OKI MSM56V16800E

E2G1053-18-54
This version:
Jul. 1998
MSM56V16800E
¡ Semiconductor
MSM56V16800E
¡ Semiconductor
2-Bank ¥ 1,048,576-Word ¥ 8-Bit SYNCHRONOUS DYNAMIC RAM
DESCRIPTION
The MSM56V16800E is a 2-bank ¥ 1,048,576-word ¥ 8-bit synchronous dynamic RAM, fabricated
in Oki's CMOS silicon-gate process technology. The device operates at 3.3 V. The inputs and
outputs are LVTTL compatible.
FEATURES
•
•
•
•
•
•
•
Silicon gate, quadruple polysilicon CMOS, 1-transistor memory cell
2-bank ¥ 1,048,576-word ¥ 8-bit configuration
3.3 V power supply, ±0.3 V tolerance
Input
: LVTTL compatible
Output : LVTTL compatible
Refresh : 4096 cycles/64 ms
Programmable data transfer mode
– CAS latency (1, 2, 3)
– Burst length (1, 2, 4, 8, full page)
– Data scramble (sequential, interleave)
• CBR auto-refresh, Self-refresh capability
• Package:
44-pin 400 mil plastic TSOP (Type II) (TSOPII44-P-400-0.80-K)
(Product : MSM56V16800E-xxTS-K)
xx indicates speed rank.
PRODUCT FAMILY
Family
Max.
Frequency
Access Time (Max.)
tAC1
tAC2
tAC3
MSM56V16800E-8
125 MHz
22 ns
10 ns
6 ns
MSM56V16800E-10
100 MHz
27 ns
9 ns
9 ns
1/30
¡ Semiconductor
MSM56V16800E
PIN CONFIGURATION (TOP VIEW)
VCC
DQ1
VSSQ
DQ2
VCCQ
DQ3
VSSQ
DQ4
VCCQ
NC
NC
WE
CAS
RAS
CS
A11
A10
A0
A1
A2
A3
VCC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
44 VSS
43 DQ8
42 VSSQ
41 DQ7
40 VCCQ
39 DQ6
38 VSSQ
37 DQ5
36 VCCQ
35 NC
34 NC
33 DQM
32 CLK
31 CKE
30 NC
29 A9
28 A8
27 A7
26 A6
25 A5
24 A4
23 VSS
44-Pin Plastic TSOP (II)
(K Type)
Pin Name
Note:
Function
Pin Name
Function
CLK
System Clock
DQM
Data Input/Output Mask
CS
Chip Select
DQi
Data Input/Output
CKE
Clock Enable
VCC
Power Supply (3.3 V)
A0 - A10
Address
VSS
Ground (0 V)
A11
Bank Select Address
VCCQ
Data Output Power Supply (3.3 V)
RAS
Row Address Strobe
VSSQ
Data Output Ground (0 V)
CAS
Column Address Strobe
NC
No Connection
WE
Write Enable
The same power supply voltage must be provided to every VCC pin and VCCQ pin.
The same GND voltage level must be provided to every VSS pin and VSSQ pin.
2/30
¡ Semiconductor
MSM56V16800E
PIN DESCRIPTION
CLK
Fetches all inputs at the "H" edge.
CS
Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE and DQM.
CKE
Masks system clock to deactivate the subsequent CLK operation.
If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is
deactivated. CKE should be asserted at least one cycle prior to a new command.
Address
Row & column multiplexed.
Row address: RA0 – RA10
Column address: CA0 – CA8
A11
Selects bank to be activated during row address latch time and selects bank for precharge and read/
write during column address latch time. A11 = "L" : Bank A, A11 = "H" : Bank B
RAS
CAS
Functionality depends on the combination. For details, see the function truth table.
WE
DQM
Masks the read data of two clocks later when DQM is set "H" at the "H" edge of the clock signal.
Masks the write data of the same clock when DQM is set "H" at the "H" edge of the clock signal.
DQi
Data inputs/outputs are multiplexed on the same pin.
3/30
¡ Semiconductor
MSM56V16800E
BLOCK DIAGRAM
CKE
CLK
CS
RAS
CAS
WE
DQM
Programming
Register
Timing
Register
Latency
& Burst
Controller
I/O
Controller
Bank
Controller
A11
Internal
Col.
Address
Counter
A0 A11
9
Input
Data
Register
Column
Address
Buffers
9
12
Row
Address
Buffers
12
8
8
Column Decoders
Sense Amplifier
Internal
Row
Address
Counter
Input
Buffers
Row
Decoders
Word
Drivers
8Mb
Memory
Cells
Row
Decoders
Word
Drivers
8Mb
Memory
Cells
8
Read
Data
Register
8
8
Output
Buffers
DQ1 DQ8
Sense Amplifier
Column Decoders
4/30
¡ Semiconductor
MSM56V16800E
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings
(Voltages referenced to VSS)
Symbol
Rating
Unit
Voltage on Any Pin Relative to VSS
VIN, VOUT
–0.5 to VCC + 0.5
V
VCC Supply Voltage
VCC, VCCQ
–0.5 to 4.5
V
Storage Temperature
Tstg
–55 to 125
°C
Power Dissipation
PD*
600
mW
Parameter
Short Circuit Current
IOS
50
mA
Operating Temperature
Topr
0 to 70
°C
*: Ta = 25°C
Recommended Operating Conditions
(Voltages referenced to VSS = 0 V)
Parameter
Symbol
Min.
Typ.
Power Supply Voltage
Max.
Unit
VCC, VCCQ
3.0
3.3
3.6
V
Input High Voltage
VIH
2.0
—
VCC + 2.0
V
Input Low Voltage
VIL
VSS – 2.0
—
0.8
V
Capacitance
(VCC = 1.4 V, Ta = 25°C, f = 1 MHz)
Parameter
Input Capacitance (CLK)
Input Capacitance (CKE, CS,
RAS, CAS, WE, DQM, A0 - A11)
Input/Output Capacitance
(DQ1 - DQ8)
Symbol
Min.
Max.
Unit
CCLK
2.5
4
pF
CIN
2.5
5
pF
CI/O
4
6.5
pF
5/30
¡ Semiconductor
MSM56V16800E
DC Characteristics
Condition
Parameter
Symbol
Bank
CKE
Output High Voltage VOH
—
—
IOH = –2 mA
Output Low Voltage
VOL
—
—
IOL = 2 mA
—
0.4
—
0.4
V
Input Leakage Current
ILI
—
—
—
–10
10
–10
10
mA
Output Leakage Current
ILO
—
—
—
–10
10
–10
10
mA
CKE ≥ VIH tCC = min
tRC = min
No Burst
—
85
—
70
mA 1, 2
CKE ≥ VIH tCC = min
tRC = min
tRRD = min
No Burst
—
115
—
100
mA 1, 2
—
40
—
30
mA
3
—
3
—
3
mA
2
—
45
—
35
mA
3
ICC1
Average Power
Supply Current
(Operating)
One Bank
Active
ICC1D Both Banks
Active
Others
Version
Unit Note
E-8
E-10
Min. Max. Min. Max.
2.4
—
—
2.4
V
Both Banks
Precharge
CKE ≥ VIH tCC = min
Average Power
ICC3S Both Banks
Active
Supply Current
(Clock Suspension)
CKE £ VIL tCC = min
Power Supply
Current (Stand by)
ICC2
One Bank
Active
CKE ≥ VIH tCC = min
ICC4
Both Banks
Active
CKE ≥ VIH tCC = min
—
105
—
90
mA 1, 2
Power Supply
Current
(Auto-Refresh)
Average Power
Supply Current
(Self-Refresh)
ICC5
One Bank
Active
CKE ≥ VIH tCC = min
tRC = min
—
80
—
70
mA
Both Banks
Precharge
CKE £ VIL tCC = min
—
2
—
2
mA
Average Power
Supply Current
(Power down)
ICC7
Both Banks
Precharge
CKE £ VIL tCC = min
—
2
—
2
mA
Average Power
Supply Current
(Active Stand by)
ICC3
Power Supply
Current (Burst)
Notes:
ICC6
2
1. Measured with outputs open.
2. The address and data can be changed once or left unchanged during one cycle.
3. The address and data can be changed once or left unchanged during two cycles.
6/30
¡ Semiconductor
MSM56V16800E
Mode Set Address Keys
CAS Latency
Burst Type
Burst Length
A6
A5
A4
CL
A3
BT
A2
A1
A0
BT = 0
BT = 1
0
0
0
Reserved
0
Sequential
0
0
0
1
1
0
0
1
1
1
Interleave
0
0
1
2
2
0
1
0
2
0
1
0
4
4
0
1
1
3
0
1
1
8
8
1
0
0
Reserved
1
0
0
Reserved Reserved
1
0
1
Reserved
1
0
1
Reserved Reserved
1
1
0
Reserved
1
1
0
Reserved Reserved
1
1
1
Reserved
1
1
1
Full Page Reserved
Note:
A7, A8, A9, A10 and A11 should stay "L" during mode set cycle.
POWER ON SEQUENCE
1. With inputs in NOP state, turn on the power supply and start the system clock.
2. After the VCC voltage has reached the specified level, pause for 200 ms or more with
the input kept in NOP state.
3. Issue the precharge all bank command.
4. Apply a CBR auto-refresh eight or more times.
5. Enter the mode register setting command.
7/30
¡ Semiconductor
MSM56V16800E
AC Characteristics
Parameter
Note 1, 2
Symbol
CL = 3
Clock Cycles Time CL = 2
tCC
CL = 1
CL = 3
Access Time from
CL = 2
Clock
CL = 1
tAC
Clock "H" Pulse Time
Clock "L" Pulse Time
MSM56V16800E-8
MSM56V16800E-10
Min.
Max.
Min.
Max.
8
—
10
—
ns
12
—
15
—
ns
24
—
30
—
ns
—
6
—
9
ns
Unit Note
3, 4
—
10
—
9
ns
3, 4
—
22
—
27
ns
3, 4
tCH
3
—
3
—
ns
tCL
3
—
3
—
ns
Input Setup Time
tSI
2
—
3
—
ns
Input Hold Time
tHI
1
—
1
—
ns
Output Low Impedance
Time from Clock
tOLZ
3
—
3
—
ns
Output High Impedance
Time from Clock
tOHZ
—
9
—
8
ns
Output Hold from Clock
tOH
3
—
3
—
ns
RAS Cycle Time
tRC
70
—
90
—
ns
RAS Precharge Time
tRP
20
—
30
—
ns
ns
RAS Active Time
tRAS
48
105
60
105
RAS to CAS Delay Time
tRCD
20
—
30
—
ns
Write Recovery Time
tWR
8
—
15
—
ns
Write Command Input Time
tOWD
from Output
20
—
20
—
ns
RAS to RAS Bank Active
Delay Time
tRRD
20
—
20
—
ns
Refresh Time
tREF
—
64
—
64
ms
Power-down Exit Set-up Time
tPDE
10
—
10
—
ns
Input Level Transition Time
tT
—
3
—
3
ns
CAS to CAS Delay Time (Min.)
lCCD
1
1
Cycle
Clock Disable Time from CKE
lCKE
1
1
Cycle
Data Output High Impedance
Time from DQM
lDOZ
2
2
Cycle
Data Input Mask Time from
DQM
lDOD
0
0
Cycle
Data Input Time from Write
Command
lDWD
0
0
Cycle
Data Output High
Impedance Time from
Precharge Command
lROH
CL
CL
Cycle
Active Command Input Time from Mode
Register Set Command Input (Min.)
lMRD
3
3
Cycle
3
8/30
¡ Semiconductor
MSM56V16800E
Notes : 1. AC measurements assume that tT = 1 ns.
2. The reference level for timing of input signals is 1.4 V.
3. Output load.
Output
50 pF External Load
4. The access time is defined at 1.5 V.
5. If tT is longer than 1 ns, then the reference level for timing of input signals is VIH and
VIL.
9/30
,
,
,
,
,
,
¡ Semiconductor
MSM56V16800E
TIMING WAVEFORM
Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tRC
CKE
CS
tRP
RAS
tRCD
CAS
ADDR
Ra
Ca0
Rb
Cb0
A11
A10
Ra
Rb
tOH
DQ
Qa0
Qa1
Qa2
Qa3
Db0
Db1
tOHZ
tAC
Db2
Db3
tWR
WE
DQM
Row Active
Read Command
Row Active
Write Command
Precharge Command
Precharge Command
10/30
¡ Semiconductor
MSM56V16800E
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4
tCH
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
,,,
,,
CLK
tCC
tCL
High
CKE
CS
tSI
tHI
RAS
lCCD
tHI
tSI
CAS
tSI
ADDR
tSI
tSI
Ra
Ca
Cb
tHI
A11
BS
A10
Ra
Cc
tHI
BS
BS
tAC
DQ
Qa
BS
BS
tHI
Db
tOLZ
Qc
tSI
tOH
tOHZ
tOWD
tHI
WE
tSI
DQM
Row Active
Write Command
Read Command
Precharge Command
Read Command
11/30
¡ Semiconductor
*Notes:
MSM56V16800E
1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE and DQM are
invalid.
2. When issuing an active, read or write command, the bank is selected by A11.
A11
Active, read or write
0
Bank A
1
Bank B
3. The auto precharge function is enabled or disabled by the A10 input when the read or write command
is issued.
A10
A11
0
0
After the end of burst, bank A holds the idle status.
Operation
1
0
After the end of burst, bank A is precharged automatically.
0
1
After the end of burst, bank B holds the idle status.
1
1
After the end of burst, bank B is precharged automatically.
4. When issuing a precharge command, the bank to be precharged is selected by the A10 and A11
inputs.
A10
A11
0
0
Bank A is precharged.
0
1
Bank B is precharged.
1
X
Both banks A and B are precharged.
Operation
5. The input data and the write command are latched by the same clock (Write latency = 0).
6. The output is forced to high impedance by (1 CLK + tOHZ) after DQM entry.
12/30
¡ Semiconductor
MSM56V16800E
,
,,,
,
,,
,
,,
,
Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
CLK
CKE
CS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
High
Bank A Active
RAS
CAS
lCCD
ADDR
A11
A10
DQ
Ca0
Cb0
Qa0
Cc0
Qa1
Qb0 Qb1
Dc0
Cd0
Dc1
tOWD
WE
Dd0
tWR *Note2
*Note1
DQM
Read Command
Read Command
Write Command
Write Command
Precharge Command
*Notes:
1. To write data before a burst read ends, DQM should be asserted three cycles prior to the write command
to avoid bus contention.
2. To assert row precharge before a burst write ends, wait tWR after the last write data input.
Input data during the precharge input cycle will be masked internally.
13/30
,
,
,
,,
,
,,,
,
,
,
¡ Semiconductor
MSM56V16800E
Read & Write Cycle with Auto Precharge @ Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
Db0
Db1
Db2
Db3
17
18
19
CLK
High
CKE
CS
RAS
tRRD
CAS
ADDR
Ra
Rb
Ra
Rb
Ca
Cb
A11
A10
WE
CAS Latency = 1
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
DQM
CAS Latency = 2
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
DQM
CAS Latency = 3
DQ
Qa0
Qa1
Qa2
Qa3
A-Bank Precharge Start
tWR
DQM
Row Active
(A-Bank)
A Bank Read with
Auto Precharge
Row Active
(B-Bank)
B Bank Write with
Auto Precharge
B Bank Precharge
Start Point
14/30
,,,
,
,,,,
¡ Semiconductor
MSM56V16800E
Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
tRC
RAS
tRRD
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
A11
A10
RAa
RBb
DQ
RAc
QAa0 QAa1 QAa2 QAa3
QBb1 QBb2 QBb3 QBb4
QAc0 QAc1 QAc2 QAc3
WE
DQM
Row Active
(A-Bank)
Read Command
(A-Bank)
Read Command
(B-Bank)
Row Active
(B-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
Precharge Command
(B-Bank)
Row Active
(A-Bank)
15/30
¡ Semiconductor
MSM56V16800E
,
,
,,
,
,,
,,,
Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CA
A11
A10
RAa
DQ
RBb
RAc
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3
DAc0 DAc1
WE
DQM
Row Active
(A-Bank)
Write Command
(A-Bank)
Precharge
Command
(A-Bank)
Write Command
(B-Bank)
Write Command
(A-Bank)
Row Active
(B-Bank)
Row Active
(A-Bank)
Precharge Command
(A-Bank)
Precharge Command
(B-Bank)
16/30
,,,,
¡ Semiconductor
MSM56V16800E
Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
*Note1
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
CAe
A11
A10
RAa
RAa
DQ
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1
lROH
WE
DQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
*Note:
Read Command
(B-Bank)
Read Command
(B-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Read Command
(A-Bank)
1. CS is ignored when RAS, CAS and WE are high at the same cycle.
17/30
¡ Semiconductor
MSM56V16800E
Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
,
,
,
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
CAc
CBd
A11
A10
RAa
DQ
RAb
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0
WE
DQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Write Command
(A-Bank)
Write Command
(B-Bank)
Write Command
(B-Bank)
Write Command
(A-Bank)
Precharge Command
(Both Bank)
18/30
¡ Semiconductor
MSM56V16800E
,
,
,
,
,
,
,
,
Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
RAa
CAa
RBb
CBb
RAc
CAc
A11
A10
RAa
RBb
DQ
QAa0 QAa1 QAa2 QAa3
RAc
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1 QAc2 QAc3
WE
DQM
Row Active
(A-Bank)
Row Active
(B-Bank)
Read Command
(A-Bank)
Precharge Command
(A-Bank)
Write Command
(B-Bank)
Read Command
(A-Bank)
Row Active
(A-Bank)
19/30
¡ Semiconductor
MSM56V16800E
Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
,,,
,
,,
,
,
,
CLK
High
CKE
CS
RAS
CAS
ADDR
CAa0
CBb0
CAc0
A11
A10
DQ
QAa0 QAa1 QAa2 QAa3
DBb0 DBb1 DBb2 DBb3
QAc0 QAc1 QAc2 QAc3
WE
DQM
Read Command
(A-Bank)
Write Command
(B-Bank)
Read Command
(A-Bank)
20/30
¡ Semiconductor
MSM56V16800E
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4
0
CKE
CS
RAS
CAS
ADDR
A11
A10
DQ1 - 8
2
3
4
5
6
7
DQM
9
10
11
12
13
14
15
16
17
18
19
¨
,
,,,
Ra
*Note1
*Note1
Ca
Cb
Qa0
Row Active
Read
Command
*Notes:
Cc
Ra
Qa1
Qa2
Qb0
Qb1
tOHZ
*Note2
WE
8
¨
CLK
1
CLOCK
Suspension
Read DQM
Read
Command
Dc0
tOHZ
Read DQM
Dc2
*Note3
Write
DQM
Write
Command
CLOCK
Suspension
Write
DQM
1. When Clock Suspension is asserted, the next clock cycle is ignored.
2. When DQM is asserted, the read data after two clock cycles is masked.
3. When DQM is asserted, the write data in the same clock cycle is masked.
21/30
,,
,
,
,
,,
¡ Semiconductor
MSM56V16800E
Read to Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
Da1
Da2
Da3
12
13
14
15
16
17
18
19
CLK
CKE
CS
*Note1
RAS
tRCD
CAS
ADDR
Ra
Ca0
Ca0
A11
A10
Ra
DQ
Da0
tWR
WE
DQM
Row Active
Read Command
Precharge Command
Write Command
*Note:
1. In case CAS latency is 3, READ can be interrupted by WRITE.
The minimum command interval is [burst length + 1] cycles.
DQM must be high at least 3 clocks prior to the write command.
22/30
¡ Semiconductor
MSM56V16800E
Read Interruption by Precharge Command @ Burst Length = 8
,
,,
,
,,,,
,
,,,
,
,,
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
High
CKE
CS
RAS
CAS
ADDR
Ra
Ca
A11
A10
Ra
WE
CAS Latency = 1
*Note1
Qa0
DQ
Qa1
Qa2
Qa3
Qa4
Qa5
lROH
DQM
CAS Latency = 2
*Note2
DQ
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
lROH
DQM
CAS Latency = 3
*Note3
DQ
Qa0
Qa1
Qa2
Qa3
Qa4
Qa5
lROH
DQM
Row Active
*Notes:
Read Command
Precharge Command
1. When the CAS latency = 1, and if row precharge is asserted before a burst read ends, then the read data
will not output after the next clock cycle of the precharge command.
2. When the CAS latency = 2, and if row precharge is asserted before burst read ends, then the read data
will not output after the second clock cycle of the precharge command.
3. When the CAS latency = 3, and if row precharge is asserted before burst read ends, then the read data
will not output after the third clock cycle of the precharge command.
23/30
,,,
,
,,
,
¡ Semiconductor
MSM56V16800E
Power Down Mode @ CAS Latency = 2, Burst Length = 4
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
CLK
tSI
*Note1
tPDE *Note2
tSI
tSI
CKE
CS
RAS
CAS
Ra
ADDR
Ca
A11
Ra
A10
DQ
Qa0
Qa1
Qa2
WE
DQM
Row Active
Power-down
Entry
*Notes:
Power-down
Exit
Clock
Suspention
Entry
Clock
Suspention
Exit
Read
Command
Precharge
Command
1. When both banks are in precharge state, and if CKE is set low, then the MSM56V16800E enters powerdown mode and maintains the mode while CKE is low.
2. To release the circuit from power-down mode, CKE has to be set high for longer than tPDE (1 CLK).
24/30
,
,,,
,
¡ Semiconductor
MSM56V16800E
Self Refresh Cycle
0
1
2
CLK
tRC
CKE
tSI
CS
RAS
CAS
ADDR
Ra
A11
BS
A10
Ra
DQ
Hi - Z
Hi - Z
WE
DQM
Self
Refresh
Entry
Self
Refresh
Exit
Row
Active
25/30
¡ Semiconductor
MSM56V16800E
,
,
,
,
,,,,
,
,
Auto Refresh Cycle
Mode Register Set Cycle
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10
11
12
CLK
High
CKE
High
CS
tRC
lMRD
RAS
CAS
ADDR
key
Ra
Hi - Z
DQ
Hi - Z
WE
DQM
MRS
New Command
Auto Refresh
Auto Refresh
26/30
¡ Semiconductor
MSM56V16800E
FUNCTION TRUTH TABLE (Table 1) (1/2)
Current State1 CS RAS CAS WE BA
Idle
Row Active
Read
Write
Action
ADDR
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
Row Active
L
L
H
L
BA
A10
NOP 4
L
L
L
H
X
X
Auto-Refresh or Self-Refresh 5
L
L
L
L
L
OP Code
H
X
X
X
X
X
Mode Register Write
NOP
L
H
H
X
X
X
NOP
L
H
L
H
BA
CA, A10
Read
L
H
L
L
BA
CA, A10
Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
Reserved
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Term Burst, execute Row Precharge
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
H
X
X
NOP (Continue Row Active after Burst ends)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
Term Burst, start new Burst Read
L
H
L
L
BA
CA, A10
Term Burst, start new Burst Write
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
Term Burst, execute Row Precharge
L
L
L
X
X
X
ILLEGAL
Read with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
ILLEGAL
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
Write with
H
X
X
X
X
X
NOP (Continue Burst to End and enter Row Precharge)
Auto Precharge
L
H
H
H
X
X
NOP (Continue Burst to End and enter Row Precharge)
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
H
BA
CA, A10
ILLEGAL 2
L
H
L
L
X
X
L
L
H
X
BA
RA, A10
L
L
L
X
X
X
ILLEGAL
ILLEGAL 2
ILLEGAL
27/30
¡ Semiconductor
MSM56V16800E
FUNCTION TRUTH TABLE (Table 1) (2/2)
Current State1 CS RAS CAS WE BA
Precharge
Write Recovery
Row Active
Action
ADDR
H
X
X
X
X
X
NOP --> Idle after tRP
L
H
H
H
X
X
NOP --> Idle after tRP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
NOP 4
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP
L
H
H
H
X
X
NOP
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Row Active after tRCD
L
H
H
H
X
X
NOP --> Row Active after tRCD
L
H
H
L
BA
X
ILLEGAL 2
L
H
L
X
BA
CA
ILLEGAL 2
L
L
H
H
BA
RA
ILLEGAL 2
L
L
H
L
BA
A10
ILLEGAL 2
L
L
L
X
X
X
ILLEGAL
H
X
X
X
X
X
NOP --> Idle after tRC
L
H
H
X
X
X
NOP --> Idle after tRC
L
H
L
X
X
X
ILLEGAL
L
L
H
X
X
X
ILLEGAL
L
L
L
X
X
X
ILLEGAL
Mode Register
H
X
X
X
X
X
NOP
Access
L
H
H
H
X
X
NOP
L
H
H
L
X
X
ILLEGAL
L
H
L
X
X
X
ILLEGAL
L
L
X
X
X
X
ILLEGAL
Refresh
ABBREVIATIONS
RA = Row Address
CA = Column Address
Notes:
BA = Bank Address
AP = Auto Precharge
NOP = No OPeration command
1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs.
2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank
selection.
3. Satisfy the timing of lCCD and tWR to prevent bus contention.
4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10.
5. Illegal if any bank is not idle.
28/30
¡ Semiconductor
MSM56V16800E
FUNCTION TRUTH TABLE for CKE (Table 2)
Current State (n) CKEn-1
Self Refresh
Power Down
CKEn
CS RAS CAS WE
H
X
X
X
X
L
H
H
X
X
L
H
L
H
H
L
H
L
H
H
L
H
L
H
L
L
H
L
L
X
L
L
X
X
X
X
ADDR
Action
X
INVALID
X
X
Exit Self Refresh --> ABI
H
X
Exit Self Refresh --> ABI
L
X
ILLEGAL
X
X
ILLEGAL
X
X
ILLEGAL
X
X
NOP (Maintain Self Refresh)
H
X
X
X
X
X
X
INVALID
L
H
H
X
X
X
X
Exit Power Down --> ABI
L
H
L
H
H
H
X
Exit Power Down --> ABI
L
H
L
H
H
L
X
ILLEGAL
L
H
L
H
L
X
X
ILLEGAL
L
H
L
L
X
X
X
ILLEGAL 6
L
L
X
X
X
X
X
NOP (Continue power down mode)
H
H
X
X
X
X
X
Refer to Table 1
H
L
H
X
X
X
X
Enter Power Down
H
L
L
H
H
H
X
Enter Power Down
H
L
L
H
H
L
X
ILLEGAL
H
L
L
H
L
X
X
ILLEGAL
H
L
L
L
H
L
X
ILLEGAL
H
L
L
L
L
H
X
Enter Self Refresh
H
L
L
L
L
L
X
ILLEGAL
L
L
X
X
X
X
X
NOP
Any State Other
H
H
X
X
X
X
X
Refer to Operations in Table 1
than Listed Above
H
L
X
X
X
X
X
Begin Clock Suspend Next Cycle
L
H
X
X
X
X
X
Enable Clock of Next Cycle
L
L
X
X
X
X
X
Continue Clock Suspension
All Banks Idle
6
(ABI)
Note:
6. Power-down and self refresh can be entered only when all the banks are in an idle state.
29/30
¡ Semiconductor
MSM56V16800E
PACKAGE DIMENSIONS
(Unit : mm)
TSOPII44-P-400-0.80-K
Mirror finish
Package material
Lead frame material
Pin treatment
Solder plate thickness
Package weight (g)
Epoxy resin
42 alloy
Solder plating
5 mm or more
0.54 TYP.
Notes for Mounting the Surface Mount Type Package
The SOP, QFP, TSOP, SOJ, QFJ (PLCC), SHP and BGA are surface mount type packages, which
are very susceptible to heat in reflow mounting and humidity absorbed in storage.
Therefore, before you perform reflow mounting, contact Oki’s responsible sales person for the
product name, package name, pin number, package code and desired mounting conditions
(reflow method, temperature and times).
30/30