OKI MSM54V24632A

Pr
y
ar
in
im
el
¡ Semiconductor
MSM54V24632A
¡ Semiconductor
MSM54V24632A
11 Feb. 1998
131,072-Word ¥ 32-Bit ¥ 2-Bank SGRAM without Graphics Functions
DESCRIPTION
The MSM54V24632A is a synchronous graphics random access memory without graphics
oriented functions; Block Write, Write per bit, Single write and Burst stop. It is organized as 128K
words ¥ 32 bits ¥ 2 banks.
This device can operate up to 125MHz by using synchronous interface.
FEATURES
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
131,072-words ¥ 32 bits ¥ 2 banks memory
Single 3.3 V±0.3 V power supply
LVTTL compatible inputs and outputs
All input signals are latched at rising edge of system clock
Auto precharge and controlled precharge
Internal pipelined operation: column address can be changed every clock cycle
Dual internal banks controlled by A9 (Bank Address: BA)
Independent byte operation via DQM0 to DQM3
Simplified function (No Block write, Write per bit, Single write and Burst stop)
Programmable burst sequence (Sequential / Interleave)
Programmable burst length (1, 2, 4, 8 and full page)
Programmable CAS latency (1, 2 and 3)
Power Down operation and Clock Suspend operation
Auto refresh and Self refresh capability
1,024 refresh cycle / 16 ms
Package :
100-pin plastic QFP
(QFP100-P-1420-0.65-BK4)
(Product : MSM54V24632A-xxGS-BK4)
xx indicates speed rank.
PRODUCT FAMILY
Family
Clock Frequency
MHz (Max.)
MSM54V24632A-8
125
MSM54V24632A-10
100
MSM54V24632A-12
83
Package
100-pin Plastic QFP (14 ¥ 20 mm)
1
MSM54V24632A
¡ Semiconductor
PIN CONFIGURATION (TOP VIEW)
DQ29
Vss(Q)
DQ30
DQ31
Vss
NC
NC
NC
NC
NC
NC
NC
NC
NC
NC
Vcc
DQ0
DQ1
Vss(Q)
DQ2
100pin Plastic QFP
81
82
83
84
85
86
87
88
89
90
91
92
93
94
79 Vcc(Q)
3
78 DQ27
4
77 DQ26
5
76 Vss(Q)
6
75 DQ25
7
74 DQ24
8
73 Vcc(Q)
9
72 DQ15
10
71 DQ14
11
70 Vss(Q)
12
69 DQ13
13
68 DQ12
14
67 Vcc(Q)
15
66 Vss
16
65 Vcc
17
64 DQ11
18
63 DQ10
19
62 Vss(Q)
20
61 DQ9
21
60 DQ8
22
59 Vcc(Q)
23
58 NC
24
57 DQM3
25
56 DQM1
26
55 CLK
27
54 CKE
28
53 NC
29
52 NC
30
51 A8
50 A7
49 A6
48 A5
47 A4
Pin Name
46 Vss
45 NC
44 NC
43 NC
42 NC
41 NC
40 NC
Function
39 NC
38 NC
37 NC
36 NC
35 Vcc
34 A3
33 A2
32 A1
3
95
80 DQ28
2
31 A0
Note:
96
1
Pin Name
CLK
97
98
99
100
DQ3
Vcc(Q)
DQ4
DQ5
Vss(Q)
DQ6
DQ7
Vcc(Q)
DQ16
DQ17
Vss(Q)
DQ18
DQ19
Vcc(Q)
Vcc
Vss
DQ20
DQ21
Vss(Q)
DQ22
DQ23
Vcc(Q)
DQM0
DQM2
WE
CAS
RAS
CS
A9
NC
Function
System Clock
DQM0~DQM3 Data Input/Output Mask
CS
Chip Select
DQi
Data Input/Output
CKE
Clock Enable
VCC
Power Supply (3.3 V)
A0 - A8
Address
VSS
Ground (0 V)
A9
Bank Select Address
VCC(Q)
Data Output Power Supply (3.3 V)
RAS
Row Address Strobe
VSS(Q)
Data Output Ground (0 V)
CAS
Column Address Strobe
NC
No Connection
WE
Write Enable
The same power supply voltage must be provided to every VCC pin and VCC(Q)pin.
The same GND voltage level must be provided to every VSS pin and VSS(Q) pin.
¡ Semiconductor
MSM54V24632A
PIN DESCRIPTION
CLK
Fetches all inputs at the "H" edge.
CS
Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE,
DQM0, DQM1, DQM2 and DQM3.
CKE
Masks system clock to deactivate the subsequent CLK operation.
If CKE is deactivated, system clock will be masked that the subsequent CLK operation is deactivated.
CKE should be asserted at least one cycle prior to a new command.
Address
Row & column multiplexed.
Row address: RA0 – RA8
Column address: CA0 – CA7
A9
Selects bank to be activated during row address latch time and selects bank for precharge and read/
write during column address latch time. A9= "L" : Bank A, A9= "H" : Bank B
RAS
CAS
Functionality depends on the combination. For details, see the function truth table.
WE
DQM0
~DQM3
Masks the read data of two clocks later when DQM0~DQM3 is set "H" at the "H" edge of the clock signal.
DQi
Data inputs/outputs are multiplexed on the same pin.
Masks the write data of the same clock when DQM0~DQM3 is set "H" at the "H" edge of the clock signal.
3
MSM54V24632A
¡ Semiconductor
BLOCK DIAGRAM
CKE
CLK
CS
RAS
CAS
WE
DQM0
DQM1
DQM2
DQM3
Programing
Register
Timing
Register
Latency
& Burst
Controller
I/O
Controller
Bank
Controller
A9
Internal
Col.
Address
Counter
A0-A9
8
Input
Data
Register
Column
Address
Buffers
8
9
Row
Address
Buffers
9
Row
Decoders
Word
Drivers
4Mb
Memory
Cells
Row
Decoders
Word
Drivers
4Mb
Memory
Cells
Sense Amplifier
Column Decoders
5
32
32
Column Decoders
Sense Amplifier
Internal
Row
Address
Counter
Input
Buffers
32
Read
Data
Register
32
16
Output
DQ0-DQ31
Buffers
¡ Semiconductor
MSM54V24632A
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(Voltages referenced to VSS)
Parameter
Symbol
Rating
Voltage on Any Pin Relative to VSS
VIN, VOUT
–0.5 to 4.6
V
VCC Supply Voltage
VCC, VCCQ
–0.5 to 4.6
V
°C
Unit
Storage Temperature
Tstg
–55 to 150
Power Dissipation
PD*
1
W
Short Circuit Current
IOS
50
mA
Operating Temperature
Topr
0 to 70
°C
*: Ta = 25°C
Recommended Operating Conditions
(Voltages referenced to VSS = 0 V)
Symbol
Min.
Typ.
Max.
Unit
VCC, VCCQ
3.0
3.3
3.6
V
Input High Voltage
VIH
2.0
—
VCC + 0.2
V
Input Low Voltage
VIL
–0.3
—
0.8
V
Parameter
Power Supply Voltage
Capacitance
(VCC = 3.3 V ±0.3 V, Ta = 25°C, f = 1 MHz)
Parameter
Input Capacitance (A0 - A9)
Input Capacitance (CLK, CKE, CS,
RAS, CAS, WE, DQM0~DQM3)
Input/Output Capacitance
(DQ0 - DQ31)
Symbol
Typ.
Max.
Unit
CIN1
—
5
pF
CIN2
—
5
pF
COUT
—
7
pF
5
MSM54V24632A
¡ Semiconductor
DC Characteristics
Condition
Parameter
Symbol
Bank
CKE
Output High Voltage VOH
—
—
IOH = –2 mA
Output Low Voltage
VOL
—
—
IOL = 2 mA
0.4 — 0.4
V
Input Leakage Current
ILI
—
—
—
–10 10 –10 10 –10 10
mA
—
—
–10 10 –10 10 –10 10
mA
Output Leakage Current
ILO
ICC1
Average Power
Supply Current
(Operating)
ICC1D Both Banks
Active
0.4 —
— 180 — 160 — 140 mA 1, 2
CKE ≥ VIH tCC = min
tRC = min
tRRD = min
No Burst
— 240 — 200 — 180 mA 1, 2
CKE ≥ VIH tCC = min
Average Power
ICC3S Both Banks
Active
Supply Current
(Clock Suspension)
CKE £ VIL tCC = min
ICC2
—
CKE ≥ VIH tCC = min
tRC = min
No Burst
Both Banks
Precharge
Power Supply
Current (Stand by)
—
80
—
70
—
60 mA
3
—
35
—
30
—
25 mA
3
—
95
—
80
—
70 mA
3
One Bank
Active
CKE ≥ VIH tCC = min
ICC4
Both Banks
Active
CKE ≥ VIH tCC = min
— 210 — 180 — 160 mA 1, 2
Power Supply
Current
(Auto-Refresh)
Average Power
Supply Current
(Self-Refresh)
ICC5
One Bank
Active
CKE ≥ VIH tCC = min
tRC = min
— 170 — 150 — 130 mA
Both Banks
Precharge
CKE £ VIL tCC = min
Average Power
Supply Current
(Power down)
ICC7
Both Banks
Precharge
CKE £ VIL tCC = min
Average Power
Supply Current
(Active Stand by)
ICC3
Power Supply
Current (Burst)
Notes:
7
—
One Bank
Active
Others
Version
–8
–10
–12 Unit Note
Min. Max. Min. Max. Min. Max.
2.4 — 2.4 — 2.4 — V
ICC6
—
2
—
2
—
2
mA
—
2
—
2
—
2
mA
1. Measured with outputs open.
2. Address and data can be changed once or not be changed during one cycle.
3. Address and data can be changed once or not be changed during two cycles.
2
¡ Semiconductor
MSM54V24632A
Mode Set Address Keys
CAS Latency
Operation Code
A8
A7
TM
0
0
Mode Setting
0
0
1
Reserved
0
1
0
Reserved
0
1
1
Reserved
Note:
A6
A5
Burst Type
A4
CL
0
0
0
1
1
0
0
1
1
1
Burst Length
A3
BT
A2
A1
A0
BT = 0
BT = 1
Reserved
0
Sequential
0
0
0
1
1
1
1
Interleave
0
0
1
2
2
2
0
1
0
4
4
1
3
0
1
1
8
8
0
0
Reserved
1
0
0
Reserved Reserved
0
1
Reserved
1
0
1
Reserved Reserved
1
1
0
Reserved
1
1
0
Reserved Reserved
1
1
1
Reserved
1
1
1
Full Page Reserved
A9 should stay "L" during mode set cycle.
POWER ON SEQUENCE
1. With inputs in NOP state, turn on the power supply and start the system clock.
2. After the VCC voltage has reached the specified level, pause for 200 ms or more with
the input kept in NOP state.
3. Issue the precharge all bank command.
4. Apply an Auto-refresh eight or more times.
5. Enter the mode register setting command.
7
MSM54V24632A
¡ Semiconductor
AC Characteristics 1
Note 1, 2
Parameter
Symbol
CL = 3
Clock Cycles Time CL = 2
tCC
CL = 1
MSM54V24632A-8
MSM54V24632A-10 MSM54V24632A-12
Unit Note
Min.
Max.
Min.
Max.
Min.
Max.
8
—
10
—
12
—
ns
12
—
15
—
18
—
ns
24
—
30
—
36
—
ns
CL = 3
Access Time from
CL = 2
Clock
CL = 1
—
7
—
9
—
10
ns
3, 4
tAC
—
10
—
13
—
15
ns
3, 4
—
22
—
27
—
32
ns
3, 4
Clock "H" Pulse Time
tCH
2.5
—
3
—
4
—
ns
Clock "L" Pulse Time
tCL
2.5
—
3
—
4
—
ns
Input Setup Time
tSI
2.5
—
3
—
3
—
ns
Input Hold Time
tHI
1
—
1
—
1.5
—
ns
Output Low Impedance
Time form Clock
tOLZ
3
—
3
—
3
—
ns
Output High Impedance
Time form Clock
tOHZ
—
6
—
8
—
10
ns
Output Hold from Clock
tOH
3
—
3
—
3
—
ns
RAS Cycle Time
tRC
72
—
90
—
106
—
ns
RAS Precharge Time
tRP
24
—
30
—
36
—
ns
RAS Active Time
tRAS
48
105
60
105
72
105
ns
RAS to CAS Delay Time
tRCD
24
—
30
—
36
—
ns
Write Recovery Time
tWR
16
—
20
—
24
—
ns
Write Command Input Time
tOWD
form Output
16
—
20
—
24
—
ns
RAS to RAS Bank Active
Delay Time
tRRD
16
—
20
—
24
—
ns
Refresh Time
tREF
—
16
—
16
—
16
ms
Power-down Exit Set-up Time
tPDE
8
—
10
—
12
—
ns
Input Level Transition Time
tT
1
5
1
5
1
5
ns
9
3
¡ Semiconductor
MSM54V24632A
AC Characteristics 2
Note 1, 2
Parameter
Symbol MSM54V24632A-8 MSM54V24632A-10 MSM54V24632A-12 Unit Note
CL
3
2
1
3
2
1
3
2
1
tCK
8
12
24
10
15
30
12
18
36
ns
CAS to CAS Delay Time (Min.) lCCD
1
1
1
1
1
1
1
1
1
Cycle
Clock Disable Time from CKE
lCKE
1
1
1
1
1
1
1
1
1
Cycle
Data Output High Impedance
Time from DQM
lDOZ
2
2
2
2
2
2
2
2
2
Cycle
Data Input Mask Time from
DQM
lDOD
0
0
0
0
0
0
0
0
0
Cycle
Data Input Time from Write
Command
lDWD
0
0
0
0
0
0
0
0
0
Cycle
Data Output High Impedance Time from
lROH
Precharge Command
2
2
1
2
2
1
2
2
1
Cycle
Active Command Input Time from Mode
Register Set Command Input (Min.)
3
3
3
3
3
3
3
3
3
Cycle
lMRD
9
MSM54V24632A
¡ Semiconductor
Notes : 1. AC measurements assume tT = 1 ns.
2. The reference level for timing of input signals is 1.4 V.
3. Output load.
1.4 V
Z = 50 W
50 W
Output
30 pF
4. An access time is measured at 1.4 V.
5. If tT is longer than 1ns, the reference level for timing of input signals is VIH and VIL.
11
,
,
,
,
,
¡ Semiconductor
MSM54V24632A
TIMING WAVEFORM
Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tRC
CKE
CS
tRP
RAS
tRCD
CAS
ADDR
Ra
Ca0
Rb
Cb0
A9
A8
Ra
Rb
tOH
DQ
Qa0
Qa1
Qa2
Qa3
Db0
Db1
tOHZ
tAC
Db2
Db3
tWR
WE
DQM0
~DQM3
Row Active
Read Command
Row Active
Write Command
Precharge Command
Precharge Command
11
MSM54V24632A
¡ Semiconductor
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
,,
,
,,
tCC
tCL
High
CKE
tHI
CS
tSI
tHI
RAS
lCCD
tHI
tSI
CAS
tSI
ADDR
tSI
tSI
Ra
Ca
Cb
tHI
A9
BS
A8
Ra
Cc
tHI
BS
BS
tAC
DQ
Qa
BS
BS
tHI
Db
tOLZ
Qc
tSI
tOH
tOHZ
tOWD
tHI
WE
tSI
DQM0
~DQM3
Row Active
Write Command
Read Command
13
Precharge Command
Read Command
¡ Semiconductor
*Notes:
MSM54V24632A
1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE and DQM0,
DQM1, DQM2, DQM3 are invalid.
2. When issuing an active, read or write command, the bank is selected by A9.
A9
Active, read or write
0
Bank A
1
Bank B
3. The auto precharge function is enabled or disabled by the A8 input when the read or write command is
issued.
A8
A9
0
0
Operation
After the end of burst, bank A holds the active status.
1
0
After the end of burst, bank A is precharged automatically.
0
1
After the end of burst, bank B holds the active status.
1
1
After the end of burst, bank B is precharged automatically.
4. When issuing a precharge command, the bank to be precharged is selected by the A8 and A9 inputs.
A8
A9
0
0
Bank A is precharged.
Operation
0
1
Bank B is precharged.
1
X
Both banks A and B are precharged.
5. The input data and the write command are latched by the same clock (Write latency = 0).
6. The output is forced to high impedance by (1 CLK + tOHZ) after DQMi entry.
13
MSM54V24632A
¡ Semiconductor
,
,
,
,
,,
,
,
,
,
,
,
,
Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
Bank A Active
RAS
CAS
lCCD
ADDR
Ca0
Cb0
Cc0
Cd0
A9
A8
DQ
Qa0
Qa1
Qb0
Qb1
Dc0
Dc1
Dd0
tWR *Note2
WE
*Note1
DQM0
~DQM3
Read Command
Read Command
Write Command
Write Command
Precharge Command
*Notes:
15
1. To write data before a burst read ends, DQMi should be asserted three cycles prior to the write command,
to avoid bus contention.
2. To assert row precharge before a burst write ends, wait tWR after the last write data input.
Input data during the precharge input cycle will be masked internally.
¡ Semiconductor
MSM54V24632A
,
,
,
,,
,
,
,
,
,
Read & Write Cycle with Auto Precharge @ Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
17
18
19
CLK
High
CKE
CS
RAS
tRRD
CAS
ADDR
Ra
Rb
Ra
Rb
Ca
Cb
A9
A8
WE
CAS Latency = 1
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
DQM0
~DQM3
CAS Latency = 2
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
DQM0
~DQM3
CAS Latency = 3
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
tWR
DQM0
~DQM3
Row Active
(A-Bank)
A Bank Read with
Auto Precharge
Row Active
(B-Bank)
B Bank Write with
Auto Precharge
B Bank Precharge
Start Point
15
MSM54V24632A
¡ Semiconductor
,
,
,
,
,
,
,
Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4
0
CLK
CKE
CS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
High
tRC
RAS
CAS
ADDR
A9
A8
DQ
WE
tRRD
RAa
CAa
RAa
RBb
CBb
RAc
RBb
CAc
RAc
QAa0 QAa1 QAa2 QAa3
QBb1 QBb2 QBb3 QBb4
QAc0 QAc1 QAc2 QAc3
DQM0
~DQM3
Row Active
(A-Bank)
Read Command
(A-Bank)
Read Command
(B-Bank)
Row Active
(B-Bank)
Precharge Command
(A-Bank)
17
Read Command
(A-Bank)
Precharge Command
(B-Bank)
Row Active
(A-Bank)
19
¡ Semiconductor
MSM54V24632A
Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4
,
,
,,
,
,
,
,,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CA
A9
A8
RAa
DQ
RBb
RAc
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3
DAc0 DAc1
WE
DQM0
~DQM3
Row Active
(A-Bank)
Write Command
(A-Bank)
Precharge
Command
(A-Bank)
Write Command
(B-Bank)
Write Command
(A-Bank)
Row Active
(B-Bank)
Row Active
(A-Bank)
Precharge Command
(A-Bank)
Precharge Command
(B-Bank)
17
MSM54V24632A
¡ Semiconductor
,
,
,
,
,
,
Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
CLK
High
CKE
*Note1
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
CAe
A9
A8
RAa
RAa
DQ
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
lROH
WE
DQM0
~DQM3
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
*Note:
19
Read Command
(B-Bank)
Read Command
(B-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
1. CS is ignored when RAS, CAS and WE are high at the same cycle.
19
,
,,
,
,
,
,
,,
,
¡ Semiconductor
MSM54V24632A
Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
A9
A8
RAa
DQ
RAb
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0
WE
DQM0
~DQM3
Row Active
(A-Bank)
Row Active
(B-Bank)
Write Command
(A-Bank)
Write Command
(B-Bank)
Write Command
(B-Bank)
Write Command
(A-Bank)
Precharge Command
(Both Bank)
19
MSM54V24632A
¡ Semiconductor
Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
,
,
,
,
,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
A9
A8
RAa
RBb
DQ
QAa0 QAa1 QAa2 QAa3
RAc
DBb0 DBb1 DBb2 DBb3
WE
DQM0
~DQM3
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
21
Precharge Command
(A-Bank)
Write Command
(B-Bank)
Read Command
(A-Bank)
Row Active
(A-Bank)
QAc0 QAc1 QAc2 QAc3
¡ Semiconductor
MSM54V24632A
Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
CKE
CS
RAS
CAS
ADDR
A9
A8
DQ
WE
DQM0
~DQM3
,,
,
,
,
,,
High
CAa0
CBb0
QAa0 QAa1 QAa2 QAa3
Read Command
(A-Bank)
CAc0
DBb0 DBb1 DBb2 DBb3
Write Command
(B-Bank)
QAc0 QAc1 QAc2 QAc3
Read Command
(A-Bank)
21
MSM54V24632A
¡ Semiconductor
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4
0
CKE
CS
RAS
CAS
ADDR
A9
A8
DQ0 - 7
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
¨
,
,
,
,
,
,
,
Ra
¨
CLK
1
*Note1
*Note1
Ca
Cb
Cc
Ra
Qa0
Qa1
Qa2
Qb0
Qb1
tOHZ
*Note4
DQ8 - 15
Qa0
Qa2
Qa3
Dc0
tOHZ
Qb0
Qb1
Dc2
*Note3
Dc0
Dc1
*Note2
WE
DQM0
*Note4
DQM1
Row Active
Read
DQM
Read
Command
*Notes:
23
1.
2.
3.
4.
CLOCK
Suspension
Read DQM
Read
Command
Read DQM
Write
DQM
Write
Command
When CKE is deactivated, the next clock cycle will be ignored.
When DQMs are asserted, the read data after two clock cycles will be masked.
When DQMs are asserted, the write data in the same clock cycle will be masked.
When DQM0 is set High, the input/output data of DQ0 - DQ7 will be masked.
When DQM2 is set High, the input/output data of DQ8 - DQ15 will be masked.
When DQM3 is set High, the input/output data of DQ16 - DQ23 will be masked.
When DQM4 is set High, the input/output data of DQ24 - DQ31 will be masked.
CLOCK
Suspension
Write
DQM
¡ Semiconductor
MSM54V24632A
Read Interruption by Precharge Command @ Burst Length = 8
,
,
,
,,,
,,
,
,,
,
,,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
Ra
Ca
A9
A8
Ra
WE
CAS Latency = 1
*Note1
Qa0
DQ
Qa1
Qa2
Qa3
Qa4
Qa5
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
Qa0
Qa1
Qa2
Qa3
Qa4
DQM0
~DQM3
CAS Latency = 2
*Note2
DQ
DQM0
~DQM3
CAS Latency = 3
*Note2
DQ
DQM0
~DQM3
Row Active
*Notes:
Read Command
Precharge Command
1. When CAS latency = 1, and if row precharge is esserted before a burst read ends, then the read data will
not output after the next clock cycle of precharge command.
2. If row precharge is asserted before burst read ends when CAS latency = 2 or 3, then the read data will
not output after the second clock cycle of the precharge command.
23
,
,
,
,
,
,
MSM54V24632A
¡ Semiconductor
Power Down Mode @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
*Note2
tPDE
tSI
tSI
*Note1
CKE
tSI
tREF(min.)
CS
RAS
CAS
Ra
ADDR
Ca
A9
Ra
A8
DQ
Qa0
Qa1
Qa2
WE
DQM0
~DQM3
Row Active
Power-down
Entry
*Notes:
25
Power-down
Exit
Clock
Suspention
Entry
Clock
Suspention
Exit
Read
Command
Precharge
Command
1. When both banks are in precharge state, and if CKE is set low, then the MSM54V24632A enters powerdown mode and maintains the mode while CKE is low.
2. To release the circuit from power-down mode, set CKE high for longer than tPDE, and the inputs will be
set within the same cycle.
,
,
,,,
,
¡ Semiconductor
MSM54V24632A
Self Refresh Cycle
0
CLK
1
2
tRCmin.
CKE
tSI
CS
RAS
CAS
ADDR
A9
A8
DQ
WE
DQM0
~DQM3
tPDE
Ra
BS
Ra
Hi - Z
Self
Refresh
Entry
Hi - Z
Self
Refresh
Exit
Row
Active
25
MSM54V24632A
¡ Semiconductor
Mode Register Set Cycle
0
CLK
CKE
CS
1
2
3
Auto Refresh Cycle
4
5
6
0
1
2
3
CAS
ADDR
DQ
WE
DQM0
~DQM3
key
6
7
8
9
10
High
tRC
Ra
Hi - Z
MRS
27
5
11
12
,,
,,
,
,
High
lMRD
RAS
4
New Command
Hi - Z
Auto Refresh
Auto Refresh
¡ Semiconductor
MSM54V24632A
FUNCTION TRUTH TABLE (Table 1) (1/2)
Current State1 CS RAS CAS WE BA
Idle
Row Active
Read
Write
H
X
L
L
L
H
L
L
L
L
L
L
Action
ADDR
X
NOP
X
X
NOP
BA
X
ILLEGAL 2
BA
CA
ILLEGAL 2
BA
RA
Row Active
L
BA
A8
NOP 4
H
X
X
Auto-Refresh or Self-Refresh 5
X
X
H
H
H
H
H
L
L
X
H
H
H
L
X
L
L
L
L
H
X
X
X
X
OP Code
X
Mode Register write
NOP
L
H
H
X
X
X
NOP
L
H
L
H
BA
CA, A8
Read
L
H
L
L
BA
CA, A8
Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A8
Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
Reserved
L
H
L
H
BA
CA, A8
Term Burst, start new Burst Read
L
H
L
L
BA
CA, A8
Term Burst, start new Burst Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A8
Term Burst, execute Row Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
Reserved (Term Burst) --> Row Active
L
H
L
H
BA
CA, A8
Term Burst, Start new Burst Read
L
H
L
L
BA
CA, A8
Term Burst, start new Burst write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A8
Term Burst, executo Row Precharge
L
L
L
X
X
X
ILLEGAL
Read with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A8
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A8
L
L
L
X
X
X
ILLEGAL
ILLEGAL
ILLEGAL 2
Write with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A8
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A8
L
L
L
X
X
X
ILLEGAL
ILLEGAL 2
ILLEGAL
27
MSM54V24632A
¡ Semiconductor
FUNCTION TRUTH TABLE (Table 1) (2/2)
Current State1 CS RAS CAS WE BA
Precharge
Write Recovery
Row Active
Refresh
Action
ADDR
X
X
NOP --> Idle after tRP
H
X
X
NOP --> Idle after tRP
L
BA
X
ILLEGAL 2
L
X
BA
CA
ILLEGAL 2
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A8
NOP 4
L
L
L
X
X
X
ILLEGAL
H
X
X
X
L
H
H
L
H
H
L
H
L
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A8
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Row Active after tRCD
L
H
H
H
X
X
NOP --> Row Active after tRCD
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A8
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Idle after tRC
L
H
H
X
X
X
NOP --> Idle after tRC
L
H
L
X
X
X
ILLEGAL
L
L
H
X
X
X
ILLEGAL
L
L
L
X
X
X
ILLEGAL
Mode Register
H
X
X
X
X
X
NOP
Access
L
H
H
H
X
X
NOP
L
H
H
L
X
X
ILLEGAL
L
H
L
X
X
X
ILLEGAL
L
L
X
X
X
X
ILLEGAL
ABBREVIATIONS
RA = Row Address
CA = Column Address
Notes:
29
BA = Bank Address
AP = Auto Precharge
NOP = No OPeration command
1. All inputs will be enabled when CKE is set high for at least 1 cycle prior to the inputs.
2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank
selection.
3. Satisfy the timing of tCCD and tWR to prevent bus contention.
4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A8.
5. Illegal if any bank is not idle.
¡ Semiconductor
MSM54V24632A
FUNCTION TRUTH TABLE for CKE (Table 2)
Current State (n) CKEn-1
Self Refresh
Power Down
6
6
CKEn
CS RAS CAS WE
ADDR
Action
H
x
X
X
X
X
X
INVALID
L
H
H
X
X
X
X
Exit Self Refresh --> ABI
L
H
L
H
H
H
X
Exit Self Refresh --> ABI
L
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL
L
L
X
X
X
X
X
NOP (Maintain Self Refresh)
H
X
X
X
X
X
X
INVALID
L
H
H
X
X
X
X
Exit Power Down --> ABI
L
H
L
H
H
H
X
Exit Power Down --> ABI
L
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL 7
L
L
X
X
X
X
X
NOP (Continue power down mode)
All Banks Idle 7
H
H
X
X
X
X
X
Refer to Table 1
(ABI)
H
L
H
X
X
X
X
Enter Power Down
H
L
L
H
H
H
X
Enter Power Down
H
L
L
H
H
L
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
H
L
X
ILLEGAL
H
L
L
L
L
H
X
Enter Self Refresh
H
L
L
L
L
L
X
ILLEGAL
L
L
X
X
X
X
X
NOP
Any State Other
H
H
X
X
X
X
X
Refer to Operations in Table 1
than Listed Above
H
L
X
X
X
X
X
Begin Clock Suspend Next Cycle
L
H
X
X
X
X
X
Enaole Clock of Next Cycle
L
L
X
X
X
X
X
Continue Clock Suspension
Notes:
6. If a minimam set-up time tPDE is satisfied when CKE transitions from "L" to "H", CKE
operates asynchronously so that a command can be input in the same internal clock cycle.
7. Power-down and self refresh can be entered only when all the banks are in an idle state.
29