OKI MSM56V16160F

This version : Sep.1999
Semiconductor
MSM56V16160F
2-Bank ´ 524,288 Word ´ 16 Bit SYNCHRONOUS DYNAMIC RAM
DESCRIPTION
The MSM56V16160F is a 2-Bank ´ 524,288-word ´ 16 bit Synchronous dynamic RAM, fabricated in OKI’s
CMOS silicon-gate process technology. The device operates at 3.3V. The inputs and outputs are LVTTL
compatible.
FEATURES
·
Silicon gate , quadruple polysilicon CMOS , 1-transistor memory cell
·
2-bank ´ 524,288-word ´ 16bit configuration
·
3.3V power supply ± 0.3V tolerance
·
Input
: LVTTL compatible
·
Output
: LVTTL compatible
·
Refresh
: 4096 cycles/64 ms
·
Programmable data transfer mode
- CAS Latency (1,2,3)
- Burst Length (1,2,4,8,Full page)
- Data scramble (sequential , interleave)
·
CBR auto-refresh, Self-refresh capability
·
Package:
50-pin 400mil plastic TSOP (Type II)
(TSOPII50-P-400-0.80-K)
(Product : MSM56V16160F-xxTS-K)
xx : indicates speed rank.
PRODUCT FAMILY
Family
Max.
Frequency
Access Time (Max.)
tAC2
tAC3
MSM56V16160F-8
125MHz
9ns
6ns
MSM56V16160F-10
100MHz
9ns
9ns
1/30
MSM56V16160F
PIN CONFIGRATION (TOP VIEW)
VCC
DQ1
DQ2
VSSQ
1
2
3
4
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
DQ3 5
DQ4 6
VCCQ 7
DQ5 8
DQ6 9
VSSQ 10
DQ7 11
DQ8 12
VCCQ 13
LDQM 14
WE 15
CAS 16
RAS 17
CS 18
A11 19
A10 20
A0 21
A1 22
A2 23
A3 24
VCC 25
VSS
DQ16
DQ15
VSSQ
DQ14
DQ13
VCCQ
DQ12
DQ11
VSSQ
DQ10
DQ9
VCCQ
NC
UDQM
CLK
CKE
NC
A9
A8
A7
A6
A5
A4
VSS
50-Pin Plastic TSOP (II)
(K Type)
Pin Name
Function
Pin Name
Function
CLK
System Clock
UDQM, LDQM
Data Input/Output Mask
CS
Chip Select
DQi
Data Input/Output
CKE
Clock Enable
VCC
Power Supply (3.3V)
A0–A10
Address
VSS
Ground (0V)
A11
Bank Select Address
VCCQ
Data Output Power Supply (3.3V)
RAS
Row Address Strobe
VSSQ
Data Output Ground (0V)
CAS
Column Address Strobe
NC
No Connection
WE
Write Enable
Note:
The same power supply voltage must be provided to every VCC pin and VCCQ pin.
The same GND voltage level must be provided to every VSS pin and VSSQ pin.
2/30
MSM56V16160F
PIN DESCRIPTION
CLK
Fetches all inputs at the “H” edge.
CS
Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE,
UDQM and LDQM.
CKE
Masks system clock to deactivate the subsequent CLK operation.
If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is
deactivated. CKE should be asserted at least one cycle prior to a new command.
Address
Row & column multiplexed.
Row address
: RA0 – RA10
Column Address : CA0 – CA7
A11
Slects bank to be activated during row address latch time and selects bank for precharge and
read/write during column address latch time. A11=”L” : Bank A, A11=”H” : Bank B
RAS
CAS
Functionality depends on the combination. For details, see the function truth table.
WE
LDQM
Masks the read data of two clocks later when UDQM and LDQM are set “H” at the “H” edge of
the clock signal. Masks the write data of the same clock when UDQM and LDQM are set “H”
at the “H” edge of the clock signal. UDQM controls upper byte and LDQM controls lower byte.
DQi
Data inputs/outputs are multiplexed on the same pin.
UDQM,
3/30
MSM56V16160F
BLOCK DIAGRAM
CKE
CLK
CS
RAS
CAS
WE
UDQM
LDQM
Latency
& Burst
Controller
Programing
Register
Timing
Register
I/O
Controller
Bank
Controller
A11
Internal
Col.
Address
Counter
Input
Data
Register
A0 - A11
Input
Buffers
16
88
Column
Address
Buffers
8
Sense
Amplifiers
Internal
Row
Address
Counter
12
Row
Address
Buffers
12
16
Column
Decoders
Row
Decoders
Word
Drivers
8Mb
Memory
Cells
Row
Decoders
Word
Drivers
8Mb
Memory
Cells
16
Read
Data
Register
16
Output
Buffers
16
DQ1
- DQ16
Sense
Amplifiers
Column
Decoders
4/30
MSM56V16160F
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(Voltages referenced to VSS)
Parameter
Symbol
Rating
Unit
VIN, VOUT
-0.5 to VCC + 0.5
V
VCC, VCCQ
-0.5 to 4.6
V
Storage Temperature
Tstg
-55 to 150
°C
Power Dissipation
PD*
600
mW
Short Circuit Current
IOS
50
mA
Operating Temperature
Topr
0 to 70
°C
Voltage on Any Pin Relative to VSS
VCC Supply Voltage
*: Ta = 25°C
Recommended Operating Conditions
(Voltages referenced to VSS = 0V)
Parameter
Symbol
Min.
Typ.
Max.
Unit
VCC, VCCQ
3.0
3.3
3.6
V
Input High Voltage
VIH
2.0
¾
VCC + 0.2
V
Input Low Voltage
VIL
-0.3
¾
0.8
V
Power Supply Voltage
Capacitance
(VBIAS = 1.4V, Ta = 25°C, f = 1MHz)
Parameter
Input Capacitance (CLK)
Input Capacitance
(RAS, CAS, WE, CS, CKE, UDQM, LDQM, A0-A11)
Input/Output Capacitance (DQ1-DQ16)
Symbol
Min.
Max.
Unit
CCLK
2.5
4
pF
CIN
2.5
5
pF
COUT
4
6.5
pF
5/30
MSM56V16160F
DC Characteristics
MSM56V16160
Condition
Parameter
F-8
Symbol
F-10
Unit Note
Bank
CKE
Others
Min
Max
Min
Max
Output High
Voltage
VOH
¾
¾
IOH = -2.0mA
2.4
¾
2.4
¾
V
Output Low
Voltage
VOL
¾
¾
IOL = 2.0mA
¾
0.4
¾
0.4
V
Input Leakage
Current
ILI
¾
¾
¾
-10
10
-10
10
µA
Input Leakage
Current
ILO
¾
¾
¾
-10
10
-10
10
µA
¾
80
¾
70
mA
1,2
tCC=min.
CKE³VIH tRC=min.
No Burst
ICC1
One Bank
Active
ICC1D
tCC=min.
t =min.
Both Banks
CKE³VIH RC
Active
tRRD=min.
No Burst
¾
115
¾
95
mA
1,2
Power supply
current (Standby)
ICC2
Both Banks
CKE³VIH tCC=min.
Precharge
¾
35
¾
30
mA
3
Average power
supply current
(Clock Suspension)
ICC3S
Both Banks
CKE£VIL tCC=min.
Active
¾
3
¾
3
mA
2
Average power
supply current
(Active Standby )
ICC3
One Bank
Active
CKE³VIH tCC=min.
¾
40
¾
35
mA
3
Power supply
current (Burst)
ICC4
Both Banks
CKE³VIH tCC=min.
Active
¾
125
¾
100
mA
1,2
Power supply
current
(Auto-Refresh)
ICC5
One Bank
Active
tCC=min.
tRC=min.
¾
80
¾
70
mA
2
Average power
supply current
(Self-Refresh)
ICC6
Both Banks
CKE£VIL tCC=min.
Precharge
¾
2
¾
2
mA
Average power
supply current
(Power Down)
ICC7
Both Banks
CKE£VIL tCC=min.
Precharge
¾
2
¾
2
mA
Average power
supply current
(Operating)
Notes: 1.
2.
3.
CKE³VIH
Measured with outputs open.
The address and data can be changed once or left unchanged during one cycle.
The address and data can be changed once or left unchanged during two cycles.
6/30
MSM56V16160F
Mode Set Address Keys
CAS Latency
Burst Type
Burst Length
A6
A5
A4
CL
A3
BT
A2
A1
A0
BT = 0
BT = 1
0
0
0
Reserved
0
Sequential
0
0
0
1
1
0
0
1
1
1
Interleave
0
0
1
2
2
0
1
0
2
0
1
0
4
4
0
1
1
3
0
1
1
8
8
1
0
0
Reserved
1
0
0
Reserved
Reserved
1
0
1
Reserved
1
0
1
Reserved
Reserved
1
1
0
Reserved
1
1
0
Reserved
Reserved
1
1
1
Reserved
1
1
1
Full Page
Reserved
Notes: A7, A8, A9, A10 and A11 should stay “L” during mode set cycle.
POWER ON SEQUENCE
1.
2.
3.
4.
5.
With inputs in NOP state, turn on the power supply and start the system clock.
After the VCC voltage has reached the specified level, pause for 200ms or more with the input kept
in NOP state.
Issue the precharge all bank command.
Apply a CBR auto-refresh eight or more times.
Enter the mode register setting command.
7/30
MSM56V16160F
AC Characteristic (1/2)
Note 1,2
MSM56V16160
Parameter
Access Time from Clock
F-10
Unit
Note
Min.
Max.
Min.
Max.
8
¾
10
¾
ns
12
¾
15
¾
ns
CL = 1
24
¾
30
¾
ns
CL = 3
¾
6
¾
9
ns
3,4
¾
9
¾
9
ns
3,4
¾
22
¾
27
ns
3,4
CL = 3
Clock Cycles Time
F-8
Symbol
CL = 2
CL = 2
tCC
tAC
CL = 1
Clock High Pulse Time
tCH
3
¾
3
¾
ns
4
Clock Low Pulse Time
tCL
3
¾
3
¾
ns
4
Input Setup Time
tSI
2
¾
3
¾
ns
Input Hold Time
tHI
1
¾
1
¾
ns
Output Low Impedance Time
from Clock
tOLZ
3
¾
3
Output High Impedance Time
from Clock
tOHZ
¾
8
¾
8
ns
Output Hold from Clock
tOH
3
¾
3
¾
ns
RAS Cycle Time
tRC
70
¾
90
¾
ns
RAS Precharge Time
tRP
20
¾
30
¾
ns
5
ns
5
RAS Active Time
tRAS
48
10
60
10
ns
RAS to CAS Delay Time
tRCD
20
¾
30
¾
ns
Write Recovery Time
tWR
8
¾
15
¾
ns
RAS to RAS Bank Active Delay Time
tRRD
20
¾
20
¾
ns
Refresh Time
tREF
¾
64
¾
64
ms
Power-down Exit setup Time
tPDE
tSI+1CLK
¾
tSI+1CLK
¾
ns
tT
¾
3
¾
3
ns
Input Level Transition Time
CAS to CAS Delay Time(Min.)
lCCD
1
1
Cycle
Clock Disable Time from CKE
lCKE
1
1
Cycle
Data Output High Impedance Time
from UDQM, LDQM
lDOZ
2
2
Cycle
Data Input Mask Time from UDQM,
LDQM
lDOD
0
0
Cycle
Data Input Mask Time from Write
Command
lDWD
0
0
Cycle
3
8/30
MSM56V16160F
AC Characteristic (2/2)
Note 1,2
MSM56V16160
Parameter
F-8
Symbol
Min.
F-10
Max.
Min.
Unit
Max.
Data Output High Impedance Time
from Precharge Command
lROH
CL
CL
Cycle
Active Command Input Time from
Mode Register Set Command Input
(Min.)
lMRD
3
3
Cycle
Write Command Input Time from
Output
lOWD
2
2
Cycle
Notes:
1)
2)
3)
Note
AC measurements assume that tT = 1ns.
The reference level for timing of input signals is 1.4V.
Output load.
Z=50W
Output
50pF (External Load)
4)
5)
The access time is defined at 1.5V.
If tT is longer than 1ns, then the reference level for timing of input signals is VIH and VIL.
9/30
MSM56V16160F
TIMING WAVEFORM
·
Read & Write Cycle (Same Bank) @CAS Latency=
=2, Burst Length=
=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tRC
CKE
CS
tRP
RAS
tRCD
CAS
ADDR
Ra
C a0
Rb
C b0
A11
A10
Ra
Rb
tOH
Q a0
DQ
tAC
Q a1
Q a2
Q a3
D b0
D b1
tOHZ
D b2
D b3
tWR
WE
UDQM,
LDQM
Row Active
Read Command
Precharge Command
Row Active
Write Command
Precharge Command
10/30
MSM56V16160F
·
Single Bit Read-Write-Read Cycle (Same Page) @CAS Latency=
=2, Burst Length=
=4
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tCC
tCL
High
CKE
CS
tHI
tSI
RAS
tSI
tHI
ICCD
CAS
tSI
ADDR
Ra
tSI
tSI
Ca
tHI
A11
BS
A10
Ra
Cb
Cc
BS
BS
tHI
BS
tAC
tOHZ
Qa
DQ
tOLZ
BS
tHI
Db
Qc
tSI
tOH
lOWD
tHI
WE
tSI
UDQM,
LDQM
Row Active
Read Command
Write Command
Precharge Command
Read Command
11/30
MSM56V16160F
*Notes : 1. When CS is set ”High” at a clock transition from “Low” to ”High”, all inputs except CKE, UDQM and LDQM are
invalid.
2. When issuing an active, read or write command, the bank is selected by A11.
A11
Active, read or write
0
Bank A
1
Bank B
3. The auto precharge function is enabled or disabled by the A10 input when the read or write command is
issued.
A10
A11
Operation
0
0
After the end of burst, bank A holds the idle status.
1
0
After the end of burst, bank A is precharged automatically.
0
1
After the end of burst, bank B holds the idle status.
1
1
After the end of burst, bank B is precharged automatically.
4. When issuing a precharge command, the bank to be precharged is selected by the A10 and A11 inputs.
A10
A11
Operation
0
0
Bank A is precharged.
0
1
Bank B is precharged.
1
X
Both banks A and B are precharged.
5. The input data and the write command are latched by the same clock (Write latency = 0).
6. The output is forced to high impedance by (1CLK+tOHZ) after UDQM, LDQM entry.
12/30
MSM56V16160F
·
Page Read & Write Cycle (Same Bank) @CAS Latency=
=2, Burst Length=
=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
Bank A Active
RAS
CAS
ICCD
ADDR
C a0
C b0
C c0
C d0
A11
A10
DQ
Q a0
Q a1
Q b0
Q b1
D c0
lOWD
D c1
D d0
tWR
*Note 2
WE
*Note 1
UDQM,
LDQM
Read Command
Read Command
*Notes:
Write Command
Precharge Command
Write Command
1. To write data before a burst read ends, UDQM and LDQM should be asserted three cycles prior to the write
command to avoid bus contention.
2. To assert row precharge before a burst write ends, wait tWR after the last write data input.
Input data during the precharge input cycle will be masked internally.
13/30
MSM56V16160F
·
Read & Write Cycle with Auto Precharge @ Burst Length=
=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
tRRD
CAS
ADDR
Ra
Rb
Ra
Rb
Ca
Cb
A11
A10
WE
CAS Latency=1
Q a0
DQ
Q a1
Q a2
Q a3
D b0
D b1
D b2
D b3
D b0
D b1
D b2 D b3
D b0
D b1
D b2 D b3
A-Bank Precharge Start
UDQM,
LDQM
CAS Latency=2
Q a0
DQ
Q a1
Q a2
Q a3
A-Bank Precharge Start
UDQM,
LDQM
CAS Latency=3
Q a0
DQ
Q a1
Q a2
Q a3
tWR
A-Bank Precharge Start
UDQM,
LDQM
Row Active
(A-Bank)
Row Active
(B-Bank) A Bank Read with
Auto Precharge
B Bank Write with
Auto Precharge
B Bank Precharge
Start Point
14/30
MSM56V16160F
·
Bank Interleave Random Row Read Cycle @CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
tRC
RAS
tRRD
CAS
ADDR
R Aa
C Aa
R Bb
C Bb
R Ac
C Ac
A11
A10
R Aa
R Bb
R Ac
Q Aa0 Q Aa1 Q Aa2 Q Aa3
DQ
Q Bb1 Q Bb2 Q Bb3 Q Bb4
Q Ac0 Q Ac1 Q Ac2 Q Ac3
WE
UDQM,
LDQM
Row Active
(A-Bank)
Read Command
(A-Bank)
Row Active
(B-Bank)
Read Command
(B-Bank)
Precharge Command
(A-Bank)
Row Active
(A-Bank)
Read Command
(A-Bank)
Precharge Command
(B-Bank)
15/30
MSM56V16160F
·
Bank Interleave Random Row Write Cycle @CAS Latency = 2, Burst Length =4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
R Aa
C Aa
R Bb
C Bb
R Ac
C Ac
A11
A10
R Aa
R Bb
R Ac
D Aa0 D Aa1 D Aa2 D Aa3 D Bb0 D Bb1 D Bb2 D Bb3
DQ
D Ac0 D Ac1
WE
UDQM,
LDQM
Row Active
(A-Bank)
Precharge
Command
Write Command (A-Bank)
Row Active
(B-Bank)
Write Command
(A-Bank)
(B-Bank)
Row Active
(A-Bank)
Write Command
(A-Bank)
Precharge Command
(B-Bank)
Precharge Command
(A-Bank)
16/30
MSM56V16160F
·
Bank Interleave Page Read Cycle @CAS Latency = 2, Burst Length =4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
*Note 1
CS
RAS
CAS
ADDR
R Aa
C Aa
R Bb
C Bb
C Ac
C Bd
C Ae
A11
A10
R Aa
R Bb
Q Aa0 Q Aa1 Q Aa2 Q Aa3 Q Bb0 Q Bb1 Q Bb2 Q Bb3 Q Ac0 Q Ac1 Q Bd0 Q Bd1 Q Ae0 Q Ae1
DQ
IROH
WE
UDQM,
LDQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
*Note:
Read Command
(B-Bank)
Read Command
(B-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
1. CS is ignored when RAS, CAS and WE are high at the same cycle.
17/30
MSM56V16160F
·
Bank Interleave Page Write Cycle @CAS Latency = 2, Burst Length=
=4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
R Aa
C Aa
R Bb
C Bb
C Ac
C Bd
A11
A10
DQ
R Aa
R Ab
D Aa0 D Aa1 D Aa2 D Aa3 D Bb0 D Bb1 D Bb2 D Bb3 D Ac0 D Ac1 D Bd0
WE
UDQM,
LDQM
Row Active
Row Active
(A-Bank) Write Command (B-Bank) Write Command
(B-Bank)
(A-Bank)
Write Command
Write Command (B-Bank)
Precharge Command
(A-Bank)
(Both Bank)
18/30
MSM56V16160F
·
Bank Interleave Random Row Read/Write Cycle @CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
R Aa
C Aa
R Bb
C Bb
R Ac
C Ac
A11
A10
R Aa
R Bb
Q Aa0 Q Aa1 Q Aa2 Q Aa3
DQ
R Ac
Q Bb0 Q Bb1 Q Bb2 Q Bb3
Q Ac0 Q Ac1 Q Ac2 Q Ac3
WE
UDQM,
LDQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Write Command
(B-Bank)
Read Command
(A-Bank)
Row Active
(A-Bank)
19/30
MSM56V16160F
·
Bank Interleave Page Read/Write Cycle @CAS Latency = 2, Burst Length =4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
C Aa0
C Bb0
C Ac0
A11
A10
Q Aa0 Q Aa1 Q Aa2 Q Aa3
DQ
D Bb0 D Bb1 D Bb2 D Bb3
Q Ac0 Q Ac1 Q Ac2 Q Ac3
WE
UDQM,
LDQM
Read Command
(A-Bank)
Write Command
(B-Bank)
Read Command
(A-Bank)
20/30
MSM56V16160F
·
Clock Suspension & DQM Operation Cycle @CAS Latency = 2, Burst Length =4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
*Note 1
*Note 1
CKE
CS
RAS
CAS
Ra
ADDR
Ca
Cb
Cc
A11
Ra
A10
Q a0
DQ0-7
Q a1
Q a2
Q b0
Q a0
DQ8-15
Q a2
D c0
Q a3
Q b0
Q b1
D c2
*Note 3
tOHZ
tOHZ
*Note 4
Q b1
D c0
D c1
*Note 2
WE
UDQM
*Note 4
LDQM
Row Active
Read
DQM
CLOCK
Suspension
Read Command
Read DQM
*Notes:
1.
2.
3.
4.
Read Command
Read DQM
Write
DQM
Write
Command
Write
DQM
CLOCK
Suspension
When Clock Suspension is asserted, the next clock cycle is ignored.
When LDQM and UDQM are asserted, the read data after two clock cycles is masked.
When LDQM and UDQM are asserted, the write data in the same clock cycle is masked.
When LDQM is set High, the input/output data of DQ0-7 is masked.
When UDQM is set High, the input/output data of DQ8-15 is masked.
21/30
MSM56V16160F
·
Read to Write Cycle (Same Bank) @CAS Latency = 2, Burst Length =4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
CKE
CS
*Note 1
RAS
tRCD
CAS
ADDR
Ra
C a0
C b0
A11
A10
Ra
D a0
DQ
D b0
D b1
D b2
D b3
tWR
WE
UDQM,
LDQM
Precharge Command
Row Active
Read Command
*Note:
Write Command
1. In Case CAS latency is 3, READ can be interrupted by WRITE.
The minimum command interval is [burst length + 1] cycles.
UDQM and LDQM must be high at least 3 clocks prior to the write command.
22/30
MSM56V16160F
·
Read Interruption by Precharge Command @Burst Length =8
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
Ra
ADDR
Ca
A11
Ra
A10
WE
*Note 1
CAS Latency=1
Q a0
DQ
Q a1
Q a2
Q a3
Q a4
Q a5
lROH
UDQM,
LDQM
*Note 2
CAS Latency=2
Q a0
DQ
Q a1
Q a2
Q a3
Q a4
Q a5
lROH
UDQM,
LDQM
*Note 3
CAS Latency=3
Q a0
DQ
Q a1
Q a2
Q a3
Q a4
Q a5
lROH
UDQM,
LDQM
Row Active
*Notes:
1.
2.
3.
Read Command
Precharge Command
When the CAS latency = 1, and if row precharge is asserted before a burst read ends, then the read data will not output after
the next clock cycle of the precharge command.
When the CAS latency = 2, and if row precharge is asserted before burst read ends, then the read data will not output after
the second clock cycle of the precharge command.
When the CAS latency = 3, and if row precharge is asserted before burst read ends, then the read data will not output after
the second clock cycle of the precharge command.
23/30
MSM56V16160F
·
Burst Stop Command @Burst Length =8
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
Ca
ADDR
Cb
A11
A10
WE
CAS Latency=1
Q a0
DQ
Q a1
Q a2
Q a3
Q a4
Q a0
Q a1
Q a2
Q a3
Q a4
Q a0
Q a1
Q a2
Q a3
Q b0
Q b1
Q b2
Q b3
Q b4
Q b0
Q b1
Q b2
Q b3
Q b4
Q b0
Q b1
Q b2
Q b3
Q b4
UDQM,
LDQM
CAS Latency=2
DQ
UDQM,
LDQM
CAS Latency=3
DQ
Q a4
UDQM,
LDQM
Read Command
Burst Stop
Command
Write Command
Burst Stop
Command
24/30
MSM56V16160F
·
Power Down Mode @CAS Latency = 2, Burst Length =4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tSI
CKE
tPDE *Note 2
*Note 1
tSI
tSI
tREF (min.)
CS
RAS
CAS
Ra
ADDR
Ca
A11
Ra
A10
Q a0
DQ
Q a1
Q a2
WE
UDQM,
LDQM
Power-down
Entry
Row
Active
Power-down
Exit
*Notes:
Clock
Suspension
Entry
Read Command
Clock
Suspension
Exit
Precharge
Command
1. When both banks are in precharge state, and if CKE is set low, then the MSM56V16160F enters power-down
mode and maintains the mode while CKE is low.
2. To release the circuit from power-down mode, CKE has to be set high for longer than t PDE (tSI + 1CLK).
25/30
MSM56V16160F
·
Self Refresh Cycle
0
1
2
CLK
tRC
CKE
tSI
CS
RAS
CAS
ADDR
Ra
A11
BS
A10
Ra
DQ
Hi - Z
WE
UDQM,
LDQM
Self Refresh
Entry
Self Refresh
Exit
Row Active
26/30
MSM56V16160F
·
·
Mode Register Set Cycle
0
1
2
3
4
5
6
Auto Refresh Cycle
0
1
2
3
4
5
6
7
8
9
10
11
CLK
High
CKE
High
CS
lMRD
tRC
RAS
CAS
ADDR
Key
DQ
Ra
Hi - Z
Hi - Z
WE
UDQM,
LDQM
MRS
New Command
Auto Refresh
Auto Refresh
27/30
MSM56V16160F
FUNCTION TRUTH TABLE (Table 1) (1/2)
Current State
1
Idle
Row Active
Read
Write
Read with
Auto Precharge
Write with
Auto Precharge
CS
RAS
CAS
WE
BA
ADDR
H
X
X
X
X
X
Action
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
Row Active
L
L
H
L
BA
A10
NOP 4
L
L
L
H
X
X
Auto-Refresh or Self-Refresh 5
L
L
L
L
L
OP Code
H
X
X
X
X
X
Mode Register Write
NOP
L
H
H
X
X
X
NOP
L
H
L
H
BA
CA, A10
Read
L
H
L
L
BA
CA, A10
L
L
H
H
BA
RA
L
L
H
L
BA
A10
Precharge
L
L
L
X
X
X
ILLEGAL
Write
ILLEGAL 2
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
X
X
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read 3
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write 3
L
L
H
H
BA
RA
L
L
H
L
BA
A10
L
L
L
X
X
X
Term Burst --> Row Active
ILLEGAL 2
Term Burst, execute Row Precharge
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
X
X
Term Burst --> Row Active
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read 3
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write 3
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Term Burst, execute Row Precharge 3
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
L
L
L
X
X
X
ILLEGAL
ILLEGAL 2
ILLEGAL
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
L
L
L
X
X
X
ILLEGAL
ILLEGAL 2
ILLEGAL
28/30
MSM56V16160F
FUNCTION TRUTH TABLE (Table 1) (2/2)
Current State
1
Precharge
Write Recovery
Row Active
Refresh
Mode Register
Access
CS
RAS
CAS
WE
BA
ADDR
H
X
X
X
X
X
NOP --> Idle after tRP
Action
L
H
H
H
X
X
NOP --> Idle after tRP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
NOP 4
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Row Active after tRCD
L
H
H
H
X
X
NOP --> Row Active after tRCD
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Idle after tRC
L
H
H
X
X
X
NOP --> Idle after tRC
L
H
L
X
X
X
ILLEGAL
L
L
H
X
X
X
ILLEGAL
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
X
X
ILLEGAL
L
H
L
X
X
X
ILLEGAL
L
L
X
X
X
X
ILLEGAL
ABBREVIATIONS
RA = Row Address
CA = Column Address
BA = Bank Address
AP = Auto Precharge
NOP = No OPeration command
*Notes : 1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs.
2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank selection.
3. Satisfy the timing of lCCD and tWR to prevent bus contention.
4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10.
5. Illegal if any bank is not idle.
29/30
MSM56V16160F
FUNCTION TRUTH TABLE for CKE (Table 2)
Current State (n)
Self Refresh
Power Down
All Banks Idle 6
(ABI)
Any State Other
than Listed Above
CKEn-1
CKEn
CS
RAS
CAS
WE
ADDR
H
X
X
X
X
X
X
INVALID
Action
L
H
H
X
X
X
X
Exit Self Refresh --> ABI
L
H
L
H
H
H
X
Exit Self Refresh --> ABI
L
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL
L
L
X
X
X
X
X
NOP (Maintain Self Refresh)
H
X
X
X
X
X
X
INVALID
L
H
H
X
X
X
X
Exit Power Down --> ABI
L
H
L
H
H
H
X
Exit Power Down --> ABI
L
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL 6
L
L
X
X
X
X
X
NOP (Continue power down mode)
H
H
X
X
X
X
X
Refer to Table 1
H
L
H
X
X
X
X
Enter Power Down
H
L
L
H
H
H
X
Enter Power Down
H
L
L
H
H
L
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
H
L
X
ILLEGAL
H
L
L
L
L
H
X
Enter Self Refresh
H
L
L
L
L
L
X
ILLEGAL
L
L
X
X
X
X
X
NOP
H
H
X
X
X
X
X
Refer to Operations in Table 1
H
L
X
X
X
X
X
Begin Clock Suspend Next Cycle
L
H
X
X
X
X
X
Enable Clock of Next Cycle
L
L
X
X
X
X
X
Continue Clock Suspension
*Notes : 6. Power-down and self-refresh can be entered only when all the banks are in an idle state.
30/30
NOTICE
1.
The information contained herein can change without notice owing to product and/or
technical improvements. Before using the product, please make sure that the information
being referred to is up-to-date.
2.
The outline of action and examples for application circuits described herein have been
chosen as an explanation for the standard action and performance of the product. When
planning to use the product, please ensure that the external conditions are reflected in the
actual circuit and assembly designs.
3.
When designing your product, please use our product below the specified maximum
ratings and within the specified operating ranges including, but not limited to, operating
voltage, power dissipation, and operating temperature.
4.
OKI assumes no responsibility or liability whatsoever for any failure or unusual or
unexpected operation resulting from misuse, neglect, improper installation, repair, alteration
or accident, improper handling, or unusual physical or electrical stress including, but not
limited to, exposure to parameters beyond the specified maximum ratings or operation
outside the specified operating range.
5.
Neither indemnity against nor license of a third party's industrial and intellectual property
right, etc. is granted by us in connection with the use of the product and/or information
and drawings contained herein. No responsibility is assumed by us for any infringement
of a third party's right which may result from the use thereof.
6.
The products listed in this document are intended for use in general electronics equipment
for commercial applications (e.g., office automation, communication equipment,
measurement equipment, consumer electronics, etc.). These products are not authorized
for use in any system or application that requires special or enhanced quality and reliability
characteristics nor in any system or application where the failure of such system or
application may result in the loss or damage of property, or death or injury to humans.
Such applications include, but are not limited to:traffic control, automotive, safety, aerospace,
nuclear power control, and medical, including lift support and maintenance.
7.
Certain products in this document may need government approval before they can be
exported to particular countries. The purchaser assumes the responsibility of determining
the legality of export of these products and will take appropriate and necessary steps at their
own expense for these.
8.
No part of the contents contained herein may be reprinted or reproduced without our prior
permission.
Copyright 1997 OKI ELECTRIC INDUSTRY CO.,LTD.