SN74LV541AT OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES573A – JUNE 2004 – REVISED AUGUST 2005 FEATURES • • Ioff Supports Partial-Power-Down Mode Operation Latch-Up Performance Exceeds 250 mA Per JESD 17 ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) – 1000-V Charged-Device Model (C101) DB, DGV, DW, NS, OR PW PACKAGE (TOP VIEW) 1 20 2 19 3 18 4 17 5 16 6 15 7 14 8 13 9 12 10 11 VCC OE2 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 A1 A2 A3 A4 A5 A6 A7 A8 VCC OE1 A1 A2 A3 A4 A5 A6 A7 A8 GND RGY PACKAGE (TOP VIEW) 1 20 3 4 19 OE2 18 Y1 17 Y2 5 6 16 Y3 15 Y4 7 8 14 Y5 13 Y6 9 12 Y7 2 10 11 Y8 • • OE1 • Inputs Are TTL-Voltage Compatible 4.5-V to 5.5-V VCC Operation Typical tpd of 4 ns at 5 V Typical VOLP (Output Ground Bounce) <0.8 V at VCC = 5 V, TA = 25°C Typical VOHV (Output VOH Undershoot) >2.3 V at VCC = 5 V, TA = 25°C Supports Mixed-Mode Voltage Operation on All Ports GND • • • • DESCRIPTION/ORDERING INFORMATION The SN74LV541AT is designed for 4.5-V to 5.5-V VCC operation. The inputs are TTL-voltage compatible, which allows them to be interfaced with bipolar outputs and 3.3-V devices. The device also can be used to translate from 3.3 V to 5 V. ORDERING INFORMATION PACKAGE (1) TA QFN – RGY SN74LV541ATRGYR Tube of 25 SN74LV541ATDW Reel of 2000 SN74LV541ATDWR SOP – NS Reel of 2000 SN74LV541ATNSR 74LV541AT SSOP – DB Reel of 2000 SN74LV541ATDBR LV541AT Tube of 70 SN74LV541ATPW Reel of 2000 SN74LV541ATPWR Reel of 250 SN74LV541ATPWT Reel of 2000 SN74LV541ATDGVR TSSOP – PW TVSOP – DGV (1) TOP-SIDE MARKING Reel of 1000 SOIC – DW –40°C to 85°C ORDERABLE PART NUMBER VV541 LV541AT LV541AT LV541AT Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2004–2005, Texas Instruments Incorporated SN74LV541AT OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES573A – JUNE 2004 – REVISED AUGUST 2005 DESCRIPTION/ORDERING INFORMATION (CONTINUED) This device is ideal for driving bus lines or buffer memory address registers. It features inputs and outputs on opposite sides of the package to facilitate printed circuit board layout. The 3-state control gate is a two-input AND gate with active-low inputs so that, if either output-enable (OE1 or OE2) input is high, all corresponding outputs are in the high-impedance state. The outputs provide noninverted data when they are not in the high-impedance state. To ensure the high-impedance state during power up or power down, OE shall be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. FUNCTION TABLE (EACH BUFFER/DRIVER) INPUTS OUTPUT Y OE1 OE2 A L L L L L L H H H X X Z X H X Z LOGIC DIAGRAM (POSITIVE LOGIC) OE1 OE2 A1 1 19 2 18 To Seven Other Channels 2 Y1 SN74LV541AT OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES573A – JUNE 2004 – REVISED AUGUST 2005 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN MAX VCC Supply voltage range –0.5 7 V VI Input voltage range (2) –0.5 7 V –0.5 7 V –0.5 VCC + 0.5 state (2) UNIT VO Voltage range applied to any output in the high-impedance or power-off VO Output voltage range applied in the high or low state (2) (3) IIK Input clamp current VI < 0 –20 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current VO = 0 to VCC ±35 mA ±70 mA Continuous current through VCC or GND DB θJA Package thermal impedance package (4) 70 DGV package (4) 92 DW package (4) 58 NS package (4) 60 PW package (4) 83 RGY package (5) Tstg (1) (2) (3) (4) (5) Storage temperature range V °C/W 37 –65 150 °C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed. This value is limited to 5.5 V maximum. The package thermal impedance is calculated in accordance with JESD 51-7 The package thermal impedance is calculated in accordance with JESD 51-5. Recommended Operating Conditions (1) VCC Supply voltage VIH High-level input voltage VCC = 4.5 V to 5.5 V VIL Low-level input voltage VCC = 4.5 V to 5.5 V VI Input voltage MIN MAX 4.5 5.5 2 UNIT V V 0.8 V 0 5.5 V High or low state 0 VCC 3-state 0 5.5 VO Output voltage IOH High-level output current VCC = 4.5 V to 5.5 V –16 IOL Low-level output current VCC = 4.5 V to 5.5 V 16 mA ∆t/∆v Input transition rise or fall rate VCC = 4.5 V to 5.5 V 20 ns/V TA Operating free-air temperature 85 °C (1) –40 V mA All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 3 SN74LV541AT OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES573A – JUNE 2004 – REVISED AUGUST 2005 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER VOH VOL TA = –40°C to 85°C TA = 25°C VCC MIN TYP 4.5 IOH = –50 µA 4.5 V 4.4 IOH = –16 mA 4.5 V 3.8 IOL = 50 µA 4.5 V IOL = 16 mA 4.5 V MAX MIN UNIT MAX 4.4 V 3.8 0 0.1 0.1 0.55 0.55 V II VI = 5.5 V or GND 0 to 5.5 V ±0.1 ±1 µA IOZ VO = VCC or GND 5.5 V ±0.25 ±2.5 µA ICC VI = VCC or GND, IO = 0 5.5 V 2 20 µA One input at 3.4 V, Other inputs at VCC or GND 5.5 V 1.35 1.5 mA 0 0.5 5 µA ∆ICC (1) TEST CONDITIONS (1) Ioff VI or VO = 0 to 5.5 V Ci VI = VCC or GND 2 pF This is the increase in supply current for each input at one of the specified TTL voltage levels rather than 0 V or VCC. Switching Characteristics over recommended operating free-air temperature range, VCC = 5 V ± 0.5 V (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tpd A Y PARAMETER LOAD CAPACITANCE CL = 15 pF TA = –40°C to 85°C TA = 25°C MIN TYP MAX UNIT MIN MAX 2.6 5 6.9 1 8 ten OE Y 3 8.3 11.3 1 13 tdis OE Y 1.4 3.9 7.5 1 8 tpd A Y 4 5.5 7.9 1 9 ten OE Y 3.8 8.8 12.3 1 14 tdis OE Y 2.1 9.4 11.9 1 13.5 CL = 50 pF tsk(o) 1 ns ns 1 Noise Characteristics (1) VCC = 5 V, CL = 50 pF TA = 25°C PARAMETER MIN TYP MAX UNIT VOL(P) Quiet output, maximum dynamic VOL 1.1 1.5 V VOL(V) Quiet output, minimum dynamic VOL –1.1 –1.5 V VOH(V) Quiet output, minimum dynamic VOH VIH(D) High-level dynamic input voltage VIL(D) Low-level dynamic input voltage (1) 4 V 2 V 0.8 V Characteristics are for surface-mount packages only. Operating Characteristics VCC = 5 V, TA = 25°C PARAMETER Cpd 4 Power dissipation capacitance TEST CONDITIONS Outputs enabled CL = 50 pF, f = 10 MHz TYP 8 UNIT pF SN74LV541AT OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES573A – JUNE 2004 – REVISED AUGUST 2005 PARAMETER MEASUREMENT INFORMATION VCC From Output Under Test Test Point RL = 1 kΩ From Output Under Test CL (see Note A) S1 Open TEST GND CL (see Note A) LOAD CIRCUIT FOR TOTEM-POLE OUTPUTS S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open Drain Open VCC GND VCC LOAD CIRCUIT FOR 3-STATE AND OPEN-DRAIN OUTPUTS 3V 1.5 V Timing Input 0V tw 3V 1.5 V Input 1.5 V th tsu 3V 1.5 V Data Input 1.5 V 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 3V 1.5 V Input 1.5 V 0V tPLH tPHL VOH In-Phase Output 50% VCC tPHL Out-of-Phase Output 50% VCC VOL Output Waveform 1 S1 at VCC (see Note B) VOH 50% VCC VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS 1.5 V 1.5 V 0V tPZL tPLZ ≈VCC 50% VCC tPZH tPLH 50% VCC 3V Output Control Output Waveform 2 S1 at GND (see Note B) VOL + 0.3 V VOL tPHZ 50% VCC VOH − 0.3 V VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tr ≤ 3 ns, tf ≤ 3 ns. D. The outputs are measured one at a time, with one input transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPHL and tPLH are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuits and Voltage Waveforms 5 PACKAGE OPTION ADDENDUM www.ti.com 4-Jun-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty SN74LV541ATDBR ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDBRE4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDBRG4 ACTIVE SSOP DB 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDGVR ACTIVE TVSOP DGV 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDGVRE4 ACTIVE TVSOP DGV 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDGVRG4 ACTIVE TVSOP DGV 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDW ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDWE4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDWG4 ACTIVE SOIC DW 20 25 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDWR ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDWRE4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATDWRG4 ACTIVE SOIC DW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATNSR ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATNSRE4 ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATNSRG4 ACTIVE SO NS 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPW ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWE4 ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWG4 ACTIVE TSSOP PW 20 70 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWR ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWRE4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWRG4 ACTIVE TSSOP PW 20 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWT ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWTE4 ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATPWTG4 ACTIVE TSSOP PW 20 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74LV541ATRGYR ACTIVE QFN RGY 20 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR Addendum-Page 1 Lead/Ball Finish MSL Peak Temp (3) PACKAGE OPTION ADDENDUM www.ti.com 4-Jun-2007 Orderable Device Status (1) Package Type Package Drawing SN74LV541ATRGYRG4 ACTIVE QFN RGY Pins Package Eco Plan (2) Qty 20 1000 Green (RoHS & no Sb/Br) Lead/Ball Finish CU NIPDAU MSL Peak Temp (3) Level-2-260C-1 YEAR (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 4-Oct-2007 TAPE AND REEL BOX INFORMATION Device Package Pins Site Reel Diameter (mm) Reel Width (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant SN74LV541ATDBR DB 20 SITE 41 330 16 8.2 7.5 2.5 12 16 Q1 SN74LV541ATDGVR DGV 20 SITE 41 330 12 7.0 5.6 1.6 8 12 Q1 SN74LV541ATDWR DW 20 SITE 41 330 24 10.8 13.0 2.7 12 24 Q1 SN74LV541ATNSR NS 20 SITE 41 330 24 8.2 13.0 2.5 12 24 Q1 SN74LV541ATPWR PW 20 SITE 41 330 16 6.95 7.1 1.6 8 16 Q1 SN74LV541ATRGYR RGY 20 SITE 41 180 12 3.8 4.8 1.6 8 12 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com Device 4-Oct-2007 Package Pins Site Length (mm) Width (mm) Height (mm) SN74LV541ATDBR DB 20 SITE 41 346.0 346.0 33.0 SN74LV541ATDGVR DGV 20 SITE 41 346.0 346.0 29.0 SN74LV541ATDWR DW 20 SITE 41 346.0 346.0 41.0 SN74LV541ATNSR NS 20 SITE 41 346.0 346.0 41.0 SN74LV541ATPWR PW 20 SITE 41 346.0 346.0 33.0 SN74LV541ATRGYR RGY 20 SITE 41 190.0 212.7 31.75 Pack Materials-Page 2 MECHANICAL DATA MPDS006C – FEBRUARY 1996 – REVISED AUGUST 2000 DGV (R-PDSO-G**) PLASTIC SMALL-OUTLINE 24 PINS SHOWN 0,40 0,23 0,13 24 13 0,07 M 0,16 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 0°–8° 1 0,75 0,50 12 A Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,08 14 16 20 24 38 48 56 A MAX 3,70 3,70 5,10 5,10 7,90 9,80 11,40 A MIN 3,50 3,50 4,90 4,90 7,70 9,60 11,20 DIM 4073251/E 08/00 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001 DB (R-PDSO-G**) PLASTIC SMALL-OUTLINE 28 PINS SHOWN 0,38 0,22 0,65 28 0,15 M 15 0,25 0,09 8,20 7,40 5,60 5,00 Gage Plane 1 14 0,25 A 0°–ā8° 0,95 0,55 Seating Plane 2,00 MAX 0,10 0,05 MIN PINS ** 14 16 20 24 28 30 38 A MAX 6,50 6,50 7,50 8,50 10,50 10,50 12,90 A MIN 5,90 5,90 6,90 7,90 9,90 9,90 12,30 DIM 4040065 /E 12/01 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-150 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MECHANICAL DATA MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999 PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 14 PINS SHOWN 0,30 0,19 0,65 14 0,10 M 8 0,15 NOM 4,50 4,30 6,60 6,20 Gage Plane 0,25 1 7 0°– 8° A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 8 14 16 20 24 28 A MAX 3,10 5,10 5,10 6,60 7,90 9,80 A MIN 2,90 4,90 4,90 6,40 7,70 9,60 DIM 4040064/F 01/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security RFID www.ti-rfid.com Telephony www.ti.com/telephony Low Power Wireless www.ti.com/lpw Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated