bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 SBS 1.1-COMPLIANT GAS GAUGE ENABLED WITH IMPEDANCE TRACK™ TECHNOLOGY FOR USE WITH THE bq29330 FEATURES APPLICATIONS • • • • • • • • • • • • • • • • • Next Generation Patented Impedance Track™ Technology accurately Measures Available Charge in Li-Ion and Li-Polymer Batteries Better than 1% Error Over Lifetime of the Battery Instant Accuracy – No Learning Cycle Required Supports the Smart Battery Specification SBS V1.1 Powerful 8-Bit RISC CPU With Ultra-Low Power Modes Works With the TI bq29330 Analog Front-End (AFE) Protection IC to Provide Complete Pack Electronics Solution Full Array of Programmable Protection Features – Voltage, Current and Temperature Fully Integrated High Accurate Clock Flexible Configuration for 2 to 4 Series Li-Ion and Li-Polymer Cells Integrated Field Programmable FLASH Memory Eliminates the Need for External Configuration Memory Smart Battery Charger Control Feature Two 16-Bit Delta-Sigma Converter – Accurate Voltage and Temperature Measurements – Integrating Coloumb Counter for Charge Flow • Better Than 0.65 nVh of Resolution • Self-Calibrating Supports SHA-1 Authentication 20-Pin TSSOP (PW) Notebook PCs Medical and Test Equipment Portable Instrumentation DESCRIPTION The bq20z70 SBS-compliant gas gauge IC, incorporating patented Impedance Track™ technology, is designed for battery-pack or in-system installation. The bq20z70 measures and maintains an accurate record of available charge in Li-ion or Li-polymer batteries using its integrated high-performance analog peripherals. The bq20z70 monitors capacity change, battery impedance, open-circuit voltage, and other critical parameters of the battery pack, and reports the information to the system host controller over a serial-communication bus. It is designed to work with the bq29330 analog front-end (AFE) protection IC to maximize functionality and safety, and minimize component count and cost in smart battery circuits. The Impedance Track technology continuously analyzes the battery impedance, resulting in superior gas-gauging accuracy. This enables remaining capacity to be calculated with discharge rate, temperature, and cell aging all accounted for during each stage of every cycle. AVAILABLE OPTIONS PACKAGE TA 20-PIN TSSOP (PW) Tube 20-PIN TSSOP (PW) Tape & Reel –40°C to 85°C bq20z70PW (1) bq20z70PWR (2) (1) (2) A single tube quantity is 50 units. A single reel quantity is 2000 units Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. IMPEDANCE TRACK is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2005–2006, Texas Instruments Incorporated bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 SYSTEM PARTITIONING DIAGRAM Pack + Fuse Supply Voltage 32kHz Clock Generator Reset 32KHz bq29330 Validation & Control Watchdog & Protection Timing Charge Pumps Registers Alert System Interface System Interface I2C SHA-1 Authentication Overvoltage & Undervoltage Protection Cell & Pack Voltage Measurement Voltage Level Translator Cell Balancing Algorithm & Control Overrcurrent Protection Impedance Track™ Gas Gauging Overcurrent & Short Circuit Protection bq20z70 bq29330 Pack RSNS 5mΩ – 20mΩ typ. TSSOP (PW) (TOP VIEW) XALERT TS2 TS1 CLKOUT PRES PFIN SAFE SMBD NC SMBC 2 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 VCELLVCELL+ VCC VSS MRST SRN SRP VSS SCLK SDATA Submit Documentation Feedback nd SBS v1.1 Data N-CH FET Drive 2 Level Voltage Protection SMBus LDO & Therm. Drive & Reset Cell Selection Multiplexer Charging Algorithm Therm Temperature Measurement & Protection Cell Balancing Drive Fail Safe Protection bq294xy bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 TERMINAL FUNCTIONS TERMINAL I/O (1) DESCRIPTION NO. NAME 1 XALERT I Alert interrupt input from bq29330. Connect directly to bq29330 XALERT pin 2 TS2 I 2nd thermistor voltage input connection to monitor temperature 3 TS1 I 1st thermistor voltage input connection to monitor temperature 4 CLKOUT O 32.768kHz output for bq29330 watchdog. Connect directly to bq29330 WDI pin 5 PRES I Active low input to sense system insertion 6 PFIN I Active low input to sense secondary protector output status Active high output to enforce additional level of safety, e.g. fuse blow (1) 7 SAFE O 8 SMBD I/OD 9 NC – 10 SMBC I/OD SMBus clock open drain bidirectional pin used for communication with bq20z70 11 SDATA I/OD Data transfer line from and to bq29330. Connect directly to SDATA pin of bq29330 12 SCLK I/OD Data clock line to bq29330. Connect directly to SCLK pin of bq29330 13 VSS I/OD VSS 14 SRP IA Connection for a small-value resistor to monitor the battery charge and discharge current flow 15 SRN IA Connection for a small-value resistor to monitor the battery charge and discharge current flow 16 MRST I Master reset input that forces the device into reset when held low. Connect directly to XRST pin of bq29330 17 VSS P Negative supply. Both VSS needs to be connected together 18 VCC P Positive supply 19 VCELL+ I Positive differential cell input. Connect directly to CELL+ pin of bq29330 20 VCELL- I Negative differential cell input. Connect directly to CELL- pin of bq29330 SMBus data open drain bidirectional pin used for communication with bq20z70 Not used - leave floating I = Input, IA = Analog input, I/O = Input/output, I/OD = Input/Open-drain output, O = Output, OA = Analog output, P = Power ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) RANGE VCC relative to VSS (2) Supply voltage range on VCC pin V(IOD) relative to VSS (2) XALERT, PFIN, SAFE, SMBD, SMBC, SDATA, SCLK, VI relative to VSS (2) TS2, TS1, CLKOUT, PRES, SRP, SRN, MRST, VCELL+,VCELL- TA Operating free-air temperature range –40°C to 85°C Tstg Storage temperature range –65°C to 150°C (1) (2) –0.3 V to 2.75 V –0.3 V to 6.0 V –0.3 V to VCC + 0.3 V Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. VSS refers to Voltage at VSS pin. ELECTRICAL CHARACTERISTICS VCC = 2.4 V to 2.6 V, TA = -40°C - 85°C (unless otherwise noted) PARAMETER VDD IDD Supply voltage Operating mode current I(SLP) Low-power storage mode current (1) TEST CONDITIONS VDDA and VDDD No flash programming MIN 2.4 TYP MAX 2.5 2.6 400 (1) bq20z70 + bq29330 475 Sleep mode 8 (1) bq20z70 + bq29330 48 UNIT V µA µA This value does not include the bq29330 Submit Documentation Feedback 3 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 ELECTRICAL CHARACTERISTICS (continued) VCC = 2.4 V to 2.6 V, TA = -40°C - 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS bq20z70 + bq29330 VOL Output voltage low CLKOUT, SAFE, SMBD, SMBC, SDATA, SCLK IOL = 7 mA VOH Output high voltage CLKOUT, SAFE, SMBD,SMBC, SDATA, SCLK IOH = –0.5 mA VIL Input voltage low PRES, PFIN, SMBD, SMBC, SDATA, MRST VIH Input voltage high PRES, PFIN, SMBD, SMBC, SDATA, MRST CIN Input capacitance TYP MAX 0.1 (1) Shutdown Mode I(SLP) Shutdown Current 4 MIN UNIT µA 0.2 0.4 VCC– 0.5 V V 0.8 2.0 V V 5 pF V(AI1) Input voltage range TS1, TS2, VCELL+, VCELL- – 0.2 0.8 x VCC V(AI2) Input voltage range SRP, SRN – 0.2 0.2 V Z(AI1) Input impedance TS1, TS2, VCELL+, VCELL - 0V–1V 8 MΩ Z(AI2) Input impedance SRP, SRN 0V–1V 2.5 MΩ Submit Documentation Feedback bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 POWER-ON RESET VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted) MIN TYP MAX VIT– Negative-going voltage input PARAMETER TEST CONDITIONS 1.7 1.8 1.9 UNIT V VHYS Power-on reset hysteresis 50 125 200 mV MAX UNIT 0.20 V Power-On Reset Negative-Going Voltage - V 1.81 1.8 1.79 1.78 1.77 1.76 -40 -20 0 20 40 60 80 TA - Free-Air Temperature - °C INTEGRATING ADC (Coulomb Counter) CHARACTERISTICS VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS V(SR) Input voltage range, V(SRN) and V(SRP) V(SR) = V(SRP) – V(SRN) V(SROS) Input offset TA =25°C to 85°C INL Integral nonlinearity error MIN TYP –0.20 µV 10 ±0.007 ±0.037 TYP MAX % OSCILLATOR VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN UNIT HIGH FREQUENCY OSCILLATOR f (OSC) Operating frequency f (EIO) Frequency error f (sxo) Start-up time 4.194 (1) (2) T A = 20°C to 70°C MHz -3% 0.25% 3% -2% 0.25% 2% 2.5 5 (3) ms LOW FREQUENCY OSCILLATOR f (LOSC) f (LEIO) f (Lsxo) (1) (2) (3) (4) (5) Operating frequency Frequency error Start-up time 32.768 (2) (4) T A = 20°C to 70°C (5) kHz -2.5% 0.25% 2.5% -1.5% 0.25% 1.5% 500 µs The frequency error is measured from 4.194 MHz. The frequency drift is included and measured f rom the trimmed frequency at V CC = 2.5 V, T A = 25°C. The start-up time is defined as the time it takes for the oscillator output frequency to be within 1% of the specified frequency. The frequency error is measured from 32.768 kHz. The start-up time is defined as the time it takes for the oscillator output frequency to be ±3%. Submit Documentation Feedback 5 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 DATA FLASH MEMORY CHARACTERISTICS VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted) PARAMETER MIN TYP MAX UNIT See (1) 10 Years Flash programming write-cycles See (1) 20,000 Cycles t(WORDPROG) Word programming time See (1) I(DDPROG) See (1) (1) 6 TEST CONDITIONS Data retention tDR Flash-write and erase supply current Assured by design. Not production tested Submit Documentation Feedback 5 2 ms 10 mA bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 SMBus TIMING SPECIFICATIONS VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted) PARAMETER TEST CONDITIONS fSMB SMBus operating frequency Slave mode, SMBC 50% duty cycle fMAS SMBus master clock frequency Master mode, no clock low slave extend tBUF Bus free time between start and stop tHD:STA Hold time after (repeated) start tSU:STA Repeated start setup time tSU:STO Stop setup time MIN TYP 10 MAX 100 51.2 kHz 4.7 4 µs 4.7 4 Receive mode 0 Transmit mode 300 tHD:DAT Data hold time tSU:DAT Data setup time tTIMEOUT Error signal/detect tLOW Clock low period tHIGH Clock high period See (2) tLOW:SEXT Cumulative clock low slave extend time See (3) 25 tLOW:MEXT Cumulative clock low master extend time See (4) 10 tF Clock/data fall time (VILMAX– 0.15 V) to (VIHMIN + 0.15 V) tR Clock/data rise time 0.9 VCC to (VILMAX – 0.15 V) (1) (2) (3) (4) UNIT ns 250 See (1) 25 35 4.7 4 50 300 1000 ms µs ms ns The bq20z70 times out when any clock low exceeds tTIMEOUT. tHIGH:MAX. is minimum bus idle time. SMBC = 1 for t > 50 µs causes reset of any transaction involving the bq20z70 that is in progress. tLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop. tLOW:MEXT is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop. SMBus TIMING DIAGRAM Submit Documentation Feedback 7 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 FEATURE SET Primary (1st Level) Safety Features The bq20z70 supports a wide range of battery and system protection features that can easily be configured. The primary safety features include: • • • • • Cell over/under voltage protection Charge and Discharge over current Short Circut Charge and Discharge Over temperature AFE Watchdog Secondary (2nd Level) Safety Features The secondary safety features of the bq20z70 can be used to indicate more serious faults via the SAFE (pin 7). This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or discharging. The secondary safety protection features include: • • • • • • Safety over voltage Safety over current in Charge and Discharge Safety over temperature in Charge and Discharge Charge FET and 0 Volt Charge FET fault Discharge FET fault AFE communication fault Charge Control Features The bq20z70 charge control features include: • • • • • • Reports the appropriate charging current needed for constant current charging and the appropriate charging voltage needed for constant voltage charging to a smart charger using SMBus broadcasts. Determines the chemical state of charge of each battery cell using Impedance Track™ and can reduce the charge difference of the battery cells in fully charged state of the battery pack gradually using cell balancing algorithm during charging. This prevents fully charged cells from overcharging and causing excessive degradation and also increases the usable pack energy by preventing premature charge termination Supports pre-charging/zero-volt charging Support fast charging Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range Reports charging fault and also indicate charge status via charge and discharge alarms. Gas Gauging The bq20z70 uses the Impedance Track™ Technology to measure and calculate the available charge in battery cells. The achievable accuracy is better than 1% error over the lifetime of the battery and there is no full charge discharge learning cycle required. See Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm application note (SLUA364) for further details. Authentication The bq20z70 supports authentication by the host using SHA-1. Power Modes The bq20z70 supports 3 different power modes to reduce power consumption: • 8 In Normal Mode, the bq20z70 performs measurements, calculations, protection decisions and data updates in 1 second intervals. Between these intervals, the bq20z70 is in a reduced power stage. Submit Documentation Feedback bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 FEATURE SET (continued) • • In Sleep Mode, the bq20z70 performs measurements, calculations, protection decisions and data update in adjustable time intervals. Between these intervals, the bq20z70 is in a reduced power stage. The bq20z70 has a wake function that enables exit from Sleep mode, when current flow or failure is detected. In Shutdown Mode the bq20z70 is completely disabled. CONFIGURATION Oscillator Function The bq20z70 fully integrates the system oscillators. Therefore the bq20z70 requires no external components for this feature. System Present Operation The bq20z70 pulls the PU pin high periodically (1 s). Connect this pin to the PRES pin of the bq20z70 via a resistor of approximately 5 kΩ. The bq20z70 measures the PRES input during the PU-active period to determine its state. If PRES input is pulled to ground by external system, the bq20z70 detects this as system present. BATTERY PARAMETER MEASUREMENTS The bq20z70 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a second delta-sigma ADC for individual cell and battery voltage, and temperature measurement. Charge and Discharge Counting The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar signals from -0.25 V to 0.25 V. The bq20z70 detects charge activity when VSR = V(SR1)-V(SR2)is positive and discharge activity when VSR = V(SR1)-V(SR2) is negative. The bq20z70 continuously integrates the signal over time, using an internal counter. The fundamental rate of the counter is 0.65 nVh. Voltage The bq20z70 updates the individual series cell voltages through the bq29330 at one second intervals. The bq20z70 configures the bq29330 to connect the selected cell, cell offset, or bq29330 VREF to the CELL pin of the bq29330, which is required to be connected to VIN of the bq20z70. The internal ADC of the bq20z70 measures the voltage, scales and calibrates it appropriately. This data is also used to calculate the impedance of the cell for the Impedance Track™ gas-gauging. Current The bq20z70 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current using a 5 mΩ to 20 mΩ typ. sense resistor. Auto Calibration The bq20z70 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for maximum charge measurement accuracy. The bq20z70 performs auto-calibration when the SMBus lines stay low continuously for a minimum of 5 s. Temperature The bq20z70 has an internal temperature sensor and 2 external temperature sensor inputs TS1 and TS2 used in conjunction with two identical NTC thermistors (default are Semitec 103AT) to sense the battery enviromental temperature. The bq20z70 can be configured to use internal or external temperature sensors. COMMUNICATIONS The bq20z70 uses SMBus v1.1 with Master Mode and package error checking (PEC) options per the SBS specification. Submit Documentation Feedback 9 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 FEATURE SET (continued) SMBus On and Off State The bq20z70 detects an SMBus off state when SMBC and SMBD are logic-low for ≥ 2 seconds. Clearing this state requires either SMBC or SMBD to transition high. Within 1 ms, the communication bus is available. 10 Submit Documentation Feedback bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 FEATURE SET (continued) SBS and Dataflash Values Table 1. SBS COMMANDS SBS Cmd Mode Name Format Size in Bytes Min Value Max Value Default Value 0x00 R/W ManufacturerAccess hex 2 0x0000 0xffff — 0x01 R/W RemainingCapacityAlarm unsigned int 2 0 65535 — mAh or 10mWh 0x02 R/W RemainingTimeAlarm unsigned int 2 0 65535 — min 0x03 R/W BatteryMode hex 2 0x0000 0xffff — 0x04 R/W AtRate signed int 2 -32768 32767 — mA or 10mW 0x05 R AtRateTimeToFull unsigned int 2 0 65535 — min 0x06 R AtRateTimeToEmpty unsigned int 2 0 65535 — min 0x07 R AtRateOK unsigned int 2 0 65535 — 0x08 R Temperature unsigned int 2 0 65535 — 0.1°K 0x09 R Voltage unsigned int 2 0 20000 — mV 0x0a R Current signed int 2 -32768 32767 — mA 0x0b R AverageCurrent signed int 2 -32768 32767 — mA 0x0c R MaxError unsigned int 1 0 100 — % 0x0d R RelativeStateOfCharge unsigned int 1 0 100 — % 0x0e R AbsoluteStateOfCharge unsigned int 1 0 100 — % 0x0f R/W RemainingCapacity unsigned int 2 0 65535 — mAh or 10mWh 0x10 R FullChargeCapacity unsigned int 2 0 65535 — mAh or 10mWh 0x11 R RunTimeToEmpty unsigned int 2 0 65535 — min 0x12 R AverageTimeToEmpty unsigned int 2 0 65535 — min 0x13 R AverageTimeToFull unsigned int 2 0 65535 — min 0x14 R ChargingCurrent unsigned int 2 0 65535 — mA 0x15 R ChargingVoltage unsigned int 2 0 65535 — mV 0x16 R BatteryStatus unsigned int 2 0x0000 0xffff — 0x17 R/W CycleCount unsigned int 2 0 65535 — 0x18 R/W DesignCapacity unsigned int 2 0 65535 — mAh or 10mWh 0x19 R/W DesignVoltage unsigned int 2 7000 16000 14400 mV 0x1a R/W SpecificationInfo unsigned int 2 0x0000 0xffff 0x0031 0x1b R/W ManufactureDate unsigned int 2 0 65535 0 0x1c R/W SerialNumber hex 2 0x0000 0xffff 0x0001 0x20 R/W ManufacturerName String 11+1 — — Texas Instruments ASCII 0x21 R/W DeviceName String 7+1 — — bq20z70 ASCII 0x22 R/W DeviceChemistry String 4+1 — — LION ASCII 0x23 R ManufacturerData String 14+1 — — — ASCII 0x2f R/W Authenticate String 20+1 — — — ASCII 0x3c R CellVoltage4 unsigned int 2 0 65535 — mV 0x3d R CellVoltage3 unsigned int 2 0 65535 — mV 0x3e R CellVoltage2 unsigned int 2 0 65535 — mV 0x3f R CellVoltage1 unsigned int 2 0 65535 — mV Submit Documentation Feedback Unit 11 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 Table 2. EXTENDED SBS COMMANDS SBS Cmd Mode Name Format Size in Bytes Min Value Max Value Default Value Unit 0x45 R AFEData String 11+1 — — — ASCII 0x46 R/W FETControl hex 1 0x00 0xff — 0x4f R StateOfHealth unsigned int 1 0 100 — 0x51 R SafetyStatus hex 2 0x0000 0xffff — 0x53 R PFStatus hex 2 0x0000 0xffff — 0x54 R OperationStatus hex 2 0x0000 0xffff — 0x55 R ChargingStatus hex 2 0x0000 0xffff — 0x57 R ResetData hex 2 0x0000 0xffff — 0x5a R PackVoltage unsigned int 2 0 65535 — mV 0x5d R AverageVoltage unsigned int 2 0 65535 — mV 0x60 R/W UnSealKey hex 4 0x00000000 0xffffffff — 0x61 R/W FullAccessKey hex 4 0x00000000 0xffffffff — 0x62 R/W PFKey hex 4 0x00000000 0xffffffff — 0x63 R/W AuthenKey3 hex 4 0x00000000 0xffffffff — 0x64 R/W AuthenKey2 hex 4 0x00000000 0xffffffff — 0x65 R/W AuthenKey1 hex 4 0x00000000 0xffffffff — 0x66 R/W AuthenKey0 hex 4 0x00000000 0xffffffff — 0x70 R/W ManufacturerInfo String 8+1 — — — 0x71 R/W SenseResistor unsigned int 2 0 65535 — 0x77 R/W SubClassID hex 2 0x0000 0xffff — 0x78 R/W SubClassPage1 hex 32 — — — 0x79 R/W SubClassPage2 hex 32 — — — 0x7a R/W SubClassPage3 hex 32 — — — 0x7b R/W SubClassPage4 hex 32 — — — 0x7c R/W SubClassPage5 hex 32 — — — 0x7d R/W SubClassPage6 hex 32 — — — 0x7e R/W SubClassPage7 hex 32 — — — 0x7f R/W SubClassPage8 hex 32 — — — % µΩ NOTE: All reserved bits in Data Flash should be written to zero. Table 3. DATAFLASH VALUES Class Subclass ID Subclass Offset Name Data Type Min Value Max Value Default Value Units 1st Level Safety 0 Voltage 0 COV Threshold I2 3700 5000 4300 mV 1st Level Safety 0 Voltage 3 COV Recovery I2 0 4400 3900 mV 1st Level Safety 0 Voltage 12 CUV Threshold I2 0 3500 2200 mV 1st Level Safety 0 Voltage 15 CUV Recovery I2 0 3600 3000 mV 1st Level Safety 1 Current 0 OC (1st Tier) Chg I2 0 20000 6000 mA 1st Level Safety 1 Current 5 OC (1st Tier) Dsg I2 0 20000 6000 mA 1st Level Safety 1 Current 16 Current Recovery Time U1 0 60 8 s 1st Level Safety 1 Current 17 AFE OC Dsg H1 0x00 0x1f 0x12 12 Submit Documentation Feedback bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 Table 3. DATAFLASH VALUES (continued) Class Subclass ID Subclass Offset Name Data Type Min Value Max Value Default Value 1st Level Safety 1 Current 18 AFE OC Dsg Time H1 0x00 0xff 0x0f 1st Level Safety 1 Current 21 AFE SC Chg Cfg H1 0x00 0xff 0x77 1st Level Safety 1 Current 22 AFE SC Dsg Cfg H1 0x00 0xff 0x77 1st Level Safety 2 Temperature 0 Over Temp Chg I2 0 1200 550 0.1°C 1st Level Safety 2 Temperature 3 OT Chg Recovery I2 0 1200 500 0.1°C 1st Level Safety 2 Temperature 5 Over Temp Dsg I2 0 1200 600 0.1°C 1st Level Safety 2 Temperature 8 OT Dsg Recovery I2 0 1200 550 0.1°C 2nd Level Safety 16 Voltage 0 SOV Threshold I2 0 20000 18000 mV 2nd Level Safety 16 Voltage 2 SOV Time U1 0 30 0 s 2nd Level Safety 16 Voltage 3 Cell Imbalance Current I1 0 200 5 mA 2nd Level Safety 16 Voltage 4 Cell Imbalance Fail Voltage I2 0 5000 1000 mV 2nd Level Safety 16 Voltage 6 Cell Imbalance Time U1 0 30 0 s 2nd Level Safety 16 Voltage 7 Battery Rest Time U2 0 65535 1800 s 2nd Level Safety 16 Voltage 9 PFIN Detect Time U1 0 30 0 s 2nd Level Safety 17 Current 0 SOC Chg I2 0 30000 10000 mA 2nd Level Safety 17 Current 2 SOC Chg Time U1 0 30 0 s 2nd Level Safety 17 Current 3 SOC Dsg I2 0 30000 10000 mA 2nd Level Safety 17 Current 5 SOC Dsg Time U1 0 30 0 s 2nd Level Safety 18 Temperature 0 SOT Chg I2 0 1200 650 0.1°C 2nd Level Safety 18 Temperature 2 SOT Chg Time U1 0 30 0 s 2nd Level Safety 18 Temperature 3 SOT Dsg I2 0 1200 750 0.1°C 2nd Level Safety 18 Temperature 5 SOT Dsg Time U1 0 30 0 s 2nd Level Safety 19 FET Verification 2 FET Fail Time U1 0 30 0 s 2nd Level Safety 20 AFE Verification 1 AFE Fail Limit U1 0 255 10 Charge Control 32 Charge Inhibit Cfg 0 Chg Inhibit Temp Low I2 -400 1200 0 0.1°C Charge Control 32 Charge Inhibit Cfg 2 Chg Inhibit Temp High I2 -400 1200 450 0.1°C Charge Control 33 Pre-Charge Cfg 0 Pre-chg Current I2 0 2000 250 mA Charge Control 33 Pre-Charge Cfg 2 Pre-chg Temp I2 -400 1200 120 0.1°C Charge Control 33 Pre-Charge Cfg 4 Pre-chg Voltage I2 0 20000 3000 mV Charge Control 33 Pre-Charge Cfg 6 Recovery Voltage I2 0 20000 3100 mV Submit Documentation Feedback Units 13 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 Table 3. DATAFLASH VALUES (continued) Class Subclass ID Subclass Offset Name Data Type Min Value Max Value Default Value Units Charge Control 34 Fast Charge Cfg 0 Fast Charge Current I2 0 10000 4000 mA Charge Control 34 Fast Charge Cfg 2 Charging Voltage I2 0 20000 16800 mV Charge Control 34 Fast Charge Cfg 6 Suspend Low Temp I2 -400 1200 -50 0.1°C Charge Control 34 Fast Charge Cfg 8 Suspend High Temp I2 -400 1200 550 0.1°C Charge Control 36 Termination Cfg. 2 Taper Current I2 0 1000 250 mA Charge Control 36 Termination Cfg. 6 Taper Voltage I2 0 1000 300 mV Charge Control 36 Termination Cfg. 10 TCA Clear % I1 -1 100 95 % Charge Control 36 Termination Cfg. 12 FC Clear % I1 -1 100 98 % Charge Control 37 Cell Balancing Cfg 0 Min Cell Deviation U2 0 65535 1750 s/mAh Charge Control 38 Charging Faults 13 Over Charge Capacity I2 0 4000 300 mAh SBS Configuration 48 Data 0 Rem Cap Alarm I2 0 700 300 mAh SBS Configuration 48 Data 2 Rem Energy Alarm I2 0 1000 432 10mW SBS Configuration 48 Data 4 Rem Time Alarm U2 0 30 10 min SBS Configuration 48 Data 6 Init Battery Mode H2 0x0000 0xffff 0x0081 SBS Configuration 48 Data 8 Design Voltage I2 7000 18000 14400 SBS Configuration 48 Data 10 Spec Info H2 0x0000 0xffff 0x0031 SBS Configuration 48 Data 12 Manuf Date U2 0 65535 0 SBS Configuration 48 Data 14 Ser. Num. H2 0x0000 0xffff 0x0001 SBS Configuration 48 Data 16 Cycle Count U2 0 65535 0 Count SBS Configuration 48 Data 18 CC Threshold I2 100 32767 4400 mAh SBS Configuration 48 Data 21 CF MaxError Limit U1 0 100 100 % SBS Configuration 48 Data 22 Design Capacity I2 0 65535 4400 mAh SBS Configuration 48 Data 24 Design Energy I2 0 65535 6336 10mWh SBS Configuration 48 Data 26 Manuf Name S12 Texas Inst. SBS Configuration 48 Data 38 Device Name S8 bq20z70 SBS Configuration 48 Data 46 Device Chemistry S5 LION SBS Configuration 49 Configuration 0 TDA Set % I1 -1 100 6 % SBS Configuration 49 Configuration 1 TDA Clear % I1 -1 100 8 % SBS Configuration 49 Configuration 2 FD Set % I1 -1 100 2 % 14 Submit Documentation Feedback mV Day + Mo*32 + (Yr 1980)*256 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 Table 3. DATAFLASH VALUES (continued) Class Subclass ID Subclass Offset Name Data Type Min Value Max Value Default Value Units SBS Configuration 49 Configuration 3 FD Clear % I1 -1 100 5 % SBS Configuration 49 Configuration 4 TDA Set Volt Threshold I2 0 16800 5000 mV SBS Configuration 49 Configuration 6 TDA Set Volt Time U1 0 60 0 s SBS Configuration 49 Configuration 7 TDA Clear Volt I2 0 16800 5500 mV System Data 58 Manufacturer Info 0 Manuf. Info S9 Configuration 64 Registers 0 Operation Cfg A H2 0x0000 0x033b 0x0329 Configuration 64 Registers 2 Operation Cfg B H2 0x0000 0x3eff 0x2440 Configuration 64 Registers 4 Operation Cfg C H2 0x0000 0x0001 0x0000 Configuration 64 Registers 6 Permanent Fail Cfg H2 0x0000 0x4dff 0x0000 Configuration 64 Registers 8 Non-Removable Cfg H2 0x0000 0x3027 0x0000 Power 68 Power 0 Flash Update OK Voltage I2 6000 20000 7500 mV Power 68 Power 2 Shutdown Voltage I2 5000 20000 7000 mV Power 68 Power 5 Charger Present I2 0 23000 3000 mV Power 68 Power 16 Wake Current Reg H1 0x00 0xff 0x00 Gas Gauging 80 IT Cfg 0 Load Select U1 0 255 3 Gas Gauging 80 IT Cfg 1 Load Mode U1 0 255 0 Gas Gauging 80 IT Cfg 45 Term Voltage I2 -32768 32767 12000 mV Gas Gauging 80 IT Cfg 60 User Rate-mA I2 2000 9000 0 MilliAmp Gas Gauging 80 IT Cfg 62 User Rate-mW I2 3000 14000 0 10mW Gas Gauging 80 IT Cfg 64 Reserve Cap-mAh I2 0 9000 0 mAh Gas Gauging 80 IT Cfg 66 Reserve Cap-mWh I2 0 14000 0 10mWh Gas Gauging 81 Current Thresholds 0 Dsg Current Threshold I2 0 2000 50 mA Gas Gauging 81 Current Thresholds 2 Chg Current Threshold I2 0 2000 25 mA Gas Gauging 81 Current Thresholds 4 Quit Current I2 0 1000 10 mA Gas Gauging 82 State 0 Qmax Cell0 I2 0 32767 4400 mAh Gas Gauging 82 State 2 Qmax Cell1 I2 0 32767 4400 mAh Gas Gauging 82 State 4 Qmax Cell2 I2 0 32767 4400 mAh Gas Gauging 82 State 6 Qmax Cell3 I2 0 32767 4400 mAh Gas Gauging 82 State 8 Qmax Pack I2 0 32767 4400 mAh Gas Gauging 82 State 12 Update Status H1 0x0 0x3 0x0 Gas Gauging 82 State 25 Delta Voltage I2 -32768 32767 0 Ra Table 88 R_a0 0 Cell0 R_a flag H2 0x0000 0x0000 0xff55 Ra Table 88 R_a0 2 Cell0 R_a 0 I2 183 183 160 2^-10ohm Ra Table 88 R_a0 4 Cell0 R_a 1 I2 181 181 166 2^-10ohm Ra Table 88 R_a0 6 Cell0 R_a 2 I2 198 198 153 2^-10ohm Ra Table 88 R_a0 8 Cell0 R_a 3 I2 244 244 151 2^-10ohm Ra Table 88 R_a0 10 Cell0 R_a 4 I2 254 254 145 2^-10ohm Ra Table 88 R_a0 12 Cell0 R_a 5 I2 261 261 152 2^-10ohm Ra Table 88 R_a0 14 Cell0 R_a 6 I2 333 333 176 2^-10ohm Ra Table 88 R_a0 16 Cell0 R_a 7 I2 338 338 204 2^-10ohm Ra Table 88 R_a0 18 Cell0 R_a 8 I2 345 345 222 2^-10ohm Ra Table 88 R_a0 20 Cell0 R_a 9 I2 350 350 254 2^-10ohm Ra Table 88 R_a0 22 Cell0 R_a 10 I2 382 382 315 2^-10ohm Ra Table 88 R_a0 24 Cell0 R_a 11 I2 429 429 437 2^-10ohm Ra Table 88 R_a0 26 Cell0 R_a 12 I2 502 502 651 2^-10ohm Ra Table 88 R_a0 28 Cell0 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 88 R_a0 30 Cell0 R_a 14 I2 366 366 1458 2^-10ohm Ra Table 89 R_a1 0 Cell1 R_a flag H2 0x0 0x0 0xff55 Submit Documentation Feedback 12345678 mV 15 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 Table 3. DATAFLASH VALUES (continued) Class Subclass ID Subclass Offset Name Data Type Min Value Max Value Default Value Units Ra Table 89 R_a1 2 Cell1 R_a 0 I2 183 183 160 2^-10ohm Ra Table 89 R_a1 4 Cell1 R_a 1 I2 181 181 166 2^-10ohm Ra Table 89 R_a1 6 Cell1 R_a 2 I2 198 198 153 2^-10ohm Ra Table 89 R_a1 8 Cell1 R_a 3 I2 244 244 151 2^-10ohm Ra Table 89 R_a1 10 Cell1 R_a 4 I2 254 254 145 2^-10ohm Ra Table 89 R_a1 12 Cell1 R_a 5 I2 261 261 152 2^-10ohm Ra Table 89 R_a1 14 Cell1 R_a 6 I2 333 333 176 2^-10ohm Ra Table 89 R_a1 16 Cell1 R_a 7 I2 338 338 204 2^-10ohm Ra Table 89 R_a1 18 Cell1 R_a 8 I2 345 345 222 2^-10ohm Ra Table 89 R_a1 20 Cell1 R_a 9 I2 350 350 254 2^-10ohm Ra Table 89 R_a1 22 Cell1 R_a 10 I2 382 382 315 2^-10ohm Ra Table 89 R_a1 24 Cell1 R_a 11 I2 429 429 437 2^-10ohm Ra Table 89 R_a1 26 Cell1 R_a 12 I2 502 502 651 2^-10ohm Ra Table 89 R_a1 28 Cell1 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 89 R_a1 30 Cell1 R_a 14 I2 366 366 1458 2^-10ohm Ra Table 90 R_a2 0 Cell2 R_a flag H2 0x0000 0x0000 0xff55 Ra Table 90 R_a2 2 Cell2 R_a 0 I2 183 183 160 2^-10ohm Ra Table 90 R_a2 4 Cell2 R_a 1 I2 181 181 166 2^-10ohm Ra Table 90 R_a2 6 Cell2 R_a 2 I2 198 198 153 2^-10ohm Ra Table 90 R_a2 8 Cell2 R_a 3 I2 244 244 151 2^-10ohm Ra Table 90 R_a2 10 Cell2 R_a 4 I2 254 254 145 2^-10ohm Ra Table 90 R_a2 12 Cell2 R_a 5 I2 261 261 152 2^-10ohm Ra Table 90 R_a2 14 Cell2 R_a 6 I2 333 333 176 2^-10ohm Ra Table 90 R_a2 16 Cell2 R_a 7 I2 338 338 204 2^-10ohm Ra Table 90 R_a2 18 Cell2 R_a 8 I2 345 345 222 2^-10ohm Ra Table 90 R_a2 20 Cell2 R_a 9 I2 350 350 254 2^-10ohm Ra Table 90 R_a2 22 Cell2 R_a 10 I2 382 382 315 2^-10ohm Ra Table 90 R_a2 24 Cell2 R_a 11 I2 429 429 437 2^-10ohm Ra Table 90 R_a2 26 Cell2 R_a 12 I2 502 502 651 2^-10ohm Ra Table 90 R_a2 28 Cell2 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 90 R_a2 30 Cell2 R_a 14 I2 366 366 1458 2^-10ohm Ra Table 91 R_a3 0 Cell3 R_a flag H2 0x0000 0x0000 0xff55 Ra Table 91 R_a3 2 Cell3 R_a 0 I2 183 183 160 2^-10ohm Ra Table 91 R_a3 4 Cell3 R_a 1 I2 181 181 166 2^-10ohm Ra Table 91 R_a3 6 Cell3 R_a 2 I2 198 198 153 2^-10ohm Ra Table 91 R_a3 8 Cell3 R_a 3 I2 244 244 151 2^-10ohm Ra Table 91 R_a3 10 Cell3 R_a 4 I2 254 254 145 2^-10ohm Ra Table 91 R_a3 12 Cell3 R_a 5 I2 261 261 152 2^-10ohm Ra Table 91 R_a3 14 Cell3 R_a 6 I2 333 333 176 2^-10ohm Ra Table 91 R_a3 16 Cell3 R_a 7 I2 338 338 204 2^-10ohm Ra Table 91 R_a3 18 Cell3 R_a 8 I2 345 345 222 2^-10ohm Ra Table 91 R_a3 20 Cell3 R_a 9 I2 350 350 254 2^-10ohm Ra Table 91 R_a3 22 Cell3 R_a 10 I2 382 382 315 2^-10ohm Ra Table 91 R_a3 24 Cell3 R_a 11 I2 429 429 437 2^-10ohm Ra Table 91 R_a3 26 Cell3 R_a 12 I2 502 502 651 2^-10ohm Ra Table 91 R_a3 28 Cell3 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 91 R_a3 30 Cell3 R_a 14 I2 366 366 1458 2^-10ohm Ra Table 92 R_a0x 0 xCell0 R_a flag H2 0xffff 0xffff 0xffff Ra Table 92 R_a0x 2 xCell0 R_a 0 I2 183 183 160 2^-10ohm Ra Table 92 R_a0x 4 xCell0 R_a 1 I2 181 181 166 2^-10ohm 16 Submit Documentation Feedback bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 Table 3. DATAFLASH VALUES (continued) Class Subclass ID Subclass Offset Name Data Type Min Value Max Value Default Value Units Ra Table 92 R_a0x 6 xCell0 R_a 2 I2 198 198 153 2^-10ohm Ra Table 92 R_a0x 8 xCell0 R_a 3 I2 244 244 151 2^-10ohm Ra Table 92 R_a0x 10 xCell0 R_a 4 I2 254 254 145 2^-10ohm Ra Table 92 R_a0x 12 xCell0 R_a 5 I2 261 261 152 2^-10ohm Ra Table 92 R_a0x 14 xCell0 R_a 6 I2 333 333 176 2^-10ohm Ra Table 92 R_a0x 16 xCell0 R_a 7 I2 338 338 204 2^-10ohm Ra Table 92 R_a0x 18 xCell0 R_a 8 I2 345 345 222 2^-10ohm Ra Table 92 R_a0x 20 xCell0 R_a 9 I2 350 350 254 2^-10ohm Ra Table 92 R_a0x 22 xCell0 R_a 10 I2 382 382 315 2^-10ohm Ra Table 92 R_a0x 24 xCell0 R_a 11 I2 429 429 437 2^-10ohm Ra Table 92 R_a0x 26 xCell0 R_a 12 I2 502 502 651 2^-10ohm Ra Table 92 R_a0x 28 xCell0 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 92 R_a0x 30 xCell0 R_a 14 I2 366 366 1458 2^-10ohm Ra Table 93 R_a1x 0 xCell1 R_a flag H2 0xffff 0xffff 0xffff Ra Table 93 R_a1x 2 xCell1 R_a 0 I2 183 183 160 2^-10ohm Ra Table 93 R_a1x 4 xCell1 R_a 1 I2 181 181 166 2^-10ohm Ra Table 93 R_a1x 6 xCell1 R_a 2 I2 198 198 153 2^-10ohm Ra Table 93 R_a1x 8 xCell1 R_a 3 I2 244 244 151 2^-10ohm Ra Table 93 R_a1x 10 xCell1 R_a 4 I2 254 254 145 2^-10ohm Ra Table 93 R_a1x 12 xCell1 R_a 5 I2 261 261 152 2^-10ohm Ra Table 93 R_a1x 14 xCell1 R_a 6 I2 333 333 176 2^-10ohm Ra Table 93 R_a1x 16 xCell1 R_a 7 I2 338 338 204 2^-10ohm Ra Table 93 R_a1x 18 xCell1 R_a 8 I2 345 345 222 2^-10ohm Ra Table 93 R_a1x 20 xCell1 R_a 9 I2 350 350 254 2^-10ohm Ra Table 93 R_a1x 22 xCell1 R_a 10 I2 382 382 315 2^-10ohm Ra Table 93 R_a1x 24 xCell1 R_a 11 I2 429 429 437 2^-10ohm Ra Table 93 R_a1x 26 xCell1 R_a 12 I2 502 502 651 2^-10ohm Ra Table 93 R_a1x 28 xCell1 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 93 R_a1x 30 xCell1 R_a 14 I2 366 366 1458 2^-10ohm Ra Table 94 R_a2x 0 xCell2 R_a flag H2 0xffff 0xffff 0xffff Ra Table 94 R_a2x 2 xCell2 R_a 0 I2 183 183 160 2^-10ohm Ra Table 94 R_a2x 4 xCell2 R_a 1 I2 181 181 166 2^-10ohm Ra Table 94 R_a2x 6 xCell2 R_a 2 I2 198 198 153 2^-10ohm Ra Table 94 R_a2x 8 xCell2 R_a 3 I2 244 244 151 2^-10ohm Ra Table 94 R_a2x 10 xCell2 R_a 4 I2 254 254 145 2^-10ohm Ra Table 94 R_a2x 12 xCell2 R_a 5 I2 261 261 152 2^-10ohm Ra Table 94 R_a2x 14 xCell2 R_a 6 I2 333 333 176 2^-10ohm Ra Table 94 R_a2x 16 xCell2 R_a 7 I2 338 338 204 2^-10ohm Ra Table 94 R_a2x 18 xCell2 R_a 8 I2 345 345 222 2^-10ohm Ra Table 94 R_a2x 20 xCell2 R_a 9 I2 350 350 254 2^-10ohm Ra Table 94 R_a2x 22 xCell2 R_a 10 I2 382 382 315 2^-10ohm Ra Table 94 R_a2x 24 xCell2 R_a 11 I2 429 429 437 2^-10ohm Ra Table 94 R_a2x 26 xCell2 R_a 12 I2 502 502 651 2^-10ohm Ra Table 94 R_a2x 28 xCell2 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 94 R_a2x 30 xCell2 R_a 14 I2 366 366 1458 2^-10ohm Ra Table 95 R_a3x 0 xCell3 R_a flag H2 0xffff 0xffff 0xffff Ra Table 95 R_a3x 2 xCell3 R_a 0 I2 183 183 160 2^-10ohm Ra Table 95 R_a3x 4 xCell3 R_a 1 I2 181 181 166 2^-10ohm Ra Table 95 R_a3x 6 xCell3 R_a 2 I2 198 198 153 2^-10ohm Ra Table 95 R_a3x 8 xCell3 R_a 3 I2 244 244 151 2^-10ohm Submit Documentation Feedback 17 bq20z70 www.ti.com SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006 Table 3. DATAFLASH VALUES (continued) Class Subclass ID Subclass Offset Name Data Type Min Value Max Value Default Value Units Ra Table 95 R_a3x 10 xCell3 R_a 4 I2 254 254 145 2^-10ohm Ra Table 95 R_a3x 12 xCell3 R_a 5 I2 261 261 152 2^-10ohm Ra Table 95 R_a3x 14 xCell3 R_a 6 I2 333 333 176 2^-10ohm Ra Table 95 R_a3x 16 xCell3 R_a 7 I2 338 338 204 2^-10ohm Ra Table 95 R_a3x 18 xCell3 R_a 8 I2 345 345 222 2^-10ohm Ra Table 95 R_a3x 20 xCell3 R_a 9 I2 350 350 254 2^-10ohm Ra Table 95 R_a3x 22 xCell3 R_a 10 I2 382 382 315 2^-10ohm Ra Table 95 R_a3x 24 xCell3 R_a 11 I2 429 429 437 2^-10ohm Ra Table 95 R_a3x 26 xCell3 R_a 12 I2 502 502 651 2^-10ohm Ra Table 95 R_a3x 28 xCell3 R_a 13 I2 545 545 1001 2^-10ohm Ra Table 95 R_a3x 30 xCell3 R_a 14 I2 366 366 1458 2^-10ohm PF Status 96 Device Status Data 0 PF Flags 1 H2 0x0000 0x4dff 0x0000 PF Status 96 Device Status Data 28 PF Flags 2 H2 0x0000 0x0dff 0x0000 Calibration 104 Data 0 CC Gain F4 0.1 4 0.9419 Calibration 104 Data 4 CC Delta F4 29826 1193046 280932.625 Calibration 104 Data 8 Ref Voltage I2 0 32767 24500 50uV Calibration 104 Data 12 AFE Pack Gain I2 0 32767 22050 µV/cnt Calibration 104 Data 14 CC Offset I2 -32768 32767 -1667 Calibration 104 Data 16 Board Offset I2 -32768 32767 0 Calibration 104 Data 18 Int Temp Offset I1 -128 127 0 Calibration 104 Data 19 Ext1 Temp Offset I1 -128 127 0 Calibration 104 Data 20 Ext2 Temp Offset I1 -128 127 0 Calibration 105 Config 0 CC Current I2 0 32767 3000 mA Calibration 105 Config 2 Voltage Signal I2 0 32767 16800 mV Calibration 105 Config 4 Temp Signal I2 0 32767 2980 0.1°C Calibration 105 Config 6 CC Offset Time U2 0 65535 250 s Calibration 105 Config 8 ADC Offset Time U2 0 65535 32 s Calibration 105 Config 10 CC Gain Time U2 0 65535 250 s Calibration 105 Config 12 Voltage Time U2 0 65535 1984 ms Calibration 105 Config 14 Temperature Time U2 0 65535 32 s Calibration 105 Config 17 Cal Mode Timeout U2 0 65535 38400 1/128 s Calibration 106 Temp Model 0 Ext Coef 1 I2 -32768 32767 -28285 s Calibration 106 Temp Model 2 Ext Coef 2 I2 -32768 32767 20848 s Calibration 106 Temp Model 4 Ext Coef 3 I2 -32768 32767 -7537 s Calibration 106 Temp Model 6 Ext Coef 4 I2 -32768 32767 4012 s Calibration 106 Temp Model 8 Ext Min AD I2 -32768 32767 0 s Calibration 106 Temp Model 10 Ext Max Temp I2 -32768 32767 4012 s Calibration 106 Temp Model 12 Int Coef 1 I2 -32768 32767 0 s Calibration 106 Temp Model 14 Int Coef 2 I2 -32768 32767 0 s Calibration 106 Temp Model 16 Int Coef 3 I2 -32768 32767 -11136 s Calibration 106 Temp Model 18 Int Coef 4 I2 -32768 32767 5754 s Calibration 106 Temp Model 20 Int Min AD I2 -32768 32767 0 s Calibration 106 Temp Model 22 Int Max Temp I2 -32768 32767 5754 s Calibration 107 Current 0 Filter U1 0 255 239 Calibration 107 Current 1 Deadband U1 0 255 3 mA Calibration 107 Current 2 CC Deadband U1 0 255 34 294 nV Application Schematic The application schematic is on the following page. 18 Submit Documentation Feedback PACKAGE OPTION ADDENDUM www.ti.com 15-Jun-2006 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty BQ20Z70PW ACTIVE TSSOP PW 20 BQ20Z70PWR ACTIVE TSSOP PW 20 70 Lead/Ball Finish MSL Peak Temp (3) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Mailing Address: Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2006, Texas Instruments Incorporated