PWMn output pulse • Operating clock selectable as φ, φ/2, φ/4, φ/8, or φ/16 (φ : internal system clock) • PWMn output resolution selectable as 8, 9, 10, or 12 bits Remark n = 0, 1 The configuration of the PWM unit is shown below. Figure 10-1. Block Diagram of PWM Unit 7 8 φ φ /2 φ /4 φ /8 φ /16 9 TMPn (12 bits) 11 Overflow ALVn 0-7 0-8 0-9 Comparator 0-11 S Match Q PWMn RNote CMPn (12 bits) PWMn (12 bits) Note Priority to reset Remark n = 0, 1 φ : internal system clock Data Sheet U12261EJ2V1DS00 29 µPD703003 11. A/D CONVERTER The features of the A/D converter are shown below. • Analog inputs: 8 channels • On-chip 10-bit A/D converter • On-chip A/D conversion result registers (ADCR0 to ADCR7) 10 bits × 8 registers • A/D conversion trigger modes A/D trigger mode Timer trigger mode External trigger mode • Sequential conversion method The configuration of the A/D converter is shown below. Figure 11-1. Block Diagram of A/D Converter Series resistor string ANI0 Sample & hold circuit Input circuit ANI2 Tap selector ANI1 ANI3 ANI4 ANI5 ANI6 Voltage comparator ANI7 9 0 SAR (10) 10 10 INTAD 9 ADCR0 INTCC110 INTCC111 INTCC112 INTCC113 ADTRG 0 ADCR1 Controller ADCR2 ADCR3 Noise Edge elimination detection ADCR4 ADCR5 7 0 7 0 ADCR6 ADM0 (8) ADM1 (8) ADCR7 8 8 10 Internal bus 30 Data Sheet U12261EJ2V1DS00 R/2 AVREF1 R R/2 AVSS AVDD µPD703003 12. D/A CONVERTER The features of the D/A converter are shown below. • 8-bit resolution D/A converter: 2 channels • R-2R conversion method The configuration of the D/A converter is shown below. Figure 12-1. Block Diagram of D/A Converter 2R AVREF2 ANOn R 2R Selector 2R R 2R AVREF3 DACSn DACEn Internal bus Remark n = 0, 1 Data Sheet U12261EJ2V1DS00 31 µPD703003 13. PORT FUNCTIONS The features of the port functions are shown below. • Number of ports Input-only ports: 8 I/O ports: 67 • Alternated as I/O pins for other peripheral functions • I/O setting can be specified bitwise • Noise elimination • Edge detection The configurations of the port functions are shown below. Figure 13-1. Block Diagram of P00 and P01 (Port 0) WRPMC PMC0n WRPM TO11n Selector P0n RDIN Address Remark n = 0, 1 32 Data Sheet U12261EJ2V1DS00 P0n Selector WRPORT Selector Internal bus PM0n µPD703003 Figure 13-2. Block Diagram of P02 to P07 (Port 0) WRPMC PMC0n WRPM Internal bus PM0n WRPORT P0n Selector Selector P0n Address RDIN INTP110-INTP112, INTP113/ADTRG, TCLR11, TI11 Noise elimination Edge detection Remark n = 2 to 7 Figure 13-3. Block Diagram of P10 and P11 (Port 1) WRPMC PMC1n WRPM Selector P1n RDIN P1n Selector TO12n WRPORT Selector Internal bus PM1n Address Remark n = 0, 1 Data Sheet U12261EJ2V1DS00 33 µPD703003 Figure 13-4. Block Diagram of P12 to P14 (Port 1) WRPMC PMC1n WRPM Internal bus PM1n WRPORT P1n Selector Selector P1n Address RDIN Noise elimination Edge detection TCLR12, TI12 INTP120 Remark n = 2 to 4 Figure 13-5. Block Diagram of P15 (Port 1) PCM1 WRPMC PMC15 WRPM SO2 Selector P15 Address RDIN INTP121 34 P15 Selector WRPORT Selector Internal bus PM15 Noise elimination Edge detection Data Sheet U12261EJ2V1DS00 PCM1 µPD703003 Figure 13-6. Block Diagram of P16 (Port 1) WRPMC PMC16 WRPM Internal bus PM16 WRPORT P16 Selector Selector P16 Address RDIN Noise elimination Edge detection INTP122 SI2 PCM1 Figure 13-7. Block Diagram of P17 (Port 1) SCK2 I/O switch PCM1 WRPMC PMC17 WRPM P17 P17 Selector SCK2 output Selector WRPORT Selector Internal bus PM17 Address RDIN INTP123 Noise elimination Edge detection SCK2 output Data Sheet U12261EJ2V1DS00 PCM1 35 µPD703003 Figure 13-8. Block Diagram of P20 and P21 (Port 2) WRPMC PMC2n WRPM WRPORT Selector Internal bus PM2n PWM0, PWM1 P2n Selector Selector P2n RDIN Address Remark n = 0, 1 Figure 13-9. Block Diagram of P22 and P25 (Port 2) SO0, SO1 output enable WRPMC PMC2n WRPM TXD0/SO0 TXD1/SO1 Selector P2n RDIN Address Remark n = 2, 5 36 Data Sheet U12261EJ2V1DS00 P2n Selector WRPORT Selector Internal bus PM2n µPD703003 Figure 13-10. Block Diagram of P23 and P26 (Port 2) WRPMC PMC2n WRPM Internal bus PM2n WRPORT P2n Selector Selector P2n Address RDIN RXD0/SI0 RXD1/SI1 Remark n = 3, 6 Figure 13-11. Block Diagram of P24 and P27 (Port 2) SCK0, SCK1 I/O switch WRPMC PMC2n WRPM SCK0 output SCK1 output Selector P2n RDIN P2n Selector WRPORT Selector Internal bus PM2n Address SCK0 input SCK1 input Remark n = 4, 7 Data Sheet U12261EJ2V1DS00 37 µPD703003 Figure 13-12. Block Diagram of P30 and P31 (Port 3) WRPMC PMC3n WRPM Selector Internal bus PM3n TO13n WRPORT P3n RDIN Selector Selector P3n Address Remark n = 0, 1 Figure 13-13. Block Diagram of P32 to P34 (Port 3) WRPMC PMC3n WRPM Internal bus PM3n WRPORT P3n RDIN TCLR13, TI13 INTP130 Selector Selector P3n Address Noise elimination Edge detection Remark n = 2 to 4 38 Data Sheet U12261EJ2V1DS00 µPD703003 Figure 13-14. Block Diagram of P35 (Port 3) SO3 output enable PUO3 PCM3 WRPMC PMC35 VDD Internal bus WRPM P SO3 Selector P35 P P35 N Selector WRPORT Selector PM35 Address RDIN Noise elimination Edge detection INTP131 PCM3 Figure 13-15. Block Diagram of P36 (Port 3) WRPMC PUO3 PMC36 VDD Internal bus WRPM P PM36 WRPORT P N P36 Selector Selector P36 Address RDIN INTP132 Noise elimination Edge detection SI3 PCM3 Data Sheet U12261EJ2V1DS00 39 µPD703003 Figure 13-16. Block Diagram of P37 (Port 3) WRPMC SCK3 I/O switch PCM3 PUO3 PMC37 VDD Internal bus WRPM P WRPORT Selector PM37 SCK3 output P37 N Selector Selector P37 P Address RDIN INTP133 Noise elimination Edge detection SCK3 input PCM3 Figure 13-17. Block Diagram of P40 to P47 (Port 4) MODE MM0 to MM2 I/O control circuit WRPM WRPORT AD0 to AD7 output Selector Selector P4n Address RDIN AD0 to AD7 input Remark n = 0 to 7 40 Data Sheet U12261EJ2V1DS00 P4n Selector Internal bus PM4n µPD703003 Figure 13-18. Block Diagram of P50 to P57 (Port 5) MODE MM0 to MM2 I/O control circuit WRPM WRPORT AD8 to AD15 output Selector Internal bus PM5n P5n Selector Selector P5n Address RDIN AD8 to AD15 input Remark n = 0 to 7 Figure 13-19. Block Diagram of P60 to P63 (Port 6) MODE MM0 to MM2 I/O control circuit WRPM A16 to A19 output Selector P6n P6n Selector WRPORT Selector Internal bus PM6n Address RDIN Remark n = 0 to 3 Data Sheet U12261EJ2V1DS00 41 µPD703003 Internal bus Figure 13-20. Block Diagram of P70 to P77 (Port 7) P7n ANI0 to ANI7 Sample & hold circuit RDIN Remark n = 0 to 7 Figure 13-21. Block Diagram of P90 to P95 (Port 9) MODE MM0 to MM3 I/O control circuit WRPM LBEN, UBEN, R/W, DSTB, ASTB, HLDAK Selector P9n P9n Selector WRPORT Selector Internal bus PM9n Address RDIN Remark n = 0 to 5 42 Data Sheet U12261EJ2V1DS00 µPD703003 Figure 13-22. Block Diagram of P96 (Port 9) MM3 I/O control circuit WRPM WRPORT P96 P96 Selector Selector Internal bus PM96 Address RDIN HLDRQ Figure 13-23. Block Diagram of P110 and P111 (Port 11) WRPMC PMC11n WRPM TO14n Selector P11n RDIN P11n Selector WRPORT Selector Internal bus PM11n Address Remark n = 0, 1 Data Sheet U12261EJ2V1DS00 43 µPD703003 Figure 13-24. Block Diagram of P112 to P117 (Port 11) WRPMC PMC11n WRPM Internal bus PM11n WRPORT P11n Address RDIN TCLR14, TI14 INTP140 to INTP143 Noise elimination Edge detection Remark n = 2 to 7 44 Data Sheet U12261EJ2V1DS00 Selector Selector P11n µPD703003 14. RESET FUNCTIONS When low-level input occurs at the RESET pin, a system reset is performed and the various on-chip hardware devices are reset to their initial settings. When the input at the RESET pin changes from low level to high level, the reset status is canceled and the CPU resumes program execution. The contents of the various registers should be initialized within the program as necessary. The feature of the reset functions is shown below. • On-chip noise elimination circuit which uses analog delay (≅ 60 ns) for the RESET pin Data Sheet U12261EJ2V1DS00 45 µPD703003 15. INSTRUCTION SET • How to read instruction set tables Indicates the instruction group. Instructions are listed in these table according to their respective groups. Indicates the mnemonic abbreviation for the instruction. Indicates the instruction's operands (see Table 15-1). Indicates the instruction binary code. The binary codes for 32-bit instructions are shown in two levels (see Table 15-2). Indicates instruction operation (see Table 15-3). Instruction group Indicates flag operations (see Table 15-4). Flags Mnemonic Operand Opcode Operation CY Table 15-1. Symbols Used to Indicate Operands Symbol Description reg1 General registers (r0 to r31): used as source registers reg2 General registers (r0 to r31): mainly used as destination registers ep Element pointer (r30) bit#3 3-bit data used to specify bit number immX X bits immediate dispX X bits displaced regID System register number vector 5-bit data used to specify trap vector (00H to 1FH) cccc 4-bit data used to indicate condition code 46 Data Sheet U12261EJ2V1DS00 OV S Z SAT µPD703003 Table 15-2. Symbols Used to Indicate Opcodes Symbol Description R 1-bit data of code specifying reg1 or regID r 1-bit data of code specifying reg2 d 1 bit of displaced data i 1 bit of immediate data cccc 4-bit data used to indicate condition code bbb 3-bit data used to specify bit number Table 15-3. Symbols Used to Indicate Operations Symbol Description ← Assign GR [ ] General register SR [ ] System register zero-extend (n) Zero-extend n up until word length sign-extend (n) Sign-extend n up until word length load-memory (a, b) Read data having size b from address a store-memory (a, b, c) Replace data b at address a with data having size c load-memory-bit (a, b) Read bit b from address a store-memory-bit (a, b, c) Write c to bit b from address a saturated (n) Execute saturation processing for n (n = complement to 2) Calculation of n: When n ≥ 7FFFFFFFH, result is 7FFFFFFFH. When n ≤ 80000000H, result is 80000000H. result Result is indicated by flag operations Byte Byte (8 bits) Halfword Half word (16 bits) Word Word (32 bits) + Add – Subtract || Bit linkage × Multiply ÷ Divide AND Logical AND OR Logical OR XOR Exclusive OR NOT Logical NOT logically shift left by Logical shift left logically shift right by Logical shift right arithmetically shift right by Arithmetic shift right Data Sheet U12261EJ2V1DS00 47 µPD703003 Table 15-4. Flag Operations Identifier (Blank) Description No change 0 Clear to zero × Set or clear according to result R Restore previously saved value(s) Table 15-5. Condition Codes Condition name (cond) Condition code (cccc) Conditional expression Description V 0000 OV = 1 Overflow NV 1000 OV = 0 No overflow C/L 0001 CY = 1 Carry Lower (Less than) NC/NL 1001 CY = 0 No carry No lower (Greater than or equal) Z/E 0010 Z=1 Zero Equal NZ/NE 1010 Z=0 Not zero Not equal NH 0011 (CY OR Z) = 1 Not higher (Less than or equal) H 1011 (CY OR Z) = 0 Higher (Greater than) N 0100 S=1 Negative P 1100 S=0 Positive T 0101 – Always (unconditional) SA 1101 SAT = 1 Saturated LT 0110 (S XOR OV) = 1 Less than signed GE 1110 (S XOR OV) = 0 Greater than or equal signed LE 0111 ((S XOR OV) OR Z) = 1 Less than or equal signed GT 1111 ((S XOR OV) OR Z) = 0 Greater than signed 48 Data Sheet U12261EJ2V1DS00 µPD703003 Instruction Set List Instruction Mnemonic group Operand Opcode Operation CY OV S Z SAT Load/store SLD.B instructions disp7[ep], reg2 r r r r r 0 1 1 0 d d d d d d d adr ← ep + zero-extend (disp7) GR[reg2] ← sign-extend (Load-memory (adr, Byte)) SLD.H disp8[ep], reg2 r r r r r 1 0 0 0 d d d d d d d adr ← ep + zero-extend (disp8) Note 1 GR[reg2] ← sign-extend (Load-memory (adr, Halfword)) SLD.W disp8[ep], reg2 r r r r r 1 0 1 0 d d d d d d 0 adr ← ep + zero-extend (disp8) Note 2 GR[reg2] ← Load-memory (adr, Word) LD.B disp16[reg1], reg2 r r r r r 1 1 1 0 0 0 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d d GR[reg2] ← sign-extend (Load-memory (adr, Byte)) LD.H disp16[reg1], reg2 r r r r r 1 1 1 0 0 1 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d 0 GR[reg2] ← sign-extend (Load-memory (adr, Halfword)) Note 3 LD.W disp16[reg1], reg2 r r r r r 1 1 1 0 0 1 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d 1 GR[reg2] ← Load-memory (adr, Word) Note 3 SST.B reg2, disp7[ep] r r r r r 0 1 1 1 d d d d d d d adr ← ep + zero-extend (disp7) Store-memory (adr, GR[reg2], Byte) SST.H reg2, disp8[ep] r r r r r 1 0 0 1 d d d d d d d adr ← ep + zero-extend (disp8) Note 1 Store-memory (adr, GR[reg2], Halfword) SST.W reg2, disp8[ep] r r r r r 1 0 1 0 d d d d d d 1 adr ← ep + zero-extend (disp8) Note 2 Store-memory (adr, GR[reg2], Word) ST.B reg2, disp16[reg1] r r r r r 1 1 1 0 1 0 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d d Store-memory (adr, GR[reg2], Byte) ST.H reg2, disp16[reg1] r r r r r 1 1 1 0 1 1 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d 0 Store-memory (adr, GR[reg2], Halfword) Note 3 ST.W reg2, disp16[reg1] r r r r r 1 1 1 0 1 1 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d 1 Store-memory (adr, GR[reg2], Word) Note 3 reg1, reg2 r r r r r 0 0 0 0 0 0 RRRRR GR[reg2] ← GR[reg1] imm5, reg2 r r r r r 010000 i i i i i Arithmetic MOV operation MOV instructions MOVHI Flags GR[reg2] ← sign-extend (imm5) imm16, reg1, reg2 r r r r r 1 1 0 0 1 0 RRRRR GR[reg2] ← GR[reg1] + (imm16 || 016) i i i i i i i i i i i i i i i i MOVEA imm16, reg1, reg2 r r r r r 1 1 0 0 0 1 RRRRR GR[reg2] ← GR[reg1] + sign-extend (imm16) i i i i i i i i i i i i i i i i ADD reg1, reg2 r r r r r 0 0 1 1 1 0 RRRRR GR[reg2] ← GR[reg2] + GR[reg1] ADD imm5, reg2 r r r r r 010010 i i i i i ADDI imm16, reg1, reg2 r r r r r 1 1 0 0 0 0 RRRRR GR[reg2] ← GR[reg1] + sign-extend (imm16) i i i i i i i i i i i i i i i i SUB reg1, reg2 SUBR reg1, reg2 × × × × × × × × × × × × r r r r r 0 0 1 1 0 1 RRRRR GR[reg2] ← GR[reg2] – GR[reg1] × × × × r r r r r 0 0 1 1 0 0 RRRRR GR[reg2] ← GR[reg1] – GR[reg2] × × × × GR[reg2] ← GR[reg2] + sign-extend (imm5) Notes 1. ddddddd = high-order 7 bits of disp8 2. dddddd = high-order 6 bits of disp8 3. ddddddddddddddd = high-order 15 bits of disp16 Data Sheet U12261EJ2V1DS00 49 µPD703003 Instruction Mnemonic group Arithmetic MULH operation instructions MULH Operand Opcode Operation Flags CY OV S Z SAT reg1, reg2 r r r r r 0 0 0 1 1 1 RRRRR GR[reg2] ← GR[reg2]Note GR[reg2] ← GR[reg2]Note × GR[reg1]Note (signed multiplication) imm5, reg2 r r r r r 010111 i i i i i × sign-extend (imm5) (signed multiplication) MULHI imm16, reg1, reg2 r r r r r 1 1 0 1 1 1 RRRRR GR[reg2] ← GR[reg1] Note × imm16 i i i i i i i i i i i i i i i i (signed multiplication) DIVH reg1, reg2 r r r r r 0 0 0 0 1 0 RRRRR GR[reg2] ← GR[reg2] ÷ GR[reg1] Note (signed division) CMP reg1, reg2 r r r r r 0 0 1 1 1 1 RRRRR result ← GR[reg2] – GR[reg1] CMP imm5, reg2 r r r r r 010011 i i i i i SETF cccc, reg2 r r r r r 1 1 1 1 1 1 0 c c c c if conditions are satisfied 0000000000000000 then GR[reg2] ← 00000001H else GR[reg2] ← 00000000H × × × × × × × × × × × × × × × × × × × × × × × × × × SATSUBI imm16, reg1, reg2 r r r r r 1 1 0 0 1 1 RRRRR GR[reg2] ← saturated (GR[reg1] – sign-extend (imm16)) × i i i i i i i i i i i i i i i i × × × × × × × × Saturated SATADD reg1, reg2 operation SATADD imm5, reg2 instructions SATSUB reg1, reg2 SATSUBR reg1, reg2 result ← GR[reg2] – sign-extend (imm5) r r r r r 0 0 0 1 1 0 RRRRR GR[reg2] ← saturated (GR[reg2] + GR[reg1]) r r r r r 010001 i i i i i GR[reg2] ← saturated (GR[reg2] + sign-extend (imm5)) r r r r r 0 0 0 1 0 1 RRRRR GR[reg2] ← saturated (GR[reg2] – GR[reg1]) r r r r r 0 0 0 1 0 0 RRRRR GR[reg2] ← saturated (GR[reg1] – GR[reg2]) × Logical TST operation OR instruction ORI reg1, reg2 r r r r r 0 0 1 0 1 1 RRRRR result ← GR[reg2]AND GR[reg1] 0 × × reg1, reg2 r r r r r 0 0 1 0 0 0 RRRRR GR[reg2] ← GR[reg2]OR GR[reg1] 0 × × 0 × × AND reg1, reg2 0 × × ANDI imm16, reg1, reg2 r r r r r 1 1 0 1 1 0 RRRRR GR[reg2] ← GR[reg1]AND zero-extend (imm16) i i i i i i i i i i i i i i i i XOR reg1, reg2 XORI imm16, reg1, reg2 r r r r r 1 1 0 1 0 1 RRRRR GR[reg2] ← GR[reg1]XOR zero-extend (imm16) i i i i i i i i i i i i i i i i NOT reg1, reg2 r r r r r 0 0 0 0 1 RRRRR SHL reg1, reg2 r r r r r 1 1 1 1 1 1 RRRRR GR[reg2] ← GR[reg2]logically shift left by GR[reg1] 0000000011000000 SHL imm5, reg2 r r r r r 010110 i i i i i SHR imm16, reg1, reg2 r r r r r 1 1 0 1 0 0 RRRRR GR[reg2] ← GR[reg1]OR zero-extend (imm16) i i i i i i i i i i i i i i i i r r r r r 0 0 1 0 1 0 RRRRR GR[reg2] ← GR[reg2]AND GR[reg1] r r r r r 0 0 1 0 0 1 RRRRR GR[reg2] ← GR[reg2]XOR GR[reg1] 0 × × 0 × × 0 × × × 0 × × GR[reg2] ← GR[reg2]logically shift left by × zero-extend (imm5) 0 × × reg1, reg2 r r r r r 1 1 1 1 1 1 RRRRR GR[reg2] ← GR[reg2]logically shift right by GR[reg1] × 0000000010000000 0 × × SHR imm5, reg2 r r r r r 010100 i i i i i GR[reg2] ← GR[reg2]logically shift right by × zero-extend (imm5) 0 × × SAR reg1, reg2 r r r r r 1 1 1 1 1 1 RRRRR GR[reg2] ← GR[reg2]arithmetically shift right by × 0000000010100000 GR[reg1] 0 × × SAR imm5, reg2 r r r r r 010101 i i i i i GR[reg2] ← GR[reg2]arithmetically shift right by × zero-extend (imm5) 0 × × GR[reg2] ← NOT (GR[reg1]) Note Only the low-order half word is valid. 50 0 0 × Data Sheet U12261EJ2V1DS00 µPD703003 Instruction Mnemonic group Operand Opcode Operation CY OV S Z SAT [reg1] 0 0 0 0 0 0 0 0 0 1 1 RRRRR PC ← GR[reg1] disp22 0 0 0 0 0 1 1 1 1 0 d d d d d d PC ← PC + sign-extend (disp22) ddddddddddddddd0 Note 1 JARL disp22, reg2 r r r r r 1 1 1 1 0 d d d d d d GR[reg2] ← PC + 4 d d d d d d d d d d d d d d d 0 PC ← PC + sign-extend (disp22) Note 1 Bcond disp9 d d d d d 1 0 1 1 d d d c c c c if conditions are satisfied Note 2 then PC ← PC + sign-extend (disp9) Branch JMP instructions JR Flags Bit SET1 manipulation instructions bit#3, disp16[reg1] 0 0 b b b 1 1 1 1 1 0 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d d Z flag ← Not (Load-memory-bit (adr, bit#3)) Store-memory-bit (adr, bit#3, 1) × CLR1 bit#3, disp16[reg1] 1 0 b b b 1 1 1 1 1 0 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d d Z flag ← Not (Load-memory-bit (adr, bit#3)) Store-memory-bit (adr, bit#3, 0) × NOT1 bit#3, disp16[reg1] 0 1 b b b 1 1 1 1 1 0 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d d Z flag ← Not (Load-memory-bit (adr, bit#3)) Store-memory-bit (adr, bit#3, Z flag) × TST1 bit#3, disp16[reg1] 1 1 b b b 1 1 1 1 1 0 RRRRR adr ← GR[reg1] + sign-extend (disp16) d d d d d d d d d d d d d d d d Z flag ← Not (Load-memory-bit (adr, bit#3)) × Notes 1. ddddddddddddddddddddd = high-order 21 bits of disp22 2. dddddddd = high-order 8 bits of disp9 Data Sheet U12261EJ2V1DS00 51 µPD703003 Instruction Mnemonic group Special LDSR Operand Opcode Operation Flags CY OV S Z SAT reg2, regID instructions r r r r r 1 1 1 1 1 1 RRRRR SR[regID] ← GR[reg2] 0000000000100000 Note regID = EIPC, FEPC regID = EIPSW, FEPSW regID = PSW STSR regID, reg2 r r r r r 1 1 1 1 1 1 RRRRR GR[reg2] ← SR[regID] 0000000001000000 TRAP vector 0 0 0 0 0 1 1 1 1 1 1 i i i i i EIPC ← PC + 4 (restored PC) 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 EIPSW ← PSW ECR.EICC ← Interrupt code PSW.EP ← 1 PSW.ID ← 1 PC ← 00000040H (when vector is 00H to 0FH) 00000050H (when vector is 10H to 1FH) RETI 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 if PSW.EP = 1 0000000101000000 then PC ← EIPC PSW ← EIPSW else if PSW.NP = 1 then PC ← FEPC PSW ← FEPSW else PC ← EIPC PSW ← EIPSW HALT 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 Stops 0000000100100000 DI 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID ← 1 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 (maskable interrupt prohibit) EI 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 PSW.ID ← 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 (maskable interrupt enable) NOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 No operation, uses at least one clock × × × × × R R R R R Note In this instructions, “reg2” is the mnemonic abbreviation for the source register, but the reg1 field is used for the opcode. Consequently, these instructions differ from other instructions in a way registers are specified in mnemonics description and opcodes. rrrrr = regID specification RRRRR = reg2 specification 52 Data Sheet U12261EJ2V1DS00 µPD703003 16. ELECTRICAL SPECIFICATIONS Absolute Maximum Ratings (TA = 25°C) Parameter Rating Units –0.5 to +7.0 V CVDD pin –0.5 to VDD + 0.3 V CVSS CVSS pin –0.5 to +0.5 V AVDD AVDD pin –0.5 to VDD + 0.3 V AVSS AVSS pin –0.5 to +0.5 V Input voltage VI1 Note, VDD = 5.0 V ±10 % –0.5 to VDD + 0.3 V Clock input voltage VK X1 pin, VDD = 5.0 V ±10 % –0.5 to VDD + 1.0 V Low-level output current IOL 1 pin 4.0 mA Total for all pins 100 mA 1 pin –4.0 mA Power supply voltage Symbol Condition VDD VDD pin CVDD High-level output current IOH Output voltage VO VDD = 5.0 V ±10 % Analog input voltage VIAN P70/ANI0 to P77/ANI7 Analog reference input voltage AVREF AVREF1 to AVREF3 Total for all pins –100 mA –0.5 to VDD + 0.3 V AVDD > VDD –0.5 to VDD + 0.3 V VDD ≥ AVDD –0.5 to AVDD + 0.3 V AVDD > VDD –0.5 to VDD + 0.3 V VDD ≥ AVDD –0.5 to AVDD + 0.3 V Operating temperature TA –40 to +85 °C Storage temperature Tstg –65 to +150 °C Note X1, P70/ANI0 to P77/ANI7, and AV REF1 to AV REF3 are excluded. Cautions 1. Be sure to avoid direct connections among the IC device output (or I/O) pins and between V DD or V CC and GND. However, open-drain pins and open collector pins can be directly connected. A direct connection to an external circuit can be made to avoid conflicting output from high-impedance pins if the external circuit is designed for the correct timing. 2. If the absolute maximum rating for any of the above parameters is exceeded even momentarily, it may adversely affect the quality of this product. In other words, these absolute maximum ratings have been set to prevent physical damage to the product. Do not use the product in such a way as to exceed any of these ratings. The ratings and conditions shown below for DC characteristics and AC characteristics are within the range for normal operation and quality assurance. Capacitance (TA = 25°C, VDD = VSS = 0 V) Parameter Symbol Input capacitance CI I/O capacitance CIO Output capacitance CO Condition fC = 1 MHz All pins are 0 V except for testing pin. Data Sheet U12261EJ2V1DS00 MIN. TYP. MAX. Units 15 pF 15 pF 15 pF 53 µPD703003 Recommended Operating Conditions Operation Mode Internal Operating Clock Frequency (φ) Operating Ambient Temperature (TA) Power Supply Voltage (VDD) 0 to 33 MHzNote 1 –40 to +85°C 5.0 V ±10% MHzNote 2 –40 to +85°C 5.0 V ±10% –40 to +85°C 5.0 V ±10% Direct mode 5 to 33 PLL mode Free-running oscillation frequency to 33 MHz Notes 1. When not using A/D converter 2. When using A/D converter Remark The range of internal operating clock frequency in PLL mode is the assured range of function operation. PLL locked frequency is specified by t CYX. Recommended Oscillator (a) Ceramic oscillation resonator connection (TA = –40 to +85°C) X1 X2 C1 Oscillation Manufacturer TDK Part Number C2 Frequency Recommended Circuit Constant fXX (MHz) C1 (pF) C2 (pF) Oscillation Voltage Oscillation Stabilization Range Time (MAX.) MIN. (V) MAX. (V) TOST (ms) CCR5.0MC3 5.0 On-chip On-chip 4.5 5.5 0.36 FCR5.0MC5 5.0 On-chip On-chip 4.5 5.5 0.32 CCR6.6MC3 6.6 On-chip On-chip 4.5 5.5 0.28 Murata Mfg. CSA5.00MG040 5.0 100 100 4.5 5.5 0.46 CST5.00MGW040 5.0 On-chip On-chip 4.5 5.5 0.46 CSA6.60MTZ040 6.6 100 100 4.5 5.5 0.42 CST6.60MTW040 6.6 On-chip On-chip 4.5 5.5 0.42 Cautions 1. Set the oscillator as close to the X1 and X2 pins as possible. 2. No other signal lines should be wired in the area enclosed by broken lines. 3. When matching µ PD703003 with a resonator, be sure to perform sufficient evaluation. 54 Data Sheet U12261EJ2V1DS00 µPD703003 (b) External clock input X1 X2 Open High-speed CMOS inverter External clock Cautions 1. Set high-speed CMOS inverter as close as possible to the X1 pin. 2. When matching µ PD703003 and a high-speed CMOS inverter, be sure to perform sufficient evaluation. Data Sheet U12261EJ2V1DS00 55 µPD703003 DC Characteristics (TA = –40 to +85°C, VDD = 5.0 V ±10%, VSS = 0 V) Parameter High-level input voltage Symbol VIH (1/2) Condition MIN. MAX. Units Except for X1 and pins listed in Note 2.2 VDD + 0.3 V 0.8 VDD VDD + 0.3 V –0.5 +0.8 V Note Except for X1 and pins listed in Note TYP. Low-level input voltage VIL –0.5 0.2 VDD V High-level clock input voltage VXH X1 0.8 VDD VDD + 0.5 V Low-level clock input voltage VXL X1 –0.5 +0.6 V Schmitt trigger input Threshold voltage VT + Note, rising edge 3.0 V VT – Note, falling edge 2.0 V Schmitt trigger input hysteresis width VT+ – VT– Note High-level output voltage VOH Low-level output voltage VOL IOL = 2.5 mA High-level input leak current ILIH Low-level input leak current High-level output leak current Low-level output leak current Software pull-up resistance Note 0.5 V IOH = –2.5 mA 0.7 VDD V IOH = –100 µA VDD – 0.5 V 0.45 V VI = VDD 10 µA ILIL VI = 0 V –10 µA ILOH VO = VDD 10 µA ILOL VO = 0 V –10 µA R P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3 90 kΩ 15 40 Note P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/ INTP121/SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, P32/TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/ SCK3, P112/TCLR14, P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE Remarks 1. TYP. values are reference values for when TA = 25°C and VDD = 5.0 V. 2. φ = Internal system clock frequency 56 Data Sheet U12261EJ2V1DS00 µPD703003 DC Characteristics (TA = –40 to +85°C, VDD = 5.0 V ±10%, VSS = 0 V) Parameter Symbol Power supply current When operating IDD1 Condition (2/2) MIN. TYP. MAX. Units Direct modeNote 2.4 × φ + 6 2.8 × φ + 19 mA PLL mode 2.5 × φ + 8 2.9 × φ + 22 mA 1.4 × φ + 5 1.5 × φ + 18 mA modeNote During IDD2 HALT mode Direct PLL mode 1.5 × φ + 7 1.6 × φ + 20 mA During IDLE mode Direct modeNote 18.6 × φ + 100 22 × φ + 200 µA PLL mode 0.05 × φ + 4 0.1 × φ + 8 mA IDD3 During IDD4 STOP mode –40°C ≤ TA ≤ +50°C 2 50 µA 50°C < TA ≤ 85°C 2 200 µA Note When using A/D converter: φ = 5 to 33 MHz When not using A/D converter: φ = 0 to 33 MHz Remarks 1. TYP. values are reference values for when TA = 25°C and VDD = 5.0 V. The power supply current does not include AVREF1 to AVREF3 or the current that flows across the software pull-up resistance. 2. φ = Internal system clock frequency Data Sheet U12261EJ2V1DS00 57 µPD703003 Data Hold Characteristics (TA = –40 to +85°C) Parameter Symbol Conditions Data hold voltage VDDDR STOP mode Data hold current IDDDR VDD = VDDDR MIN. TYP. 1.5 MAX. Units 5.5 V –40°C ≤ TA ≤ +50°C 0.2 VDDDR 50 µA 50°C < TA ≤ 85°C 0.2 VDDDR 200 µA Power supply voltage rise time tRVD 200 µs Power supply voltage fall time tFVD 200 µs Power supply voltage hold time (vs. STOP mode setting) tHVD 0 ms STOP mode release signal input time tDREL 0 ns Data hold high-level input voltage VIHDR Note 0.9 VDDDR VDDDR V Data hold low-level input voltage VILDR Note 0 0.1 VDDDR V Note P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/ INTP121/SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, P32/TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/ SCK3, P112/TCLR14, P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE, X1 Remark TYP. values are reference values for when TA = 25°C and V DD = 5.0 V. STOP mode setting (fifth clock after PSC register is set) VDD VDD VDD VDDDR tHVD RESET (input) NMI (input) (Released at falling edge) tFVD tRVD VIHDR VIHDR NMI (input) (Released at rising edge) VILDR 58 Data Sheet U12261EJ2V1DS00 tDREL µPD703003 AC Characteristics (TA = –40 to +85°C, VDD = 5 V ±10%, VSS = 0 V) AC test input waveform (a) P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/INTP121/ SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/SCK1, P32/ TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/SCK3, P112/TCLR14, P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE, X1 VDD 0.8 VDD 0.8 VDD Test points 0V 0.2 VDD 0.2 VDD (b) Pins other than those listed in (a) above 2.4 V 2.2 V 2.2 V Test points 0.4 V 0.8 V 0.8 V AC test output test points 2.2 V 2.2 V Test points 0.8 V 0.8 V Load condition DUT (Device Under Testing) CL = 50 pF Caution In cases where the load capacitance is greater than 50 pF due to the circuit configuration, insert a buffer or other element to reduce the device’s load capacitance to below 50 pF. Data Sheet U12261EJ2V1DS00 59 µPD703003 (1) Clock timing Parameter Symbol X1 input cycle <1> X1 input high-level width <2> tCYX tWXH X1 input low-level width <3> tWXL X1 input rise time <4> tXR X1 input fall time Conditions <5> tXF — φ 25-MHz Version Units MAX. MIN. MAX. Direct mode 20 Note 1 15 Note 1 ns PLL mode (PLL locked) 200 250 150 250 ns Direct mode 7 6 ns PLL mode 80 60 ns Direct mode 7 6 ns PLL mode 80 60 ns Direct mode 7 7 ns PLL mode 15 10 ns Direct mode 7 7 ns PLL mode CPU operating frequency 33-MHz Version MIN. 10 ns Direct mode Note 2 15 25 Note 2 33 MHz PLL mode Note 3 25 Note 3 33 MHz Note 4 30 Note 4 CLKOUT output cycle <6> tCYK 40 CLKOUT input high-level width <7> tWKH 0.5T – 5 0.5T – 5 ns CLKOUT input low-level width <8> tWKL 0.5T – 5 0.5T – 5 ns <9> CLKOUT input rise time ns tKR 5 5 ns CLKOUT input fall time <10> tKF 5 5 ns X1 ↓ → CLKOUT delay time <11> tDXK 17 ns Direct mode Notes 1. When using A/D converter 3 17 3 : 100 ns When not using A/D converter : DC 2. When using A/D converter : 5 MHz When not using A/D converter : 0 MHz 3. Free-running oscillation frequency 4. When using A/D converter : 200 ns When not using A/D converter : DC Remark T = t CYK Parameter Symbol Free-running oscillation frequency — φP Conditions PLL mode TYP. Units 5 MHz <1> <2> <3> X1 (input) <4> <11> <5> <6> <11> <7> <8> CLKOUT (output) <9> 60 Data Sheet U12261EJ2V1DS00 <10> µPD703003 (2) Input waveform (a) P02/TCLR11, P03/TI11, P04/INTP110 to P07/INTP113, P12/TCLR12, P13/TI12, P14/INTP120, P15/ INTP121/SO2, P16/INTP122/SI2, P17/INTP123/SCK2, P23/RXD0/SI0, P24/SCK0, P26/RXD1/SI1, P27/ SCK1, P32/TCLR32, P33/TI13, P34/INTP130, P35/INTP131/SO3, P36/INTP132/SI3, P37/INTP133/ SCK3, P112/TCLR14, P113/TI14, P114/INTP140 to P117/INTP143, RESET, NMI, MODE Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. Input rise time <12> tIR2 20 20 ns Input fall time <13> tIF2 20 20 ns VDD 0.8 VDD 0.8 VDD Input signal 0.2 VDD 0V 0.2 VDD <13> <12> (b) Pins other than those listed in (a) above Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. Input rise time <14> tIR1 10 10 ns Input fall time <15> tIF1 10 10 ns 2.4 V 2.2 V 2.2 V Input signal 0.4 V 0.8 V 0.8 V <15> Data Sheet U12261EJ2V1DS00 <14> 61 µPD703003 (3) Output waveform (other than CLKOUT) Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. Output rise time <16> tOR 12 12 ns Output fall time <17> tOF 12 12 ns 2.2 V 2.2 V Output signal 0.8 V 0.8 V <16> <17> (4) Reset timing Parameter Symbol Conditions 25-MHz Version MIN. RESET high-level width <18> tWRSH RESET low-level width <19> tWRSL When power supply is ON and STOP mode has been released Other than when power supply is ON and STOP mode has been released RESET (input) 62 Data Sheet U12261EJ2V1DS00 MIN. Units MAX. 500 500 ns 500 + TOST 500 + TOST ns 500 500 ns Remark TOST : Oscillation stabilization time <18> MAX. 33-MHz Version <19> µPD703003 [MEMO] Data Sheet U12261EJ2V1DS00 63 µPD703003 (5) Read timing (1/2) Parameter Symbol Conditions 25-MHz Version 33-MHz Version Units MIN. MAX. MIN. MAX. CLKOUT↑ → address delay time <20> tDKA 3 20 3 20 ns CLKOUT↑ → R/W, UBEN, LBEN delay time <78> tDKA2 –2 +13 –2 +13 ns CLKOUT↑ → address float delay time <21> tFKA 3 15 3 15 ns CLKOUT↓ → ASTB delay time <22> tDKST –2 +13 –2 +13 ns CLKOUT↑ → DSTB delay time <23> tDKD –2 +13 –2 +13 ns Data input setup time (to CLKOUT↑) <24> tSIDK 7 7 ns Data input hold time (from CLKOUT↑) <25> tHKID 5 5 ns WAIT setup time (to CLKOUT↓) <26> tSWTK 8 8 ns WAIT hold time (from CLKOUT↓) <27> tHKWT 5 5 ns Address hold time (from CLKOUT↑) <28> tHKA 0 0 ns <29> tSAST 0.5T – 10 0.5T – 10 ns Address hold time (from ASTB↓) <30> tHSTA 0.5T – 10 0.5T – 10 ns Address setup time (to ASTB↓) DSTB↓ → address float delay time <31> tFDA 0 0 ns Data input setup time (to address) <32> tSAID (2 + n)T – 20 (2 + n)T – 20 ns Data input setup time (to DSTB↓) <33> tSDID (1 + n)T – 20 (1 + n)T – 20 ns ASTB↓ → DSTB↓ delay time 0.5T – 10 0.5T – 10 ns Data input hold time (from DSTB↑) <35> tHDID 0 0 ns DSTB↑ → address output delay time <36> tDDA (1 + i)T – 3 (1 + i)T – 3 ns DSTB↑ → ASTB↑ delay time <37> tDDSTH 0.5T – 10 0.5T – 10 ns DSTB↑ → ASTB↓ delay time <38> tDDSTL (1.5 + i)T – 10 (1.5 + i)T – 10 ns DSTB low-level width <39> tWDL (1 + n)T – 10 (1 + n)T – 10 ns ASTB high-level width <40> tWSTH T – 10 T – 10 ns WAIT setup time (to address) <34> tDSTD <41> tSAWT1 n≥1 <42> tSAWT2 WAIT hold time (from address) <43> tHAWT1 n≥1 <44> tHAWT2 WAIT setup time (to ASTB↓) <45> tSSTWT1 <47> tHSTWT1 <48> tHSTWT2 ns ns (0.5 + n)T ns (1.5 + n)T (1.5 + n)T ns n≥1 n≥1 1.5T – 20 (1.5 + n)T – 20 (0.5 + n)T <46> tSSTWT2 WAIT hold time (from ASTB↓) 1.5T – 20 (1.5 + n)T – 20 T – 15 T – 15 ns (1 + n)T – 15 (1 + n)T – 15 ns nT nT ns (1 + n)T (1 + n)T ns Remarks 1. T = tCYK 2. n indicates the number of wait clocks that are inserted during a bus cycle. The sampling timing may vary when using the programmable wait insertion function. 3. i indicates the number of idle states (0 or 1) that are inserted after a read cycle. 4. Maintain at least one of the two data input hold times, either tHKID (<25>) or tHDID (<35>). 64 Data Sheet U12261EJ2V1DS00 µPD703003 (5) Read timing (2/2): 1 wait T1 T2 TW T3 CLKOUT (output) <20> <28> A16 to A19 (output) <78> R/W (output) UBEN (output) LBEN (output) <32> <21> AD0 to AD15 (I/O) <24> A0 to A15 (output) D0 to D15 (input) <22> <29> <25> <35> <30> <22> ASTB (output) <40> <37> <34> <31> <23> <23> <33> <36> DSTB (output) <38> <39> <45> <26> <27> <26> <27> <47> <46> <48> WAIT (input) <41> <43> <42> <44> Remark Broken line indicates high impedance. Data Sheet U12261EJ2V1DS00 65 µPD703003 (6) Write timing (1/2) Parameter Symbol Conditions 25-MHz Version 33-MHz Version Units MIN. MAX. MIN. MAX. CLKOUT↑ → address delay time <20> tDKA 3 20 3 20 ns CLKOUT↑ → R/W, UBEN, LBEN delay time <78> tDKA2 –2 +13 –2 +13 ns CLKOUT↓ → ASTB delay time <22> tDKST –2 +13 –2 +13 ns CLKOUT↑ → DSTB delay time <23> tDKD –2 +13 –2 +13 ns WAIT setup time (to CLKOUT↓) <26> tSWTK 8 8 ns WAIT hold time (from CLKOUT↓) <27> tHKWT 5 5 ns Address hold time (from CLKOUT↑) <28> tHKA 0 0 ns <29> tSAST 0.5T – 10 0.5T – 10 ns Address hold time (from ASTB↓) <30> tHSTA 0.5T – 10 0.5T – 10 ns ASTB↓ → DSTB↓ delay time <34> tDSTD 0.5T – 10 0.5T – 10 ns DSTB↑ → ASTB↑ delay time <37> tDDSTH 0.5T – 10 0.5T – 10 ns DSTB low-level width <39> tWDL (1 + n)T – 10 (1 + n)T – 10 ns ASTB high-level width <40> tWSTH WAIT setup time (to address) <41> tSAWT1 Address setup time (to ASTB↓) T – 10 n≥1 <42> tSAWT2 WAIT hold time (from address) <43> tHAWT1 n≥1 <44> tHAWT2 WAIT setup time (to ASTB↓) <45> tSSTWT1 <47> tHSTWT1 n≥1 ns (1.5 + n)T – 20 (1.5 + n)T – 20 ns (0.5 + n)T ns (1.5 + n)T (1.5 + n)T ns n≥1 <48> tHSTWT2 ns 1.5T – 20 (0.5 + n)T <46> tSSTWT2 WAIT hold time (from ASTB↓) T – 10 1.5T – 20 T – 15 T – 15 ns (1 + n)T – 15 (1 + n)T – 15 ns nT nT ns (1 + n)T (1 + n)T ns CLKOUT↑ → data output delay time <49> tDKOD 20 DSTB↓ → data output delay time <50> tDDOD 20 10 10 ns ns Data output hold time (from CLKOUT↑) <51> tHKOD 0 0 ns Data output setup time (to DSTB↑) <52> tSODD (1 + n)T – 15 (1 + n)T – 15 ns Data output hold time (from DSTB↑) <53> tHDOD T – 10 T – 10 ns Remarks 1. T = tCYK 2. n indicates the number of wait clocks that are inserted during a bus cycle. The sampling timing may vary when using the programmable wait insertion function. 66 Data Sheet U12261EJ2V1DS00 µPD703003 (6) Write timing (2/2): 1 wait T1 T2 TW T3 CLKOUT (output) <20> <28> A16 to A19 (output) <78> R/W (output) UBEN (output) LBEN (output) <49> AD0 to AD15 (I/O) <51> A0 to A15 (output) D0 to D15 (output) <22> <29> <30> <22> ASTB (output) <23> <23> <40> <34> <50> <37> <53> <52> DSTB (output) <39> <45> <26> <27> <26> <27> <47> <46> <48> WAIT (input) <41> <43> <42> <44> Remark Broken line indicates high impedance. Data Sheet U12261EJ2V1DS00 67 µPD703003 (7) Bus hold timing (1/2) Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. HLDRQ setup time (to CLKOUT↓) <54> tSHQK 8 8 ns HLDRQ hold time (from CLKOUT↓) <55> tHKHQ 5 5 ns CLKOUT↑ → HLDAK delay time <56> tDKHA 20 20 ns HLDRQ high-level width <57> tWHQH T + 10 T + 10 ns HLDAK low-level width <58> tWHAL T – 10 T – 10 ns CLKOUT↑ → bus float delay time <59> tDKF 20 HLDAK↑ → bus output delay time <60> tDHAC –3 HLDRQ↓ → HLDAK↓ delay time <61> tDHQHA1 20 –3 (2n + 7.5)T + 20 HLDRQ↑ → HLDAK↑ delay time <62> tDHQHA2 0.5T 1.5T + 20 0.5T ns ns (2n + 7.5)T + 20 ns 1.5T + 20 ns Remarks 1. T = tCYK 2. n indicates the number of wait clocks that are inserted during a bus cycle. The sampling timing may vary when using the programmable wait insertion function. 68 Data Sheet U12261EJ2V1DS00 µPD703003 (7) Bus hold timing (2/2) TH TH TH TH TI CLKOUT (output) <54> <54><55> <57> HLDRQ (input) <56> <56> <61> <62> HLDAK (output) <58> <60> <59> A16 to A19 (output)Note AD0 to AD15 (I/O) D0 to D15 (input or output) ASTB (output) DSTB (output) R/W (output) Note UBEN (output), LBEN (output) Remark Broken line indicates high impedance. Data Sheet U12261EJ2V1DS00 69 µPD703003 (8) Interrupt timing Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. NMI high-level width <63> tWNIH 500 500 ns NMI low-level width <64> tWNIL 500 500 ns INTPn high-level width <65> tWITH n = 110 to 113, 120 to 123, 130 to 133, 140 to 143 3T + 10 3T + 10 ns INTPn low-level width <66> tWITL n = 110 to 113, 120 to 123, 130 to 133, 140 to 143 3T + 10 3T + 10 ns Remark T = t CYK <63> <64> <65> <66> NMI (input) INTPn (input) Remark n = 110 to 113, 120 to 123, 130 to 133, 140 to 143 70 Data Sheet U12261EJ2V1DS00 µPD703003 [MEMO] Data Sheet U12261EJ2V1DS00 71 µPD703003 (9) CSI timing (1/2) (a) Master mode (i) Timing of CSI0 to CSI2 Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. SCKn cycle <67> tCYSK1 Output 160 120 ns SCKn high-level width <68> tWSKH1 Output 0.5tCYSK1 – 20 0.5tCYSK1 – 20 ns SCKn low-level width <69> tWSKL1 Output 0.5tCYSK1 – 20 0.5tCYSK1 – 20 ns SIn setup time (to SCKn↑) <70> tSSISK1 50 50 ns SIn hold time (from SCKn↑) <71> tHSKSI1 0 0 ns SOn output delay time (to SCKn↓) <72> tDSKSO1 18 SOn output hold time (from SCKn↑) <73> tHSKSO1 0.5tCYSK1 – 5 18 0.5tCYSK1 – 5 ns ns Remark n = 0 to 2 (ii) Timing of CSI3 Parameter Symbol Conditions 25-MHz Version MIN. SCK3 cycle <67> tCYSK3 Output SCK3 high-level width <68> tWSKH3 Output SCK3 low-level width <69> tWSKL3 Output SI3 setup time (to SCK3↑) SI3 hold time (from SCK3↑) MAX. MIN. Units MAX. 500 500 ns 0.5tCYSK3 – 150 0.5tCYSK3 – 150 ns 0.5tCYSK3 – 70 0.5tCYSK3 – 70 ns <70> tSSISK3 100 100 ns <71> tHSKSI3 50 50 ns SO3 output delay time (to SCK3↓) <72> tDSKSO3 SO3 output hold time (from SCK3↑) <73> tHSKSO3 RL = 1.5 kΩ CL = 50 pF 33-MHz Version RL = 1.5 kΩ CL = 50 pF 150 tWSKH3 150 tWSKH3 ns ns Remark R L and C L are the load resistance and load capacitance of the output line for SCK3 and SO3. (b) Slave mode (i) Timing of CSI0 to CSI2 Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. SCKn cycle <67> tCYSK2 Input 160 120 ns SCKn high-level width <68> tWSKH2 Input 50 30 ns SCKn low-level width <69> tWSKL2 Input 50 30 ns SIn setup time (to SCKn↑) <70> tSSISK2 10 10 ns SIn hold time (from SCKn↑) <71> tHSKSI2 10 SOn output delay time (to SCKn↓) <72> tDSKSO2 SOn output hold time (from SCKn↑) <73> tHSKSO2 tWSKH2 Remark n = 0 to 2 72 10 45 Data Sheet U12261EJ2V1DS00 ns 45 tWSKH2 ns ns µPD703003 (9) CSI timing (2/2) (ii) Timing of CSI3 Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. SCK3 cycle <67> tCYSK4 Input 500 500 ns SCK3 high-level width <68> tWSKH4 Input 100 100 ns SCK3 low-level width <69> tWSKL4 Input 180 180 ns SI3 setup time (to SCK3↑) <70> tSSISK4 100 100 ns SI3 hold time (from SCK3↑) <71> tHSKSI4 50 50 ns SO3 output delay time (to SCK3↓) <72> tDSKSO4 SO3 output hold time (from SCK3↑) <73> tHSKSO4 RL = 1.5 kΩ CL = 50 pF 150 tWSKH4 150 tWSKH4 ns ns Remark R L is the load resistance and CL is the load capacitance of the output line for SCK3 and SO3. <67> <69> <68> SCKn (I/O) <70> SIn (Input) <71> Input data <72> <73> SOn (output) Output data Remarks 1. Broken line indicates high impedance. 2. n = 0 to 3 Data Sheet U12261EJ2V1DS00 73 µPD703003 (10) RPU timing Parameter Symbol Conditions 25-MHz Version MIN. MAX. 33-MHz Version MIN. Units MAX. TI1n high-level width <74> tWTIH 3T + 10 3T + 10 ns TI1n low-level width <75> tWTIL 3T + 10 3T + 10 ns TCLR1n high-level width <76> tWTCH 3T + 10 3T + 10 ns TCLR1n low-level width <77> tWTCL 3T + 10 3T + 10 ns Remark T = t CYK <74> <75> <76> <77> TI1n (input) TCLR1n (input) Remark n = 1 to 4 74 Data Sheet U12261EJ2V1DS00 µPD703003 A/D Converter Characteristics (TA = –40 to +85°C, VDD = AVDD = 5 V ±10%, VSS = AVSS = 0 V) Parameter Symbol Conditions 25-MHz Version MIN. Resolution Total — errorNote 1 Quantization error Nonlinearity Analog input voltageNote 2 Units MAX. 10 bit ±0.55 %FSR — 3.5 V ≤ AVREF1 ≤ AVDD ±0.7 ±0.7 %FSR ±1/2 ±1/2 LSB — tSAMP errorNote 1 TYP. ±0.55 Sampling time Full scale errorNote 1 10 33-MHz Version MIN. 4.5 V ≤ AVREF1 ≤ AVDD tCONV Zero scale MAX. — Conversion time errorNote 1 TYP. 4.5 V ≤ AVREF1 ≤ AVDD 48 3.5 V ≤ AVREF1 ≤ AVDD 4.5 V ≤ AVREF1 ≤ AVDD 3.5 V ≤ AVREF1 ≤ AVDD 60 tCYK 48 60 tCYK 8 10 tCYK 8 10 tCYK — 4.5 V ≤ AVREF1 ≤ AVDD ±3.0 ±4.5 ±3.0 ±4.5 LSB — 3.5 V ≤ AVREF1 ≤ AVDD ±3.0 ±5.5 ±3.0 ±5.5 LSB — 4.5 V ≤ AVREF1 ≤ AVDD ±1.5 ±2.5 ±1.5 ±2.5 LSB — 3.5 V ≤ AVREF1 ≤ AVDD ±1.5 ±4.5 ±1.5 ±4.5 LSB — 4.5 V ≤ AVREF1 ≤ AVDD ±1.5 ±3.5 ±1.5 ±3.5 LSB — 3.5 V ≤ AVREF1 ≤ AVDD ±1.5 ±4.5 ±1.5 ±4.5 LSB AVDD +0.3 V VIAN –0.3 Reference voltage AVREF1 3.5 AVDD V AVREF1 current AIREF1 1.2 3.0 1.2 3.0 mA AIDD 2.3 6.0 2.3 6.0 mA AVDD power supply current AVDD +0.3 –0.3 AVDD 3.5 Notes 1. Does not include quantization error. 2. When VIAN = 0, the conversion result becomes 000H. When 0 < VIAN < AVREF1, conversion has 10-bit resolution. When AVREF1 ≤ VIAN ≤ AVDD, the conversion result becomes 3FFH. Data Sheet U12261EJ2V1DS00 75 µPD703003 D/A Converter Characteristics (TA = –40 to +85°C, VDD = AVDD = 5 V ±10%, VSS = AVSS = 0 V) Parameter Symbol Conditions 25-MHz Version MIN. Resolution — Total error — TYP. 33-MHz Version MAX. MIN. TYP. Units MAX. 8 8 bit Load condition: 2 MΩ, 30 pF AVREF2 = VDD AVREF3 = 0 0.8 0.8 % — Load condition: 2 MΩ, 30 pF AVREF2 = 0.75 VDD AVREF3 = 0.25 VDD 1.0 1.0 % — Load condition: 4 MΩ, 30 pF AVREF2 = VDD AVREF3 = 0 0.6 0.6 % — Load condition: 4 MΩ, 30 pF AVREF2 = 0.75 VDD AVREF3 = 0.25 VDD 0.8 0.8 % Settling time — Load condition: 2 MΩ, 30 pF Output resistance RO 10 10 10 10 µs kΩ AVREF2 input voltage AVREF2 0.75 VDD VDD 0.75 VDD VDD V AVREF3 input voltage AVREF3 0 0.25 VDD 0 0.25 VDD V AVREF2 to AVREF3 resistance value RAIREF 76 DACS0, DACS1 = 55H 2 Data Sheet U12261EJ2V1DS00 5 2 5 kΩ µPD703003 17. PACKAGE DRAWINGS 100 PIN PLASTIC QFP (FINE PITCH) ( 14) A B 75 76 51 50 detail of lead end S C D R Q 100 1 26 25 F G H I J M K P S N L S M NOTE 1. Controlling dimension ITEM millimeter. 2. Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition. MILLIMETERS INCHES A 16.0±0.2 B 14.0±0.2 0.630±0.008 0.551 +0.009 –0.008 C 14.0±0.2 0.551 +0.009 –0.008 D 16.0±0.2 0.630±0.008 F G 1.0 1.0 0.039 0.039 H 0.22 +0.05 –0.04 0.009±0.002 I 0.10 0.004 J 0.5 (T.P.) 0.020 (T.P.) K 1.0±0.2 0.039 +0.009 –0.008 L 0.5±0.2 0.020 +0.008 –0.009 M 0.17 +0.03 –0.07 0.007 +0.001 –0.003 N 0.10 0.004 P 1.45±0.05 0.057 +0.003 –0.002 Q 0.125±0.075 0.005±0.003 R S 5°±5° 1.7 MAX. 5°±5° 0.067 MAX. P100GC-50-7EA-3 Data Sheet U12261EJ2V1DS00 77 µPD703003 18. RECOMMENDED SOLDERING CONDITIONS The µPD703003 should be soldered and mounted under the following recommended conditions. For the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E). For soldering methods and conditions other than those recommended below, contact your NEC sales representative. Table 18-1. Soldering Conditions Soldering Method Soldering Conditions Symbol Infrared reflow Package peak temperature: 235°C, Reflow time: 30 seconds or below (210°C or higher), Number of reflow processes: 2 max., Exposure limit: 7 daysNote (after that, prebaking is necessary at 125°C for 10 hours) IR35-107-2 VPS Package peak temperature: 215°C, Reflow time: 40 seconds or below (200°C or higher), Number of reflow processes: 2 max., Exposure limit: 7 daysNote (after that, prebaking is necessary at 125°C for 10 hours) VP15-107-2 Partial heating Pin temperature: 300°C or below, Time: 3 seconds or below (per side of device) — Note Exposure limit after dry-pack is opened. Storage conditions: temperature of 25°C and relative humidity of 65% or less. Caution 78 Do not use different soldering methods together (except for partial heating). Data Sheet U12261EJ2V1DS00 µPD703003 [MEMO] Data Sheet U12261EJ2V1DS00 79 µPD703003 NOTES FOR CMOS DEVICES 1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it. 2 HANDLING OF UNUSED INPUT PINS FOR CMOS Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices. 3 STATUS BEFORE INITIALIZATION OF MOS DEVICES Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function. 80 Data Sheet U12261EJ2V1DS00 µPD703003 Regional Information Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify: • Device availability • Ordering information • Product release schedule • Availability of related technical literature • Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth) • Network requirements In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country. NEC Electronics Inc. (U.S.) NEC Electronics (Germany) GmbH NEC Electronics Hong Kong Ltd. Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288 Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580 Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044 NEC Electronics Hong Kong Ltd. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99 Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411 NEC Electronics (France) S.A. NEC Electronics Singapore Pte. Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290 Spain Office Madrid, Spain Tel: 91-504-2787 Fax: 91-504-2860 United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583 NEC Electronics Italiana s.r.l. NEC Electronics (Germany) GmbH Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics (France) S.A. NEC Electronics (Germany) GmbH Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490 NEC Electronics (UK) Ltd. NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951 NEC do Brasil S.A. Electron Devices Division Rodovia Presidente Dutra, Km 214 07210-902-Guarulhos-SP Brasil Tel: 55-11-6465-6810 Fax: 55-11-6465-6829 J99.1 Data Sheet U12261EJ2V1DS00 81 µPD703003 RELATED DOCUMENTS µPD703003A, 703004A, 703025A Data Sheet (Under preparation) µPD70F3003 Data Sheet (U12036E) µPD70F3003A, 70F3025A Data Sheet (U13189E) V850 Family, Instruction Table (U10229J)Note Note Japanese version The related documents indicated in this publication may include preliminary version. However, preliminary versions are not marked as such. V850 Family and V853 are trademarks of NEC Corporation. The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative. • The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. • No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. • NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. • Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information. • While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features. • NEC devices are classified into the following three quality grades: "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated “quality assurance program“ for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application. Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support) Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc. The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance. M7 98.8