OKI MD56V62320

Pr
E2G1057-29-41
el
im
y
4-Bank ¥ 524,288-Word ¥ 32-Bit SYNCHRONOUS DYNAMIC RAM
DESCRIPTION
The MD56V62320 is a 4-bank ¥ 524,288-word ¥ 32-bit synchronous dynamic RAM, fabricated in
Oki's CMOS silicon-gate process technology. The device operates at 3.3 V. The inputs and
outputs are LVTTL compatible.
FEATURES
•
•
•
•
•
•
•
Silicon gate, quadruple polysilicon CMOS, 1-transistor memory cell
4-bank ¥ 524,288-word ¥ 32-bit configuration
3.3 V power supply, ±0.3 V tolerance
Input
: LVTTL compatible
Output : LVTTL compatible
Refresh : 4096 cycles/64 ms
Programmable data transfer mode
– CAS latency (2, 3)
– Burst length (2, 4, 8)
– Data scramble (sequential, interleave)
• CBR auto-refresh, Self-refresh capability
• Package:
86-pin 400 mil plastic TSOP (Type II) (TSOPII86-P-400-0.50-K) (Product : MD56V62320-xxTA)
xx indicates speed rank.
PRODUCT FAMILY
Family
MD56V62320-10
Max.
Frequency
100 MHz
Access Time (Max.)
tAC2
tAC3
9 ns
9 ns
ar
This version:
Apr. 1999
MD56V62320
in
¡ Semiconductor
MD56V62320
¡ Semiconductor
1/29
¡ Semiconductor
MD56V62320
PIN CONFIGURATION (TOP VIEW)
VCC
DQ1
VCCQ
DQ2
DQ3
VSSQ
DQ4
DQ5
VCCQ
DQ6
DQ7
VSSQ
DQ8
NC
VCC
DQM0
WE
CAS
RAS
CS
NC
BA0
BA1
A10
A0
A1
A2
DQM2
VCC
NC
DQ17
VSSQ
DQ18
DQ19
VCCQ
DQ20
DQ21
VSSQ
DQ22
DQ23
VCCQ
DQ24
VCC
1
86 VSS
2
85 DQ16
3
84 VSSQ
4
83 DQ15
5
82 DQ14
6
81 VCCQ
7
80 DQ13
8
79 DQ12
9
78 VSSQ
10
77 DQ11
11
76 DQ10
12
75 VCCQ
13
74 DQ9
14
73 NC
15
72 VSS
16
71 DQM1
17
70 NC
18
69 NC
19
68 CLK
20
67 CKE
21
66 A9
22
65 A8
23
64 A7
24
63 A6
25
62 A5
26
61 A4
27
60 A3
28
59 DQM3
29
58 VSS
30
57 NC
31
56 DQ32
32
55 VCCQ
33
54 DQ31
34
53 DQ30
35
52 VSSQ
36
51 DQ29
37
50 DQ28
38
49 VCCQ
39
48 DQ27
40
47 DQ26
41
46 VSSQ
42
45 DQ25
43
44 VSS
86-Pin Plastic TSOP (II)
(K Type)
Pin Name
Note:
Function
Pin Name
Function
CLK
System Clock
DQM0 - 3
Data Input/Output Mask
CS
Chip Select
DQi
Data Input/Output
CKE
Clock Enable
VCC
Power Supply (3.3 V)
A0 - A10
Address
VSS
Ground (0 V)
BA0, BA1
Bank Select Address
VCCQ
Data Output Power Supply (3.3 V)
RAS
Row Address Strobe
VSSQ
Data Output Ground (0 V)
CAS
Column Address Strobe
NC
No Connection
WE
Write Enable
The same power supply voltage must be provided to every VCC pin and VCCQ pin.
The same GND voltage level must be provided to every VSS pin and VSSQ pin.
2/29
¡ Semiconductor
MD56V62320
PIN DESCRIPTION
CLK
Fetches all inputs at the "H" edge.
CS
Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE, DQM0 - 3.
CKE
Masks system clock to deactivate the subsequent CLK operation.
If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is
deactivated. CKE should be asserted at least one cycle prior to a new command.
Address
Row & column multiplexed.
Row address: RA0 - RA10
Column address: CA0 - CA7
BA0, BA1
Bank Access pins. These pins are dedicated to select one of 4 banks.
RAS
CAS
Functionality depends on the combination. For details, see the function truth table.
WE
DQM0 - 3
DQM0 controls DQ1 - 8. DQM1 controls DQ9 - 16.
DQM2 controls DQ17 - 24. DQM3 controls DQ25 - 32.
DQi
Data inputs/outputs are multiplexed on the same pin.
3/29
¡ Semiconductor
MD56V62320
BLOCK DIAGRAM
CKE
CS
RAS
CAS
WE
DQM0 - DQM3
A0 - A10
BA0, BA1
CLOCK
BUFFER
Row
Address
Latches
& Refresh
Counter
Command
Decoding
Logic
Command
Buffers
Address
Buffers
Row Decoders
Control
Logic
Mode
Register
Word Drivers
Column
Address
Latches
& Counter
Latency
& Burst
controller
Column Decoders
Sense Amplifiers
CLK
Memory
Cells
BANK A
BANK B
BANK C
BANK D
Input
Buffers
Input
Data
Register
Output
Buffers
Output
Data
Register
DQ1 - DQ32
4/29
¡ Semiconductor
MD56V62320
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(Voltages referenced to VSS)
Parameter
Symbol
Rating
Unit
Voltage on Any Pin Relative to VSS
VIN, VOUT
–0.5 to VCC + 0.5
V
VCC Supply Voltage
VCC, VCCQ
–0.5 to 4.6
V
Storage Temperature
Tstg
–55 to 150
°C
Power Dissipation
PD*
1
W
Short Circuit Current
IOS
50
mA
Operating Temperature
Topr
0 to 70
°C
*: Ta = 25°C
Recommended Operating Conditions
(Voltages referenced to VSS = 0 V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
Power Supply Voltage
VCC, VCCQ
3.0
3.3
3.6
V
Input High Voltage
VIH
2.0
—
VCC + 0.3
V
Input Low Voltage
VIL
–0.3
—
0.8
V
Capacitance
(VCC = 3.3 V ±0.3 V, Ta = 25°C, f = 1 MHz)
Parameter
Input Capacitance (ADDR)
Input Capacitance (CLK, CKE, CS,
RAS, CAS, WE, DQM0 - 3)
Input/Output Capacitance
(DQ1 - DQ32)
Symbol
Min.
Max.
Unit
CIN1
2
5
pF
CIN2
2
5
pF
COUT
2
7
pF
5/29
¡ Semiconductor
MD56V62320
DC Characteristics
Condition
Parameter
Symbol
CKE
Others
Output High Voltage VOH
—
Output Low Voltage
VOL
Input Leakage Current
Output Leakage Current
Average Power
Supply Current
(Operating)
ICC1
Power Supply
Current (Stand by)
ICC2
Version
-10
Unit Note
IOH = –2 mA
Min.
2.4
Max.
—
V
—
IOL = 2 mA
—
0.4
V
ILI
—
—
–10
10
mA
ILO
—
—
–10
10
mA
CKE ≥ VIH
tCC = min
tRC = min
No Burst
—
170
mA 1, 2
CKE ≥ VIH
tCC = min
CS ≥ VIH
—
40
mA
3
Average Power
ICC3S
Supply Current
(Clock Suspension)
CKE £ VIL
tCC = min
—
6
mA
2
Average Power
Supply Current
(Active Stand by)
ICC3
CKE ≥ VIH
tCC = min
CS ≥ VIH
—
100
mA
3
Power Supply
Current (Burst)
ICC4
CKE ≥ VIH
tCC = min
—
290
mA 1, 2
Power Supply
Current
(Auto-Refresh)
Average Power
Supply Current
(Self-Refresh)
ICC5
CKE ≥ VIH
tCC = min
tRC = min
—
190
mA
—
2
mA
Average Power
Supply Current
(Power down)
ICC7
—
2
mA
Notes:
ICC6
CKE £ VIL
CKE £ VIL
2
tCC = min
tCC = min
1. Measured with outputs open.
2. The address and data can be changed once or left unchanged during one cycle.
3. The address and data can be changed once or left unchanged during two cycles.
6/29
¡ Semiconductor
MD56V62320
Mode Set Address Keys
CAS Latency
Burst Type
Burst Length
A6
A5
A4
CL
A3
BT
A2
A1
A0
0
0
0
Reserved
0
Sequential
0
0
0
0
0
1
Reserved
1
Interleave
0
0
1
2
2
0
1
0
2
0
1
0
4
4
0
1
1
3
0
1
1
8
8
1
0
0
Reserved
1
0
0
Reserved Reserved
1
0
1
Reserved
1
0
1
Reserved Reserved
1
1
0
Reserved
1
1
0
Reserved Reserved
1
1
1
Reserved
1
1
1
Reserved Reserved
Note:
BT = 0
BT = 1
Reserved Reserved
A7, A8, A9, A10, BA1 and BA0 should stay "L" during mode set cycle.
POWER ON SEQUENCE
1. With inputs in NOP state, turn on the power supply and start the system clock.
2. After the VCC voltage has reached the specified level, pause for 200 ms or more with
the input kept in NOP state.
3. Issue the precharge all bank command.
4. Apply a CBR auto-refresh eight or more times.
5. Enter the mode register setting command.
7/29
¡ Semiconductor
MD56V62320
AC Characteristics
Note 1, 2
Parameter
Clock Cycles Time
Access Time from Clock
Symbol
CL = 3
CL = 2
CL = 3
CL = 2
tCC
tAC
MD56V62320-10
Unit Note
Min.
Max.
10
—
ns
15
—
ns
—
9
ns
3, 4
3, 4
—
9
ns
Clock "H" Pulse Time
tCH
3
—
ns
Clock "L" Pulse Time
tCL
3
—
ns
Input Setup Time
tSI
3
—
ns
Input Hold Time
tHI
1
—
ns
Output Low Impedance Time from Clock
tOLZ
3
—
ns
Output High Impedance Time from Clock
tOHZ
—
8
ns
Output Hold from Clock
tOH
3
—
ns
RAS Cycle Time
tRC
90
—
ns
RAS Precharge Time
tRP
30
—
ns
RAS Active Time
tRAS
60
105
ns
RAS to CAS Delay Time
tRCD
30
—
ns
Write Recovery Time
tWR
15
—
ns
Write Command Input Time from Output
lOWD
2
—
Cycle
RAS to RAS Bank Active Delay Time
tRRD
20
—
ns
Refresh Time
tREF
—
64
ms
Power-down Exit Set-up Time
tPDE
tSI + 1 CLK
—
ns
tT
—
Input Level Transition Time
3
3
ns
CAS to CAS Delay Time (Min.)
lCCD
1
Cycle
Clock Disable Time from CKE
lCKE
1
Cycle
Data Output High Impedance Time from DQM
lDOZ
2
Cycle
Data Input Mask Time from DQM
lDOD
0
Cycle
Data Input Time from Write Command
lDWD
0
Cycle
Data Output High Impedance Time from
Precharge Command
lROH
2
Cycle
Active Command Input Time from Mode
Register Set Command Input (Min.)
lMRD
3
Cycle
8/29
¡ Semiconductor
MD56V62320
Notes : 1. AC measurements assume that tT = 1 ns.
2. The reference level for timing of input signals is 1.4 V.
3. Output load.
1.4 V
Z = 50 W
50 W
Output
50 pF
4. The access time is defined at 1.4 V.
5. If tT is longer than 1 ns, then the reference level for timing of input signals is VIH and
VIL.
9/29
,
,,,
,
¡ Semiconductor
MD56V62320
TIMING WAVEFORM
Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tRC
CKE
CS
tRP
RAS
tRCD
CAS
ADDR
Ra
Ca0
Rb
Cb0
BA0
BA1
A10
Ra
Rb
tOH
DQ
Qa0
Qa1
Qa2
Qa3
Db0
Db1
tOHZ
tAC
Db2
Db3
tWR
WE
DQM0 - 3
Row Active
Read Command
Row Active
Write Command
Precharge Command
Precharge Command
10/29
¡ Semiconductor
MD56V62320
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
,
,,
,,
tCC
tCL
High
CKE
CS
tSI
tHI
RAS
lCCD
tHI
tSI
CAS
tSI
ADDR
tSI
tSI
Ra
Ca
Cb
tHI
Cc
tHI
BA0
BA1
A10
Ra
tAC
DQ
Qa
tHI
Db
tOLZ
Qc
tSI
tOH
tHI
tOHZ
lOWD
WE
tSI
DQM0 - 3
Row Active
Write Command
Read Command
Precharge Command
Read Command
11/29
¡ Semiconductor
*Notes:
MD56V62320
1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE, DQM0 - 3 are invalid.
2. When issuing an active, read or write command, the bank is selected by BA0 and BA1.
BA1
BA0
Active, read or write
0
0
Bank A
0
1
Bank B
1
0
Bank C
1
1
Bank D
3. The auto precharge function is enabled or disabled by the A10 input when the read or write command
is issued.
A10
BA1
BA0
0
0
0
After the end of burst, bank A holds the idle status.
Operation
1
0
0
After the end of burst, bank A is precharged automatically.
0
0
1
After the end of burst, bank B holds the idle status.
1
0
1
After the end of burst, bank B is precharged automatically.
0
1
0
After the end of burst, bank C holds the idle status.
1
1
0
After the end of burst, bank C is precharged automatically.
0
1
1
After the end of burst, bank D holds the idle status.
1
1
1
After the end of burst, bank D is precharged automatically.
4. When issuing a precharge command, the bank to be precharged is selected by the A10, BA1 and BA0
inputs.
A10
BA1
BA0
0
0
0
Bank A is precharged.
0
0
1
Bank B is precharged.
0
1
0
Bank C is precharged.
0
1
1
Bank D is precharged.
1
X
X
All banks are precharged.
Operation
5. The input data and the write command are latched by the same clock (Write latency = 0).
6. The output is forced to high impedance by (1 CLK + tOHZ) after DQM0 - 3 entry.
12/29
¡ Semiconductor
MD56V62320
,,
,
,
,,,
,
,
,
,
,,
Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
Bank A Active
RAS
CAS
lCCD
ADDR
Ca0
Cb0
Cc0
Cd0
BA0
BA1
A10
DQ
Qa0
Qa1
Qb0 Qb1
Dc0
Dc1
lOWD
Dd0
tWR *Note2
WE
*Note1
DQM0 - 3
Read Command
Read Command
Write Command
Write Command
Precharge Command
*Notes:
1. To write data before a burst read ends, DQM0 - 3 should be asserted three cycles prior to the write
command, to avoid bus contention.
2. To assert row precharge before a burst write ends, wait tWR after the last write data input.
Input data during the precharge input cycle will be masked internally.
13/29
,
,
,,
,
,
,
¡ Semiconductor
MD56V62320
Read & Write Cycle with Auto Precharge @ Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
tRRD
CAS
ADDR
RAa
RDb CAa
RAa
RDb
CDb
BA0
BA1
A10
WE
CAS Latency = 2
DQ
QAa0 QAa1 QAa2 QAa3
DDb0 DDb1 DDb2 DDb3
A-Bank Precharge Start
DQM0 - 3
CAS Latency = 3
DQ
QAa0 QAa1 QAa2 QAa3
DDb0 DDb1 DDb2 DDb3
A-Bank Precharge Start
tWR
DQM0 - 3
Row Active
(A-Bank)
A Bank Read with
Auto Precharge
D Bank Write with
Auto Precharge
D Bank Precharge
Start Point
Row Active
(D-Bank)
14/29
,
,
,
,
,
,,
¡ Semiconductor
MD56V62320
Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4
0
CLK
CKE
CS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
High
tRC
RAS
CAS
ADDR
BA0
BA1
A10
DQ
WE
tRRD
RAa
CAa
RAa
RCb
CCb
RAc
RCb
CAc
RAc
QAa0 QAa1 QAa2 QAa3
QCb0 QCb1 QCb2 QCb3
QAc0 QAc1 QAc2 QAc3
DQM0 - 3
Row Active
(A-Bank)
Read Command
(A-Bank)
Read Command
(C-Bank)
Row Active
(C-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
Precharge Command
(C-Bank)
Row Active
(A-Bank)
15/29
¡ Semiconductor
MD56V62320
Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4
,
,,,,
,
,
,,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
BA0
BA1
A10
RAa
DQ
RBb
RAc
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3
DAc0 DAc1
WE
DQM0 - 3
Row Active
(A-Bank)
Write Command
(A-Bank)
Precharge
Command
(A-Bank)
Write Command
(B-Bank)
Write Command
(A-Bank)
Row Active
(B-Bank)
Row Active
(A-Bank)
Precharge Command
(A-Bank)
Precharge Command
(B-Bank)
16/29
,,
,,
,
,
¡ Semiconductor
MD56V62320
Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
*Note1
CS
RAS
CAS
ADDR
RAa
CAa
RCb
CCb
CAc
CCd
CAe
BA0
BA1
A10
RAa
RCa
DQ
QAa0 QAa1 QAa2 QAa3 QCb0 QCb1 QCb2 QCb3 QAc0 QAc1 QCd0 QCd1 QAe0 QAe1
lROH
WE
DQM0 - 3
Row Active
(A-Bank)
Row Active
(C-Bank)
Read Command
(A-Bank)
*Note:
Read Command
(C-Bank)
Read Command
(C-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
1. CS is ignored when RAS, CAS and WE are high at the same cycle.
17/29
,,,
,
,
,
,
,,
,
¡ Semiconductor
MD56V62320
Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RBa
CBa
RDb
CDb
CBc
CDd
BA0
BA1
A10
RBa
DQ
RDb
DBa0 DBa1 DBa2 DBa3 DDb0 DDb1 DDb2 DDb3 DBc0 DBc1 DDd0
WE
DQM0 - 3
Row Active
(B-Bank)
Row Active
(D-Bank)
Write Command
(B-Bank)
Write Command
(D-Bank)
Write Command
(D-Bank)
Write Command
(B-Bank)
Precharge Command
(All Banks)
18/29
¡ Semiconductor
MD56V62320
,
,
,
,
,
Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RCb
CCb
RAc
CAc
BA0
BA1
A10
RAa
RCb
DQ
QAa0 QAa1 QAa2 QAa3
RAc
DCb0 DCb1 DCb2 DCb3
QAc0 QAc1 QAc2 QAc3
WE
DQM0 - 3
Row Active
(A-Bank)
Row Active
(C-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Write Command
(C-Bank)
Read Command
(A-Bank)
Row Active
(A-Bank)
19/29
¡ Semiconductor
MD56V62320
Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
CKE
CS
RAS
CAS
ADDR
BA0
BA1
A10
DQ
WE
,
,,
,
,,
,
High
CAa0
CDb0
QAa0 QAa1 QAa2 QAa3
CAc0
DDb0 DDb1 DDb2 DDb3
QAc0 QAc1 QAc2 QAc3
DQM0 - 3
Read Command
(A-Bank)
Write Command
(D-Bank)
Read Command
(A-Bank)
20/29
¡ Semiconductor
MD56V62320
,
,
,
,
,
,
,
,
,
,
,
,
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4
CKE
CS
RAS
CAS
ADDR
BA0
BA1
A10
Ra
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
¨
1
¨
0
CLK
*Note1
*Note1
Ca
Cb
19
Cc
Ra
*Note4
DQ1 - 8
Qa1
Qa2
Qa3
Qb0
Qb1
Dc1
Dc2
Dc3
Dc2
Dc3
*Note3
DQ9 - 16
Qa0
Qa2
Qa3
Qb0
Qb1
Dc0
Qa3
Qb0
Qb1
Dc0
Dc1
Qb0
Qb1
Dc0
Dc1
tOHZ
DQ17 - 24
Qa0
Qa1
Dc3
*Note2
DQ25 - 32
WE
Qa0
Qa1
Qa2
Dc2
*Note4
DQM0
DQM1
DQM2
DQM3
Read DQM
Row Active
Read DQM
Read
Command
*Notes:
1.
2.
3.
4.
CLOCK
Suspension
Read
Command
Write
DQM
Write
CLOCK
Command Suspension
When CKE is deactivated, the next clock will be ignored.
When DQM0 - 3 are asserted, the read data after two clock cycles will be masked.
When DQM0 - 3 are asserted, the write data in the same clock cycles will be masked.
When DQM0 is set High, the input/output data of DQ1 - DQ8 will be masked.
When DQM1 is set High, the input/output data of DQ9 - DQ16 will be masked.
When DQM2 is set High, the input/output data of DQ17 - DQ24 will be masked.
When DQM3 is set High, the input/output data of DQ25 - DQ32 will be masked.
21/29
¡ Semiconductor
MD56V62320
Read Interruption by Precharge Command @ Burst Length = 8
,
,
,,,
,
,,
,
,,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
Ra
Ca
BA0
BA1
A10
Ra
WE
CAS Latency = 2
*Note1
DQ
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
DQM0 - 3
CAS Latency = 3
*Note1
DQ
Qa0
Qa1
Qa2
Qa3
Qa4
DQM0 - 3
Row Active
*Note:
Read Command
Precharge Command
1. If row precharge is asserted before burst read ends, then the read data will not output after the second
clock cycle of the precharge command.
22/29
,
,
,
,
,
¡ Semiconductor
MD56V62320
Power Down Mode @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tSI
*Note1
tPDE *Note2
tSI
tSI
CKE
CS
RAS
CAS
Ra
ADDR
Ca
BA0
BA1
Ra
A10
DQ
Qa0
Qa1
Qa2
WE
DQM0 - 3
Row Active
Power-down
Entry
*Notes:
Power-down
Exit
Clock
Suspention
Entry
Clock
Suspention
Exit
Read
Command
Precharge
Command
1. When all banks are in precharge state, and if CKE is set low, then the MD56V62320 enters power-down
mode and maintains the mode while CKE is low.
2. To release the circuit from power-down mode, CKE has to be set high for longer than tPDE (tSI + 1 CLK).
23/29
,
,,,,
,,
,
¡ Semiconductor
MD56V62320
Self Refresh Cycle
0
CLK
1
2
tRC
CKE
tSI
CS
RAS
CAS
ADDR
BA0
BA1
A10
DQ
WE
Ra
BS
BS
Ra
Hi - Z
Hi - Z
DQM0 - 3
Self
Refresh
Entry
Self
Refresh
Exit
Row
Active
24/29
¡ Semiconductor
MD56V62320
Auto Refresh Cycle
Mode Register Set Cycle
0
CLK
CKE
CS
1
2
3
4
5
6
0
1
2
3
CAS
ADDR
DQ
WE
DQM0 - 3
5
6
7
8
9
10
11
12
,,
,,,,
High
High
tRC
lMRD
RAS
4
key
Ra
Hi - Z
MRS
New Command
Hi - Z
Auto Refresh
Auto Refresh
25/29
¡ Semiconductor
MD56V62320
FUNCTION TRUTH TABLE (Table 1) (1/2)
Current State1 CS RAS CAS WE BA
Idle
Row Active
Read
Write
Action
ADDR
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
Row Active
L
L
H
L
BA
A10
NOP 4
L
L
L
H
X
X
Auto-Refresh or Self-Refresh 5
L
L
L
L
L
OP Code
H
X
X
X
X
X
Mode Register Write
NOP
L
H
H
X
X
X
NOP
L
H
L
H
BA
CA, A10
Read
L
H
L
L
BA
CA, A10
Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
Reserved
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Term Burst, execute Row Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
Reserved (Term Burst) --> Row Active
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Term Burst, execute Row Precharge
L
L
L
X
X
X
ILLEGAL
Read with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
L
L
L
X
X
X
ILLEGAL
ILLEGAL
ILLEGAL 2
Write with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
L
L
L
X
X
X
ILLEGAL
ILLEGAL 2
ILLEGAL
26/29
¡ Semiconductor
MD56V62320
FUNCTION TRUTH TABLE (Table 1) (2/2)
Current State1 CS RAS CAS WE BA
Precharge
Write Recovery
Row Active
Refresh
Action
ADDR
H
X
X
X
X
X
NOP --> Idle after tRP
L
H
H
H
X
X
NOP --> Idle after tRP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
NOP 4
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Row Active after tRCD
L
H
H
H
X
X
NOP --> Row Active after tRCD
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Idle after tRC
L
H
H
X
X
X
NOP --> Idle after tRC
L
H
L
X
X
X
ILLEGAL
L
L
H
X
X
X
ILLEGAL
L
L
L
X
X
X
ILLEGAL
Mode Register
H
X
X
X
X
X
NOP
Access
L
H
H
H
X
X
NOP
L
H
H
L
X
X
ILLEGAL
L
H
L
X
X
X
ILLEGAL
L
L
X
X
X
X
ILLEGAL
ABBREVIATIONS
RA = Row Address
CA = Column Address
Notes:
BA = Bank Address
AP = Auto Precharge
NOP = No OPeration command
1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs.
2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank
selection.
3. Satisfy the timing of lCCD and tWR to prevent bus contention.
4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10.
5. Illegal if any bank is not idle.
27/29
¡ Semiconductor
MD56V62320
FUNCTION TRUTH TABLE for CKE (Table 2)
Current State (n) CKEn-1
Self Refresh
Power Down
CKEn
CS RAS CAS WE
H
X
X
X
X
L
H
H
X
L
H
L
H
L
H
L
H
H
L
H
L
H
L
L
H
L
L
X
L
L
X
X
X
ADDR
Action
X
X
INVALID
X
X
X
Exit Self Refresh --> ABI
H
H
X
Exit Self Refresh --> ABI
L
X
ILLEGAL
X
X
ILLEGAL
X
X
ILLEGAL
X
X
NOP (Maintain Self Refresh)
H
X
X
X
X
X
X
INVALID
L
H
H
X
X
X
X
Exit Power Down --> ABI
L
H
L
H
H
H
X
Exit Power Down --> ABI
L
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL 6
L
L
X
X
X
X
X
NOP (Continue power down mode)
H
H
X
X
X
X
X
Refer to Table 1
H
L
H
X
X
X
X
Enter Power Down
H
L
L
H
H
H
X
Enter Power Down
H
L
L
H
H
L
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
H
L
X
ILLEGAL
H
L
L
L
L
H
X
Enter Self Refresh
H
L
L
L
L
L
X
ILLEGAL
L
L
X
X
X
X
X
NOP
Any State Other
H
H
X
X
X
X
X
Refer to Operations in Table 1
than Listed Above
H
L
X
X
X
X
X
Begin Clock Suspend Next Cycle
L
H
X
X
X
X
X
Enable Clock of Next Cycle
L
L
X
X
X
X
X
Continue Clock Suspension
All Banks Idle
6
(ABI)
Note:
6. Power-down and self refresh can be entered only when all the banks are in an idle state.
28/29
¡ Semiconductor
MD56V62320
PACKAGE DIMENSIONS
(Unit : mm)
TSOPII86-P-400-0.50-K
Preliminary
Mirror finish
Package material
Lead frame material
Pin treatment
Solder plate thickness
Package weight (g)
Epoxy resin
42 alloy
Solder plating
5 mm or more
TYP.
Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type
packages, which are very susceptible to heat in reflow mounting and humidity absorbed in
storage. Therefore, before you perform reflow mounting, contact Oki’s responsible sales person
on the product name, package name, pin number, package code and desired mounting conditions
(reflow method, temperature and times).
29/29
E2Y0002-29-11
NOTICE
1.
The information contained herein can change without notice owing to product and/or
technical improvements. Before using the product, please make sure that the information
being referred to is up-to-date.
2.
The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product. When
planning to use the product, please ensure that the external conditions are reflected in the
actual circuit, assembly, and program designs.
3.
When designing your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not limited to, operating
voltage, power dissipation, and operating temperature.
4.
Oki assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair, alteration
or accident, improper handling, or unusual physical or electrical stress including, but not
limited to, exposure to parameters beyond the specified maximum ratings or operation
outside the specified operating range.
5.
Neither indemnity against nor license of a third party’s industrial and intellectual property
right, etc. is granted by us in connection with the use of the product and/or the information
and drawings contained herein. No responsibility is assumed by us for any infringement
of a third party’s right which may result from the use thereof.
6.
The products listed in this document are intended for use in general electronics equipment
for commercial applications (e.g., office automation, communication equipment,
measurement equipment, consumer electronics, etc.). These products are not authorized
for use in any system or application that requires special or enhanced quality and reliability
characteristics nor in any system or application where the failure of such system or
application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to, traffic and automotive equipment, safety
devices, aerospace equipment, nuclear power control, medical equipment, and life-support
systems.
7.
Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of determining
the legality of export of these products and will take appropriate and necessary steps at their
own expense for these.
8.
No part of the contents cotained herein may be reprinted or reproduced without our prior
permission.
9.
MS-DOS is a registered trademark of Microsoft Corporation.
Copyright 1999 Oki Electric Industry Co., Ltd.
Printed in Japan