SHARP PC702V

PC702V
High Collector-emitter Voltage
Type Photocoupler
PC702V
❈
Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC702VI/PC702VP)
❈❈ TUV ( VDE0884 ) approved type is also available as an option.
..
■ Features
■ Outline Dimensions
1. High collector-emitter voltage ( VCEO : 70V)
2. High isolation voltage between input and
output ( Viso : 5 000V rms )
3. TTL compatible output
4. Recognized by UL, file No. E64380
Internal connection
diagram
■ Applications
5
4
PC702V
2
6
3.35 ± 0.5
0.5TYP.
3.7 ± 0.5 3.5 ± 0.5
1 Anode
2 Cathode
3 NC
■ Absolute Maximum Ratings
Output
Reverse voltage
Power dissipation
Collector-emitter voltage
Emitter-collector voltage
Collector-base voltage
Emitter-base voltage
Collector current
Collector power dissipation
Total power dissipation
*2
Isolation voltage
Operating temperature
Storage temperature
*3
Soldering temperature
Rating
60
1.5
6
105
70
6
70
6
50
160
200
5 000
- 55 to + 100
- 55 to + 150
260
2
3
0.26 ± 0.1
θ
θ = 0 to 13˚
4 Emitter
5 Collector
6 Base
( Ta = 25˚C )
Symbol
IF
I FM
VR
P
V CEO
V ECO
V CBO
V EBO
IC
PC
P tot
V iso
T opr
T stg
T sol
4
7.62 ± 0.3
0.5 ± 0.1 2.54 ± 0.25
Input
1
3 0.9 ± 0.2
1.2 ± 0.3
7.12 ± 0.5
1. Telephone sets, telephone exchangers
2. System appliances, measuring instruments
3. Signal transmission between circuits of
different potentials and impedances
5
6.5 ± 0.5
6
Anode
mark
CTR
1
Rank mark
Parameter
Forward current
*1Peak forward current
( Unit : mm )
Unit
mA
A
V
mW
V
V
V
V
mA
mW
mW
V rms
˚C
˚C
˚C
*1 Pulse width<=10 µ s, Duty ratio : 0.0004
*2 40 to 60% RH, AC for 1 minute
*3 For 10 seconds
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ”
θ
PC702V
■ Electro-optical Characteristics
Input
Output
Transfer
characteristics
Parameter
Forward voltage
Reverse current
Terminal capacitance
Collector dark current
*4
Current transfer ratio
Collector-emitter saturation voltage
Isolation resistance
Floating capacitance
Cut-off frequency
Rise time
Response time
Fall time
( Ta = 25˚C )
Symbol
VF
IR
Ct
I CEO
CTR
V CE(sat)
R ISO
Cf
fc
tr
tf
Conditions
MIN.
I F = 60mA
V R = 6V
V = 0, f = 1kHz
V CE = 10V, I F = 0
I F = 10mA, V CE = 5V
40
I F = 10mA, I C = 2.5mA
DC500V, 40 to 60% RH
5 x 1010
V = 0, f = 1MHz
I F = 10mA, V CC = 5V, R L = 75 Ω, R BE = , - 3dB
I F = 10mA, V CC = 5V
R L = 75Ω , R BE =
-
TYP.
MAX.
1.4
1.7
10
30
250
5 x 10 - 8
320
0.25
0.4
1011
0.6
1.0
150
2
7
2
8
*4 Classification table of current transfer ratio is shown below.
Model No.
PC702V1
PC702V2
PC702V3
PC702V4
PC702V5
PC702V6
PC702V7
PC702V
CTR ( % )
40 to 80
63 to 125
100 to 200
160 to 320
40 to 125
63 to 200
100 to 320
40 to 320
Rank mark
A
B
C
D
A or B
B or C
C or D
A, B, C or D
Measuring Conditions
I F = 10mA
VCE = 5V
T a = 25˚C
Fig. 2 Collector Power Dissipation vs.
Ambient Temperature
Fig. 1 Forward Current vs.
Ambient Temperature
200
Collector power dissipation P C ( mW )
Forward current I F ( mA )
80
60
40
20
0
- 55
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
100
125
160
150
100
50
0
- 55
- 25
0
25
50
75
Ambient temperature T a ( ˚C )
100
125
Unit
V
µA
pF
A
%
V
Ω
pF
kHz
µs
µs
PC702V
Fig. 4 Forward Current vs.
Forward Voltage
Fig. 3 Peak Forward Current vs. Duty Ratio
2 000
T a = 75˚C
T a = 25˚C
200
50˚C
25˚C
0˚C
- 25˚C
1 000
100
500
Forward current I F ( mA )
Peak forward current I FM ( mA )
500
Pulse width <=10µ s
200
100
50
20
5
10
-3 2
5
10
-2
2
5
10
-1 2
5
1
50
20
10
5
2
Duty ratio
1
0
0.5
1.0
1.5
2.0
2.5
3.0
Forward voltage V F ( V )
Fig. 5 Current Transfer Ratio vs.
Forward Current
Fig. 6 Collector Current vs.
Collector-emitter Voltage
200
T a = 25˚C
40
I F = 30mA
160
35
Collector current I C (mA)
Current transfer ratio CTR ( % )
180
45
V CE = 5V
T a = 25˚C
140
120
100
R BE =
80
500k Ω
60
100k Ω
P C ( MAX.)
25
20
10mA
15
40
10
20
0
1
5
2
10
5
Forward current I
F
20
50
I F = 10mA
V CE = 5V
100
50
- 25
0
25
50
Ambient temperature T
75
a
( ˚C )
100
5mA
2mA
2
4
6
8
Collector-emitter voltage VCE ( V)
10
Fig. 8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
Collector-emitter saturation voltage V CE(sat) (V)
150
0
- 55
0
0
( mA )
Fig. 7 Relative Current Transfer Ratio vs.
Ambient Temperature
Relative current transfer ratio ( % )
20mA
30
0.16
I F = 10mA
0.14
I C = 2.5mA
0.12
0.10
0.08
0.06
0.04
0.02
0
- 55
- 25
0
25
50
Ambient temperature T a ( ˚C )
75
100
PC702V
Fig.10 Response Time vs. Load Resistance
Fig. 9 Collector Dark Current vs.
Ambient Temperature
10
-6
10
I F =10mA
V CE = 10V
V CC = 5V
-7
10
-8
10
-9
10
- 10
10
- 11
10
- 12
10
- 13
- 30
Response time t r , t f ( µ s )
Collector dark current I
CEO (A)
10
20
0
80
60
Ambient temperature T a ( ˚C )
100
40
T a = 25˚C
5
tr
tf
2
1
0.5
0.02
0.05
0.2
0.1
Load resistance RL ( k Ω )
0.5
Fig.11 Frequency Response
Test Circuit for Response Time
2
I F = 10mA
V CC = 5V
T a = 25˚C
0
Input
VCC
Voltage gain Av ( dB )
Output
Input
-2
RL
-4
R L = 200 Ω
150 Ω
10%
Output
RD
90%
td
75 Ω
tr
-6
Test Circuit for Frequency Response
-8
VCC
- 10
0.5 1
2
5
10
20
50 100 200
500
RD
RL
Output
Frequency f ( kHz )
Fig.12 Collector-emitter Saturation
Voltage vs. Forward Current
6
Collector-emitter saturation voltage VCE(sat) ( V )
ts
I C = 0.5mA
1mA
5
T a = 25˚C
● Please refer to the chapter
“ Precautions for Use ” .
2mA
3mA
4
5mA
3
2
1
0
0
2.5
5.0
7.5
Forward current I
F
10.0
( mA )
12.5
tf