TI BQ20Z70PW

bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
SBS 1.1-COMPLIANT GAS GAUGE ENABLED WITH IMPEDANCE TRACK™
TECHNOLOGY FOR USE WITH THE bq29330
FEATURES
APPLICATIONS
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Next Generation Patented Impedance Track™
Technology accurately Measures Available
Charge in Li-Ion and Li-Polymer Batteries
Better than 1% Error Over Lifetime of the
Battery
Instant Accuracy – No Learning Cycle
Required
Supports the Smart Battery Specification
SBS V1.1
Powerful 8-Bit RISC CPU With Ultra-Low
Power Modes
Works With the TI bq29330 Analog Front-End
(AFE) Protection IC to Provide Complete Pack
Electronics Solution
Full Array of Programmable Protection
Features
– Voltage, Current and Temperature
Fully Integrated High Accurate Clock
Flexible Configuration for 2 to 4 Series Li-Ion
and Li-Polymer Cells
Integrated Field Programmable FLASH
Memory Eliminates the Need for External
Configuration Memory
Smart Battery Charger Control Feature
Two 16-Bit Delta-Sigma Converter
– Accurate Voltage and Temperature
Measurements
– Integrating Coloumb Counter for Charge
Flow
• Better Than 0.65 nVh of Resolution
• Self-Calibrating
Supports SHA-1 Authentication
20-Pin TSSOP (PW)
Notebook PCs
Medical and Test Equipment
Portable Instrumentation
DESCRIPTION
The bq20z70 SBS-compliant gas gauge IC,
incorporating
patented
Impedance
Track™
technology, is designed for battery-pack or in-system
installation. The bq20z70 measures and maintains
an accurate record of available charge in Li-ion or
Li-polymer
batteries
using
its
integrated
high-performance analog peripherals. The bq20z70
monitors capacity change, battery impedance,
open-circuit voltage, and other critical parameters of
the battery pack, and reports the information to the
system host controller over a serial-communication
bus. It is designed to work with the bq29330 analog
front-end (AFE) protection IC to maximize
functionality and safety, and minimize component
count and cost in smart battery circuits.
The Impedance Track technology continuously
analyzes the battery impedance, resulting in superior
gas-gauging accuracy. This enables remaining
capacity to be calculated with discharge rate,
temperature, and cell aging all accounted for during
each stage of every cycle.
AVAILABLE OPTIONS
PACKAGE
TA
20-PIN TSSOP (PW)
Tube
20-PIN TSSOP (PW)
Tape & Reel
–40°C to
85°C
bq20z70PW (1)
bq20z70PWR (2)
(1)
(2)
A single tube quantity is 50 units.
A single reel quantity is 2000 units
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
IMPEDANCE TRACK is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2005–2006, Texas Instruments Incorporated
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
SYSTEM PARTITIONING DIAGRAM
Pack +
Fuse
Supply Voltage
32kHz Clock
Generator
Reset
32KHz
bq29330
Validation &
Control
Watchdog &
Protection
Timing
Charge Pumps
Registers
Alert
System
Interface
System
Interface
I2C
SHA-1
Authentication
Overvoltage &
Undervoltage
Protection
Cell & Pack
Voltage
Measurement
Voltage Level
Translator
Cell Balancing
Algorithm &
Control
Overrcurrent
Protection
Impedance
Track™ Gas
Gauging
Overcurrent &
Short Circuit
Protection
bq20z70
bq29330
Pack RSNS
5mΩ – 20mΩ typ.
TSSOP (PW)
(TOP VIEW)
XALERT
TS2
TS1
CLKOUT
PRES
PFIN
SAFE
SMBD
NC
SMBC
2
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
VCELLVCELL+
VCC
VSS
MRST
SRN
SRP
VSS
SCLK
SDATA
Submit Documentation Feedback
nd
SBS v1.1
Data
N-CH FET
Drive
2 Level Voltage Protection
SMBus
LDO
& Therm. Drive
& Reset
Cell Selection Multiplexer
Charging
Algorithm
Therm
Temperature
Measurement
& Protection
Cell Balancing Drive
Fail Safe
Protection
bq294xy
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
TERMINAL FUNCTIONS
TERMINAL
I/O (1)
DESCRIPTION
NO.
NAME
1
XALERT
I
Alert interrupt input from bq29330. Connect directly to bq29330 XALERT pin
2
TS2
I
2nd thermistor voltage input connection to monitor temperature
3
TS1
I
1st thermistor voltage input connection to monitor temperature
4
CLKOUT
O
32.768kHz output for bq29330 watchdog. Connect directly to bq29330 WDI pin
5
PRES
I
Active low input to sense system insertion
6
PFIN
I
Active low input to sense secondary protector output status
Active high output to enforce additional level of safety, e.g. fuse blow
(1)
7
SAFE
O
8
SMBD
I/OD
9
NC
–
10
SMBC
I/OD
SMBus clock open drain bidirectional pin used for communication with bq20z70
11
SDATA
I/OD
Data transfer line from and to bq29330. Connect directly to SDATA pin of bq29330
12
SCLK
I/OD
Data clock line to bq29330. Connect directly to SCLK pin of bq29330
13
VSS
I/OD
VSS
14
SRP
IA
Connection for a small-value resistor to monitor the battery charge and discharge current flow
15
SRN
IA
Connection for a small-value resistor to monitor the battery charge and discharge current flow
16
MRST
I
Master reset input that forces the device into reset when held low. Connect directly to XRST pin of
bq29330
17
VSS
P
Negative supply. Both VSS needs to be connected together
18
VCC
P
Positive supply
19
VCELL+
I
Positive differential cell input. Connect directly to CELL+ pin of bq29330
20
VCELL-
I
Negative differential cell input. Connect directly to CELL- pin of bq29330
SMBus data open drain bidirectional pin used for communication with bq20z70
Not used - leave floating
I = Input, IA = Analog input, I/O = Input/output, I/OD = Input/Open-drain output, O = Output, OA = Analog output, P = Power
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted) (1)
RANGE
VCC relative to VSS (2)
Supply voltage range on VCC pin
V(IOD) relative to VSS (2)
XALERT, PFIN, SAFE, SMBD, SMBC, SDATA, SCLK,
VI relative to VSS (2)
TS2, TS1, CLKOUT, PRES, SRP, SRN, MRST, VCELL+,VCELL-
TA
Operating free-air temperature range
–40°C to 85°C
Tstg
Storage temperature range
–65°C to 150°C
(1)
(2)
–0.3 V to 2.75 V
–0.3 V to 6.0 V
–0.3 V to VCC + 0.3 V
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
VSS refers to Voltage at VSS pin.
ELECTRICAL CHARACTERISTICS
VCC = 2.4 V to 2.6 V, TA = -40°C - 85°C (unless otherwise noted)
PARAMETER
VDD
IDD
Supply voltage
Operating mode current
I(SLP) Low-power storage mode current
(1)
TEST CONDITIONS
VDDA and VDDD
No flash programming
MIN
2.4
TYP
MAX
2.5
2.6
400 (1)
bq20z70 + bq29330
475
Sleep mode
8 (1)
bq20z70 + bq29330
48
UNIT
V
µA
µA
This value does not include the bq29330
Submit Documentation Feedback
3
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
ELECTRICAL CHARACTERISTICS (continued)
VCC = 2.4 V to 2.6 V, TA = -40°C - 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
bq20z70 + bq29330
VOL
Output voltage low CLKOUT, SAFE, SMBD, SMBC, SDATA,
SCLK
IOL = 7 mA
VOH
Output high voltage CLKOUT, SAFE, SMBD,SMBC, SDATA,
SCLK
IOH = –0.5 mA
VIL
Input voltage low PRES, PFIN, SMBD, SMBC, SDATA, MRST
VIH
Input voltage high PRES, PFIN, SMBD, SMBC, SDATA, MRST
CIN
Input capacitance
TYP
MAX
0.1 (1)
Shutdown Mode
I(SLP) Shutdown Current
4
MIN
UNIT
µA
0.2
0.4
VCC– 0.5
V
V
0.8
2.0
V
V
5
pF
V(AI1) Input voltage range TS1, TS2, VCELL+, VCELL-
– 0.2
0.8 x VCC
V(AI2) Input voltage range SRP, SRN
– 0.2
0.2
V
Z(AI1) Input impedance TS1, TS2, VCELL+, VCELL -
0V–1V
8
MΩ
Z(AI2) Input impedance SRP, SRN
0V–1V
2.5
MΩ
Submit Documentation Feedback
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
POWER-ON RESET
VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted)
MIN
TYP
MAX
VIT–
Negative-going voltage input
PARAMETER
TEST CONDITIONS
1.7
1.8
1.9
UNIT
V
VHYS
Power-on reset hysteresis
50
125
200
mV
MAX
UNIT
0.20
V
Power-On Reset Negative-Going Voltage - V
1.81
1.8
1.79
1.78
1.77
1.76
-40
-20
0
20
40
60
80
TA - Free-Air Temperature - °C
INTEGRATING ADC (Coulomb Counter) CHARACTERISTICS
VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(SR)
Input voltage range, V(SRN) and V(SRP)
V(SR) = V(SRP) – V(SRN)
V(SROS)
Input offset
TA =25°C to 85°C
INL
Integral nonlinearity error
MIN
TYP
–0.20
µV
10
±0.007
±0.037
TYP
MAX
%
OSCILLATOR
VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
UNIT
HIGH FREQUENCY OSCILLATOR
f (OSC)
Operating frequency
f (EIO)
Frequency error
f (sxo)
Start-up time
4.194
(1) (2)
T A = 20°C to 70°C
MHz
-3%
0.25%
3%
-2%
0.25%
2%
2.5
5
(3)
ms
LOW FREQUENCY OSCILLATOR
f (LOSC)
f (LEIO)
f (Lsxo)
(1)
(2)
(3)
(4)
(5)
Operating frequency
Frequency error
Start-up time
32.768
(2) (4)
T A = 20°C to 70°C
(5)
kHz
-2.5%
0.25%
2.5%
-1.5%
0.25%
1.5%
500
µs
The frequency error is measured from 4.194 MHz.
The frequency drift is included and measured f rom the trimmed frequency at V CC = 2.5 V, T A = 25°C.
The start-up time is defined as the time it takes for the oscillator output frequency to be within 1% of the specified frequency.
The frequency error is measured from 32.768 kHz.
The start-up time is defined as the time it takes for the oscillator output frequency to be ±3%.
Submit Documentation Feedback
5
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
DATA FLASH MEMORY CHARACTERISTICS
VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
MIN
TYP
MAX
UNIT
See
(1)
10
Years
Flash programming write-cycles
See
(1)
20,000
Cycles
t(WORDPROG) Word programming time
See
(1)
I(DDPROG)
See
(1)
(1)
6
TEST CONDITIONS
Data retention
tDR
Flash-write and erase supply current
Assured by design. Not production tested
Submit Documentation Feedback
5
2
ms
10
mA
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
SMBus TIMING SPECIFICATIONS
VCC = 2.4 V to 2.6 V, TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fSMB
SMBus operating frequency
Slave mode, SMBC 50% duty cycle
fMAS
SMBus master clock frequency
Master mode, no clock low slave extend
tBUF
Bus free time between start and stop
tHD:STA
Hold time after (repeated) start
tSU:STA
Repeated start setup time
tSU:STO
Stop setup time
MIN
TYP
10
MAX
100
51.2
kHz
4.7
4
µs
4.7
4
Receive mode
0
Transmit mode
300
tHD:DAT
Data hold time
tSU:DAT
Data setup time
tTIMEOUT
Error signal/detect
tLOW
Clock low period
tHIGH
Clock high period
See
(2)
tLOW:SEXT
Cumulative clock low slave extend time
See
(3)
25
tLOW:MEXT
Cumulative clock low master extend time
See
(4)
10
tF
Clock/data fall time
(VILMAX– 0.15 V) to (VIHMIN + 0.15 V)
tR
Clock/data rise time
0.9 VCC to (VILMAX – 0.15 V)
(1)
(2)
(3)
(4)
UNIT
ns
250
See
(1)
25
35
4.7
4
50
300
1000
ms
µs
ms
ns
The bq20z70 times out when any clock low exceeds tTIMEOUT.
tHIGH:MAX. is minimum bus idle time. SMBC = 1 for t > 50 µs causes reset of any transaction involving the bq20z70 that is in progress.
tLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from initial start to the stop.
tLOW:MEXT is the cumulative time a master device is allowed to extend the clock cycles in one message from initial start to the stop.
SMBus TIMING DIAGRAM
Submit Documentation Feedback
7
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
FEATURE SET
Primary (1st Level) Safety Features
The bq20z70 supports a wide range of battery and system protection features that can easily be configured. The
primary safety features include:
•
•
•
•
•
Cell over/under voltage protection
Charge and Discharge over current
Short Circut
Charge and Discharge Over temperature
AFE Watchdog
Secondary (2nd Level) Safety Features
The secondary safety features of the bq20z70 can be used to indicate more serious faults via the SAFE (pin 7).
This pin can be used to blow an in-line fuse to permanently disable the battery pack from charging or
discharging. The secondary safety protection features include:
•
•
•
•
•
•
Safety over voltage
Safety over current in Charge and Discharge
Safety over temperature in Charge and Discharge
Charge FET and 0 Volt Charge FET fault
Discharge FET fault
AFE communication fault
Charge Control Features
The bq20z70 charge control features include:
•
•
•
•
•
•
Reports the appropriate charging current needed for constant current charging and the appropriate charging
voltage needed for constant voltage charging to a smart charger using SMBus broadcasts.
Determines the chemical state of charge of each battery cell using Impedance Track™ and can reduce the
charge difference of the battery cells in fully charged state of the battery pack gradually using cell balancing
algorithm during charging. This prevents fully charged cells from overcharging and causing excessive
degradation and also increases the usable pack energy by preventing premature charge termination
Supports pre-charging/zero-volt charging
Support fast charging
Supports charge inhibit and charge suspend if battery pack temperature is out of temperature range
Reports charging fault and also indicate charge status via charge and discharge alarms.
Gas Gauging
The bq20z70 uses the Impedance Track™ Technology to measure and calculate the available charge in battery
cells. The achievable accuracy is better than 1% error over the lifetime of the battery and there is no full charge
discharge learning cycle required.
See Theory and Implementation of Impedance Track Battery Fuel-Gauging Algorithm application note
(SLUA364) for further details.
Authentication
The bq20z70 supports authentication by the host using SHA-1.
Power Modes
The bq20z70 supports 3 different power modes to reduce power consumption:
•
8
In Normal Mode, the bq20z70 performs measurements, calculations, protection decisions and data updates
in 1 second intervals. Between these intervals, the bq20z70 is in a reduced power stage.
Submit Documentation Feedback
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
FEATURE SET (continued)
•
•
In Sleep Mode, the bq20z70 performs measurements, calculations, protection decisions and data update in
adjustable time intervals. Between these intervals, the bq20z70 is in a reduced power stage. The bq20z70
has a wake function that enables exit from Sleep mode, when current flow or failure is detected.
In Shutdown Mode the bq20z70 is completely disabled.
CONFIGURATION
Oscillator Function
The bq20z70 fully integrates the system oscillators. Therefore the bq20z70 requires no external components for
this feature.
System Present Operation
The bq20z70 pulls the PU pin high periodically (1 s). Connect this pin to the PRES pin of the bq20z70 via a
resistor of approximately 5 kΩ. The bq20z70 measures the PRES input during the PU-active period to determine
its state. If PRES input is pulled to ground by external system, the bq20z70 detects this as system present.
BATTERY PARAMETER MEASUREMENTS
The bq20z70 uses an integrating delta-sigma analog-to-digital converter (ADC) for current measurement, and a
second delta-sigma ADC for individual cell and battery voltage, and temperature measurement.
Charge and Discharge Counting
The integrating delta-sigma ADC measures the charge/discharge flow of the battery by measuring the voltage
drop across a small-value sense resistor between the SR1 and SR2 pins. The integrating ADC measures bipolar
signals from -0.25 V to 0.25 V. The bq20z70 detects charge activity when VSR = V(SR1)-V(SR2)is positive and
discharge activity when VSR = V(SR1)-V(SR2) is negative. The bq20z70 continuously integrates the signal over
time, using an internal counter. The fundamental rate of the counter is 0.65 nVh.
Voltage
The bq20z70 updates the individual series cell voltages through the bq29330 at one second intervals. The
bq20z70 configures the bq29330 to connect the selected cell, cell offset, or bq29330 VREF to the CELL pin of
the bq29330, which is required to be connected to VIN of the bq20z70. The internal ADC of the bq20z70
measures the voltage, scales and calibrates it appropriately. This data is also used to calculate the impedance
of the cell for the Impedance Track™ gas-gauging.
Current
The bq20z70 uses the SRP and SRN inputs to measure and calculate the battery charge and discharge current
using a 5 mΩ to 20 mΩ typ. sense resistor.
Auto Calibration
The bq20z70 provides an auto-calibration feature to cancel the voltage offset error across SRN and SRP for
maximum charge measurement accuracy. The bq20z70 performs auto-calibration when the SMBus lines stay
low continuously for a minimum of 5 s.
Temperature
The bq20z70 has an internal temperature sensor and 2 external temperature sensor inputs TS1 and TS2 used
in conjunction with two identical NTC thermistors (default are Semitec 103AT) to sense the battery enviromental
temperature. The bq20z70 can be configured to use internal or external temperature sensors.
COMMUNICATIONS
The bq20z70 uses SMBus v1.1 with Master Mode and package error checking (PEC) options per the SBS
specification.
Submit Documentation Feedback
9
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
FEATURE SET (continued)
SMBus On and Off State
The bq20z70 detects an SMBus off state when SMBC and SMBD are logic-low for ≥ 2 seconds. Clearing this
state requires either SMBC or SMBD to transition high. Within 1 ms, the communication bus is available.
10
Submit Documentation Feedback
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
FEATURE SET (continued)
SBS and Dataflash Values
Table 1. SBS COMMANDS
SBS Cmd
Mode
Name
Format
Size in
Bytes
Min
Value
Max
Value
Default Value
0x00
R/W
ManufacturerAccess
hex
2
0x0000
0xffff
—
0x01
R/W
RemainingCapacityAlarm
unsigned int
2
0
65535
—
mAh or
10mWh
0x02
R/W
RemainingTimeAlarm
unsigned int
2
0
65535
—
min
0x03
R/W
BatteryMode
hex
2
0x0000
0xffff
—
0x04
R/W
AtRate
signed int
2
-32768
32767
—
mA or 10mW
0x05
R
AtRateTimeToFull
unsigned int
2
0
65535
—
min
0x06
R
AtRateTimeToEmpty
unsigned int
2
0
65535
—
min
0x07
R
AtRateOK
unsigned int
2
0
65535
—
0x08
R
Temperature
unsigned int
2
0
65535
—
0.1°K
0x09
R
Voltage
unsigned int
2
0
20000
—
mV
0x0a
R
Current
signed int
2
-32768
32767
—
mA
0x0b
R
AverageCurrent
signed int
2
-32768
32767
—
mA
0x0c
R
MaxError
unsigned int
1
0
100
—
%
0x0d
R
RelativeStateOfCharge
unsigned int
1
0
100
—
%
0x0e
R
AbsoluteStateOfCharge
unsigned int
1
0
100
—
%
0x0f
R/W
RemainingCapacity
unsigned int
2
0
65535
—
mAh or
10mWh
0x10
R
FullChargeCapacity
unsigned int
2
0
65535
—
mAh or
10mWh
0x11
R
RunTimeToEmpty
unsigned int
2
0
65535
—
min
0x12
R
AverageTimeToEmpty
unsigned int
2
0
65535
—
min
0x13
R
AverageTimeToFull
unsigned int
2
0
65535
—
min
0x14
R
ChargingCurrent
unsigned int
2
0
65535
—
mA
0x15
R
ChargingVoltage
unsigned int
2
0
65535
—
mV
0x16
R
BatteryStatus
unsigned int
2
0x0000
0xffff
—
0x17
R/W
CycleCount
unsigned int
2
0
65535
—
0x18
R/W
DesignCapacity
unsigned int
2
0
65535
—
mAh or
10mWh
0x19
R/W
DesignVoltage
unsigned int
2
7000
16000
14400
mV
0x1a
R/W
SpecificationInfo
unsigned int
2
0x0000
0xffff
0x0031
0x1b
R/W
ManufactureDate
unsigned int
2
0
65535
0
0x1c
R/W
SerialNumber
hex
2
0x0000
0xffff
0x0001
0x20
R/W
ManufacturerName
String
11+1
—
—
Texas Instruments
ASCII
0x21
R/W
DeviceName
String
7+1
—
—
bq20z70
ASCII
0x22
R/W
DeviceChemistry
String
4+1
—
—
LION
ASCII
0x23
R
ManufacturerData
String
14+1
—
—
—
ASCII
0x2f
R/W
Authenticate
String
20+1
—
—
—
ASCII
0x3c
R
CellVoltage4
unsigned int
2
0
65535
—
mV
0x3d
R
CellVoltage3
unsigned int
2
0
65535
—
mV
0x3e
R
CellVoltage2
unsigned int
2
0
65535
—
mV
0x3f
R
CellVoltage1
unsigned int
2
0
65535
—
mV
Submit Documentation Feedback
Unit
11
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
Table 2. EXTENDED SBS COMMANDS
SBS
Cmd
Mode
Name
Format
Size in
Bytes
Min Value
Max Value
Default Value
Unit
0x45
R
AFEData
String
11+1
—
—
—
ASCII
0x46
R/W
FETControl
hex
1
0x00
0xff
—
0x4f
R
StateOfHealth
unsigned int
1
0
100
—
0x51
R
SafetyStatus
hex
2
0x0000
0xffff
—
0x53
R
PFStatus
hex
2
0x0000
0xffff
—
0x54
R
OperationStatus
hex
2
0x0000
0xffff
—
0x55
R
ChargingStatus
hex
2
0x0000
0xffff
—
0x57
R
ResetData
hex
2
0x0000
0xffff
—
0x5a
R
PackVoltage
unsigned int
2
0
65535
—
mV
0x5d
R
AverageVoltage
unsigned int
2
0
65535
—
mV
0x60
R/W
UnSealKey
hex
4
0x00000000 0xffffffff
—
0x61
R/W
FullAccessKey
hex
4
0x00000000 0xffffffff
—
0x62
R/W
PFKey
hex
4
0x00000000 0xffffffff
—
0x63
R/W
AuthenKey3
hex
4
0x00000000 0xffffffff
—
0x64
R/W
AuthenKey2
hex
4
0x00000000 0xffffffff
—
0x65
R/W
AuthenKey1
hex
4
0x00000000 0xffffffff
—
0x66
R/W
AuthenKey0
hex
4
0x00000000 0xffffffff
—
0x70
R/W
ManufacturerInfo
String
8+1
—
—
—
0x71
R/W
SenseResistor
unsigned int
2
0
65535
—
0x77
R/W
SubClassID
hex
2
0x0000
0xffff
—
0x78
R/W
SubClassPage1
hex
32
—
—
—
0x79
R/W
SubClassPage2
hex
32
—
—
—
0x7a
R/W
SubClassPage3
hex
32
—
—
—
0x7b
R/W
SubClassPage4
hex
32
—
—
—
0x7c
R/W
SubClassPage5
hex
32
—
—
—
0x7d
R/W
SubClassPage6
hex
32
—
—
—
0x7e
R/W
SubClassPage7
hex
32
—
—
—
0x7f
R/W
SubClassPage8
hex
32
—
—
—
%
µΩ
NOTE:
All reserved bits in Data Flash should be written to zero.
Table 3. DATAFLASH VALUES
Class
Subclass
ID
Subclass
Offset
Name
Data
Type
Min Value
Max
Value
Default Value
Units
1st Level
Safety
0
Voltage
0
COV Threshold
I2
3700
5000
4300
mV
1st Level
Safety
0
Voltage
3
COV Recovery
I2
0
4400
3900
mV
1st Level
Safety
0
Voltage
12
CUV Threshold
I2
0
3500
2200
mV
1st Level
Safety
0
Voltage
15
CUV Recovery
I2
0
3600
3000
mV
1st Level
Safety
1
Current
0
OC (1st Tier) Chg
I2
0
20000
6000
mA
1st Level
Safety
1
Current
5
OC (1st Tier) Dsg
I2
0
20000
6000
mA
1st Level
Safety
1
Current
16
Current Recovery Time
U1
0
60
8
s
1st Level
Safety
1
Current
17
AFE OC Dsg
H1
0x00
0x1f
0x12
12
Submit Documentation Feedback
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
Table 3. DATAFLASH VALUES (continued)
Class
Subclass
ID
Subclass
Offset
Name
Data
Type
Min Value
Max
Value
Default Value
1st Level
Safety
1
Current
18
AFE OC Dsg Time
H1
0x00
0xff
0x0f
1st Level
Safety
1
Current
21
AFE SC Chg Cfg
H1
0x00
0xff
0x77
1st Level
Safety
1
Current
22
AFE SC Dsg Cfg
H1
0x00
0xff
0x77
1st Level
Safety
2
Temperature
0
Over Temp Chg
I2
0
1200
550
0.1°C
1st Level
Safety
2
Temperature
3
OT Chg Recovery
I2
0
1200
500
0.1°C
1st Level
Safety
2
Temperature
5
Over Temp Dsg
I2
0
1200
600
0.1°C
1st Level
Safety
2
Temperature
8
OT Dsg Recovery
I2
0
1200
550
0.1°C
2nd Level
Safety
16
Voltage
0
SOV Threshold
I2
0
20000
18000
mV
2nd Level
Safety
16
Voltage
2
SOV Time
U1
0
30
0
s
2nd Level
Safety
16
Voltage
3
Cell Imbalance Current
I1
0
200
5
mA
2nd Level
Safety
16
Voltage
4
Cell Imbalance Fail Voltage
I2
0
5000
1000
mV
2nd Level
Safety
16
Voltage
6
Cell Imbalance Time
U1
0
30
0
s
2nd Level
Safety
16
Voltage
7
Battery Rest Time
U2
0
65535
1800
s
2nd Level
Safety
16
Voltage
9
PFIN Detect Time
U1
0
30
0
s
2nd Level
Safety
17
Current
0
SOC Chg
I2
0
30000
10000
mA
2nd Level
Safety
17
Current
2
SOC Chg Time
U1
0
30
0
s
2nd Level
Safety
17
Current
3
SOC Dsg
I2
0
30000
10000
mA
2nd Level
Safety
17
Current
5
SOC Dsg Time
U1
0
30
0
s
2nd Level
Safety
18
Temperature
0
SOT Chg
I2
0
1200
650
0.1°C
2nd Level
Safety
18
Temperature
2
SOT Chg Time
U1
0
30
0
s
2nd Level
Safety
18
Temperature
3
SOT Dsg
I2
0
1200
750
0.1°C
2nd Level
Safety
18
Temperature
5
SOT Dsg Time
U1
0
30
0
s
2nd Level
Safety
19
FET Verification
2
FET Fail Time
U1
0
30
0
s
2nd Level
Safety
20
AFE Verification
1
AFE Fail Limit
U1
0
255
10
Charge
Control
32
Charge Inhibit Cfg
0
Chg Inhibit Temp Low
I2
-400
1200
0
0.1°C
Charge
Control
32
Charge Inhibit Cfg
2
Chg Inhibit Temp High
I2
-400
1200
450
0.1°C
Charge
Control
33
Pre-Charge Cfg
0
Pre-chg Current
I2
0
2000
250
mA
Charge
Control
33
Pre-Charge Cfg
2
Pre-chg Temp
I2
-400
1200
120
0.1°C
Charge
Control
33
Pre-Charge Cfg
4
Pre-chg Voltage
I2
0
20000
3000
mV
Charge
Control
33
Pre-Charge Cfg
6
Recovery Voltage
I2
0
20000
3100
mV
Submit Documentation Feedback
Units
13
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
Table 3. DATAFLASH VALUES (continued)
Class
Subclass
ID
Subclass
Offset
Name
Data
Type
Min Value
Max
Value
Default Value
Units
Charge
Control
34
Fast Charge Cfg
0
Fast Charge Current
I2
0
10000
4000
mA
Charge
Control
34
Fast Charge Cfg
2
Charging Voltage
I2
0
20000
16800
mV
Charge
Control
34
Fast Charge Cfg
6
Suspend Low Temp
I2
-400
1200
-50
0.1°C
Charge
Control
34
Fast Charge Cfg
8
Suspend High Temp
I2
-400
1200
550
0.1°C
Charge
Control
36
Termination Cfg.
2
Taper Current
I2
0
1000
250
mA
Charge
Control
36
Termination Cfg.
6
Taper Voltage
I2
0
1000
300
mV
Charge
Control
36
Termination Cfg.
10
TCA Clear %
I1
-1
100
95
%
Charge
Control
36
Termination Cfg.
12
FC Clear %
I1
-1
100
98
%
Charge
Control
37
Cell Balancing Cfg
0
Min Cell Deviation
U2
0
65535
1750
s/mAh
Charge
Control
38
Charging Faults
13
Over Charge Capacity
I2
0
4000
300
mAh
SBS
Configuration
48
Data
0
Rem Cap Alarm
I2
0
700
300
mAh
SBS
Configuration
48
Data
2
Rem Energy Alarm
I2
0
1000
432
10mW
SBS
Configuration
48
Data
4
Rem Time Alarm
U2
0
30
10
min
SBS
Configuration
48
Data
6
Init Battery Mode
H2
0x0000
0xffff
0x0081
SBS
Configuration
48
Data
8
Design Voltage
I2
7000
18000
14400
SBS
Configuration
48
Data
10
Spec Info
H2
0x0000
0xffff
0x0031
SBS
Configuration
48
Data
12
Manuf Date
U2
0
65535
0
SBS
Configuration
48
Data
14
Ser. Num.
H2
0x0000
0xffff
0x0001
SBS
Configuration
48
Data
16
Cycle Count
U2
0
65535
0
Count
SBS
Configuration
48
Data
18
CC Threshold
I2
100
32767
4400
mAh
SBS
Configuration
48
Data
21
CF MaxError Limit
U1
0
100
100
%
SBS
Configuration
48
Data
22
Design Capacity
I2
0
65535
4400
mAh
SBS
Configuration
48
Data
24
Design Energy
I2
0
65535
6336
10mWh
SBS
Configuration
48
Data
26
Manuf Name
S12
Texas Inst.
SBS
Configuration
48
Data
38
Device Name
S8
bq20z70
SBS
Configuration
48
Data
46
Device Chemistry
S5
LION
SBS
Configuration
49
Configuration
0
TDA Set %
I1
-1
100
6
%
SBS
Configuration
49
Configuration
1
TDA Clear %
I1
-1
100
8
%
SBS
Configuration
49
Configuration
2
FD Set %
I1
-1
100
2
%
14
Submit Documentation Feedback
mV
Day +
Mo*32 +
(Yr
1980)*256
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
Table 3. DATAFLASH VALUES (continued)
Class
Subclass
ID
Subclass
Offset
Name
Data
Type
Min Value
Max
Value
Default Value
Units
SBS
Configuration
49
Configuration
3
FD Clear %
I1
-1
100
5
%
SBS
Configuration
49
Configuration
4
TDA Set Volt Threshold
I2
0
16800
5000
mV
SBS
Configuration
49
Configuration
6
TDA Set Volt Time
U1
0
60
0
s
SBS
Configuration
49
Configuration
7
TDA Clear Volt
I2
0
16800
5500
mV
System Data
58
Manufacturer Info
0
Manuf. Info
S9
Configuration
64
Registers
0
Operation Cfg A
H2
0x0000
0x033b
0x0329
Configuration
64
Registers
2
Operation Cfg B
H2
0x0000
0x3eff
0x2440
Configuration
64
Registers
4
Operation Cfg C
H2
0x0000
0x0001
0x0000
Configuration
64
Registers
6
Permanent Fail Cfg
H2
0x0000
0x4dff
0x0000
Configuration
64
Registers
8
Non-Removable Cfg
H2
0x0000
0x3027
0x0000
Power
68
Power
0
Flash Update OK Voltage
I2
6000
20000
7500
mV
Power
68
Power
2
Shutdown Voltage
I2
5000
20000
7000
mV
Power
68
Power
5
Charger Present
I2
0
23000
3000
mV
Power
68
Power
16
Wake Current Reg
H1
0x00
0xff
0x00
Gas Gauging
80
IT Cfg
0
Load Select
U1
0
255
3
Gas Gauging
80
IT Cfg
1
Load Mode
U1
0
255
0
Gas Gauging
80
IT Cfg
45
Term Voltage
I2
-32768
32767
12000
mV
Gas Gauging
80
IT Cfg
60
User Rate-mA
I2
2000
9000
0
MilliAmp
Gas Gauging
80
IT Cfg
62
User Rate-mW
I2
3000
14000
0
10mW
Gas Gauging
80
IT Cfg
64
Reserve Cap-mAh
I2
0
9000
0
mAh
Gas Gauging
80
IT Cfg
66
Reserve Cap-mWh
I2
0
14000
0
10mWh
Gas Gauging
81
Current Thresholds
0
Dsg Current Threshold
I2
0
2000
50
mA
Gas Gauging
81
Current Thresholds
2
Chg Current Threshold
I2
0
2000
25
mA
Gas Gauging
81
Current Thresholds
4
Quit Current
I2
0
1000
10
mA
Gas Gauging
82
State
0
Qmax Cell0
I2
0
32767
4400
mAh
Gas Gauging
82
State
2
Qmax Cell1
I2
0
32767
4400
mAh
Gas Gauging
82
State
4
Qmax Cell2
I2
0
32767
4400
mAh
Gas Gauging
82
State
6
Qmax Cell3
I2
0
32767
4400
mAh
Gas Gauging
82
State
8
Qmax Pack
I2
0
32767
4400
mAh
Gas Gauging
82
State
12
Update Status
H1
0x0
0x3
0x0
Gas Gauging
82
State
25
Delta Voltage
I2
-32768
32767
0
Ra Table
88
R_a0
0
Cell0 R_a flag
H2
0x0000
0x0000
0xff55
Ra Table
88
R_a0
2
Cell0 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
88
R_a0
4
Cell0 R_a 1
I2
181
181
166
2^-10ohm
Ra Table
88
R_a0
6
Cell0 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
88
R_a0
8
Cell0 R_a 3
I2
244
244
151
2^-10ohm
Ra Table
88
R_a0
10
Cell0 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
88
R_a0
12
Cell0 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
88
R_a0
14
Cell0 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
88
R_a0
16
Cell0 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
88
R_a0
18
Cell0 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
88
R_a0
20
Cell0 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
88
R_a0
22
Cell0 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
88
R_a0
24
Cell0 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
88
R_a0
26
Cell0 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
88
R_a0
28
Cell0 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
88
R_a0
30
Cell0 R_a 14
I2
366
366
1458
2^-10ohm
Ra Table
89
R_a1
0
Cell1 R_a flag
H2
0x0
0x0
0xff55
Submit Documentation Feedback
12345678
mV
15
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
Table 3. DATAFLASH VALUES (continued)
Class
Subclass
ID
Subclass
Offset
Name
Data
Type
Min Value
Max
Value
Default Value
Units
Ra Table
89
R_a1
2
Cell1 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
89
R_a1
4
Cell1 R_a 1
I2
181
181
166
2^-10ohm
Ra Table
89
R_a1
6
Cell1 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
89
R_a1
8
Cell1 R_a 3
I2
244
244
151
2^-10ohm
Ra Table
89
R_a1
10
Cell1 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
89
R_a1
12
Cell1 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
89
R_a1
14
Cell1 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
89
R_a1
16
Cell1 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
89
R_a1
18
Cell1 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
89
R_a1
20
Cell1 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
89
R_a1
22
Cell1 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
89
R_a1
24
Cell1 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
89
R_a1
26
Cell1 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
89
R_a1
28
Cell1 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
89
R_a1
30
Cell1 R_a 14
I2
366
366
1458
2^-10ohm
Ra Table
90
R_a2
0
Cell2 R_a flag
H2
0x0000
0x0000
0xff55
Ra Table
90
R_a2
2
Cell2 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
90
R_a2
4
Cell2 R_a 1
I2
181
181
166
2^-10ohm
Ra Table
90
R_a2
6
Cell2 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
90
R_a2
8
Cell2 R_a 3
I2
244
244
151
2^-10ohm
Ra Table
90
R_a2
10
Cell2 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
90
R_a2
12
Cell2 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
90
R_a2
14
Cell2 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
90
R_a2
16
Cell2 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
90
R_a2
18
Cell2 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
90
R_a2
20
Cell2 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
90
R_a2
22
Cell2 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
90
R_a2
24
Cell2 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
90
R_a2
26
Cell2 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
90
R_a2
28
Cell2 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
90
R_a2
30
Cell2 R_a 14
I2
366
366
1458
2^-10ohm
Ra Table
91
R_a3
0
Cell3 R_a flag
H2
0x0000
0x0000
0xff55
Ra Table
91
R_a3
2
Cell3 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
91
R_a3
4
Cell3 R_a 1
I2
181
181
166
2^-10ohm
Ra Table
91
R_a3
6
Cell3 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
91
R_a3
8
Cell3 R_a 3
I2
244
244
151
2^-10ohm
Ra Table
91
R_a3
10
Cell3 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
91
R_a3
12
Cell3 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
91
R_a3
14
Cell3 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
91
R_a3
16
Cell3 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
91
R_a3
18
Cell3 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
91
R_a3
20
Cell3 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
91
R_a3
22
Cell3 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
91
R_a3
24
Cell3 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
91
R_a3
26
Cell3 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
91
R_a3
28
Cell3 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
91
R_a3
30
Cell3 R_a 14
I2
366
366
1458
2^-10ohm
Ra Table
92
R_a0x
0
xCell0 R_a flag
H2
0xffff
0xffff
0xffff
Ra Table
92
R_a0x
2
xCell0 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
92
R_a0x
4
xCell0 R_a 1
I2
181
181
166
2^-10ohm
16
Submit Documentation Feedback
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
Table 3. DATAFLASH VALUES (continued)
Class
Subclass
ID
Subclass
Offset
Name
Data
Type
Min Value
Max
Value
Default Value
Units
Ra Table
92
R_a0x
6
xCell0 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
92
R_a0x
8
xCell0 R_a 3
I2
244
244
151
2^-10ohm
Ra Table
92
R_a0x
10
xCell0 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
92
R_a0x
12
xCell0 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
92
R_a0x
14
xCell0 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
92
R_a0x
16
xCell0 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
92
R_a0x
18
xCell0 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
92
R_a0x
20
xCell0 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
92
R_a0x
22
xCell0 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
92
R_a0x
24
xCell0 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
92
R_a0x
26
xCell0 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
92
R_a0x
28
xCell0 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
92
R_a0x
30
xCell0 R_a 14
I2
366
366
1458
2^-10ohm
Ra Table
93
R_a1x
0
xCell1 R_a flag
H2
0xffff
0xffff
0xffff
Ra Table
93
R_a1x
2
xCell1 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
93
R_a1x
4
xCell1 R_a 1
I2
181
181
166
2^-10ohm
Ra Table
93
R_a1x
6
xCell1 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
93
R_a1x
8
xCell1 R_a 3
I2
244
244
151
2^-10ohm
Ra Table
93
R_a1x
10
xCell1 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
93
R_a1x
12
xCell1 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
93
R_a1x
14
xCell1 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
93
R_a1x
16
xCell1 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
93
R_a1x
18
xCell1 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
93
R_a1x
20
xCell1 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
93
R_a1x
22
xCell1 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
93
R_a1x
24
xCell1 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
93
R_a1x
26
xCell1 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
93
R_a1x
28
xCell1 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
93
R_a1x
30
xCell1 R_a 14
I2
366
366
1458
2^-10ohm
Ra Table
94
R_a2x
0
xCell2 R_a flag
H2
0xffff
0xffff
0xffff
Ra Table
94
R_a2x
2
xCell2 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
94
R_a2x
4
xCell2 R_a 1
I2
181
181
166
2^-10ohm
Ra Table
94
R_a2x
6
xCell2 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
94
R_a2x
8
xCell2 R_a 3
I2
244
244
151
2^-10ohm
Ra Table
94
R_a2x
10
xCell2 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
94
R_a2x
12
xCell2 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
94
R_a2x
14
xCell2 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
94
R_a2x
16
xCell2 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
94
R_a2x
18
xCell2 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
94
R_a2x
20
xCell2 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
94
R_a2x
22
xCell2 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
94
R_a2x
24
xCell2 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
94
R_a2x
26
xCell2 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
94
R_a2x
28
xCell2 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
94
R_a2x
30
xCell2 R_a 14
I2
366
366
1458
2^-10ohm
Ra Table
95
R_a3x
0
xCell3 R_a flag
H2
0xffff
0xffff
0xffff
Ra Table
95
R_a3x
2
xCell3 R_a 0
I2
183
183
160
2^-10ohm
Ra Table
95
R_a3x
4
xCell3 R_a 1
I2
181
181
166
2^-10ohm
Ra Table
95
R_a3x
6
xCell3 R_a 2
I2
198
198
153
2^-10ohm
Ra Table
95
R_a3x
8
xCell3 R_a 3
I2
244
244
151
2^-10ohm
Submit Documentation Feedback
17
bq20z70
www.ti.com
SLUS686A – NOVEMBER 2005 – REVISED JUNE 2006
Table 3. DATAFLASH VALUES (continued)
Class
Subclass
ID
Subclass
Offset
Name
Data
Type
Min Value
Max
Value
Default Value
Units
Ra Table
95
R_a3x
10
xCell3 R_a 4
I2
254
254
145
2^-10ohm
Ra Table
95
R_a3x
12
xCell3 R_a 5
I2
261
261
152
2^-10ohm
Ra Table
95
R_a3x
14
xCell3 R_a 6
I2
333
333
176
2^-10ohm
Ra Table
95
R_a3x
16
xCell3 R_a 7
I2
338
338
204
2^-10ohm
Ra Table
95
R_a3x
18
xCell3 R_a 8
I2
345
345
222
2^-10ohm
Ra Table
95
R_a3x
20
xCell3 R_a 9
I2
350
350
254
2^-10ohm
Ra Table
95
R_a3x
22
xCell3 R_a 10
I2
382
382
315
2^-10ohm
Ra Table
95
R_a3x
24
xCell3 R_a 11
I2
429
429
437
2^-10ohm
Ra Table
95
R_a3x
26
xCell3 R_a 12
I2
502
502
651
2^-10ohm
Ra Table
95
R_a3x
28
xCell3 R_a 13
I2
545
545
1001
2^-10ohm
Ra Table
95
R_a3x
30
xCell3 R_a 14
I2
366
366
1458
2^-10ohm
PF Status
96
Device Status Data
0
PF Flags 1
H2
0x0000
0x4dff
0x0000
PF Status
96
Device Status Data
28
PF Flags 2
H2
0x0000
0x0dff
0x0000
Calibration
104
Data
0
CC Gain
F4
0.1
4
0.9419
Calibration
104
Data
4
CC Delta
F4
29826
1193046
280932.625
Calibration
104
Data
8
Ref Voltage
I2
0
32767
24500
50uV
Calibration
104
Data
12
AFE Pack Gain
I2
0
32767
22050
µV/cnt
Calibration
104
Data
14
CC Offset
I2
-32768
32767
-1667
Calibration
104
Data
16
Board Offset
I2
-32768
32767
0
Calibration
104
Data
18
Int Temp Offset
I1
-128
127
0
Calibration
104
Data
19
Ext1 Temp Offset
I1
-128
127
0
Calibration
104
Data
20
Ext2 Temp Offset
I1
-128
127
0
Calibration
105
Config
0
CC Current
I2
0
32767
3000
mA
Calibration
105
Config
2
Voltage Signal
I2
0
32767
16800
mV
Calibration
105
Config
4
Temp Signal
I2
0
32767
2980
0.1°C
Calibration
105
Config
6
CC Offset Time
U2
0
65535
250
s
Calibration
105
Config
8
ADC Offset Time
U2
0
65535
32
s
Calibration
105
Config
10
CC Gain Time
U2
0
65535
250
s
Calibration
105
Config
12
Voltage Time
U2
0
65535
1984
ms
Calibration
105
Config
14
Temperature Time
U2
0
65535
32
s
Calibration
105
Config
17
Cal Mode Timeout
U2
0
65535
38400
1/128 s
Calibration
106
Temp Model
0
Ext Coef 1
I2
-32768
32767
-28285
s
Calibration
106
Temp Model
2
Ext Coef 2
I2
-32768
32767
20848
s
Calibration
106
Temp Model
4
Ext Coef 3
I2
-32768
32767
-7537
s
Calibration
106
Temp Model
6
Ext Coef 4
I2
-32768
32767
4012
s
Calibration
106
Temp Model
8
Ext Min AD
I2
-32768
32767
0
s
Calibration
106
Temp Model
10
Ext Max Temp
I2
-32768
32767
4012
s
Calibration
106
Temp Model
12
Int Coef 1
I2
-32768
32767
0
s
Calibration
106
Temp Model
14
Int Coef 2
I2
-32768
32767
0
s
Calibration
106
Temp Model
16
Int Coef 3
I2
-32768
32767
-11136
s
Calibration
106
Temp Model
18
Int Coef 4
I2
-32768
32767
5754
s
Calibration
106
Temp Model
20
Int Min AD
I2
-32768
32767
0
s
Calibration
106
Temp Model
22
Int Max Temp
I2
-32768
32767
5754
s
Calibration
107
Current
0
Filter
U1
0
255
239
Calibration
107
Current
1
Deadband
U1
0
255
3
mA
Calibration
107
Current
2
CC Deadband
U1
0
255
34
294 nV
Application Schematic
The application schematic is on the following page.
18
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
15-Jun-2006
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
BQ20Z70PW
ACTIVE
TSSOP
PW
20
BQ20Z70PWR
ACTIVE
TSSOP
PW
20
70
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Mailing Address:
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2006, Texas Instruments Incorporated