PC733 AC Input Type Photocoupler PC733 ❈ Lead forming type ( I type ) is also available. ( PC733I ) ■ Features ■ Outline Dimensions 1. AC input response 2. High isolation voltage between input and output ( Viso : 5 000Vrms ) 3. Current transfer ratio CTR : MIN. 15% at I F = ± 1mA, VCE = 5V 4. Low collector dark current ( ICEO : MAX. 10 - 7A at VCE = 20V) 5. TTL compatible output 6. Recognized by UL, file No. E64380 1 6.5 ± 0.5 4 2 1 3 2 3 7.62 ± 0.3 9.22 ± 0.5 3.7 ± 0.5 3.5 ± 0.5 0.5TYP. Primary side mark (Sunken place ) 2.54 ± 0.25 0.5 ± 0.1 ■ Absolute Maximum Ratings Output 5 PC733 1. Telephone sets 2. Programmable controllers 3. System appliances, measuring instruments 4. Signal transmission between circuits of different potentials and impedances Input Internal connection diagram 6 5 4 1.2 ± 0.3 6 ■ Applications Parameter Forward current *1 Pead forward current Power dissipation Collector-emitter voltage Emitter-collector voltage Collector-base voltage Emitter-base voltage Collector current Collector power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature ( Unit : mm ) θ 0.26 ± 0.1 θ = 0 to 13 ˚ 1 2 Anode, cathode Anode, cathode 4 5 Emitter Collector 3 NC 6 Base ( Ta = 25˚C ) Symbol IF I FM P V CEO V ECO V CBO V EBO IC PC P tot V iso Topr Tstg Tsol Rating ± 50 ±1 70 35 6 35 6 50 150 170 5 000 - 25 to + 100 - 40 to + 125 260 Unit mA A mW V V V V mA mW mW Vrms ˚C ˚C ˚C *1 Pulse width<=100µs, Duty ratio : 0.001 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” θ PC733 ■ Electro-optical Characteristics Input Output Transfer characteristics ( Ta = 25˚C ) Parameter Forward voltage Peak forward voltage Terminal capacitance Collector dark current Current transfer ratio Collector-emitter saturation voltage Isolation resistance Floating capacitance Cut-off frequency Rise time Response time Fall time Symbol VF V FM Ct I CEO CTR VCE ( sat ) R ISO Cf fC tr tf 60 120 50 100 40 30 20 10 0 - 25 0 25 50 75 100 Ambient temperature T a ( ˚C ) TYP. 1.2 50 0.1 1011 0.6 80 4 3 MAX. 1.4 3.0 400 10 - 7 300 0.2 1.0 18 18 Unit V V pF A % V Ω pF kHz µs µs 80 70 60 40 20 0 - 25 125 Fig. 3 Collector Power Dissipation VS. Ambient Temperature 0 25 75 100 50 Ambient temperature T a ( ˚C ) 125 Fig. 4 Power Dissipation vs. Ambient Temperature 200 200 170 Power dissipation Ptot ( mW ) Collector power dissipation P C ( mW ) MIN. 15 5 x 1010 15 - Fig. 2 Diode Power Dissipation vs. Ambient Temperature Diode power dissipation P ( mW ) Forward current I F ( mA ) Fig. 1 Forward Current vs. Ambient Temperature Conditions I F = ± 20mA I FM = ± 0.5A V = 0, f = 1kHz V CE = 20V, I F = 0 I F = ± 1mA, V CE = 5V I F = ± 20mA, I C = 1mA DC500V, 40 to 60% RH V = 0, f = 1MHz V CE = 5V, I C = 2mA, R L = 100 Ω , - 3dB V CE = 2V, I C = 2mA R L = 100 Ω 150 100 50 0 - 25 0 25 50 75 Ambient temperature T a 100 ( ˚C ) 125 150 100 50 0 - 25 0 25 50 Ambient temperature T 75 a ( ˚C ) 100 125 PC733 Fig. 6 Forward Current vs. Forward Voltage Fig. 5 Peak Forward Current vs. Duty Ratio 10 000 T a = 25˚C T a = 75˚C 200 2 000 1 000 500 200 100 50 20 50˚C 100 25˚C 0˚C 50 - 25˚C Forward current I F ( mA ) Peak forward current I FM ( mA ) 500 Pulse width<=100µ s 5 000 20 10 5 2 10 1 5 5 10 - 3 2 10 5 -2 2 5 10 -1 2 5 0 1 0.5 1.0 Duty ratio 2.0 2.5 3.0 3.5 Fig. 8 Collector Current vs. Collector-emitter Voltage Fig. 7 Current Transfer Ratio vs. Forward Current 50 100 Collector current I C ( mA ) V CE = 5V R BE = Current transfer ratio CTR ( % ) 1.5 Forward voltage V F ( V ) 80 T a = 25˚C 60 40 R BE = P C ( MAX.) I F = 50mA 40 T a = 25˚C 40mA 30mA 30 20 20mA 10mA 10 5mA 0 0 1 2 3 4 5 6 7 Collector-emitter voltage V CE 8 (V) 20 0 0.1 0.2 0.5 1 2 5 10 20 50 80 Forward current I F ( mA ) Relative current transfer ratio ( % ) 150 I F = 1mA V CE = 5V R BE = 100 50 0 -25 0 25 50 75 Ambient temperature Ta ( ˚C ) 100 Fig.10 Collector-emitter Saturation Voltage vs. Ambient Temperature Collector-emitter saturation voltage V CE(sat ) ( mV ) Fig. 9 Relative Current Transfer Ratio vs. Ambient Temperature 150 I F = 20mA 125 I C = 1mA R BE = 100 75 50 25 0 - 25 0 25 50 75 Ambient temperature Ta ( ˚C ) 100 9 10 PC733 Fig.11-b Collector-base Dark Current vs. Ambient Temperature Fig.11-a Collector Dark Current vs. Ambient Temperature -5 10 -6 10 -7 10 -8 10 -9 10 - 10 10 - 11 10 -8 V CE = 20V R BE = V CB = 30V R BE = 5 Collector dark current I CBO ( A ) Collector dark current I CEO (A) 10 2 10 -9 5 2 10 - 10 5 2 0 - 25 25 50 Ambient temperature T 10 75 100 a ( ˚C ) Fig.12 Response Time vs. Load Resistance - 11 0 25 50 75 Ambient temperature T a 100 ( ˚C ) 125 Fig.13 Frequency Response 500 V CE = 2V I C = 2mA R BE = T a = 25˚C 100 Response time ( µ s ) 50 tr 20 tf 10 5 td 2 V CE = 5V I C = 2mA R BE = T a = 25˚C 0 Voltage gain A v ( dB ) 200 ts 1 RL = 10k Ω 1k Ω 100 Ω - 10 0.5 - 20 0.2 0.1 0.1 1 0.5 10 1 2 5 10 20 50 100 200 500 Frequency f ( kHz ) Load resistance R L ( k Ω ) Fig.14 Collector-emitter Saturation Voltage vs. Forward Current Test Circuit for Response Time 10 I C = 1mA VCC Output Input RD RL 10% Output 90% td ts tr tf Test Circuit for Frequency Response VCC RD Collector-emitter saturation voltage VCE ( sat ) ( V ) Input 8 Output 3mA 5mA 6 7mA 10mA 4 2 0 RL 0 2 4 6 8 Forward current I ● Please refer to the chapter “Precautions for Use ”. R BE = T a = 25˚C 2mA 10 F ( mA ) 12 14 16