PC702V High Collector-emitter Voltage Type Photocoupler PC702V ❈ Lead forming type ( I type ) and taping reel type ( P type ) are also available. ( PC702VI/PC702VP) ❈❈ TUV ( VDE0884 ) approved type is also available as an option. .. ■ Features ■ Outline Dimensions 1. High collector-emitter voltage ( VCEO : 70V) 2. High isolation voltage between input and output ( Viso : 5 000V rms ) 3. TTL compatible output 4. Recognized by UL, file No. E64380 Internal connection diagram ■ Applications 5 4 PC702V 2 6 3.35 ± 0.5 0.5TYP. 3.7 ± 0.5 3.5 ± 0.5 1 Anode 2 Cathode 3 NC ■ Absolute Maximum Ratings Output Reverse voltage Power dissipation Collector-emitter voltage Emitter-collector voltage Collector-base voltage Emitter-base voltage Collector current Collector power dissipation Total power dissipation *2 Isolation voltage Operating temperature Storage temperature *3 Soldering temperature Rating 60 1.5 6 105 70 6 70 6 50 160 200 5 000 - 55 to + 100 - 55 to + 150 260 2 3 0.26 ± 0.1 θ θ = 0 to 13˚ 4 Emitter 5 Collector 6 Base ( Ta = 25˚C ) Symbol IF I FM VR P V CEO V ECO V CBO V EBO IC PC P tot V iso T opr T stg T sol 4 7.62 ± 0.3 0.5 ± 0.1 2.54 ± 0.25 Input 1 3 0.9 ± 0.2 1.2 ± 0.3 7.12 ± 0.5 1. Telephone sets, telephone exchangers 2. System appliances, measuring instruments 3. Signal transmission between circuits of different potentials and impedances 5 6.5 ± 0.5 6 Anode mark CTR 1 Rank mark Parameter Forward current *1Peak forward current ( Unit : mm ) Unit mA A V mW V V V V mA mW mW V rms ˚C ˚C ˚C *1 Pulse width<=10 µ s, Duty ratio : 0.0004 *2 40 to 60% RH, AC for 1 minute *3 For 10 seconds “ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device. ” θ PC702V ■ Electro-optical Characteristics Input Output Transfer characteristics Parameter Forward voltage Reverse current Terminal capacitance Collector dark current *4 Current transfer ratio Collector-emitter saturation voltage Isolation resistance Floating capacitance Cut-off frequency Rise time Response time Fall time ( Ta = 25˚C ) Symbol VF IR Ct I CEO CTR V CE(sat) R ISO Cf fc tr tf Conditions MIN. I F = 60mA V R = 6V V = 0, f = 1kHz V CE = 10V, I F = 0 I F = 10mA, V CE = 5V 40 I F = 10mA, I C = 2.5mA DC500V, 40 to 60% RH 5 x 1010 V = 0, f = 1MHz I F = 10mA, V CC = 5V, R L = 75 Ω, R BE = , - 3dB I F = 10mA, V CC = 5V R L = 75Ω , R BE = - TYP. MAX. 1.4 1.7 10 30 250 5 x 10 - 8 320 0.25 0.4 1011 0.6 1.0 150 2 7 2 8 *4 Classification table of current transfer ratio is shown below. Model No. PC702V1 PC702V2 PC702V3 PC702V4 PC702V5 PC702V6 PC702V7 PC702V CTR ( % ) 40 to 80 63 to 125 100 to 200 160 to 320 40 to 125 63 to 200 100 to 320 40 to 320 Rank mark A B C D A or B B or C C or D A, B, C or D Measuring Conditions I F = 10mA VCE = 5V T a = 25˚C Fig. 2 Collector Power Dissipation vs. Ambient Temperature Fig. 1 Forward Current vs. Ambient Temperature 200 Collector power dissipation P C ( mW ) Forward current I F ( mA ) 80 60 40 20 0 - 55 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 100 125 160 150 100 50 0 - 55 - 25 0 25 50 75 Ambient temperature T a ( ˚C ) 100 125 Unit V µA pF A % V Ω pF kHz µs µs PC702V Fig. 4 Forward Current vs. Forward Voltage Fig. 3 Peak Forward Current vs. Duty Ratio 2 000 T a = 75˚C T a = 25˚C 200 50˚C 25˚C 0˚C - 25˚C 1 000 100 500 Forward current I F ( mA ) Peak forward current I FM ( mA ) 500 Pulse width <=10µ s 200 100 50 20 5 10 -3 2 5 10 -2 2 5 10 -1 2 5 1 50 20 10 5 2 Duty ratio 1 0 0.5 1.0 1.5 2.0 2.5 3.0 Forward voltage V F ( V ) Fig. 5 Current Transfer Ratio vs. Forward Current Fig. 6 Collector Current vs. Collector-emitter Voltage 200 T a = 25˚C 40 I F = 30mA 160 35 Collector current I C (mA) Current transfer ratio CTR ( % ) 180 45 V CE = 5V T a = 25˚C 140 120 100 R BE = 80 500k Ω 60 100k Ω P C ( MAX.) 25 20 10mA 15 40 10 20 0 1 5 2 10 5 Forward current I F 20 50 I F = 10mA V CE = 5V 100 50 - 25 0 25 50 Ambient temperature T 75 a ( ˚C ) 100 5mA 2mA 2 4 6 8 Collector-emitter voltage VCE ( V) 10 Fig. 8 Collector-emitter Saturation Voltage vs. Ambient Temperature Collector-emitter saturation voltage V CE(sat) (V) 150 0 - 55 0 0 ( mA ) Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature Relative current transfer ratio ( % ) 20mA 30 0.16 I F = 10mA 0.14 I C = 2.5mA 0.12 0.10 0.08 0.06 0.04 0.02 0 - 55 - 25 0 25 50 Ambient temperature T a ( ˚C ) 75 100 PC702V Fig.10 Response Time vs. Load Resistance Fig. 9 Collector Dark Current vs. Ambient Temperature 10 -6 10 I F =10mA V CE = 10V V CC = 5V -7 10 -8 10 -9 10 - 10 10 - 11 10 - 12 10 - 13 - 30 Response time t r , t f ( µ s ) Collector dark current I CEO (A) 10 20 0 80 60 Ambient temperature T a ( ˚C ) 100 40 T a = 25˚C 5 tr tf 2 1 0.5 0.02 0.05 0.2 0.1 Load resistance RL ( k Ω ) 0.5 Fig.11 Frequency Response Test Circuit for Response Time 2 I F = 10mA V CC = 5V T a = 25˚C 0 Input VCC Voltage gain Av ( dB ) Output Input -2 RL -4 R L = 200 Ω 150 Ω 10% Output RD 90% td 75 Ω tr -6 Test Circuit for Frequency Response -8 VCC - 10 0.5 1 2 5 10 20 50 100 200 500 RD RL Output Frequency f ( kHz ) Fig.12 Collector-emitter Saturation Voltage vs. Forward Current 6 Collector-emitter saturation voltage VCE(sat) ( V ) ts I C = 0.5mA 1mA 5 T a = 25˚C ● Please refer to the chapter “ Precautions for Use ” . 2mA 3mA 4 5mA 3 2 1 0 0 2.5 5.0 7.5 Forward current I F 10.0 ( mA ) 12.5 tf